Citation:
Abstract:
A strong representation of a committee, formalized as a simple game, on a convex and closed set of alternatives is a game form with the members of the committee as players such that (i) the winning coalitions of the simple game are exactly those coalitions, which can get any given alternative independent of the strategies of the complement, and (ii) for any profile of continuous and convex preferences, the resulting game has a strong Nash equilibrium. In the paper, it is investigated whether committees have representations on convex and compact subsets of R^m. This is shown ot be the case if there are vetoers; for committees with no vetoers the existence of strong representations depends on the structure of the alternative set as well as on that of the committee (its Nakamura-number). Thus, if A is strictly convex, compact and has smooth boundary, then no committee can have a strong representation on A. On the other hand, if A has non-smooth boundary, representations may exist depending on the Nakamura-number (if it is at least 7).