On Bayesian-Nash Equilibria Satisfying the Condorcet Jury Theorem: The Dependent Case

Abstract:

We investigate sufficient conditions for the existence of Bayesian-Nash equilibria that satisfy the Condorcet Jury Theorem (CJT). In the Bayesian game Gn among n jurors, we allow for arbitrary distribution on the types of jurors. In particular, any kind of dependency is possible. If each juror i has a constant strategy , si (that is, a strategy that is independent of the size n''''¥i of the jury), such that s=( s1, s2, . . . , sn . . .) satisfies theCJT, then byMcLennan (1998) there exists a Bayesian-Nash equilibrium that also satisfies the CJT. We translate the CJT condition on sequences of constant strategies into the following problem: (**) For a given sequence of binary random variables X = (X1, X2, ..., Xn, ...) with joint distribution P, does the distribution P satisfy the asymptotic part of the CJT ? We provide sufficient conditions and two general (distinct) necessary conditions for (**). We give a complete solution to this problem when X is a sequence of exchangeable binary random variables.

Website