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1 Introd uction

Cheap- Talk is a communication that costs nothing and occurs before the players choose their
actions. The payoffs to the players depend only on their actions and not on the messages that
were sent during the Cheap-Talk phase. Cheap-Talk with Incomplete Information is a three phase
game. In the first phase the players receive their private information, in the second phase they
talk (communicate) and in the last phase they choose actions and get payoffs. Again, the payoffs
depend only on the actions. The players can use the Cheap-Talk to transfer information and to
choose an equilibrium from a possible set of equilibria. The players can also ignore the Cheap-Talk
and in this case the set of equilibria is the same as in the game without Cheap-Talk.

A weakness of the model is the fact that the actions are chosen after infinitely many periods of
communication, which seems incorrect for modeling real-life situations. To overcome this problem,
one can discuss variations of the Cheap-Talk model, like Cheap- Talk with a finite number of periods
of communication (see Aumann & Hart 1996) or the model of Cheap- Talk with Random Stopping
that we discuss here.

Cheap- Talk with Random Stopping is a Cheap-Talk game in which at each period the commu-
nication is stopped with probability 1 - A (0 < A < 1) and the players choose actions and receive
payoffs. We discuss some of the relations between Cheap-Talk with Random Stopping and the
original Cheap- Talk model.

The models are defined in section 2 and in section 3 we give the main results. In section 4 two
examples are analyzed and in section 5 we discuss Polite-Talk with Random Stopping games.

2 The Model

Cheap- Talk is an extension of a game. Cheap-Talk with complete information is a two stage game.
The first stage, the talk-stage, is divided into infinite number of periods. At each period, each player
chooses a message, m, from a finite set of messages, M. The players have perfect recall, hence the
messages can be a function of all the past history. In the second stage, the action-stage, each player
chooses an action. These actions defines the payoffs to the players according to the original game.
Polite- Talk is a similar extension in which at each period only one player can send a message. The
Cheap-Talk with Random Stopping extension of G, G(M, A), is a Cheap-Talk extension in which at
every period, with probability 1- A, the game is stopped and the players choose actions and receive
their payoffs. We define three games - G, G(M) and G(M, A). G is a (finite) game of incomplete
information, G(M) is its cheap-talk extension and G(M, A) is its cheap-talk with random stopping
extension. In G(M) and G(M, A) the cheap-talk occurs after the players have received their private
information.

. G = (N, (Cn)nEN, (Kn)nEN, (Pn)nEN, (Un)nEN) is defined by the following:

1. N is a finite set of players. Without loss of generality (and with some abuse of notation)
we assume that N = {I, 2, 3, ..., N}.

2. Cn is a finite set of actions for player n E N. Let C '- TInEN Cn and C-n :=

TImEN\{n} Cm.
3. Kn is a finite set of types of player n EN. Each player n E N knows his own type

kn E Kn. Let K := TInEN Kn and fCn := TImEN\{n} Km-
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4. Pn : J( n -;. ~(ILn) for 1 all n EN. The belief of type kn of player n is Pn (kn). We will
denote Pn(kn) by Pkn, hence Pkn(Ln) is the probability assigned by type kn of player n

to the combination of types k-n E lLn.

5. Un : C X J( -;. IR is the payoff function of player n. That is, un( c, k) is the payoff of
player n for the profile of actions c E C and profile of types k E J(.

6. The game is played as follows: each player n E N chooses (simultaneously) an action

Cn E Cn. Let c := (Cn)nEN. The subjective expected payoff of type kn E J(n of player
n E N is:

Ekn(C) := L Un( C, (kn, k_n) )pkn (k_n)
k-nEK-n

7. 1,2,3,4,5 and 6 are common knowledge.

. The game G(M) = ((N, (Cn)nEN, (J(n)nEN, (Pn)nEN, (Un)nEN, M) is defined by 1,2,3,4,5 and
in addition:

8. A finite set M, the set of possible messages in the Talk phase.

9. The game G(M) has two phases:

The Talk Phase: This phase is divided into periods t=1,2,3... . For each t and
n EN, player n chooses a message mf EM. The choices are made simultaneously.
(In Polite-Talk only player number t mod N sends a message).

The Action Phase: Each player n E N chooses (simultaneously) an action Cn E Cn.
Let C := (Cn)nEN. The subjective expected payoff of type kn E J(n of player n E N
is (see item 6 above): Ekn(C) := LLnEK-n un(c, (kn, k-n))Pkn(k-n).

10. All players have perfect recall.

11. 1,2,3,4,5,8,9,10 are common knowledge.

In order to define the "Cheap-Talk with Random Stopping" extension, G(M, >'), one should
replace item 9 with

9*. The game G(M, >') is divided into periods t = 1,2,3,... . In each period, t, each player n E N
chooses a message mf E M and an action cf E Cn (in Polite-Talk with Random Stopping,
all the players choose actions but only player number t mod N chooses a message). Let Ct :=

(Cf)nEN. With probability 1- >., the game is stopped and the players receive payoffs according
to the actions chosen in the last period: The subjective expected payoff of type kn E J( n of
player n E N is (see items 6 and 9 above): Ekn(Ct) := LLnEICn un(ct,(kn,k-n))Pkn(Ln).

With probability >. the game continues, and the players observe the messages (note that they
do not observe the actions if the game continues).

The specific items of the set M does not affect the equilibrium payoffs. The only feature that may
matter is the size of the set M, hence we will assume, without loss of generality (but with some
abuse of notation) that M = {I, 2, 3, ..., IMI}. Recall that mf is the message sent by player n at

period t and let ht be the history up to period t, i.e,

h . (( 1 2 N ) ( 1 2 N ) ( 1 2 N ))t.= ml, ml, ..., ml , m2, m2, ..., m2 .
, ..., mt, mt, ..., mt .

lfor a finite set X, the set 6(X) is the IXI - 1 dimensional simplex of probability vectors on X.
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( ho := cP ) and let h= be the infinite history,

h= := ((mL mi, ..., mf), (m~, m~, ..., m!j), ..., (mL m;, ..., m{"), ...).

Denote by Ht the set of histories of length t and denote by H= the set of infinite histories. Denote

the set of non-negative integers ({O, 1,2, ...}) by No. A strategy of player n in a cheap-talk game
with complete information is a pair, an:= {{antENo,a~} such that

1. af : Ht -+ ~(M) (in Polite-Talk af is defined only for t ==n mod N).

2. a~ : H= -+ ~(Cn).

In Cheap-Talk games with incomplete information the players receive their private information
before the talk-phase. Recall that J(n is the set of types of player n. A strategy for player n in a
cheap-talk game with incomplete information is a pair, an:= {{antENo,a~} such that

1. af : J(n X Ht -+ ~(M) (in Polite-Talk af is defined only for t ==n mod N).

2. a~ : J(n X H= -+ ~(Cn).

In G(M,)..), a strategy for player n, an, is a sequence an := {af}~l such that af: J(n X Ht-+
~(M) X ~(Cn) (in games with complete information af : Ht -+ ~(M) X ~(Cn) ). Note that ht :=
((mLmi,...,mf),(m~,m~,...,mr:),...,(mLm;,...,mf")) as in the original Cheap-Talk extension,
i.e., the players do not observe the actions, just the messages.

3 Main results

Fix a game G. Denote by E the set of equilibrium payoffs of the game G. Denote by EM and

EM,o\ the sets of equilibrium payoffs in the Cheap-talk and the Cheap-Talk with Random Stopping
extensions of G (respectively).

Theorem 3.1: EM,>.C EM for M ~ 2 and any 0 < ).. < 1.

Proof: Using jointly controlled lotteries (here we use the assumption that M 2: 2) the players
can simulate the lottery by which the game (with the random stopping) is being stopped (with
probability (A, 1 - )..))..
Remark: Theorem 3.1 is valid for games with complete information as well as for games with
incomplete information.

Theorem 3.2: For games with complete information EM,>. = EM for M 2: 2 and)" 2: N~l'

Proof: Denote by conv(A) the convex hull of the set A. EM = conv(E) (Aumann & Hart 1996).

Using theorem 3.1 it is enough to show that conv(E) C EM,>.. Choose e E conv(E). E C ~N,
hence there exist el,e2,...,eN+l E E and p E ~({1,2,3,...,N+ 1}) such that L~t1p(i)ei = e
(Caratheodory's theorem ). Let (a},a;,...,af) E ~(C1) X ~(C2) X ... X ~(CN) be equilibrium
strategies in G with expected payoffs ei (for all 1 :s; i :s; N + 1). Define equilibrium strategies
aI, a2, ..., aN, together with a sequence of probability vectors Pt E ~({ 1,2,3, ..., N + 1}) by induction

on t. Let Po := P and io := maxargl~i~N+l p(i). Choose arbitrary ;3 E ~(M). For every t E No
and ht E Ht define:

af(ht) = (;3,aD, \;I1:S;j :s;N
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(i.e, the players send an arbitrary message and play the equilibrium eit if the game is stopped at
period t).

PH1 (i) := {~)-}1-A» ::::
1

iH1 := maxarg1~i~N+1PH1(i). Note that pt+1(iHd ~ N + 1 ~ 1- A.

Pt( i) is the probability that the equilibrium ei should be played given that the game was not
stopped before period t. Using the strategies a1, a2, ..., aN the players play the equilibrium ei with
probability p( i), hence the expected payoffs are according to e. I
Remark: Note that in the proof of theorem 3.2 the players do not use the messages and therefore
the theorem that the set of equilibria includes conv( E) is valid also for weaker models as Polite- Talk
with Random Stopping or Cheap-Talk with M = 1 (which it actually Cheap-Talk without a talk).

Denote by cl(A) the closure of the set A. The next two theorems show that for games with
incomplete information theorem 3.2 is not true in general.

Theorem 3.3: There exists a game with incomplete information on one side, such that

cl( U E2,A) £;; E3,N C E2
O<A<1

for every 0 < AI < 1.

I.e, there exists an equilibrium that can be achieved in Cheap-talk with Random Stopping with
three messages but can not be achieved in Cheap-talk with Random Stopping with two messages.

Theorem 3.4: There exists a game with incomplete information on one side, such that

cl( U EM,A) £;;EM' = E2
MEI\I,O<A<1

for every M' ~ 2.

I.e, there exists an equilibrium that can be achieved in Cheap-talk games with two messages but
can not be achieved in Cheap-talk with Random Stopping games for any 0 < A < 1 and a set of
messages.

The proofs for theorems 3.3 and 3.4 will be given by the examples in the next section.

4 Exam pIes

In order to prove theorems 3.3 and 3.4 we need a few definitions and lemmas.
Let G be a two-player game with incomplete information on one side and let K be the set of

possible types of player 1. Let k be the (random) type of player 1. For p E 6.(K) denote by Gp the
game G with Prob(k = k) = p( k) for k E K. Let a and T be equilibrium strategies of player 1 and

player 2 respectively. Denote by P = Pa,T the probability induced by a and T. Let E = Ea,T be
the expectation with respect to P. For a finite history ht, let PhI E 6.( K) be the probability vector
defined by pt := P(k = k I hi) for all k E K. Let ak be the random payoff of type k of player 1.
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A B C D E F

k=1
1

0
10

I

0
-10

1

0
-10

1

0 91 0 91 1 01

k=2
[0

-10

I 0
10

1 0
-10

1 0 91 1 01 0 91

k=3
10

-10

1 0

-10

I
0

10

11

0

I
0

9[
0 91

P(k = 1) = P(k = 2) = P(k = 3) = ~.

Denote by ak,t the random payoff of type k of player 1 at period t. Let a7 := (1 - A)L=~t Arak,r,

be the total expected payoff of type k of player 1 in G(M, A) from time t on. For a, c E RK we will

write c ~ a when ck ~ ak for all k E J(. Let

V := {(a,p) E RK X ~(J() s.t. a is an equilibrium vector payoff of player 1 in Gp}

V+ := ((a,p) E RK X ~(J() s.t. :Jc ~ a s.t. (c,p) E V and p(k) > 0 implies a(k) = c(k)}

Lemma 4.1: Ifa is an equilibrium vector payoff of player 1 in Gp(M, A) then there exist equilibrium
strategies (1 and T and a bi-martingale {(at,pt)}go with the following properties:

1. (ao,po) = (a,p).

2. {(at,pt)}go converges a.s. to V+.

3. pt = P(k = k Ihi),

4. at ~ E(ak I ht,k = k) a.s. and P(ht I k = k) > 0 (i.e. P(hd > 0 and pt > 0) implies

at = E(ak I ht,k = k) a.s.

Proof: Theorem 3.1 and Aumann & Hart (1996). I

Lemma 4.2: Iff: RK X~(J() -+ R is a bi-convex function satisfying f( a, p) S; 0 for all (a, p) E V+
then f(a,p) S; 0 for all (a,p) E EM,>..

Proof: Theorem 3.1 and Aumann & Hart (1996). I

4.1 Example 1

The following example is a two-player game with incomplete information on one side. There are
three types of player 1 and one type of player 2. The payoffs are only a function of the action
chosen by player 2 and the type of player 1. In this game, there exists an equilibrium that can be
obtained only by full revelation of the information (i.e, the type) of player 1. Let G be the following
game:

From the moment that player 2 knows the type of player 1 he will play the action A if player
1 is of type 1, B if player 1 is of type 2 and C if player 1 is of type 3. This yields a payoff of 0
to player 1 and 10 to player 2 (from the moment that the information has been revealed). This
can be easily obtain in cheap-talk (with or without random stopping) with at least three messages
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(player 1 sends the first message if he is of type 1, the second message if he is of type 2 and the

third message if he is of type 3). In cheap-talk without random stopping, this can also be done
with two messages (player 1 reveals his type in two steps), but it can not be done in cheap-talk
with random stopping with two messages, as player 1 will always gain from cheating in this setup.
The formal proofs are given in the next lemmas and theorems.

Theorem 4.3: All equilibria in G(2, A) are non revealing for every 0 < A < 1.

Proof: Assume that there is an equilibrium with revelation of information in G(2, A). Let hs be an
history such that P(hs) > 0 and such that Phs = O'~,~) and P(hs,(ml,m2)) -1 (~,~,~) for ml = 1,2.
Let (r1,r2,r3):= P(hs,(1,m2)) and (q1,q2,q3):= P(hs,(2,m2))'

Lemma 4.4: W.l.o.g we can assume that ~ 2':
rl 2': r2 > r3.

Proof: The game is symmetric, hence we can assume that rl 2': r2 > r3. We will show that if

~ 2':
rl 2': r2 > r3 does not hold then

~ 2':
q3 2': q2 > ql must hold.

1. Ifrl 2': r2 = r3 then rl > r2 = r3 (because (rl,r2,r3) -1 (~,~,~)). Therefore
~ > 0.52': q3 =

q2 > ql (because (~,~,~) = Phs = P(ml = 11 hs)' r + P(ml = 21 hs)' q).

2. If rl 2': r2 > r3 and rl > ~ then rl > r2 and q3 > q2 > ql. If q3 > ~ we have q2 < ~ and
r2 < ~, a contradiction to the fact that their average is ~. Hence ~ 2':

q3
2':

q2
> ql.

I
When we say that under some conditions "player 2 plays" a specific action we mean that under

these conditions the action is strongly dominant.

Lemma 4.5: If ~ 2':
pI 2': p2 > p3 then in Gp player 2 plays D and the payoff for type 3 of player

1 is 1.

Lemma 4.6: If p3 > ~ then player 2 does not play D and the payoff for type 3 of player 1 is O.

W.l.o.g assume that hs = ho. Recall that rk '- P(k = k I ho, m6 = 1) and qk := P(k =
k Iho,m6 = 2). r3 < ~ (lemma 4.4) and q3 >~.

Lemma 4.7: E(a{ 1 m6 = 2,k= 3) = O.

Proof: The bi-linear function f( a, p) := a3 . (p3
- ~) satisfies f( a, p) ::; 0 for every (a, p) E V+

(lemma 4.6 and the fact that the payoffs for player 1 are non-negative). Hence f(a,p) ::; 0 for every
equilibrium (lemma 4.2), hence q3 > ~ implies E(a{ 1m6 = 2, k = 3) = O. I

E(ai 1 m6 = 1, k = 3) 2': A(l- A) (lemma 4.4 , lemma 4.5 and the fact that the minimal payoff of
player 1 is 0), hence type 3 of player 1 will get more by sending the message m6 = 1 with probability
1. A contradiction. This ends the proof of theorem 4.3. I

Theorem 4.8: In every equilibrium of G(2, A) (0 < A < 1) the payoff for player 2 is 6.

Proof: Theorem 4.3. I

Theorem 4.9: If M 2': 3 and 0 < A < 1 then there exists an equilibrium in G(M, A) such that the
payoff of player 2 is 10 - 4A. If M 2': 2 there exists an equilibrium in G( M) such that the payoff of
player 2 is 10.
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Proof: We will prove the theorem for G(3) (i.e, M = {I, 2, 3}). In the first period player 1 send
the message k (k = 1,2,3) if k = k. From the second period on, player 2 plays A if he got the
message 1, B if he got the message 2 and C if he got the message 3. I
We can now complete the proof of theorem 3.3.
Proof of theorem 3.3:
Theorems 4.8 and 4.9 (£3,,\1C £2 follows from Theorem 3.1 and Aumann & Hart 1996). I

4.2 Example 2

The following example is also a two-player game with incomplete information on one side. Here
there are five types of player 1 and one type of player 2. As in the previous example, the payoff
is only a function of the action chosen by player 2 and the type of player 1. G is the following game:

ABC D E F G H I J

k = 1
1

1
-91

1
-91

1
-91

1 -911 -411 -911 -91-1 -91-1 -91
0

1

I

k = 21-20
2

1-20

0

1-20

0

1-20

0

1-1

1

11

0

11

1

1-1

0

1-1

1

I 0
-41

k =
31-20

0

1-20

2

1-20

0

1-20

0

1-1

1

11

0

11

1

1-1

1

1-1

0

I 0
-41

k =
41-20

0

1-20

0

1-20

2

1-20

0

1-1

1

11

1

11

0

1-1

0

1-1

1

I 0
-4.1

k =
.51-20

0

1-20

0

1-20

0

1-20

2

1-1

1

11

1

11

0

1-1

1

1-1

0

I

0
-41

P(k = 1) = ~, P(k = 2) = P(k = 3) = P(k = 4) = P(k = .5) = k.

In this game, in the original cheap talk there is an equilibrium in which player 1 reveals some of
the information in two steps. This can not be done in cheap talk with random stopping (with any
set of message and 0 < A < 1) because the information can not be revealed in one step, and player
1 will gain from cheating in the process of revealing the information. This is proved in the next
lemmas and theorems.

Theorem 4.10: If M 2:: 2 then there exists an equilibrium in G(M) with payoff 1 for player 2 and
0 for all the types of player 1 (this is also true for Polite-Talk).

Proof: If k = 1, player 1 sends the message mi = 1 in the first period, and player 2 will play the
action J. If k > 1 the communication takes three periods: In the first period player 1 send the
message mi = 2 (the message of player 2 is not important). In the second period player 2 sends
the message m~ = 1 with probability ~ and m~ = 2 with probability ~. In the third period, there
are four cases (according to m~ and the type of player 1):

1. m~ = 1 and k is 4 or .5 - in this case player 1 sends the message m§ = 1 and player 2 plays
the action F.

2. m~ = 1 and k is 2 or 3 - in this case player 1 sends the message m§ = 2 and player 2 plays

the action G.
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3. m~ = 2 and k is 3 or 5 - in this case player 1 sends the message m1 = 1 and player 2 plays
the action H.

4. m~ = 2 and k is 2 or 4 - in this case player 1 sends the message m1 = 2 and player 2 plays
the action I.

The payoff of player 2 is 1, the expected payoff of player 1 is 0 and no player can gain anything
from deviating. I

Theorem 4.11: Fix M, a set of messages, and 0 < >. < 1. For every equilibrium of G(M, >') and
any history hi, if P(hd > 0 then P(k = 11 hi) = ~.

We will prove this theorem later.

Theorem 4.12: The expected payoff of player 2 is -1.5 for every equilibrium in G(M, >.).

Proof: Theorem 4.11. I
We can now complete the proof of Theorem 3.4.
Proof of Theorem 3.4: Theorems 3.1,4.10 and 4.12 (EM, = E2 follows from Aumann & Hart
1996). I

In order to prove theorem 4.11 we need a few lemmas.

Lemma 4.13: If pI > ~ then player 2 plays J and the payoff of player 1 is O.

Lemma 4.14: If pI < ~ then player 2 does not play J.

Lemma 4.15:
Player 2 plays F only if p4 = p5 = ~.
Player 2 plays G only if p2 = p3 = ~.
Player 2 plays H only if p3 = p5 = ~.
Player 2 plays I only if p2 = p4 = ~.
Lemma 4.16: P(hd > 0 and pt > ~ implies 2 at = 0 and at 2': 0 for J( > 1.

Proof: The function f( a, p) defined by

f( a, p) :=
{

lall' (pI - ~) if pI > ~
0 otherwise

is a bi-convex function, and f(a,p) = 0 for every (a,p) E V+ (lemma 4.13). Hence P(hd > 0
implies f(ah"pht) S; 0 (lemma 4.2). Therefore P(ht) > 0 and pt > ~ implies at = O. This proofs
the first part of the lemma.

The function f( a, p) defined by

f(a,p):=
{

-ak.(pl-~) ifpl>~
0 otherwise

is a bi-convex function, and J(a,p) S; 0 for every (a,p) E V+ (lemma 4.13). Hence P(ht) > 0
implies f(aht,Pht) S;0 (lemma 4.2). Therefore P(ht) > 0 and pt > ~ implies at 2':O. I

2a~, was defined in lemma 4.1.
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Lemma 4.17: k> 1 and P(hd > 0 implies pt(at - at) ~ O.

Proof: For every action of player 2 the payoff of type 1 of player 1 is greater then or equal to the
payoff of the other types of player 1 (see the definition of the game G). Hence (a, p) E V+ and
pk > 0 implies ak ~ al. Therefore for every (a,p) E D+ there exists pk(ak -

al) ~ O. On the other
hand pk( ak -

al ) is a bi-convex function, hence P( ht) > 0 implies pt (at - at) ~ 0 (lemma 4.2). .

Lemma 4.18: P(ht) > 0, pt > ~ and pt > 0 implies at = o.

Proof: Lemmas 4.16 and 4.17..

Lemma 4.19: k > 1, P(hd > 0, pt > 0 and at = at implies that if player 1 plays ak (the
equilibrium strategy of type k), then player 2 never plays A, B, C, D or E after ht (i.e. he never
plays A - E after any strategy hs s.t. P(hs I hi) > 0).

Proof: Playing A, B, C, D or E with positive probability yields (see the definition of the game G
and lemma 4.1)

at::::: E(all player 1 plays al,ht)::::: E(all player 1 plays ak,ht)

> E(ak I player 1 plays ak,ht) = at
a contradiction..

Proof of theorem 4.11: Assume that P(hs) > 0, pt = ~, P(m; = 1 I hs) > 0 and P(k =
11 hs,m; = 1) > ~. W.1.o.g. assume that P(k = 11 hs,m; = 2) < ~ and P(m; = 2 Ihs) > O.
P(m; I hs) > 0 implies a~hs,(I,mm= 0 (lemma 4.16), therefore, a~hs,(2,mm = 0 (the bi-martingale
property, lemma 4.1). P( m; I hs) > 0 implies a(hs,(I,mm :::::0 for k > 1 (lemma 4.16), hence

a(hs,(2,mm :::::0 for k > 1. Hence P(hs,(2,mm > 0 implies a(hs,(2,mm = 0 (lemma 4.17 and the fact
that a~hs,(2,m~)) = 0) and therefore P(hs,(2,mm > 0 implies that if player 1 plays ak then player 2
never play A,B,C,D or E after (hs,(2,m;)) (lemma 4.19).

Assume that player 2 plays F after the history (hs, (2, m;)), then P(hs,(2,mm = P(hs,(2,mm= ~
(lemma 4.15) and player 2 will play F forever (because he will not play A - E and the other
actions are not played when pI = p2 = p3 = 0 (lemmas 4.14 and 4.15) yielding a~hs,(2,mm :::::1,

a contradiction. Assume that player 2 plays H after the history (hs, (2, m;)), then P(hs,(2,mm =

P(hs,(2,mm= ~ (lemma 4.15) and player 2 will play H forever yielding a(hs,(2,mm = -1, for any k
such that P(hs,(2,m~)) > 0, a contradiction. Similar contradictions are achieved assuming that player
2 plays G or I. Player 2 does not play J after the history (hs, (2, m;)) (lemma 4.14), does not play
A, B, C, D or E and all the other actions yield a contradiction..

5 Polite-Talk

Recall that polite-talk is a cheap-talk in which at each period only one player can send a message.
Let EKI = EKI( G) and EKI,A = EKI,A(G) be the sets of equilibria in Polite-Talk and in Polite-Talk

with Random Stopping games, respectively.

Theorem 5.1: In Polite- Talk games with complete information EKI C EKI,A for A :::::N~I' The

inclusion may be strict.
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Proof: £XI >. = conv(£) (see the proof of theorem 3.2) and conv(£) = £M :::) £XI (see Aumann &
Hart 1996).' For an example showing that the inclusion may be strict see Aumann & Hart (1996).

I

Theorem 5.2: The two sets £XI and £XI,>. may be incomparable (i.e, neither £XI C £XI,>. nor

£XI :::) £~,>.) in Polite- Talk games with incomplete information.

Proof: There exists a game G1 such that £KJ(Gd 1J £Kl)Gd (Aumann & Hart 1996) and there

exists a game G2 such that £~(G2) ct £Kf,>.(G2) (Example 2). Let G be the game in which with
probability ~ the game G1 is played and with probability ~ the game G2 is played (i.e, there is a
lottery, previous to the game, and its outcome is told to the players). G is equivalent to a game
with incomplete information and neither £~( G) C £~,,\ (G) nor £KJ( G) :::) £~,,\ (G) holds. I
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