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Abstract

The positive core is a nonempty extension of the core of transferable utility
games. If the core is nonempty, then it coincides with the core. It shares many
properties with the core. Six well-known axioms which are employed in some ax-
iomatizations of the core, the prenucleolus, or the positive prekernel, and one new
intuitive axiom, characterize the positive core on any infinite universe of players.
This new axiom requires that the solution of a game, whenever it is nonempty,
contains an element which is invariant under any symmetry of the game.

1 Introduction

The positive core is a set-valued solution of cooperative transferable utility games. As
far as we know the expression “positive core” was first mentioned in Orshan (1994). Its
definition strongly relates to the definition of the prenucleolus. A preimputation belongs to
the prenucleolus of a game, if it lexicographically minimizes the excesses of the coalitions.
The definition of the positive core differs from the definition of the prenucleolus only
inasmuch as the excesses are replaced by their positive parts. Hence, the prenucleolus is
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a subsolution of the positive core. On the other hand, if the core of a game is nonempty,
then the positive parts of all excesses at elements of the core are zero, hence the core
coincides with the positive core, whenever the core is nonempty.

Note that if an excess of a coalition S at a proposal x (see Section 2 for the formal
definition) is positive, then it may be interpreted as the dissatisfaction of S when faced
with x. If the excess is not positive, then the coalition is satisfied, that is, its dissatisfaction
is 0. Hence, the positive core of a game consists of all preimputations that lexicographically
minimize the dissatisfactions of the coalitions.

Though the core is regarded as one of the most intuitive solutions for cooperative games,
there is (at least) one serious drawback: It specifies the empty set for many remarkable
games. From a normative point of view, the elements of a solution of a game are inter-
preted as proposals of how to solve the game. If the solution applied to some game is
empty, then this game cannot be solved. In this sense the core, when regarded a nor-
mative solution, should be applied to classes of balanced games (games wit a nonempty
core) only. As soon as non-balanced games have to be considered the core seems to be
a less suitable solution. It is then natural to replace the core by a solution which (a)
contains the core as a subsolution and which (b) is nonempty when applied to any game
under consideration. There are well-known nonempty core extensions. Indeed, the litera-
ture mentions various prebargaining sets (see, e.g., Aumann and Maschler (1964), Granot
and Maschler (1997), or Sudhölter and Potters (2001)) which contain the core. However,
even if the core is nonempty, they can be much larger than the core. They may contain
counter intuitive proposals which are ruled out by the core. Recently Sudhölter and Pe-
leg (2000) introduced and axiomatized a smaller nonempty core extension, the positive
prekernel (see Section 2 for the precise definition). Though this solution is a subsolution
of the prebargaining sets, the core of a balanced game may be a proper subset of the
positive prekernel of this game. It is the aim of this paper to show that the positive core
is characterized (see Theorem 4.8 and Corollary 4.11) by intuitive simple axioms. Only
one property (see Definition 3.2) is employed, which is not used in some axiomatizations
of the prekernel, the positive prekernel, the prenucleolus, or the core.

The paper is organized as follows: In Section 2 the notation and some definitions are pre-
sented. Moreover, some characterizations of solutions known from literature and relevant
in the context of the positive core, are recalled.

The positive core satisfies nonemptiness, anonymity, covariance under strategic equiva-
lence, and it is Pareto optimal and reasonable. The core satisfies three variants of reduced
game properties: The reduced game property (RGP), the converse reduced game property
(CRGP), and the reconfirmation property (RCP). The positive prekernel satisfies two of
them, namely RGP and CRGP. In Section 3 it is shown that the positive core satisfies
RGP and RCP. Moreover it shares a further property with the core, the (positive) preker-
nel, and the nucleolus. Indeed, these solutions allow for non-discrimination. This axiom
requires from the solution of a game that it, whenever nonempty, contains a preimputa-
tion which does not discriminate (that is, which is invariant under all symmetries of the
game).

The main results are contained in Section 4, which is divided into four subsections. We
investigate the behavior and shape of solutions that are nonempty- and bounded-valued
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and satisfy covariance, anonymity, RGP, and RCP. In the first subsection it turns out
(see Theorem 4.1) that the restrictions of such a solution to one- and two-person games
is either the prenucleolus, or the relative interior of the positive core, or the positive
core. In order to generalize this result to arbitrary games, it is shown (see Lemma 4.5)
in Subsection 4.2 that the positive parts of the excesses at elements of the solution of a
game have to coincide. For this and the preceding result the assumption of an infinite
universe of potential players is crucial. In Subsection 4.3 Lemma 4.5 is used to prove that
Theorem 4.1 can be generalized, if the solution is assumed to contain the prenucleolus.

Finally Subsection 4.4 shows that the unique solutions that satisfy the above properties
and are convex-valued, are the prenucleolus, the relative interior of the positive core, or
the positive core. Moreover, it is shown that anonymity and convex-valuedness can be
replaced by ND (see Theorem 4.9). Hence, the positive core is the maximum nonempty
and bounded-valued solution that satisfies covariance, anonymity, RGP, RCP, and allows
for non-discrimination.

In Section 5 examples are presented which show that each of the axioms employed in
Theorem 4.9 is logically independent of the remaining axioms. Moreover, some remarks
are given.

2 Notation and Definitions

Let U be a set (the universe of players). Throughout this paper we shall assume for
simplicity that {1, . . . , k} ⊆ U whenever |U | ≥ k.

A cooperative transferable utility game – a game – is a pair (N, v) such that N is a finite
nonempty subset of U (the player set) and v : 2N → R, v(∅) = 0, is a mapping (the
coalition function). Here 2N = {S ⊆ N} is the set of coalitions. The set of feasible
payoffs of a game (N, v) is X(N, v) = {x ∈ RN | x(N) ≤ v(N)}, where we use x(S) =∑

i∈S xi (x(∅) = 0) for every S ∈ 2N and every x ∈ RN as a convention. Additionally,
xS denotes the restriction of x to S, i.e. xS = (xi)i∈S. For disjoint coalitions S, T let
(xS, xT ) = xS∪T . Moreover, I∗(N, v) = {x ∈ RN | x(N) = v(N)} denotes the set of
preimputations. A feasible payoff x is individually rational, if xi ≥ v({i}) for all i ∈ N .
An individually rational preimputation is called imputation.

A solution σ is a mapping that associates with every game (N, v) a set σ(N, v) ⊆ X(N, v).

The following abbreviations are used to recall the definitions of several well-known solu-
tions which are relevant in the sequel. Let (N, v) be a game, let S ⊆ N , let k, � ∈ N
be distinct, and let x ∈ RN . Then e(S, x, v) = v(S) − x(S) denotes the excess of S,
µ(x, v) = maxS⊆N e(S, x, v) denotes the maximal excess and

sk�(x, v) = max{e(S, x, v) | S ⊆ N, � /∈ S � k}

denotes the maximal surplus of k against � at x with respect to (w.r.t.) (N, v).

The core of (N, v) is the set C(N, v) = {x ∈ I∗(N, v) | e(S, x, v) ≤ 0 ∀S ⊆ N} and the
prekernel of (N, v) is the set

K∗(N, v) = {x ∈ I∗(N, v) | sk�(x, v) = s�k(x, v) ∀k ∈ N and � ∈ N \ {k}}.
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The positive prekernel of (N, v) is the set

K∗
+(N, v) = {x ∈ I∗(N, v) | (sk�(x, v))+ = (s�k(x, v))+ ∀k ∈ N and � ∈ N \ {k}},

where t+ = max{t, 0} denotes the positive part of a real t. The prenucleolus of (N, v),
denoted ν(N, v), is the set of preimputations that lexicographically minimize the non-
increasingly ordered vector of excesses of the coalitions. The set ν(N, v) is a singleton
{ν(N, v)}.

Gillies (1959) introduced the core, for the prekernel and prenucleolus we refer to Maschler,
Peleg, and Shapley (1972) and to Schmeidler (1969). The positive prekernel was intro-
duced by Sudhölter and Peleg (2000). Now we are able to define the positive core.

Definition 2.1 The positive core of a game (N, v) is the set C+(N, v) defined by

C+(N, v) = {x ∈ I∗(N, v) | (e(S, x, v))+ = e(S, ν(N, v), v)+ ∀S ⊆ N}.

The prenucleolus is the preimputation which minimizes the highest excess, then minimizes
the number of coalitions attaining highest excess, then minimizes the second highest
excess, and so on. Thus, the prenucleolus is yielded by iteratively solving a finite sequence
of linear programs. The positive core can be computed by solving the same sequence of
linear programs as long as the excesses are positive.

A member of the positive core lexicographically minimizes the non-increasingly ordered
vector of positive excesses, whereas the prenucleolus lexicographically minimizes the non-
increasingly ordered vector of all excesses. A member of the positive prekernel balances
the maximal surplus of distinct players whenever it is positive, whereas a member of the
prekernel balances the maximal surplus of all pairs of distinct players. In this sense the
positive core of a game arises from the prenucleolus of the game in a similar way as the
positive prekernel arises from the prekernel.

Clearly, C+(N, v) = C(N, v), if C(N, v) 
= ∅, and ν(N, v) ∈ C+(N, v).

Some convenient and well-known properties of a solution σ are as follows: σ is nonempty
(NE), if σ(N, v) 
= ∅ for every game (N, v). σ satisfies the zero inessential two-person
game property (ZIG), if for every game (N, v) with |N | = 2 and v = 0, σ(N, v) 
= ∅. σ is
single-valued (SIVA), if |σ(N, v)| = 1 for every game (N, v). σ is covariant under strategic
equivalence (COV), if for games (N, v), (N,w) with w = αv + β for some α > 0, β ∈ RN

the equation σ(N,w) = ασ(N, v) + β holds. (Here we use the convention which identifies
β ∈ RN with the additive coalitional function, again denoted by β, on the player set N
defined by β(S) =

∑
i∈S βi for all S ∈ 2N .) If w = αv + β as above, then the games v

and w are called strategically equivalent. σ satisfies anonymity (AN), if for any two games
(N, v), (M,w) the following condition holds: If π : N → M is a bijective mapping such
that πv = w (πv(S) := v(π−1(S)), then σ(M,w) = πσ(N, v). (For x ∈ RN , πx ∈ Rπ(N)

is defined by πxj = xπ−1(j) ∀j ∈ π(N).) In this case (N, v) and (N,w) are isomorphic
games. σ satisfies the equal treatment property (ETP), if for every game (N, v) and
every x ∈ σ(N, v) the following condition holds for every i ∈ N and j ∈ N \ {i}: If
v(S ∪ {i} = v(S ∪ {j} for every S ⊆ N \ {i, j} (i and j are interchangeable or equals),
then xi = xj. σ satisfies Pareto optimality (PO), if σ(N, v) ⊆ I∗(N, v) for every game
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(N, v). σ is reasonable (REAS), if, for every game (N, v), for every x ∈ σ(N, v), and for
every i ∈ N ,

min
S⊆N\{i}

(v(S ∪ {i}) − v(S)) ≤ xi ≤ max
S⊆N\{i}

(v(S ∪ {i}) − v(S)).

σ is bounded-valued (BOUND), if σ(N, v) is bounded for every game (N, v). σ satisfies
weak unanimity for two-person games (WUTPG), if, for every game (N, v) with |N | = 2,
all imputations are members of σ(N, v).

We now recall the definitions of some variants of the reduced game property. Let (N, v)
be a game, x ∈ X(N, v), and ∅ 
= S ⊆ N . The reduced game (S, vS,x) w.r.t. to S and x is
defined by

vS,x(T ) =




0 , if T = ∅,

v(N) − x(N \ S) , if T = S,

maxQ⊆N\S(v(T ∪ Q) − x(Q)) , otherwise,

for every T ⊆ S. σ satisfies the reduced game property (RGP), if xS ∈ σ(S, vS,x) for every
game (N, v), for every ∅ 
= S ⊆ N , and every x ∈ σ(N, v). σ satisfies the converse reduced
game property (CRGP), if for every game (N, v) with |N | ≥ 2 the following condition is
satisfied for every x ∈ I∗(N, v): If, for every S ⊆ N with |S| = 2, xS ∈ σ(S, vS,x), then
x ∈ σ(N, v). σ satisfies the reconfirmation property (RCP), if for every game (N, v), for
every ∅ 
= S ⊆ N , for every x ∈ σ(N, v), and for every y ∈ σ(S, vS,x), (y, xN\S) ∈ σ(N, v).

With the help of these axioms the prekernel, the prenucleolus, the positive prekernel, and
the core can be characterized. We recall some of the axiomatizations.

Theorem 2.2 (Peleg (1986)) The unique solution that satisfies NE, PO, COV, ETP,
RGP, and CRGP is the prekernel.

Theorem 2.3 (Sobolev (1975)) The unique solution that satisfies SIVA, COV, AN,
and RGP is the prenucleolus, provided |U | = ∞.

Theorem 2.4 (Sudhölter and Peleg (2000)) The unique solution that satisfies NE,
AN, REAS, RGP, CRGP, and WUTPG is the positive prekernel, provided |U | ≥ 3.

Theorem 2.5 (Hwang and Sudhölter (2001)) The unique solution that satisfies
ZIG, COV, AN, RGP, RCP, CRGP, and BOUND is the core, provided |U | ≥ 5.

Remark 2.6

(1) In Theorem 2.2, CRGP is a substitute for maximality, i.e., each solution that satisfies
the remaining axioms is contained in the prekernel (see Peleg (1986)). Hence the
prekernel is the maximum solution that satisfies the remaining five axioms.

(2) Orshan (1993) shows that AN can be replaced by ETP in Theorem 2.3.

(3) Note that the prenucleolus is also axiomatized by NE, COV, ETP, and RCP (see
Orshan and Sudhölter (2003)).
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Remark 2.7 The positive core of a game is the set of all preimputations that lexicograph-
ically minimize the non-increasingly ordered vector of the positive parts of the excesses.
A proof of this alternative “definition” of the positive core is straightforward.

The following simple results are useful. Let Γ2 be the set of games with at most two
players.

Remark 2.8 Let (N, v) be a game, ∅ 
= S ⊆ N, k, � ∈ S, k 
= �, and let x ∈ RN . Then

sk�(x, v) = sk�

(
xS, vS,x

)
. (2.1)

Remark 2.9 (Lemma 4.3 of Hwang and Sudhölter (2001)) If σ satisfies BOUND,
COV, and RGP, then σ also satisfies PO.

Remark 2.10 (Lemma 7.1 of Sudhölter and Peleg (2000)) Let σ1, σ2 be solu-
tions. If σ1 satisfies PO and RGP, if σ2 satisfies CRGP, and if σ1(N, v) ⊆ σ2(N, v)
for every game (N, v) ∈ Γ2, then σ1 is a subsolution of σ2.

3 Properties and Examples

This section serves to show that the positive core has many properties in common with the
core, the (positive) prekernel, and the nucleolus. Moreover, an algebraic characterization
by balanced collections of coalitions is provided. We shall also use the relative interior,
denoted rint C+ of the positive core. Let (N, v) be a game. Then

rint C+(N, v) = {x ∈ C+(N, v) | ∀S ⊆ N : e(S, ν(N, v), v) < 0 ⇒ e(S, x, v) < 0}.

The positive core satisfies NE and, hence, ZIG, because it contains the prenucleolus.
Clearly, it satisfies COV, AN, and PO. It is a subsolution of the positive prekernel which
satisfies REAS (see Sudhölter and Peleg (2000)), thus it satisfies REAS as well. The
relative interior of the positive core satisfies the same axioms. For two-person games with
a non-empty core, C+ coincides with the core and for two-person games with an empty core
it coincides with the prenucleolus. Therefore it satisfies, different from rint C+, WUTPG.

Remark 3.1 It is well-known that the prekernel of any three-person game coincides with
its prenucleolus. Hence, by Theorem 4.1 of Sudhölter and Peleg (2000), the positive core
of any three-person game coincides with its positive prekernel.

A further property of the positive core is interesting. Let (N, v) be a game. A symmetry
of (N, v) is a permutation π of N such that πv = v. Let SYM(N, v) denote the group of
symmetries of (N, v).

Definition 3.2 A solution σ allows for non-discrimination (ND), if the following
property is valid for every game (N, v): If σ(N, v) 
= ∅, then there exists x ∈ σ(N, v) such
that πx = x for every π ∈ SYM(N, v).
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ND has the following simple interpretation: If the players of a game (N, v) are able to
agree upon a proposal to solve the game (that is, if σ(N, v) 
= ∅), then ND requires
that they should as well be able to agree upon a proposal, which is invariant under all
symmetries of the game and which, hence, does not discriminate.

There is a “natural” strong version of ND. Indeed, a solution σ satisfies strong non-
discrimination (SND), if every x ∈ σ(N, v) is invariant under symmetries. Note that any
solution σ that satisfies SIVA and AN also satisfies SND. Hence the prenucleolus satisfies
SND and the (positive) prekernel, the core, the (relative interior of the) positive core, and
many other well-known solutions satisfy ND. Note that there are also set-valued solutions
that satisfy SND (e.g. the maximal satisfaction solution introduced by Sudhölter and
Peleg (1998)).

The following approach results in a characterization of the positive core by balanced
collections of coalitions and allows to deduce RGP and RCP.

For every game (N, v), for every x ∈ RN and every α ∈ R denote

D(α, x, v) = {S ⊆ N | e(S, x, v) ≥ α}.

Let S ⊆ N . The characteristic vector χS of S is the member of RN which is given by

χS
i =


 1, if i ∈ S,

0, if i ∈ N \ S.

A collection D ⊆ 2N of coalitions is balanced (over N), if there are coefficients γS > 0, S ∈
D, such that

∑
S∈D γSχS = χN . The collection (δS)S∈B is called a system of balancing

weights.

We first recall a result of Kohlberg (1971) characterizing the prenucleolus.

Theorem 3.3 Let (N, v) be a game and x ∈ I∗(N, v). Then the following assertions are
equivalent: (a) x = ν(N, v). (b) For every α ∈ R and every y ∈ RN satisfying y(N) = 0
and y(S) ≥ 0 for all S ∈ D(α, x, v), y(S) = 0 for all S ∈ D(α, x, v). (c) For every α ∈ R,
D(α, x, v) is balanced or empty.

The equivalence of (a) and (b) may be proved directly and the equivalence of (b) and (c)
is a direct consequence of the duality theorem of linear programming. In a completely
analogous way the following result may be proved.

Theorem 3.4 Let (N, v) be a game and x ∈ I∗(N, v). Then the following assertions are
equivalent: (a) x ∈ C+(N, v). (b) For every positive α ∈ R and every y ∈ RN satisfying
y(N) = 0 and y(S) ≥ 0 for all S ∈ D(α, x, v), y(S) = 0 for all S ∈ D(α, x, v). (c) For
every positive α ∈ R, D(α, x, v) is balanced or empty.

Theorem 3.4 implies (see Theorem 6.3.14 in Peleg and Sudhölter (2003)) that the positive
core satisfies RGP and RCP. Moreover, the relative interior of the positive core may
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be characterized by modifying Theorem 3.4 only inasmuch as C+ has to be replaced by
rint C+ and positive has to be replaced twice by nonnegative. This modification implies
that the relative interior of the positive core satisfies RGP and RCP as well. Hence, the
following theorem is valid.

Theorem 3.5 The positive core and its relative interior satisfy RGP and RCP.

We shall now present an example which shows that the positive core does not satisfy
CRGP. Sudhölter and Peleg (2002) use a similar example.

Example 3.6 Let N = {1, 2, 3, 4} and v(S), S ⊆ N , be defined by

v(S) =




0 , if S ∈ {∅, N},

2 , if S ∈ {Si | i = 1, 2, 3, 4},

−2 , otherwise,

where S1 = {1, 2}, S2 = {2, 3}, S3 = {3, 4}, and S4 = {1, 4}. Note that SYM(N, v) is
generated by the cyclic permutation, which maps 1 to 2, 2 to 3, 3 to 4, and 4 to 1; thus the
game is transitive. (A game is called transitive, if its symmetry group is transitive.) As
ν satisfies ND and PO, ν(N, v) = 0. Thus e(S, ν(N, v), v) = 2 for S ∈ {Si | i = 1, . . . , 4}
and e(T, ν(N, v), v) ≤ 0 for all other coalitions. Therefore,

C+(N, v) = convh{(1,−1, 1,−1), (−1, 1,−1, 1)},

where “convh” means “convex hull”. Let x ∈ C+(N, v), k ∈ N , and � ∈ N \ {k}. Then
sk�(x, v) = 2 and sk�(x, v) is attained by some Si, i = 1, . . . 4. Thus

convh({(2,−2, 2,−2), (−2, 2,−2, 2)} ⊆ K∗(N, v).

The current example together with Theorem 2.4 shows that the positive core does not
satisfy CRGP when |U | ≥ 4.

Remark 3.7 The positive core shares another property with the core: The positive core
is convex-valued (CON). Indeed, Definition 2.1 directly implies that the positive core of a
game is a compact convex polyhedral set.

In the next section we shall need the following easy result.

Remark 3.8 (see, e.g. Remark 2.7 of Sudhölter (1997)) Let ∅ 
= N be a finite set
and let D be a balanced collection over N . If T ⊆ N satisfies χT ∈ 〈{χS | S ∈ D}〉, then
D∪{T} is balanced. Here 〈· · ·〉 denotes the linear span. (We say that D spans D∪{T}.)

4 A Characterization of the Positive Core

In this section, which is divided into several subsections, we shall present a characterization
of the positive core by intuitive simple axioms. We start with some investigations in the
two-person case.
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4.1 The Two-Person Case

Throughout this subsection we assume that |U | ≥ 3 and that σ is a solution.

Theorem 4.1 The solution σ satisfies NE, BOUND, COV, AN, RGP, and RCP, if and
only if it coincides on Γ2 with ν or rint C+ or with C+.

We postpone the proof of Theorem 4.1 and first prove two useful lemmata.

Lemma 4.2 If σ satisfies NE, BOUND, COV, AN, RGP, and RCP, and if (N, v) ∈ Γ2,
then σ(N, v) ⊆ C+(N, v).

Proof: By Remark 2.9, σ satisfies PO and the assertion is true for any 1-person game.
Assume, now, N = {1, 2} and let (N, v) be a game. Three cases may be distinguished.

(1) |C(N, v)| = 1 : By COV, v({i}) = 0, i ∈ N , may be assumed. Hence, v(N) = 0. Let
x ∈ σ(N, v). Then αx ∈ σ(N,αv) = σ(N, v) for every α > 0 by COV, thus, by BOUND,
the proof is finished.

(2) C(N, v) = ∅ : By COV we may assume that v({1}) = v({2}) = 1 and v(N) = 0. With

Ñ = {1, 2, 3} define (Ñ , w) by

w(S) =


 0 , if S = ∅, Ñ ,

1 , otherwise.

Then ν(Ñ , w) = 0 ∈ RÑ and the reduced game w.r.t. N and ν(Ñ , w) coincides with
(N, v). By RCP the proof is complete in this case as soon as it is shown that the unique

member of σ(Ñ , w) is ν(Ñ , w).

Assume, on the contrary, {ν(Ñ , w)} 
= σ(Ñ , w). By NE there exists z ∈ σ(Ñ , w) such
that z 
= 0. By AN we may assume z1 ≤ z2 ≤ z3. By PO,

z ∈ X := {x ∈ I∗(Ñ , w) | x1 ≤ x2 ≤ x3}.

By BOUND it suffices to show that there exists a mapping f : X → X which has the
following properties:

(a) For every x ∈ X \ {0} the set {fk(x) | k ∈ N} is not bounded. (fk is the k-fold
composition of f .)

(b) For every x ∈ X ∩ σ(Ñ , w), f(x) ∈ σ(Ñ , w).

In order to construct the desired mapping f , define

X≤ = {x ∈ X | x2 ≤ 0} and X≥ = {x ∈ X | x2 ≥ 0}.
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We define f≤ : X≤ → RÑ and f≥ : X≥ → RÑ as follows. Let x ∈ X≤, y ∈ X≥, and let
α, β be defined by

α = 1 −
(x1 + 1)(x3 + 2)

2 − x2

and β = 1 − y1 +
(y1 − 1)(2 − y1)

2 + y2

. (4.1)

Note that the denominators are positive and that α and β may be expressed by

α = −x1
1 + x3

2 − x2

and β = −y3
1 − y1

2 + y2

, (4.2)

because x(Ñ) = y(Ñ) = 0. Now, define

f≤
2 (x) = min{x3, α}, f≤

3 (x) = max{x3, α}, f≤
1 (x) = −f≤

2 (x) − f≤
3 (x),

f≥
1 (y) = min{y1, β}, f≥

2 (y) = max{y1, β}, f≥
3 (y) = −f≥

1 (y) − f≥
2 (y).

By (4.2), α ≥ 0 ≥ β. Hence

f≤(x) ∈ X≥ and f≥(y) ∈ X≤. (4.3)

Define f by

f(x) = f≥(f≤(x)) ∀x ∈ X≤ and f(y) = f≥(y) ∀y ∈ X \ X≤.

We now show that f satisfies (4.1). Let x ∈ X \ {0}. We claim that

f3(x) > x3 and f1(x) ≤ x1 (4.4)

If x ∈ X \ X≤, then f(x) = f≥(x). By the definition of f≥ and (4.3), f1(x) ≤ x1,
f2(x) < 0, and f3(x) > x3. If x ∈ X≤, we analogously obtain f≤

1 (x) < x1, f≤
2 (x) > 0, and

f≤
3 (x) ≥ x3, hence f1(x) ≤ f≤

1 (x) < x1 and f3(x) > f≤
3 (x) ≥ x3. Thus, (4.4) is true. The

continuity of f and (4.4) immediately imply (4.1).

In order to show (4.1) it suffices to prove the following assertions:

f≤(x) ∈ σ(Ñ , w) ∀x ∈ σ(Ñ , w) ∩ X≤ (4.5)

f≥(y) ∈ σ(Ñ , w) ∀y ∈ σ(Ñ , w) ∩ X≥ (4.6)

Let x ∈ σ(Ñ , w) ∩ X≤ be arbitrarily. Then the coalition functions of the reduced games
w.r.t. {1, 3} and w.r.t. {1, 2} satisfy

w{1,3},x({1}) = w{1,3},x({3}) = 1 − x2, w
{1,3},x({1, 3}) = −x2

and
w{1,2},x({1}) = w{1,2},x({2}) = 1, w{1,2},x({1, 2}) = −x3.

By the definition of X≤ the game ({1, 2}, w{1,2},x) is isomorphic (by interchanging players
2 and 3) to the game1(

{1, 3},
(
w{1,3},x + (x2 − 1, x2 − 1)

) x3 + 2

2 − x2

+ (1, 1)

)
.

1If S is a nonempty finite subset of natural numbers, then we use for x ∈ RS the notation x =
(xi1 , . . . , xi|S|

) with the convention i1 < · · · < i|S|.
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By AN and COV,

x̂ := ((x1, x3) + (x2 − 1, x2 − 1))
x3 + 2

2 − x2

+ (1, 1) ∈ σ({1, 2}, w{1,2},x).

PO and

x̂2 = (x3 + x2 − 1)
x3 + 2

2 − x2

+ 1 = (−x1 − 1)
x3 + 2

2 − x2

+ 1 = α

yields x̂ = (−x3 − α, α). By RCP, (x̂, x3) ∈ σ(Ñ , w). AN yields

f≤(x) = (x̂1, min{x̂2, x3}, max{x̂2, x3}) ∈ σ(Ñ , w).

Assertion (4.6) may be proved similarly by applying the fact that ({2, 3}, w{2,3},y) is iso-
morphic to (

{1, 3},
(
w{1,3},y − (1, 1)

) 2 − y1

2 + y2

+ (1 − y1, 1 − y1)

)
.

(3) C(N, v) has a nonempty interior: By COV we may assume that v is given by

v(S) =


 0 , if S = ∅, N,

−1 , otherwise.

Define (Ñ , w) by adding the null-player 3 to (N, v), i.e., by w(S) = v(S \ {3}). By NE

there is a member z of σ(Ñ , w). We may assume z1 ≤ z2 by AN.

Claim 1: −2 < z3 < 2

Let u = wN,z. If z3 ≤ −2 or z3 ≥ 2 respectively, then u is given by

u({i}) = −1 − z3, or u({i}) = −1 ∀i ∈ N and u(N) = −z3.

Hence (N, u) has a single valued core (in the case z3 = −2, +2) or an empty core. In both
cases (1) and (2) we have already shown that σ(N, u) consists of the prenucleolus only.
Hence, by RGP z1 = z2. Moreover, by PO, we obtain z1 = z2 = −z3/2. Hence, w{1,3},z is
given by

w{1,3},z({1}) = −1, w{1,3},z({3}) = 0, w{1,3},z({1, 3}) =
z3

2
if z3 ≤ −2

or by

w{1,3},z({1}) =
z3

2
, w{1,3},z({3}) = −1 +

z3

2
, w{1,3},z({1, 3}) =

z3

2
if z3 ≥ 2.

Hence, the core of ({1, 3}, w{1,3},z) is a singleton (if z3 = 2 or z3 = −2) or empty. Therefore
we know from cases (1) and (2) that (z1, z3) has to be the prenucleolus of the reduced
game which is not the case. Hence Claim 1 is shown.

Claim 2: (z1, z2) ∈ C(N,wN,z)

Assume the contrary. Two cases may be distinguished.

11



(i) z3 ≥ 0 : The reduced game (N,wN,z) is given by

wN,z({1}) = wN,z({2}) = −1, wN,z(N) = −z3. (4.7)

By Claim 1 the core of this game has a nonempty interior, because z3 < 2. By PO and
the assumptions z1 ≤ z2 and (z1, z2) /∈ C(N,wN,z), we have z1 < −1. Therefore,

w{2,3},z({2}) = −z1, w{2,3},z({3}) = −1 − z1, w{2,3},z({2, 3}) = −z1,

thus C({2, 3}, w{2,3},z) = ∅. Hence, by RGP and part (2),

z2 =
1 − z1

2
and z3 = −

z1 + 1

2
.

Hence z2 > 1. Therefore,

w{1,3},z({1}) = −1, w{1,3},z({3}) = 0, w{1,3},z({1, 3}) =
z1 − 1

2
,

thus C({1, 3}, w{1,3},z) = ∅. Hence, by RGP and part (2), z3 = z1+1
4

, which is negative.

(ii) z3 ≤ 0 : The reduced game (N,wN,z) is given by

wN,z({1}) = wN,z({2}) = −1 − z3, wN,z(N) = −z3. (4.8)

By Claim 1 the core of this game has a nonempty interior, because z3 > −2. By PO and
the assumptions z1 ≤ z2 and (z1, z2) /∈ C(N,wN,z, we have z1 < −1 − z3 and z2 > 1.
Therefore,

w{1,3},z({1}) = −1, w{1,3},z({3}) = 0, w{2,3},z({1, 3}) = −z2,

thus C({1, 3}, w{1,3},z) = ∅. Hence, by RGP and part (2),

z1 =
−1 − z2

2
and z3 =

−z2 + 1

2
.

Hence z1 < −1. Therefore,

w{2,3},z({2}) =
z2 + 1

2
, w{2,3},z({3}) =

z2 − 1

2
, w{2,3},z({2, 3}) =

z2 + 1

2
,

thus C({2, 3}, w{2,3},z) = ∅. In case (2) we proved that the solution of a two-person game
with an empty core must coincide with the prenucleolus, hence, by RGP, z3 = z2−1

4
, which

is positive.

In both cases, i.e., regardless of whether z3 ≥ 0 or z3 ≤ 0 we obtain a contradiction to
our assumption that zN /∈ C(N,wN,z). Therefore Claim 2 is shown. By Claim 1 and (4.7)
or (4.8), respectively, wN,z({1}) + wN,z({2}) < wN,z(N). Hence (N,wN,z) is strategically
equivalent to (N, v). Thus the proof is completed by applying RCP and COV. q.e.d.

Lemma 4.3 If σ satisfies NE, BOUND, COV, AN, RGP, and RCP, then it is a subso-
lution of the positive prekernel.

Proof: By Lemma 4.2, σ is a subsolution of C+ and, hence of K∗
+, when restricted to

Γ2. By Theorem 2.2, K∗
+ satisfies CRGP. Therefore Remark 2.10 applied to σ1 = σ and

σ2 = K∗
+ completes the proof. q.e.d.
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Proof of Theorem 4.1: Let (N, v) be a 2-person game and assume that N = {1, 2}. If
the core of (N, v) is empty or single valued, then Lemma 4.2 finishes the proof. Hence, by
COV, we may assume that (N, v) is given by v({1}) = v({2}) = v(∅) = 0 and v(N) = 1.
Assume that σ(N, v) does not coincide with the prenucleolus. It remains to show that
σ(N, v) ⊇ rint C+(N, v). By AN and PO there is x0 ∈ σ(N, v) satisfying

0 ≤ x0
1 < x0

2 = 1 − x0
1 ≤ 1 (4.9)

It suffices to show that

(1) there is a convergent sequence (x̄k)k∈N satisfying x̄k ∈ σ(N, v) ∀k ∈ N with limit
(0, 1) and

(2) σ(N, v) is convex.

Indeed, if x ∈ rint C(N, v), then choose k ∈ N such that x̄k
1 ≤ min{x1, x2} and notice that

(x̄k
2, x̄

k
1) ∈ σ(N, v) is true by AN. Hence x is a convex combination of these two vectors.

ad 1: We proceed similarly as in the proof of Lemma 4.2 using Ñ = {1, 2, 3}, X≤, X≥ as

defined in (2) but now defining the game (Ñ , w) by

w(S) =


 0 , if S = ∅, Ñ ,

−1 , otherwise.

Moreover, we put
X̃≤ = X≤ ∩ C(Ñ , w), X̃≥ = X≥ ∩ C(Ñ , w)

and define g≤ : X̃≤ → RÑ by g≤(x) = (−α − x3, min{α, x3}, max{α, x3}) , where

α =
(1 − x1)(2 − x3)

2 + x2

− 1 = x1
x3 − 1

2 + x2

∀x ∈ X̃≤,

and g≥ : X̃≥ → RÑ by g≥(y) = (min{β, y1}, max{β, y1},−β − y1) , where

β =
(1 + y1)(2 + y1)

2 − y2

− 1 − y1 = −y3
1 + y1

2 − y2

∀y ∈ X̃≥.

Note that the denominators are positive, because x and y are assumed to be elements of
the core. (In fact, C(Ñ , w) is the convex hull of all permutations of (−1, 0, 1).)

For any x ∈ X̃≤ and for any y ∈ X̃≥ we observe that ({1, 2}, w{1,2},x) and ({2, 3}, w{2,3},y),
respectively, are isomorphic (by interchanging players 2 and 3 and by interchanging 1 and
2, respectively) to(

{1, 3},
(
w{1,3},x + (x2 + 1, x2 + 1)

) 2 − x3

2 + x2

− (1, 1)

)
and to (

{1, 3},
(
w{1,3},y + (1, 1)

) 2 + y1

2 − y2

− (1 + y1, 1 + y1)

)
,

respectively. Thus, by AN, RGP, RCP, and COV of the core, we conclude (see the proof
of Lemma 4.2) that
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g≤(x) ∈ C(Ñ , w) ∀x ∈ X̃≤ and g≥(y) ∈ C(Ñ , w) ∀y ∈ X̃≥.

The proof of the following properties is straightforward and skipped:

g≤(x) ∈ X̃≥, g≤
1 (x) ≤ x1, and g≤

3 (x) ≥ x3 ∀x ∈ X̃≤ (4.10)

∀x ∈ X̃≤ : g≤(x) = x ⇔ g≤
2 (x) = 0 ⇔ x = 0 or x = (−1, 0, 1) (4.11)

g≥(y) ∈ X̃≤, g≥
1 (y) ≤ y1, and g≥

3 (y) ≥ y3 ∀y ∈ X̃≥ (4.12)

∀y ∈ X̃≥ : g≥(y) = y ⇔ g≥
2 (y) = 0 ⇔ y = 0 or y = (−1, 0, 1) (4.13)

Therefore the composition g = g≥ ◦ g≤ : X̃≤ → X̃≤ is well-defined and satisfies “mono-
tonicity”, i.e. it satisfies g1(x) ≤ x1 and g3(x) ≥ x3 for all x ∈ X≤. Hence for any

x ∈ X̃≤ \ {0} the sequence (gk(x))k∈N converges to (−1, 0, 1).

In order to construct the sequence (x̄k)k∈N with the desired properties we first show that

X̃≤ contains a nonzero member x1 of σ(Ñ , w). For this purpose choose z ∈ σ(Ñ , w) ∩(
X̃≤ ∪ X̃≥

)
which is possible by NE, AN, and Lemma 4.3. If z 
= 0, then put

x1 =


 z , if z ∈ X̃≤,

g≥(z) , otherwise,

and observe that x1 belongs to σ(Ñ , w) by AN, RGP, RCP, and COV.

If z = 0, then observe that the reduced game (N,wN,z) is strategically equivalent to
(N, v), thus by NE, RGP, RCP, COV, and the assumption that σ(N, v) 
= {ν(N, v)},

there is some y ∈ σ(Ñ , w) \ {0}. By AN and Lemma 4.2 we may assume that y belongs

to X̃≤ ∪ X̃≥, thus we define x1 = y in the first and x1 = g≥(y) in the latter case.

Now the proof of this part may be finished by defining the sequence (x̄k)k∈N as follows.
Put xk = gk−1(x1) ∀k ∈ N and define

x̄k =

(
xk

1 + 1

2 − xk
3

,
xk

2 + 1

2 − xk
3

)
∀k ∈ N.

Then the sequence (x̄k)k∈N converges to (0, 1), because (xk)k∈N converges to (−1, 0, 1). It
remains to show that x̄k ∈ σ(N, v) for any natural number k. This assertion is implied

by COV, RGP, and the observation that v =
(
wN,xk

+ (1, 1)
)

1
2−xk

3

.

ad 2: In view of AN it suffices to show that (α, 1−α) belongs to σ(N, v) for any 0 < α ≤ 1
2
.

By (1), which was just proved, there exists (a, 1 − a) ∈ σ(N, v) satisfying 0 ≤ a ≤ α.
Additionally, we shall assume that 1−a

2−a
≥ a (which is true, e.g., if a ≤ 1/4). For any β

such that 1−a
2−a

≤ β ≤ 1 define (Ñ , wβ) by

wβ(S) =




1, if S = Ñ ,

β, if S = N,

0, otherwise,
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and choose x0 ∈ σ(Ñ , wβ). Then x0 ∈ K∗
+(Ñ , wβ) by Lemma 4.3. It is well-known (see

Sudhölter and Peleg (2000)) that the positive prekernel of a three-person game coincides

with its positive core. Hence x0 ∈ C(Ñ , wβ). We proceed by recursively applying RGP,
RCP, and COV four times. In (2) and (4) AN is employed in addition. For a sketch of
the four steps see Figure 4.1.

(1) Let (N,w0) be the reduced game of (Ñ , wβ) w.r.t. N and x0. Then

w0({1}) = w0({2}) = 0, w0(N) = 1 − x0
3,

thus x1 = (a(1 − x0
3), (1 − a)(1 − x0

3), x
0
3) ∈ σ(Ñ , wβ). (If β = 1, then x0

3 = 0 and
w0 = 0.)

(2) Let ({2, 3}, w1) be the reduced game of (Ñ , wβ) w.r.t. {2, 3} and x1. The inequalities
β ≥ 1−a

2−a
≥ a ≥ x1

1 imply w1({2}) = max{0, β − x1
1} = β − x1

1. Also, w1({3}) = 0
and w1({2, 3}) = 1 − x1

1. Thus

x2 =
(
a(1 − x0

3), (1 − β)a + β − x1
1, (1 − β)(1 − a)

)
∈ σ(Ñ , wβ).

(3) Let (N,w2) be the reduced game of (Ñ , wβ) w.r.t. N and x2. Then

w2({1}) = w2({2}) = 0, w2(N) = 1 − x2
3,

thus x3 = (a(1 − x2
3), (1 − a)(1 − x2

3), x
2
3) ∈ σ(Ñ , wβ). Note that x3 does not depend

on x0, because x2
3 = (1 − β)(1 − a).

(4) Let ({1, 3}, w3) be the reduced game of (Ñ , wβ) w.r.t. {1, 3} and x3. The inequality
β ≥ x3

2 is true, because β ≥ 1−a
2−a

. Hence, w3({1}) = max{0, β − x3
2} = β − x3

2. Also,
w3({3}) = 0 and w3({1, 3}) = 1 − x3

2. Thus

x4 =
(
(1 − a)(1 − β) + β − x3

2, x
3
2, a(1 − β)

)
∈ σ(Ñ , wβ).

Now the proof may be finished by considering the reduced game (N,w4) of (Ñ , wβ)
w.r.t. x4. Indeed, we have

w4({1}) = w4({2}) = 0, w4(N) = 1 − x4
3,

thus

yβ =
1

1 − x4
3

(x4
1, x

4
2) ∈ σ(N, v).

A careful inspection of the construction immediately shows that

yβ
1 =


 a, if β = 1,

1
2
, if β = (1 − a)/(2 − a).

The continuity of the mapping β �→ yβ shows that there exist some β̃, 1−a
2−a

≤ β̃ ≤ 1,

such that yβ̃
1 = α. q.e.d.
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(β, 0, 1 − β)

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

x3x2

x0 x1

x4

(0, β + (1 − β)a, (1 − β)(1 − a))

(1 − (1 − β)a, 0, (1 − β)a)

(a, 1 − a, 0)

Figure 4.1: Sketch of the steps (1) - (4) in ad 2

4.2 Coincidence of Positive Excesses

Throughout this subsection we assume that the cardinality of U is infinite and that σ is a
solution. If σ is a subsolution of the positive prekernel and if σ satisfies COV, RGP, and
RCP, then it is shown that a coalition which has a positive excess at some member of the
solution when applied to the game, has the same excess at any member of the solution
of the game. The following simple lemma is useful.

Lemma 4.4 Let (N, v) be a game, let x ∈ K∗
+(N, v), and let k ∈ N . If µ(x, v) > 0 then

there exist Sk, S−k ⊆ N such that

e(Sk, x, v) = e(S−k, x, v) = µ(x, v), k ∈ Sk, and k /∈ S−k.

Proof: It suffices to show that there exists � ∈ N \ {k} such that

sk�(x, v) = s�k(x, v) = µ(x, v). (4.14)

Let S ⊆ N be a coalition attaining µ(x, v). As µ(x, v) > 0, ∅ 
= S 
= N . If k ∈ S, then
(4.14) holds for every � ∈ N \ S. If k /∈ S, then (4.14) holds for every � ∈ S. q.e.d.

Lemma 4.5 Let σ be a subsolution of the positive prekernel, let (N, v) be a game, let
x, y ∈ σ(N, v), and let S̄ ⊆ N . If σ satisfies NE, COV, RGP, and RCP, then

e(S̄, x, v) > 0 ⇒ e(S̄, y, v) = e(S̄, x, v).

Proof: Assume without loss of generality that 1 ∈ S̄ and that N = {1, . . . , n}. Choose

∗ ∈ U \ N , let us say ∗ = n + 1, and put Ñ = N ∪ {∗}.

Choose α > (n + 1) maxP,Q⊆N(v(P ) − v(Q)) and define the game (Ñ , w) by

16



w(S) =




v(S \ {∗}) , if S ⊆ N \ {1} or 1, ∗ ∈ S,

v(S̄) , if S = S̄,

v(N) , if S = N,

0 , if S = {∗},

v(S \ {∗}) − α , otherwise.

By NE there exists z ∈ σ(w). It is the aim to show the following assertions:

(1) (N,wN,z) is strategically equivalent to (N, v).

(2) s∗1(z, w) > 0 and s∗1(z, w) is only attained by the coalition {∗}.

(3) s1∗(z, w) is only attained by S̄.

Then we shall use RGP and RCP to “insert” x or y and immediately deduce the desired
coincidence of the excesses. In order to prove (1) we shall show the following

Claim: z∗ ≤ 0

Assume, on the contrary, z∗ > 0.

STEP 1: It is first proved that

∃k̄ ∈ N \ {1} : zk̄ < − max
P,Q⊆N

(v(P ) − v(Q)). (4.15)

Indeed, the assumption yields

s1∗(z, w) ≥ e(N, z, w) = v(N) − z(N) = z∗ > 0.

Hence s∗1(z, w) > 0 is implied, because z ∈ K∗
+(Ñ , w). Choose T ⊆ N \ {1} such that

e(T ∪ {∗}, z, w) > 0. Then T 
= ∅, thus

0 < v(T ) − α − z(T ) − z∗ ≤ v(T ) − α − z(T )

= (v(T ) − v(∅)) − α − z(T ) < −n maxP,Q⊆N(v(P ) − v(Q)) − z(T ).

Hence there is k̄ ∈ T ⊆ N \ {1} with zk̄ < −maxP,Q⊆N(v(P ) − v(Q)).

STEP 2: Let S ⊆ N ∪ {∗} attain µ(z, w). By Step 1 there exists i ∈ N \ {1} such that
zi < −maxP,Q⊆N(v(P ) − v(Q)). The following assertions are shown:

(1) S̄ attains µ(z, w).

(2) If S 
= S̄, then S ⊇ (N ∪ {∗}) \ S̄.

(3) Player i does not belong to S̄.

In order to show (1) the following claim is shown:

S 
= S̄ ⇒ i ∈ S. (4.16)
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Indeed, first note that {∗} does not attain µ(z, w) because µ(z, w) is positive. Let T ⊆
(N ∪ {∗}) \ {i} such that T 
= S̄ and T 
= {∗}. If S̄ 
= T ∪ {i} 
= N , then

e(T ∪ {i}, z, w) − e(T, z, w) = v ((T ∪ {i}) \ {∗}) − v(T \ {∗}) − zi > 0.

Also, if T ∪ {i} ∈ {N, S̄}, then

e(T ∪ {i}, z, w) − e(T, z, w) = v(T ∪ {i}) − v(T ) − zi + α > 0.

Hence (4.16) is shown. By Lemma 4.4 there exists S−i ⊆ (N ∪{∗})\{i} attaining µ(z, w).
By (4.16), S−i = S̄, thus (1) is shown.

Now this step may be completed. In order to show (2) we assume, on the contrary, that
there is some coalition S attaining maximal excess and violating (2). Then i ∈ S by
(4.16), because S 
= S̄. Choose j ∈ (N ∪ {∗}) \ (S̄ ∪ S). Then

µ(z, w) = e(S, z, w) = sij(z, w),

hence sji(z, w) = µ(z, w) which is impossible by (4.16). Moreover, (3) is valid because of
the existence of S−i.

STEP 3: By the preceding steps there is some coalition S attaining maximal excess such
that 1 
∈ S � ∗. Moreover, {∗} 
= S, hence

0 ≥ e(S ∪ {1}, z, w) − e(S, z, w) = v((S ∪ {1}) \ {∗}) − v(S \ {∗}) + α − z1.

Thus z1 > n maxP,Q⊆N(v(P ) − v(Q)). By (1) of the preceding step (the maximality of
e(S̄, z, w)) we obtain

0 < e(S̄, z, w) = v(S̄) − z1 − z(S̄ \ {1}) < −((n − 1) max
P,Q⊆N

(v(P ) − v(Q))) − z(S̄ \ {1})

and, thus, there is i ∈ S̄ \ {1} with zi < −maxP,Q⊆N(v(P ) − v(Q)). The last observation
contradicts (3) of the preceding step. Thus our claim is shown.

Now the proof may be finished. Let u = wN,z be the reduced game. By reasonableness of
the positive prekernel, z∗ ≥ −α. Hence, z∗ ≤ 0 implies that u = v + (−z∗, 0, . . . , 0︸ ︷︷ ︸

n−1

). By

RCP and COV

z1 = (−z∗, 0, . . . , 0, z∗) + (x, 0) ∈ σ(N ∪ {∗}, w) and

z2 = (−z∗, 0, . . . , 0, z∗) + (y, 0) ∈ σ(N ∪ {∗}, w).

By REAS of the positive prekernel, zt
i ≥ −maxP,Q⊆N(v(P )−v(Q)) for all i ∈ N \{1} and

t = 1, 2. Therefore s∗1(z
t, w) must be attained by {∗}, thus this surplus is nonnegative.

Moreover, s1∗(z
t, w) can only be attained by N , if z∗ = 0. Therefore s1∗(z

1, w) cannot be
attained by N , because e(S̄, x, v) is positive. Hence, s1∗(z

t, w) must be attained by S̄ for
t = 1, 2.

Therefore e(S̄, z1, w) = e(S̄, x, v) + z∗ = e({∗}, z1, w) = −z∗ and, similarly, e(S̄, z2, w) =
−z∗. Thus,

z∗ = −
e(S̄, x, v)

2
and z∗ = −

e(S̄, y, v)

2
.

Hence we conclude that e(S̄, x, v) = e(S̄, y, v) is satisfied. q.e.d.
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Corollary 4.6 If the prenucleolus is a subsolution of σ, and σ satisfies BOUND, COV,
AN, RGP, and RCP, then σ is a subsolution of the positive core.

Proof: By Lemma 4.4 the solution σ is a subsolution of the positive prekernel, hence
Lemma 4.5 can be applied. q.e.d.

4.3 The Prenucleolus and the General n-Person Case

During this subsection we assume that the cardinality of U is infinite and that σ is a
solution. It is the aim to show that the prenucleolus, the relative interior of the positive
core, and the positive core are the unique solutions that satisfy BOUND, COV, AN, RGP,
RCP, and contain the prenucleolus as a subsolution. The main result of this section is
the following theorem.

Theorem 4.7 The prenucleolus is a subsolution of σ and σ satisfies BOUND, COV, AN,
RGP, and RCP, if and only if σ coincides

(1) with the prenucleolus or

(2) with the relative interior of the positive core or

(3) with the positive core.

Proof: The three solutions satisfy the desired properties. Let, now, σ be a solution that
satisfies the axioms and contains the prenucleolus. By Theorem 4.1 the following three
cases (1), (2), or (3) may occur.

(1) The solution σ coincides with the prenucleolus on the set of all 2-person games. By
(2.1), σ must be a subsolution of the prekernel, thus σ satisfies ETP. By Theorem 4.7 of
Orshan and Sudhölter (2003), σ is the prenucleolus.

(2) The solution σ coincides with the positive core on the set of all 2-person games. By
Corollary 4.6, σ is a subsolution of the positive core. Let (N, v) be a game. It remains to
show C+(N, v) ⊆ σ(N, v). Without loss of generality we may assume that

N = {1, . . . , n}, N∗ := {1∗, . . . , n∗} = {n + 1, . . . , 2n} ⊆ U.

By COV we may assume that ν(N, v) = 0 ∈ RN . If C+(N, v) = ν(N, v), then NE

completes the proof. Hence, let x ∈ C+(N, v) \ ν(N, v) and put Ñ = N ∪ N∗. It is no
loss of generality to assume that

x1 ≥ · · · ≥ xn. (4.17)

We are going to define a game (Ñ , w) which allows to show that σ(Ñ , w) contains a
member y such that

(a) the reduced game (N,wN,y) coincides with (N, v) and

(b) the restriction yN coincides with x.
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Indeed the proof is finished by RGP as soon as (Ñ , w) and y are constructed.

Let k ∈ N and ei ∈ R, i = 1, . . . , k, be defined by

{ei | i = 1, . . . , k} = {v(S) | v(S) < 0}, e1 > · · · > ek,

i.e., e1, . . . , ek are the different negative excesses of (N, v) at the prenucleolus in the strictly
decreasing order. Moreover, define S i, T i, βi for all i = 1, . . . , k by the requirements

S i = {S ⊆ N | v(S) = ei}, (4.18)

T i = {T ⊆
i⋃

j=1

⋃
S∈Sj

S}, (4.19)

βi = max
S∈T i

x(S). (4.20)

Note that S i is the i-th negative level set. By construction

ek < · · · < e1 < 0 = x(∅) ≤ β1 ≤ · · · ≤ βk.

Put T 0 = {∅} and βk+1 = maxS⊆N v(S) + maxT⊆N x(T ). We are now ready to define w.
For S, T ⊆ N , let w(S ∪ T ∗) be given by the following equation:

w(S ∪ T ∗) =




v(S) , if v(S) ≥ 0 and T = S,

ei − βi , if


 (S ∈ S i, T ∈ T i) or

(S = ∅, T ∈ T i \ T i−1)


 for some 1 ≤ i ≤ k,

ek − βk+1 , otherwise.

We are going to show that

ν(Ñ , w) = 0 ∈ RÑ (4.21)

and

yl := (x1, . . . , x�︸ ︷︷ ︸
�

, 0, . . . , 0︸ ︷︷ ︸
n−�

,−x1, . . . ,−x�︸ ︷︷ ︸
�

, 0, . . . , 0︸ ︷︷ ︸
n−�

) ∈ σ(Ñ , w) ∀� = 1, . . . , n. (4.22)

(a) In order to show (4.21), it suffices to show in view of Theorem 3.3 that, for any

R ⊆ Ñ ,
D(w(R), 0, w) = {Q ⊆ Ñ | w(Q) ≥ w(R)}

is balanced (over Ñ). If w(R) ≥ 0, i.e., R = S ∪ S∗ for some S with v(S) ≥ 0,
then the required balancedness follows immediately from the fact that 0 is the
prenucleolus of (N, v) and the observation that

{Q ⊆ Ñ | w(Q) ≥ w(R)} = {T ∪ T ∗ | T ⊆ N, v(T ) ≥ v(S)}.

Thus it remains to show that

D̂i := {Q ⊆ Ñ | w(Q) ≥ ei − βi}
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is balanced for any i = 1, . . . , k. By Remark 3.8 it suffices to show that D̂i contains
a balanced subset Di that spans D̂i. In order to define Di note that

S ∪ ∅ ∈ D̂i ∀S ∈
i⋃

j=1

Sj and ∅ ∪ {t∗} ∈ D̂i ∀{t} ∈ T i

for i = 1, . . . k. Hence we put

Di := {S ∪ S∗ | v(S) ≥ 0} ∪
i⋃

j=1

Sj ∪ {{t∗} | {t} ∈ T i} ∀i = 1, . . . , k.

By Theorem 3.3, {S ⊆ N | v(S) ≥ 0} ∪
⋃i

j=1 S
j is balanced over N , hence {S∗ ⊆

N∗ | v(S) ≥ 0} ∪ {S∗ ⊆ N∗ | S ∈
⋃i

j=1 S
j} is balanced over N∗. The observation

that {{t∗} | {t} ∈ T i} = {{t∗} | t ∈
⋃i

j=1

⋃
S∈Sj S} shows that Di is balanced. Also,

it is straightforward to show that Di spans D̂i for every i = 1, . . . , k.

(b) Assertion (4.22) is shown recursively. Denote the prenucleolus ν(Ñ , w) = 0 by
y0. By the definition of y� we conclude for every T ⊆ N that y�(T ∗) = −x(T ∩
{1, . . . , �}) ≥ −βk+1. Also, by (4.20), y�(T ∗) ≥ −βi for every T ∈ T i and every
i = 1, . . . , k. Also, by (4.17), we have y�(S) ≥ min{x(S), 0} for all S ⊆ N . We
conclude for S, T ⊆ N that

e(S ∪ T ∗, y�, w) ≤ max{e(S, x, v), ei}, if S ∈ S i for some 1 ≤ i ≤ k. (4.23)

Also,
e(S ∪ T ∗, y�, w) < 0, if w(S ∪ T ∗) = ek − βk+1 (4.24)

We conclude that (
e(S ∪ T ∗, y�, w)

)
+

= (w(S ∪ T ∗))+ .

Let w�−1 := w{�,�∗},y�−1

∀� = 1, . . . , n. denote the coalition function of the “bilateral”
reduced game w.r.t. {�, �∗} and y�−1. By (4.23) and (4.24),

(x�,−x�) ∈ C({�, �∗}, w�−1) ∀� = 1, . . . , n. (4.25)

The facts that the solution σ coincides with the core on 2-person games and that it
contains the prenucleolus show that RCP, when applied recursively to � = 1, . . . , n,
yields the following “chain” of arguments:

y�−1 ∈ σ(Ñ , w) ⇒ y� ∈ σ(Ñ , w)

Now the proof of this case can be finished. Put y = yn and observe that wN,y = v by the
definition of w. Thus RGP implies yN ∈ σ(N, v). Clearly yN = x is satisfied.

(3) The solution σ coincides with the relative interior of the positive core on the set of all
2-person games.

By Corollary 4.6, σ is a subsolution of the positive core. By copying the relevant part of
the proof of the second case, it can be shown that the relative interior of the positive core
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is a subsolution of σ. Indeed, a careful inspection of the definition of the game (Ñ , w),
especially of (4.23) and (4.24), shows that (4.25) may be replaced by

(x�,−x�) ∈ int C({�, �∗}, w�−1) ∀� = 1, . . . , n,

whenever x ∈ rint C+(N, v) is assumed. (“int C” means the “interior of C relative to I∗”,
i.e., for every game (M,u), int C(M,u) = {x ∈ C(M,u) | e(S, x, u) < 0 ∀∅ 
= S � M}.)

Hence it remains to show that σ(N, v) ⊆ rint C+(N, v) for any game (N, v) satisfying
C+(N, v) \ rint C+(N, v) 
= ∅. Take x ∈ C+(N, v) \ rint C+(N, v) and let S̄ ⊆ N be a
coalition satisfying 0 = e(S̄, x, v) > e(S̄, ν, v), where ν = ν(N, v) denotes the prenucleolus.
Without loss of generality we may assume N = {1, . . . , n}, 1 ∈ S̄ and ∗ = n + 1 ∈ U .
Moreover, let (N ∪ {∗}, w) defined by

w(S) =




v(S \ {∗}) , if S ⊆ N \ {1} or 1, ∗ ∈ S,

v(S̄) , if S = S̄,

e(S̄, ν, v) , if S = {∗},

e(S \ {∗}, ν, v) − α , otherwise,

where α := µ(ν, v) − minS⊆N e(S, ν, v) − minS⊆N e(S, x, v).

Claim: z := ν(N ∪ {∗}, w) = (ν, 0)

For β > e(S̄, ν, v),

D(β, z, w) = {S ∈ D(β, ν, v) | 1 
∈ S} ∪ {S ∪ {∗} | 1 ∈ S ∈ D(β, ν, v)}.

For −α < β ≤ e(S̄, ν, v),

D(β, z, w) = {S ∈ D(β, ν, v) | 1 
∈ S} ∪ {S̄, {∗}} ∪ {S ∪ {∗} | 1 ∈ S ∈ D(β, ν, v)}.

For β ≤ −α, D(β, z, w) = 2N∪{∗}. Hence our claim follows from Theorem 3.3.

The reduced game (N,wN,z) coincides with (N, v). Assuming, on the contrary, that
x ∈ σ(N, v), yields z̃ := (x, 0) ∈ σ(N ∪ {∗}, w) by RCP. Applying RGP yields

(x1, 0) ∈ σ({1, ∗}, w{1,∗},z̃).

Moreover, this reduced game can easily be computed as

w{1,∗},z̃({1}) = e(S̄, x, v) + x1, w
{1,∗},z̃({∗}) = e(S̄, ν, v) < 0, w{1,∗},z̃({1, ∗}) = x1.

Therefore the interior of the core of this reduced game is nonempty. The fact that (x1, 0)
is not a member of this interior shows the desired contradiction. q.e.d.

4.4 Characterizations

As before we assume that |U | is infinite and that σ is a solution. It is the aim to char-
acterize the positive core by simple axioms using Theorems 4.7 and 4.1. Of course, we
do not want to employ the property that the prenucleolus is a subsolution. Hence we
need an additional axiom, which, together with the other properties, guarantee that the
prenucleolus is a subsolution of σ. In what follows two proposals are presented.
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Theorem 4.8 The solution σ satisfies NE, BOUND, COV, AN, RGP, RCP, and CON
(see Remark 3.7), if and only if σ coincides

(1) with the prenucleolus or

(2) with the relative interior of the positive core or

(3) with the positive core.

Proof: The three mentioned solutions satisfy the required properties. Let σ satisfy
the axioms. By Theorem 4.7 it suffices to prove that the prenucleolus is a subsolution
of σ. Let (N, v) be a game. By COV we may assume without loss of generality that

ν(N, v) = 0 ∈ RN . According to Sobolev (1975) there exists a game (Ñ , w) satisfying the
following properties:

(1) ν(Ñ , w) = 0 ∈ RÑ .

(2) N ⊆ Ñ and wN,0 = v.

(3) (Ñ , w) is transitive2.

By our infinity assumption on |U | we may assume that Ñ ⊆ U . By NE, there exists

y ∈ σ(Ñ , w). By Remark 2.9, σ satisfies PO, thus y(Ñ) = 0. By AN, π(y) ∈ σ(Ñ , w) for

every π ∈ SYM(Ñ , w). Let

z =
1

|SYM(Ñ , w)|

∑
π∈SYM(Ñ,w)

π(y).

By CON, z ∈ σ(Ñ , w). By transitivity, z = 0 = ν(Ñ , w). By RGP of ν , zN = ν(N, v).
By RGP of σ, zN ∈ σ(N, v). q.e.d.

Theorem 4.9 The solution σ satisfies NE, BOUND, COV, RGP, RCP, and ND, if and
only if σ coincides

(1) with the prenucleolus or

(2) with the relative interior of the positive core or

(3) with the positive core.

Proof: The three mentioned solutions satisfy the required properties. Let σ satisfy the
axioms. By Theorems 4.7 it suffices to prove (a) that the prenucleolus is a subsolution of
σ and (b) that σ satisfies AN. Let (N, v) be a game. By COV we may assume without
loss of generality that ν(N, v) = 0 ∈ RN .

2A game is transitive, if its symmetry group is transitive, i.e., if for any two players i, j ∈ N there is
a symmetry π ∈ SYM(N, v) of the game which maps i to j.

23



We first prove (a). Let (Ñ , w) be defined as in the proof of Theorem 4.8. By NE and ND

and transitivity of (Ñ , w) there exists z ∈ σ(Ñ , w) such that zi = zj for all i, j ∈ Ñ . By

Remark 2.9, σ satisfies PO, thus z = ν(Ñ , w). By RGP of ν , zN = ν(N, v). By RGP of
σ, zN ∈ σ(N, v).

It remains to show (b). Let N̄ ⊆ U be such that there is a bijection π : N → N̄ It has
to be proved that π(σ(N, v)) ⊆ σ(N̄ , πv). By the infinity assumption on |U | there is a
further set of players of the same cardinality in U disjoint from both, N and N̄ , thus
we may assume that N and N̄ are disjoint. Let x ∈ σ(N, v). Then π(x) ∈ σ(N̄ , πv)
remains to be shown. We are going to define a “replicated” game (N ∪ N̄ , u) such that
the reduced games w.r.t. N and N̄ and the nucleolus coincide with the games (N, v)
and (N̄ , πv) respectively. Put α = minR,S⊆N min{e(S, ν(N, v), v), e(S, x, v) + x(R)} and
define, for all S ⊆ N, T ⊆ N̄ ,

u(S ∪ T ) =


 v(S) , if T = π(S),

α , otherwise.

Let y = 0 ∈ RN∪N̄ and observe that the equation

D(β, y, u) =


 {S ∪ π(S) | S ∈ D(β, ν(N, v), v)} , if β > α,

2N∪N̄ , otherwise

is valid, thus y = ν(N ∪ N̄ , u) by Theorem 3.3. By (a), y ∈ σ(N ∪ N̄ , u). Observe that
uN,y = v by construction, thus z := (x, yN̄) ∈ σ(N∪N̄ , u) by RCP. Again the construction
of u yields uN̄,z = πv − π(x), thus πx ∈ σ(N̄ , πv) by COV and RGP. q.e.d.

Remark 4.10 In view of Theorem 4.8 it is possible to characterize the positive core
as the maximum solution satisfying NE, BOUND, COV, AN, CON, RGP, and RCP.
Alternatively, by Theorem 4.9, the positive core is the maximum solution that satisfies
NE, BOUND, COV, ND, RGP, and RCP.

In order to avoid to characterize the positive core to be a maximum solution that satisfies
several axioms, we may employ weak unanimity for two-person games (WUTPG).

Corollary 4.11 There is a unique solution that satisfies WUTP, NE, BOUND, COV,
RGP, RCP, and ND, and it is the positive core.

5 On the Independence of the Axioms

Six examples are presented which show that each of the axioms (1) NE, (2) BOUND, (3)
COV, (4) RGP, (5) RCP, and (6) ND is logically independent of the remaining axioms in
Theorem 4.9.
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Let U be a set, let t ∈ R, and let (N, v) be a game. Let σi, i = 1, . . . , 5, be defined by

σ1(N, v) = C(N, v),

σ2(N, v) = I∗(N, v),

σ3(N, v) = {x ∈ I∗(N, v) | max{e(S, x, v), t} = max{e(S, ν(N, v), v), t} ∀S ⊆ N},

σ4(N, v) = {x ∈ I∗(N, v) | µ(x, v) = µ(ν(N, v), v)}, and

σ5(N, v) = K∗
+(N, v).

Let � be a total order of U . For every finite set N ⊆ U let �N be the restriction of � to
N and let ≤N

lex be the induced lexicographical order on RN . Then σ6 is defined by

σ6(N, v) = {x ∈ C+(N, v) | x ≤N
lex y ∀y ∈ C+(N, v)}.

It is straightforward to check that σi, i = 1, . . . , 6, satisfies all properties except the i-th
one. If |U | ≥ 4 and t 
= 0, then none of the solutions coincides with C+ or ν or rint C+.

Remark 5.1 The infinity assumption on |U | in Theorems 4.7, 4.8, 4.9, and in Corollary
4.11 is crucial. Indeed, if |U | < ∞, then define for any game (N, v),

σ(N, v) =


 C+(N, v) , if N � U,

{x ∈ I∗(N, v) | xS ∈ C+(S, vS,x) ∀∅ 
= S � N} , if N = U.

Then σ satisfies all properties that were employed in the mentioned results. Also, there
are examples which show that C+ is a proper subsolution of σ when |U | ≥ 4.

Remark 5.2 We conjecture that CON is not logically independent of the remaining
axioms in Theorem 4.8. Also, we do not know whether the characterizations given in
Remark 4.10 and Corollary 4.11 are axiomatizations, because we do not have examples
which show that AN, CON, or ND are independent of the remaining axioms.
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