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Abstract

A strong representation of a committee, formalized as a simple game, on a convex and closed set of
alternatives is a game form with the members of the committee as players such that (i) the winning
coalitions of the simple game are exactly those coalitions, which can get any given alternative
independent of the strategies of the complement, and (ii) for any profile of continuous and convex
preferences, the resulting game has a strong Nash equilibrium. In the paper, it is investigated whether
committees have representations on convex and compact subsets of R”. This is shown to be the case
if there are vetoers; for committees with no vetoers the existence of strong representations depends
on the structure of the alternative set as well as on that of the committee (its Nakamura-number).
Thus, if A is strictly convex, compact, and has smooth boundary, then no committee can have a
strong representation on A. On the other hand, if A has non-smooth boundary, representations may
exist depending on the Nakamura-number (if it is at least 7). © 2001 Elsevier Science B.V. All
rights reserved.

JEL classification: D71; C71.
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1. Introduction

The study of committee decision making in political and economic environments has been
the subject of many investigations since Black (1948). At this point we shall only mention
Arrow (1951), Moulin (1980), Barbera and Peleg (1990), Zhou (1991) and Barbera et al.
(1994). For arecent survey of closely related work the reader is referred to Sprumont (1995).
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Black (1948) and Arrow (1951) introduced the class of single-peaked preferences on
the real line. For this class of preferences, the analysis of the decision making of a simple
majority committee leads to the median voter rule. This rule is (coalitionally) strategy-proof,
anonymous, and Pareto efficient. In Moulin (1980) all voting rules (on the class of single
peaked preference profiles) which are strategy-proof, anonymous, and efficient, have been
characterized. Moulin’s work has been refined by several authors (see Sprumont, 1995),
so that now committee decision making on (a closed convex subset of) the real line with
single-peaked preferences is fully understood (see also Section 8 in the present paper).

Clearly, assuming that choice set is one-dimensionsional is very restrictive. In many
real-life problems we have to deal with several issues simultaneously or allocate the budget
to several projects. However, the problem of extending Moulin’s results to higher dimensions
remained open till Zhou (1991). In his paper, Zhou generalizes the Gibbard-Satterthwaite
Theorem (see Gibbard (1973) and Satterthwaite (1975)) to economies with pure public
goods. In terms of the theory of committee decision making, Zhou’s result can be described
as follows. Let A be a closed and convex subset of R, m > 2, and let the dimension of A
be m. Further, let G be a non-dictatorial commitee (i.e. G is a non-dictatorial (monotonic
and proper) simple game), and let f be a social choice function which has the following
properties: (i) f induces the same power structure (among the players) as G, (ii) f is defined
for (profiles of) continuous and convex preferences (on A). Then (under all the foregoing
assumptions), f is manipulable.

The work of Zhou (1991) is the starting point of our investigation. Our method for finding
satisfactory voting rules for pure public goods economies can be described in the following
way. Let G = (N, W) be a committee, and let A be a convex and compact subset of R
of full dimension m, for m > 2. The pair (G, A) will be called a choice problem. The core
of a choice problem (G, A) with respect to a profile ==V of preferences is defined in the
usual way (see our Section 2 below). We mainly consider stable choice problems, i.e. choice
problems (G, A) such that the core C(G, A, 2-V) # @ for every profile ==V of continuous
and convex preferences. We remark that if G is weak (i.e. G contains at least one vetoer),
then (G, A) is stable (for every compact set A). For a non-weak committee G, (G, A) is
stable iff m < v(G) — 2, where v(G) is the number of G (see Greenberg (1979) and Le
Breton (1987)).

Now, let (G, A) be a stable choice problem. We ask whether there exists a game form I”
with the following properties:

1. I' (partially) implements the core C(G, A, -) on the (restricted) domain of continuous
and convex preferences in strong Nash equilibria;
2. the power structure induced by I" on N (i.e. the set of members of G), is equal to G.

If a game form I satisfies the foregoing conditions (1) and (2) with respect to a (stable)
choice problem (G, A), then we say that I" is a strong representation of G on A. In this
paper, we study the existence of strong representations of choice problems. Our study is
motivated by the following two claims:

1. A strong representation of a choice problem (G, A) is a satisfactory (generalized) voting
procedure that enables the committee G to choose a member of A.
2. There exist important families of choice problems which have strong representations.



H. Keiding, B. Peleg/Journal of Mathematical Economics 36 (2001) 117-140 119

We shall now elaborate on these two claims. Let (G, A) be a choice problem, and let
I'" be a strong representation of G on A. As I" is a game form, it may be considered as
a generalized voting procedure for G (the ordinary voting procedures are given by social
choice functions). Indeed, quite a few voting rules are given by game forms; approval voting
is a well-known example. In addition, each voting game that is induced by I” (in conjunction
with a profile of continuous and convex preferences) has a strong Nash equilibrium. This
strong stability property is not implied, for example, by the existence of equilibrium in
dominant strategies. Finally, I" truly reflects the power structure represented by G.

In order to justify claim (b) we shall mention two of our results. (1) If G is weak, then
(G, A) has a strong representation for every A (that satisfies our assumptions); (2) assume
that A = R™ and that m < v(G) — 2. If we restrict ourselves to continuous and convex
preferences which are also bounded (i.e. the upper level sets are bounded; see Section 3),
then (G, A) has a strong representation. We remark that preferences which are derived from
a weighted Euclidean distance (see Enelow and Hinich, 1984), are bounded.

We can now summarize our approach. Using the nonemptiness of the core of a choice
problem (G, A), we find strongly stable (generalized) voting procedures for G (i.e. pro-
cedures which are stable when combined with continuous and convex preferences on A).
The manipulability problem is avoided because we use game forms (and not social choice
functions). However, as expected, the voting games induced by our game forms are not
solvable by dominant strategies; nevertheless, they have strong Nash equilbria.

Earlier works on existence of strong representations for committees considered choice
problems with a finite set of alternatives. The following is a (partial) list of contributions
to the theory of representation: Peleg (1978a, 1978b, 1984), Dutta and Pattanaik (1978),
Ishikawa and Nakamura (1980) and Holzman (1986a, 1986b). These works proved exis-
tence of strong representations by social choice functions, whereas we only prove strong
representation by game forms. We have to enlarge the set of possible representations because
of the complexity of the representation problem in the continuous case. Indeed, we obtained
some impossibility results for (the larger set of) game forms. Finally, we should mention
the close relationship between representation theory and implementation in strong Nash
equilibria (see Moulin and Peleg (1982) and Maskin (1985) for results on implementation
by strong Nash equilibria).

We now briefly review the contents of this paper. Section 2 is devoted to definitions and
notations. Existence of strong representations for spatial voting games is proved in Section
3. Choice problems for committees with vetoers are considered in Section 4, where it is
proved that all such problems have strong representations. In Section 5, we state and prove
the first impossibility result (Theorem 3) which may be formulated as follows. Let A C R?
be strictly convex, compact, and smooth, and let G be a committee without vetoers. Then G
has no strong representation on A. This result can be generalized to higher dimensions (see
Theorem 4). Small Nakamura numbers are considered in Section 6. If (G, A) is a choice
problem and v(G) < 6, then G has no strong representation on A. The first case which is not
excluded by our impossibility theorems is G = (7, 6) (i.e. a special majority of 6 out of 7)
and A is the (two-dimensional) standard unit simplex in R3 (notice that v(G) = 7and A is not
strictly convex). Itis solved in full detail in Section 7. Finally, the classical case of dimension
1 is briefly discussed in Section 8. A general result, extending the basic result of Moulin
and Peleg (1982) on representation of effectivity functions with finite sets of alternatives to



120 H. Keiding, B. Peleg/Journal of Mathematical Economics 36 (2001) 117-140

effectivity functions with infinitely many alternatives, is used at several occassions to prove
existence of representations. This result is stated and proved in an appendix.

2. Definitions and notations

Let A be a set of alternatives. Throughout this paper, excluding the appendix, A is a
closed and convex subset of a Euclidean space R™, m > 1. We always assume that A is
of dimension m. A preference ordering on A is a complete and transitive binary relation.
We denote by P the set of all preference orderings on A. —e P is continuous if for each
x € A, thesets {y € Aly 7 x} and {y € A|x  y} are closed. We denote by P, the set
of all continuous preference orderings on A. =€ P is convex if for each x € A the set
{y € Aly Z x} is convex. We denote by P the set of all continuous and convex preference
orderings. Finally, if —€ P, then its asymmetric part > is defined by

[x > y] & [x Z yandnoty = x]forallx,y € A.

Let D be a set. We denote by P (D) the set of all subsets of D, i.e. P(D) = {D’|D’' C D}.
Also, 2P = P(D) \ {#)} is the set of all non-empty subsets of D.

Let Abeasetofalternativesandlet N = {1, ..., n} be afinite set of players. An effectivity
function (EF) is a function E : P(N) — P(P(A)) that satisfies the following conditions;

E(N) =24,

EW) =9,

A € E(S)forall S € 2V,

@ ¢ E(S)forall S € P(N).

Let E be an EF. E is superadditive if it satisfies the following condition. If §; € 2V,
B; € E(S;),i =1,2,and SN Sy =@, then B N By € E(S1USy). E is maximal if for all
Se2Vand B e24

B¢ E(S)= A\BeEN\DS).

The core of E with respect to =¥ e PV is defined in the following way. Let B € 24,
S €2V and x € A\ B. B dominates x via S at -, if B € E(S) and y > x for all
ye Bandi € S.x € A is dominated at =" if there exist B € 24 and S € 2" such that
B dominates x via S at =" . The core of E with respect to =V, C(E, =-V), is the set of all
undominated alternatives at 7=V . If PN < PN, then E is stable over PV if CE,=M)#0
forall =Ne PV,

Let A be a set of alternatives, and let N = {1, ..., n} be a finite set of players. A game
form(GF) is an (n + 2)-tuple I' = (X!, ..., ¥"; 7; A), where

Y'is the set of strategies of playeri € N
7:X' x . x X" > Aisthe outcome function.

Let I' = (21, .., X" m; AybeaGF and let S € 2N We denote X5 = HieSEi. Let,
again, S € 2V and let B € 24. S is a-effective for B if there exists 0% € X% such that
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(o8, ,U,N\S) € B for all ,uN\S e TN\S §is B-eftective for B if for every y,N\S e YN\S
there exists 05 € X such that JT(O'S, MN\S) € B. The a-EF of I, E(f, is defined by
El'(®) =0, and

El'(S) = (B € 24|Sis a-effective forB}, for S € 2V.
The B-EF of I', EL', is defined by E;; (?) = 9, and

Ef (S) = {B € 2*|S is B-effective for B}, for § € 2V,

We remark that E 5 is superadditive, and E g is maximal (see, e.g. Abdou and Keiding,
1991).

LetI" = (X!,..., X" m; A)beaGF and let =" € PV . The pair (r, >N defines, in an
obvious way, a game in strategic form. We denote ¥ = ¥V = [T'_,2".0 € Xisastrong
Nash equilibrium (SNE) of (I", =N ) if for all § € 2" and 5 € X5, there exists i € S such
that

n(o) ' wus, oM.

We remark that if o is an SNE of (I, =), then 7 (o) € C(Eg , =N (see Peleg, 1984).

I is SNE-consistent over PN C PN if for each ~Ne PN the game (I, =) has an SNE.

Let ' = (X',..., X" n; A)be a GF and let E : P(N) — P(P(A)) be an EE. I
(partially) implements the core C(E, =) over PN ¢ PV if for every =N e PN (7 (SNE
(I', =Ny € C(E, zZN)) n(SNE(I", ZV)) = C(E, ZV) (here SNE(I", V) is the set of
SNE’s of the game (I, =)).

Finally, we recall some properties of simple games. A simple game is a pair (N, W),
where N = {1, ..., n} is a set of players, and W C 2N is a set of winning coalitions. Let
G = (N, W) be a simple game. G is monotonic if

[SeWandSCTCN|=TeW,
G is proper if
SeW=N\S¢Wforall § € 2V.

We only deal with monotonic and proper simple games. Let, again, G = (N, W) be a
simple game. G is strong if

S¢W= N\SeWforall§ e2".

G is symmetric if G is an (n, k) game, i.e. there exists (n/2) < k < n suchthat W = {§ C
N||S| = k} (if D is a finite set, then | D| is the number of members of D). G is weak if

V =N{S|S € W} £ 0.

V is the set of veroers of G. If G is not weak, then the Nakamura number of G, v(G), is
given by

V(G) =min{|U||U C Wand N{S|S € U} =0}
(see Nakamura, 1979).
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Let G = (N, W) be a simple game, let A be a set of alternatives, let =¥ e PV, and let
x,y € A. x dominates y at =" if there exists S € W such that x >/ y foralli € S. The
core of G with respect to 2=V, C(G, =), is the set of all undominated alternatives at V.
Assume now that A is a compact and convex subset of R™, the dimension of A is m, and G
is not weak. Then C(G, =) # @ forall =N e PC’\C’ iff v(G) > m + 2 (see Le Breton, 1987).

Let E : P(N) - P(P(A)) be an EF. The simple game (N, Wg) which is associated
with E is given by

Wi = {S € 2V |E(S) = 24).

E is an extension of the simple game (N, W) if Wg = W.Letnow I" = (21, L XN A)
be a GF. The simple game which is associated with I" is G(I; = (N, WEar). I' is a rep-
resentation of G = (N, W) if G = Gg . I' is a strong representation of G if (i) I" is a
representation of G, and (ii) I" is SNE-consistent over ’PCAC’ .

3. Implementation of the core of spatial voting games

In this section, we consider a particular class of choice problems (G, A), namely such
where the set of alternatives is Euclidean space of some dimension m and where the prefer-
ences are bounded in the sense that at each a € A, the set of alternatives which are at least
as good as a is a bounded set. The literature on spatial voting problems, see e.g. Enelow and
Hinich (1984), treats particular cases of such decision problems; we use the term spatial
voting games for the entire class.

Let A = R™, m > 1. We denote by A* the set of all D’ C A such that D’ is open, convex,
and bounded. A preference relation /- € Pe = Pec(A) is bounded if for each x € A the set
{y € Aly > x} is bounded. We denote by P,y the set of bounded preferences in Pe.. A

spatial voting game is an (n + 1)-tuple (G; tl, ... ,fé”), where G = (N, W) is a proper
and monotonic simple game, N = {1, ...,n},and '€ P fori = 1,...,n.

Theorem 1. Let G = (N, W) be a proper and monotonic game. Then there exists a GF

= (X', ..., 2" n; A) with the following properties:

1. Forevery zNe PN, 7w (SNE(I', ZV)) = C(G, V) (thus, in particular, if C(G, ZV) #
@ for all ,{‘,N € ’Pcl\c]b, then I' is SNE-consistent (on Pé\éb).)

2. G(I; = G, that is I is a representation of G.

Proof. Define an EF E : P(N) — P2(A) by the following rules. If S € W, then E(S) =
24 the set of non-empty subsets of A;if S C N, S # J,and N\ S € W, then E(S) = {A};
further, we put E(¥) = @, and finally, if S C N is blocking, thatis S, N \ S ¢ W, then

E(S)={D e?243aD e A*: D> A\ D'}.

Thus, if S is blocking and B € E(S), then B is unbounded. Now, if S € N, S # @, =Ne
PN . x € A,and B C Pr(S, =V, x), then B is bounded. Hence C(E, =V) = C(G, ==V) for

ccb? e
all =Ne Pé\clb. We claim that E is superadditive and satisfies condition (CC) of Theorem 8.
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To check superadditivity,let S, 7 C N,S, T #@,SNT =@, By € E(S)and By € E(T).
IfT € W(orS € W), Bj = A (B, = A), and consequently B1 N By € E(S U T). Thus
assume that both S and 7" are not winning. If S or T" are losing, then again BiN B, € E(SUT)
by the monotonicity of E. Hence, it remains to consider the possibility that both S and T are
blocking. In this case there are B{, B} € A* such that B; D A\ B/,i = 1,2. Let B’ be the
convex hull of B{ U B}. Then B’ € A* is open, convex, and bounded, and BjN B, D A\ B'.
As A\ B’ € E(SUT), E is indeed superadditive.

It remains to prove (CC). Let S C N, S # @, N. Further, let =" e PCAC/b, and x € A. We
should prove that
Pr(S, ?\jN,x)g;‘E(S):>A\Pr(S,§N,x)eE(N\S). (1)

IfSe Wor N\S € W, then (1) is obviously true. Thus, let S be blocking. By our
assumptions, Pr(S, tN,x) is open, convex, and bounded. Hence, A \ Pr(S, iN, Xx) €
E(N \ S) because N \ S is blocking.

We may now apply Theorem 8 to obtaina GF I = (X!, ..., £"; 7; A) that implements
C(E, -) in SNE’s (over PCAC/b). Clearly, I" implements C(G, -) in SNE’s. Furthermore, for
S e W, EL(S) = E(S), thatis EL'(S) = 24. Also, if S ¢ W, then clearly EL'(S) # 24.
Thus, G = G. O

Remark 1. Theorem 1 can be generalized in two directions. (i) It is possible to replace R™
by a closed, convex, and unbounded subset of R™. (ii) P.cp, may be replaced by Py, the set
of continuous and bounded preferences over R™.

4. Representations of weak games

In this and the following sections, we consider choice problems (G, A) for which A is a
convex and compact subset of some Euclidean space. In the present section, we consider
the case where the game is weak, that is there is a vetoer. It will be shown that in this case
the representation problem has a solution for all convex and compact sets of alternatives A.

Thus, let A be a convex and compact subset of R™, m > 1. Assume that aff(A) = R"
(here, aff(A) is the affine hull of A).

Theorem 2. Let G = (N, W) be a weak game, that is V. = N{S|S € W} # (. Assume
that N = {1,...,n}and 1 € V. Then there exists a strong representation of G (on A), i.e.
there exists a GF I' = (21, ..., Xy A) with the following properties:

1. Gg =G, and
2. I' is SNE-consistent.

Remark 2. If I” is a strong representation of G, then for each =N e PN

o~ o~

m(SNE(I", z")) c C(Ef . =) c C(El. =) c ¢(Gf. 2Ny =¢cG. 2Y)

Hence, I" partially implements the core C(G, -).
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Fig. 1.

Proof of Theorem 2. We define an EF E that extends G by the following rules: E(S) = 24
if S € W(here24 = {B C A|B # @), E(S) = {A}if N\S € Wand S # @,and E (%) = 0.
In order to complete the definition of £ we choose an open ball By such that cl1By C intA,
and let Dg = A\ By.If S C N is blocking and 1 € S, then we define

E(S) ={D|D C Aand D N Dy # @} 2)
and
E(N\S)={D|D Cc Aand D D Dy}. 3)

This completes the definition of E (Fig. 1).

We claim that C(E, ZN) # @ for all Ve PN . Indeed, if S C N is blocking and 1 ¢ S,
then domination of a € A via § is impossible due to the convexity of preferences, since
Pr(S, =", a) is convex and does not contain a, and S is not effective for any set B for which
conv(B) # A. Thus, every alternative in argmax 4, *=! belongs to C(E, =-V).

Next, we prove that E is superadditive. Let S; C N,i = 1,2, S1 NS, = @, and let
Bi € E(S;),i = 1,2.If S1 or S, is winning, then By N B, € E(S] U $3). Similarly, if S
or S are losing, then By N By € E(S] U S,) by the monotonicity of E. Finally, if both S}
and Sy are blocking, then B; N B> € E(S1 U $7) by Egs. (2) and (3).

Finally, we check that E satisfies (CC) (see Theorem 8). Let S C N, S # @, N, let

=Ne PC]\C’, and let x € A. We must show

Pr(S, =N, x) ¢ E(S) = A\ Pr(S, =N, x) e E(N\ ). 4)

Y~ ’ Y~ ’

IfSe Wor N\S € W, then (4) is true, Thus, let S be blocking; (4) now follows from
Egs. (2) and (3).
By Theorem 8 there exists a GF I" = (21, ..., 2" m; A) such that

m(SNE(I", z")) = C(E, M) (%)
for every =Ne PN, and
EF(S) > E(S)forall S € P(N). 6)

By Egs. (5), I is strongly consistent, because E is stable. Finally, by Egs. (2), (3) and (6),
and the proof of Theorem 8, Gg =G. 0
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o,1) Ly

2x+y = const.

0,0
©0) x+2y =const.  (0,1)

-X-y = 0

Fig. 2.

The core of a weak game may not be (fully) implementable in SNE’s by strong
representations. This is shown by the following example (Fig. 2).

Example 1. Let G = [3;2, 1, 1] and let A = [0, 1]%. Further, let Z¥ e PN (A) be given
by the following utility functions:

ul(x,y)z—x—y, uz(x,y) =2x+Yy, u3(x,y)=x+2y.

Then C(G, u") = {(0, 0), (1, 1)}.

Let I’ = (21, 32, 58 7, A) be a strong representation of G. We claim that (1, 1) ¢
7 (SNE(I, u™)). Indeed, if there is an SNE oV of (I", u™) such that 7 (¢¥) = (1, 1), then
{2, 3} is a-effective for (1, 1). Consider now the following profile:

e, y)=—y,  dry)=x+y, @i y)=2y—x

As the reader may check, C(EL", i) = @, because {(1, 1)} € EL'({2,3}) and G = G.
However, this contradicts the SNE-consistency of I".

5. Strictly convex sets of alternatives

For games without vetoers, the structure of the set A will matter for the existence of
a strong representation on A of a committee G. Indeed, in the present section we show
that if the set A is strictly convex and has a smooth boundary, then (G, A) has no strong
representation. We start by treating the special case of m = 2; the impossibility result derived
in this context may then be extended to an impossibility result for arbitrary dimension m
(Fig. 3).
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©,1) (1,1)

2y-x =1
/ -y = const.
(0,0)
x+y = const. .0
Fig. 3.

Let A C R? be a convex and compact set of alternatives. We assume that aff(A) =
R?. Let G = (N, W) be a proper and monotonic simple game. Furthermore, let I" =
(21, ..., 2™ A; ) be a strong representation of G, i.e. I" is SNE-consistent and Gg =
G. A coalition S € 2V is almost winning with respect to I' if for every x € bdA and every
e>0,{y e Ally — x| < ¢} € Eg(S) (here, bd A is the boundary of A). We now recall
that a (proper) face of A isaset F C bdA, F # §, with the following property. There exist
p € R?*\ {0} and « € R such that

F={xeAlp-x=a}

(if a face is a singleton, then it consists of an exposed point). Using this term we can now
introduce our last (new) concept in this section. A coalition S € 2V is weakly winning with
respect to I if every open neighborhood of every face of A is in EL'(S).

Throughout the rest of this section we assume that A is smooth, that is, at each x € bdA,
A has a unique tangent.

The following lemma uses all the concepts introduced previously:

Lemma 1. Let A C R* convex and compact with aff (A) = R?, such that A is smooth, let
G = (N, W) be a proper and monotonic simple game, and let I" be a strong representation
of G.

If S1 and S, are almost winning coalitions with respect to I, then T = S1 N $7 is weakly
winning with respect to I

Proof. Let F C bdA be a (proper) face of A, and let U be an open set (in A) containing
F. We shall prove that U € E(f: (T). Two cases must be distinguished:

1. F is apoint, and
2. F is an interval (with positive length) (Fig. 4).

We shall deal only with case (2) (the proof in case (1) is similar to that of case (2)).

Thus, let F = [a, b] with a # b. There exists p € R?\ {0} such that (i) F = {y €
Alp-y=p-a},and (ii) p-a > p-x for all x € A. We now choose § > 0 such that
UD>D{xeAlp-x> p-a—38}. Wealso can choose g1, g2 € R?\ {0} with the following
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Fig. 4.

properties: g;-p < 0,i = 1,2,91-g2 < 0,and {x € Alq;-x = q1-a}U{x € Alqa-x = g>-b}
is contained in {x € A|p - x > p-a — 8}. Now we define the utility profile u" by
Lu(y)=p-yieT,
2. u"(y) =q1-y,i € S1\T,and
3.u'(y)=q2-y, i € N\S.

As the reader may check, C(EL', u™) C [a, b] (notice that C(G, u") = [a, b]). The
game (I, u™) has an SNE ¢ because I" is SNE-consistent (Fig. 5). Clearly,

x=m(o) e C(Ef,u™) c C(E] , u") C [a, D).
Now {y € Aly > xforallie N\T}D{y e Alp-y < p-a — §8}. Hence,
T, N\ el{yeAlp-y>p-a—28 cUforalluM\T ¢ N\,

Therefore, U € EL{; (7). O

Lemma 1 has an important corollary. First we recall that A is strictly convex if for all
x,yeA,x#y,andall0 <o < 1,ax + (1 —a)y € int A.

Theorem 3. Let A C R? be strictly convex, compact, and smooth, with aff (A) = R?, and
let G = (N, W) be a proper and monotonic simple game without veto players. Then G has
no strong representation on A.

Proof. Assume, on the contrary, that G has a strong representation I” on A. If § € 2V is
weakly winning with respect to I”, then § is almost winning, because every x € bd A is an
exposed point of A. Thus, by Lemma 1, the intersection of two almost winning coalitions
is almost winning. Now every S € W is winning with respect to I", since Gg = G; hence,
in particular, it is almost winning. By assumption, N{S|S € W} = . Hence, there exist
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two disjoint almost winning coalitions (with respect to I"). Clearly, this contradicts the
superadditivity of Elf . 0

We now generalize Theorem 3 to m > 3.

Theoremd. Let A C R™,m > 3, be strictly convex, compact, and smooth, and let aff (A) =
R™. Let G = (N, W) be a proper and monotonic simple game without veto players. Then
G has no strong representation on A.

Proof. Assume, on the contrary, that G has a strong representation I = (Z‘l, XM A)
onA.Fora = (x1,x2,x3,...,%,) € R",letx; = x,x; = y,andz = (x3, ..., X;). Denote
by p the projection of R™ on the subspace given by z = 0, i.e.

p(x,y,z2) = (x,y,0).

Let A = p(A) ={p(a)la € A}. Then Ais strictly convex, compact, and smooth. Further-
more aff (A) is two-dimensional. Now, define a GF I” on A by = (Z!, ..., X" pom; A)
andlet G = Gg. By our assumption, Gg G. Hence, ifG = (N, W),then Wow. Thus,
G has no vetoers. Also, by its definition, Gis proper and monotonic. We shall conclude the
proof by showing that I" is SNE-consistent.

Let (u' (x, P2 0)ie N> be a utility proﬁle for I, that is, each u' is continuous and qua51—
concave on A. Let v/ (x,v,z) = u'(x,y,0) forall (x,y,z) € Aandi € N. Then vV is
a utility profile for I". Thus, the game (I, N ) has an SNE. Moreover, as v (x, v,2) =
u (p(x,y,z)) foralli € N and (x,y,z) € A, (I'vY) = (I",u"). Thus, I" is SNE-
consistent. Therefore, I is a strong representation of G, contradicting Theorem 3. (I

6. An impossibility result for small Nakamura numbers

The choice problems (G, A) considered in the previous section do not exhaust the possi-
bilities for choice problems with no strong representation. We show in this section that if the
Nakamura number of G is less than 6, then no strong representation exists; this impossibility
result holds for general convex and compact sets of alternatives.

Let A C R?>beaconvex and compactset, letaff (A) = R?,andletG = (N, W)bea proper
and monotonic simple game. We will prove in this section the following impossibility result.
If v(G) € {4, 5, 6}, then G has no strong representation on A. We start with the following
lemma.

Lemma 2. Let A C R? be convex and compact, let aff(A) = R?, let G = (N, W) be a
proper and monotonic simple game, and let the GF ' = (2], ..., XMy A) be a strong
representation of G. If S1, S> € W, then T = S| N Sy is weakly winning with respect to I'.

Proof. Let F' C bdA be a (proper) face of A and let U be an open set (in A) containing F.
We shall prove that U € EL'(T).
Leta € F. There exists p € R\ {0} such that

1. F={xe€A|lp-x=p-a};and
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2. pra>p-xforallx e A.

Clearly, there exists § > 0 such that
UD{xeAlp-x>p-a—234}.

‘We now choose a convex, compact, and smooth set A such that

. {x€Alp-x <p-a—8) CintA, and )
2. a € bdA and the line p - x = p - a is tangent to A ata.

Using A we define two utility functions in the following way. Let x; € intA N intA,
i = 1,2, such that a, x1, and x; are not on the same line. Denote by |-; A, x;|, i = 1, 2,
the gauge determined by A with center x;, that is

lv; A, xi|| = inf{A > Olx; + A~ (y —x;) € A},i =1, 2.

Then we define u; (v) = —||y; A, xi|l,i = 1, 2.
Consider now the utility profile u", where

Lu(y)=p-yieT,
2.u'(y) =ui(y),i € $i\T,and
3. u'(y) =u2(y),i € N\ Sy

As the reader may check, C(G, u™) = F. Hence, because G,f =G, C(E(f;, uVy c F.
The game (1", u™V) has an SNE o because I" is SNE-consistent. Clearly,

x=m(o) e C(E, u™) c C(E] ,u™) c C(GL,uM) =C(G.u")=F.
Also,
{(yeAly =i xforallie N\T}D>{yeAlp-y<p-a—8).
Hence, for every ,uN\T IS ZJN\T,
JT(GT,,uN\T)e{yeA|p-y>p~a—8}CU.
Therefore, U € E(f (7). O
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We proceed with the following result.

Lemma 3. Let A C R? be convex and compact, let aff(A) = R?, let G = (N, W) be
a proper and monotonic simple game, and let I' = (X',..., X" : w; A) be a strong
representation of G on A. If T;, i = 1, 2,3 are weakly winning with respect to I', then
nnNTLNT, #0.

Proof. Assume, on the contrary, that 71 N 7> N T3 = . We shall prove that there exists
=Ne PN such that C(E.", =V) = ¢, and thereby we arrive at the desired contradiction.
Two cases must be distinguished:

(a) A is strictly convex. Let x;, i = 1,2, 3, be three distinct points of bd A. Choose

gi € R%,i € {1, 2,3} such that
qi - Xi <qi-Xxj=gq;-xg, where{i, j, k} ={1,2,3}.
Now define a utility profile u” by

q2-a fori e T)\ Ty,
@ =1{qgs-a foriet\Ts; (7
qr-a forie (lz\T1)UN\(Th UTLUT3).
Denote by Hj the convex cone spanned by {x; — xi, x; — x¢}, where {i, j, k} = {1, 2, 3}.
Then x; € E(f (T;) (because x; is an exposed point of A and 7; is weakly winning), and
uk(x;) > u*(a)foralla € int[{x;}+H;landk € T;,i = 1,2, 3. Thus,ify € A\{x1, x2, x3},
then y ¢ C(E(f:, u™). Finally, let i, j € {1,2,3},i # j. By strict convexity of A there
exists an exposed point x} near x; such that x; € int[{x}} + H;]. Hence, x; ¢ C(E(f, uN).
Therefore, C(E(f, uly = g.
(b) A is not strictly convex. Then bd A contains a one-dimensional face [x1, x3]. Here
two subcases must be distinguished:
(b.1) x1 and x, are exposed points of A. Let x3 be a third exposed point of A (here we
use the assumption that aff (A) = R?). Now we choose three linear utility functions in the
following way. Let g» € R? satisfy

q2 - X1 > 42 X3 > g2 - X3.

It is possible now to choose y € bd A near x3 on the arc of bd A that connects x| and x3
(and does not contain x3) such that

q2-X3 <q2-y <q2-X].
Let g € R? satisfy
q1-XxX1 <{gi-X2=4q1-y <(g1-X3
(see Fig. 6). Again, we may choose z € bd A near x; such that
q1-X2 <dq1-7<dq1-X3.
Finally, choose g3 € R? such that

q3 X3 <q3-X] =437 <g3-X2.
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q;.t=q3X,

q3.t=(q3.X,

q,1749;, q,t=q; X3
X3
qQ1t=q; X

Fig. 6.

As in case (a) we define a utility profile u™V by (7). As the reader may check, the following
three open sets,

Hy={acAlg-a<q-x1andg3-a < g3 - x1},
Hy ={ae€Alg1-a <q)-x2andg3-a < g3 - x3}, and

Hy={a€Algy-a <qy-x3andq; -a < qp - x3}

cover A. Moreover, if x € H;, then x; dominates x via T;,i = 1,2, 3. Thus C(E.", u™) = .

(b.2) x1 or x; are not exposed points of A. Let w € [x1, x2] satisfy ¢> - x3 = ¢ - w. Then
g3 - x2 > q3 - w. We can choose exposed points xi, xé of A near x; and x», respectively,
such that

g2 x]>qr-x3>qr-xhandqa-x3 <qa-y < qa-Xxj.
Now choose ¢| € R? such that

/ / / / / /

qy "X < gy X2 =41y <qy-X3.

Clearly, if x} is sufficiently close to x, then g - x} < ¢} - 2 < g} - x3. Finally, choose
q5 € R? such that

/ / !/ / / /
q3 X3 <{g3-X] =(q3°-% <(q3-X;.

Again, we may choose x|, x5, ¢} and g} such that ¢} - x5 > ¢} - w. We now define u" and
H;,i =1,2,3,as in the case (b.1) and obtain, again, that C(EL", uV) = ¢. O

The main result of this section can now be proved.
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Theorem 5. Let m > 2, let A C R™ be convex and compact, let aff(A) = R™, and let
G = (N, W) be a proper and monotonic simple game. If v(G) < 6, then G has no strong
representation on A.

Proof. As in Section 5, it is sufficient to consider the case m = 2. Assume now, on the
contrary, that G has a strong representation I” on A. As v(G) < 6, there exist three weakly
winning coalitions with respect to I", T}, T and T3, such that 71 N T, N T3 = @ (see
Lemma 2). By Lemma 3 we obtain the desired contradiction. g

Notice that the only new cases which are excluded by Theorem 5 are: m = 2, v(G) €
{4,5,6},m =3,v(G) € {5, 6}, and m = 4 and v(G) = 6. In all other cases impossibility
is implied by Le Breton (1987).

7. A game with no vetoers that has a strong representation

In the light of the impossibility results obtained in the previous sections, one might be
tempted to believe that impossibility hold generally, that is for all choice problems (G, A)
where G has no vetoers. It is shown in this section that this is not the case; indeed we find
a strong representation of the game (7, 6) on a particular set of alternatives, namely the
standard simplex in R>, and the method can be applied to give a strong representation of
any game (n, n — 1) on this set alternatives.

Let X = {x1, x2, x3} be a set of three affinely independent points in R?,let A = conv(X)
(the convex hull of X), andlet G = (N, W) = (7,6),i.e. N ={1,...,7}and

W ={S C N||S| = 6}.

We shall prove that G has a strong representation on A.
Define an EF E : P(N) — P(P(A)) as follows. For § C N, let

24 if |S] > 6,
(BI|BNX|>1} if|S| =5,
{BlIBNX|>2} if3 <|S] <4,

E(S) =
{B|B > X} if |S] = 2,
[A} if |S] = 1,
Y if S = 0.

As the reader may check, E is superadditive and maximal. We shall prove that FE is stable,
ie. C(E, ZN) # @ for every N e PN.

Let “¥e PN and let ' : A — R be a representation of ' for each i € N. With-
out loss of generality, minyca u'(x) = 0 foralli € N. We define now an NTU game
(N, V) by

V(S)={(',...,y") € RN|3B € E(S) such that im;ui(x) >y, ieS).
xe
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We shall prove that the core of V, C(N, V), is nonempty. Clearly, this will imply — that
C(E, =) # ¢ and complete the proof of the stability of E.
We now observe that if 3 < |S| < 5, then V (S) is a union of three corners, that is

3
v(s) =ty e RVy® < ¢,
j=1

where cf € Ri, Jj = 1,2,3. We call the corner cf idle if miniegcj. = 0. We replace each

idle corner clS., 3<|I851<5,1<j<3,by 05 and obtain a new game (N, 17). Observe that

min u'(x;) = Oforalli € N, (®)

1<j<3

(u' is quasiconcave fori € N and minycu’ (x) = 0).

Hence, for |S| = 3, 4, 17(S) is a union of at most two corners (where one of them is
determined by OS). Similarly, if |S| = 5, then \7(S) is the union of at most three corners,
and one of them is determined by 0% (in the foregoing discussion we did not distinguish
between a corner {y € RY|yS < ¢5} and the vector ¢5). We remark that C(N, V) =
C(N, V) (V(S) = V(S) for |S| ¢ {3,4,5}).

We shall prove that C(N, V) # () by showing that (N, \7) is balanced. Thus, let B c 2V
be a balanced collection with balancing weights (As) s, and let

=G e V).
seB

We must show that y € V(N) (=V (N)).
Denote

Al ={xeAu'(x)>7'},i e N.

Then A’ is a nonempty convex set for each i € N. Also, if ' < 0, then A’ = A. We shall
prove the following claim.

Lemmad. IfS C N and |S| = 3, then Njes Al # 0.
Let S = {i1,iz,i3} C Nandlet ST ={i e S|)7" > 0}. If there exists S’ € B such that
S D ST, then Lemma 4 is true. Therefore, we shall assume in the sequel:
There existsno S’ € Bsuchthat §' O S+, )

The following result will be used in the proof of Lemma 4.

Lemma 5. If the following condition is satisfied,
[S"N{i1, i} #Pand S € B] = || =5, (10)

then there exists S’ € B such that iy, iy € " and |S'| = 5.
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Proof of Lemma 5. Assume, on the contrary, that there existsno 8’ € Bsuchthatiy, iy € S’
and |S'| =5.LetT = N \ S and foreach j, j = 1, 2, 3, let
aj=Y (rg|S'€B. ijes. Tcs, and|s|=5)
bj=Y (xS €B.ij €S |TNS|=3 and|S|=5}, cj = AN\l
k#j
where, by convention, Ay\(;,} = 0if N \ {ix} ¢ B. By Egs. (9) and (10),

aj+bj+c;=1, j=1.2 (11)

Also, by (all) the foregoing assumptions, there exists j € T such that

1= Z{AS/U eSandS €eB}>a+ax+az+ %(cl +c+ce3)+ %(bl + b2)
(12)

We now consider the following possibilities:

(a)a; = ap = by = by = ¢3 = 0.Inthiscase N\ {i3} is the unique set of B which contains
i1 and ip. Also, as c3 = Oand 33 > 0, there exists S’ € Bsuchthatiz € §’and3 < |§'| < 5.
As 8’ N (N \ {i3}) # @, this contradicts the balancedness of B. Thus, (a) is impossible.

(b)ay +ax+ b1 + b2 + c3 > 0. By Egs. (11) and (12),

1> 3@ +a) + Sei + )+ 31+ b2) = 1.

Hence, (b) is also impossible, and the desired contradiction has been obtained. We conclude
that there exists §” € B such that |S'| = 5 and i1, i € §'. O

We shall now prove Lemma 4.

Proof of Lemma 4. Let 7 = {S’ € B||S’| € {3, 4}}. We say that i € S is covered by T if
there exists S € 7 such thati € S’. We distinguish the following possibilities:

(a) Every i € ST is covered by 7. Here, we further have to consider the following
subcases:

(a.1) There exist two sets S{, S5 € T such that ] U S} D ST. We have for each j two
extreme points x; 1, X 2 such that

u'(xjp) = ' foralli € S* N Sjandh = 1,2.

Let x € {x1.1, %12} N {x2.1, x2.2}. Then u/ (x) > y' foralli € S.
(a.2) There exist three sets S} in 7 such that {ij} = Stn S}, j =1, 2, 3. Again, for each
J there exist two extreme points x; 1, X 2, such that

u'(xjp) = ' foralli € Siandh = 1,2.

Clearly, there exist 1 < ji, jo < 3, j1 # jo, such that S}] N S}z # (. Without loss of
generality j; = 1 and j, = 2. Letk € S| N §}. Then

min{u' (x1.1), ! (x12)} = "1 > 0
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implies, by the construction of V', that min{u* (x1.1), u¥ (x1.2)} > 0. Similarly, min{u* (x,1),
uk(x22)} > 0. Therefore, by (4), {x1,1, x1,2} = {x2,1, x2,2}. As {x1 1, x1,2} N {x3,1, %32} #
#, we have that N;csA" # @.

(b) Only two members of ST, say i1 and i, are covered by T there exist S}, Sé eT
such thati; € ST N S}, j =1,2(8] = S} is not excluded). Thus, i3 € ST N S’ for some
S’ € B with |S’| > 5. We distinguish the following subcases:

(b.1) There exists S” € B such thatiz € $" and |S’| = 5. There is an extreme point x such
that u®3(x) > 73 > 0. Clearly, S| N S’ # . Letk € S N S". We have u*(x) > 0 by the
construction of V. By Eq. (8) and the definition of V,ul (x) > 7. Similarly, u’ (x) > 7.
Thus, x € NyesA’.

(b.2) iz € § € B = |§'| = 6. By Eq. (5), i3 is contained in at most two members
S’ of B with |S’| = 6. Let these coalitions be T} and T» (where Ty = T; is possible). As
I TINT,| =5 TiNT,N Sé # () contradicting our assumption that B is balanced (we assume
Ar > 0for T € B). Thus (b.2) is impossible.

(c) Only one member of ST, say iy, is covered by 7. By Lemma 5 there exists S’ € B
such that i, i3 € S’ and |S’| = 5. Without loss of generality i € ST. There is an extreme
point x such that u2(x) > 32 > 0, and u’*(x) > y3. Leti; € S] € T. Then §' N S| # ¢.
Letk e S'N Si. Then uk(x) > 0 by the definition of V. By Eq. (8) and the definition of \7
u'l(x) = ¥ > 0. Thus, x € N;egAL.

(d) No member of ST is covered by 7. By Lemma 5 and Eq. (9) there exist three coalitions
S} € B such that |S}| = 5and S} D ST\ {ij} for j = 1,2, 3. For each j there exists an
extreme point z; such that

u'(zj) > 3 > Ofori e ST\ {i;}.

Letk € §] NS, N S;. By the definition of Vv, uk(zj) > O0for j = 1, 2, 3. Hence, by Eq. (8),
there exist j1, j2» € {1, 2,3}, j1 # j2,suchthatz; = z;,.Clearly, z;, € ﬂieSAi. O

Now we can prove the following lemma.

Lemma 6. (N, V) has a nonempty core.

Proof. Using the previous notation it is sufficient to prove that (N, V) is balanced. By
Lemma 4 and Helly’s Theorem (see Rockafellar, 1970, Theorem 21.6), N;c NA! #+ 0.
Hence, y € V(N) (=V(N)) and (N, V) is balanced. By Scarf (1967), C(N, V) # #.
Finally, by the definition of V, C(N, V) = C(N, V). O

Theorem 6. The game (7,6) has a strong representation on A.

Proof. Using the previous notations we have that the EF FE is superadditive, maximal, and
stable. By Theorem 8 in the Appendix there exists a GF I' = (X LD S A) that
implements the core of E. As the reader may check, if I" is constructed according to the
proof of Theorem 8, then I” is a strong representation of (7, 6). g

The following generalization of Theorem 6 is true:
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Theorem 7. Let X = {x1, x2, x3} be a set of three affinely independent points in Rz, let
A =conv(X), and let G = (n,n — 1), n > 7. Then G has a strong representation on A.

Proof. Let N = {1, ..., n} be the set of players of G. Further, let

nlz[g]—kl,ng:[z?n]—i-l,

andlet Ny = {k e N2 <k <n1}, N ={k € Nln; <k <njy},and N3 = {k € Ninp <
k <n — 1}. Define an EF E : P(N) — P(P(A)) by the following rules. for § C N, let
24 if |S|>n—1,

{Bl|IBNX|>1} if[S| € N3,

{BI|BNX| =2} if[S|€ Ny,

E(S) = .
{B|B O X) if |S] € Ny,
(A} if|S] =1,
Y ifS=0.

As the reader may check, E is superadditive and maximal. For the rest of the proof of
this theorem, the reader should precisely follow the steps of the proof of Theorem 6 (with
obvious changes in the notation). We have checked that the details remain valid. O

8. The case m=1

The last class of choice problems to be considered in this paper is that consisting of choice
problems (G, A) with A a convex and compact subset of one-dimensional Euclidean space,
that is an interval on the real line, where the strong representation problem always has a
solution.

Let A = [a, al, a < a, be an interval, and let G = (N, W) be a proper and monotonic
simple game. For the sake of completeness we shall indicate how to implement the core
C(G; A; =Ny = C(G, =) when =Ne ’PCAC’. If G is not strong, then the core C(G, -)
is a set-valued function. Therefore, we need to construct a special GF, albeit simple, to
implement the core.

Theorem 8. Let A = [a, a], wherea < a, andlet G = (N, W) be a proper and monotonic
simple game. Then there exists a GF I' = (X', ..., X", m; A) that partially implements
the core C(G, -) and is also a representation of G.

Proof. Let X' = A for every i € N, and let

1

a(x!, ..., x") =min{y € A|{i € N|x' <y} e W}

for all (xl, ..., x™ € AN, 7 is the well-known committee rule (for the committee G).
The reader is referred to Barbera et al. (1994) for a study of committee rules. Let I =
(X, ..., X" ; A). We first check that GI' = G. Clearly, if S € W, then EL'(S) = 24.
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Now, let § € 2V \ W,and leta < x < a. Then § is not a-effective for x. Thus, Gg =G,
and for every Ve PN
T(SNE(I, =M)) c C(EY, =Ny c C(EL', =Ny c ¢(GL, =Ny = ¢(G, =N).

Y~ o~ o~
It remains to prove that I" is SNE-consistent. Let =V € PY . Define the “right peak” of i by
ph =max{y € Aly 2/ xforallx € A},

and let

pr = min{p%|{jlpy < pi} € W}.
As the reader may verify, pgp € C(G, tN). Leto = (pr, ..., pr). We claim that o is
an SNE of (I, AﬁN ). Indeed, no S € W has a profitable deviatiqn from o, because pp €
C(G,ZN). Now, let x € A, x # pg.If x > pg, then {i|]x >/ pr} = S is losing (i.e.
N\ S € W). Therefore, m(uS5, oV\5) = pg for every u® € 5. Finally, if x < pg then

{ilx =1 pr} = S is not winning. Therefore, JT([LS, O’N\S) > pg for every ,uS € XS, Thus,
o is an SNE of (I", V). O

9. Concluding remarks

In this section, we first summarize the main results of our work, and then comment on
possible future continuations. We start with a formulation of a result which is implied by
Zhou (1991). Let A be a convex and compact subset of R, m > 2, let aff (A) = R™, and
let G = (N, W) be a non-dictatorial committee (thatis {i} ¢ W foralli € N,and N € W,
thus, in particular, n > 2). Further, let f : PCAC/ — A be a social choice function, and let

Gof[ = G (notice that Gof, is well defined because f is a GF). Then f is manipulable (the
reader may notice that every representation of G is surjective, because N € W). Thus, the
choice problem (G, A) has no strategy-proof representations. However, we have shown that
when (G, A) is stable (that is the core C(G, A, =) # @ for all profiles -V of continuous
and convex preferences), it may be possible to (partially) implement the core of G, and
thereby obtain a strongly stable representation of G on A.

We have obtained the following results on the existence of strongly stable representations
of committees in economic environments. Let G = (N, W) be a committee with N € W,
and let A be a closed convex subset of R, m > 2, with aff (A) = R™.

1. If G contains a vetoer and A is (in addition) compact, then G has a strong representation
on A.

2. If A = R™, preferences are bounded, and v(G) — 2 > m, then strong representations
exist.

3. If A is compact, smooth, and strictly convex, and G has no vetoers, then strong
representations do not exist.

4. If A is (in addition) compact and v(G) < 6, then there are no strong representations.

5. Every symmetric game (n,n — 1), n > 7, has a strong representation on the standard
simplex in R3.
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We remark that, in our view, (i) and (ii) are important and useful results. Clearly, (iii)
and (iv) impose restrictions on our method. However, (v) shows that if the Nakamura
number of a committee exceeds 6 and the set of alternatives is not strictly convex, then
strong representations may exist (even when there are no vetoers). The general problem of
existence of strong representations of committees (without vetoers) on polyhedral sets of
alternatives is left as a subject for future research.

We conclude with some comments on the complexity of our GF’s. Let (G, A) be a stable
choice problem. We construct a strong representation of G on A by the following two-stage
procedure. (I) We first check whether G can be extended to a superadditive, maximal,
and stable EF E; and (II) if an extension E can be found, then we implement the core
of E in SNE’s, and thereby obtain the desired representation. We now remark that in the
results (1), (2), and (5) mentioned above, the definition of the extending EF was simple
and intuitive. Furthermore, in Theorem 8, which was applied at stage (II), the definition of
the implementing GF is relatively simple. Thus, in all the above three cases, our GF’s are
explicitly defined in an uncomplicated and intuitively acceptable way.

Appendix A. Implementing the core of an EF on a restricted domain

In this appendix, we state and prove a general result on implementation of effectivity
functions when there are restrictions on the set of admissible preferences.

Let N ={1,...,n},n > 2, be a set of voters and let A be a set of alternatives (with at
least two members). Further, let A be a feasible sets structure on A, thatis A C P(A), and
@, A € A. We denote A = A\ . Also, we assume that {a} € Aforalla € A. Let P be
a set of complete and transitive binary relations on A. P specifies our restrictions on the
preferences of the players. Finally, let E : P(N) — P(A°) be an EF.

In order to formulate our result we need the following notation. Let S C N, S # 0, let
>Ne PN andleta € A. We denote

Pr(S, =N, a) ={y € Aly > aforalli € S}.

Now we can formulate our result.

Theorem 9. Assume that the following conditions are satisfied: (S) E is superadditive,
(CC) the pair (E, P) satisfies the complementarity condition. If S C N, S # @, N, and
=Ne PN then for each x € A,

Pr(S. ZV.x) ¢ E(S) = A\Pr(S. 2. x) e EN \ 5).
Then there exists a GF " = (21, ..., X s A) with the following properties:
1. I" implements C(E, -) in SNE’s on PN that is

m(SNE(I', ZV)) = C(E, V)

for every =N e PN (thus, in particular, if E is stable, then I" is SNE-consistent),
2. EF(S) D E(S) forall S € P(N).
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Proof. Fori € N let
={SC N|i €S}
and define
Y ={o": 7" > Alo'(S) € E(S)forall S € t'}.

To define the outcome function v of I" we need the following notation. Leto = (!, ..., o™
c ¥l x...xX"andletT Cc N, T # (. Then i, j € T are o-equivalent, writ-
ten i ~ j,if o/(T) = o/(T). We denote by Q(T, o) the set of equivalence classes
of ~.

Now let o = (o',...,0") € X! x ... x 2" We define inductively a sequence of
partitions of N. Let Py(c) = {N}. If Px(o) = {T1,..., T, }, k = 0, then Py(0) =
Q(Th,o)U---U Q(T,,0). Because N is finite there exists a natural number / such that
Py(o) = Pp1(0). Py(o) = {T1, ..., T,,} is called the partition associated with o. Now
we choose a selection p from A°, thatis p : A — A and p(B) € B forall B € A°.
Because Py(0) = Pyt1(0), o' (T;) = o!(Tj) foralli,l € Tj, j = 1,...,r;. Hence, we
may denote o (T;) = o'(T}), wherei € T}, j =1, ..., rp. With these notations define the
outcome function 7 by

7)) =p (m;ﬁ:la(rj)> .

o(Tj) € E(Tj) for all j. As E is superadditive, ﬁ;”zla(Tj) # @, and 7 is well-defined.
This completes the definition of I".

Let now =¥e PN and a € C(E Ny IfS c N, S # @, N, then Pr(S, =", a) ¢
E(S) Hence, by (CO), A\ Pr(S, = ,a) € E(N\S). Define an n-tuple of strategles
o = (o}, ”) by the following rules: o' (N) = {a} for alli € N; and o'(S) =
A \Pr(N \ S, z N ag)ifi € Sand S # N. Clearly, m(0) = a. We claim that ¢ is an SNE
of (I', =N). As {b} € E(N) forall b € A, and a € C(E, ="), a is Pareto-optimal, and N
cannot improve upon a. Suppose now that u7 € X7 is a deviation of a coalition T C N,
T # @, N, fromo. Let {T, ..., T} be the partition associated with ((TN\T, /LT). By the
definition of o, there exists 1 < j < r such that N \ T C T;. Without loss of generality,
N\ T C Ti. Again, by the definition of o, (6 ™\S, uT)(T1) = A\Pr(N\ T1, =V, a). Now
N\ T; C T;hence Pr(T, =N, a) c Pr(N \ Ty, =V, a). Thus,

A\Pr(N\ Ty, =N, a) c A\Pr(T, =", a).
By the definitions of = and o,
7™\ uTy e A\Pr(N\ Ty, =N, a).

Thus, 7 (e™¥\T, uT) € A\ Pr(T, =V, a), and o is an SNE.
Clearly, by the definition of I, E(f; (S) D E(S) for all S € P(N) (notice that E is
monotonic with respect to the players). Hence,

T(SNE(I, V) € C(Eg(I), ZN) € C(Eo(I), 5N) € C(E, ZM).
Thus, 7 (SNE(I", =V)) = C(E, =N) for all =N e PV. a
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