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Abstract

We provide a characterization of the set of equilibria of two-person cheap-talk
games with incomplete information on both sides. Each equilibrium generates a
martingale with certain properties and one can obtain an equilibrium from each
such martingale. Moreover, the characterization depends on the number of possi-
ble messages. It is shown that for every natural number n, there exist equilibrium
payoffs that can be obtained only when the number of possible messages is at
least n.
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1 Introd uction

Cheap- Talk is a communication that costs nothing and occurs before the players choose their
actions. The payoffs to the players depend only on their actions and not on the messages that
were sent during the Cheap-Talk phase. Cheap-Talk with Incomplete Information is a three phase
game. In the first phase the players receive their private information, in the second phase they
talk (communicate) and in the last phase they choose actions and get payoffs. Again, the payoffs
depend only on the actions. The players can use the Cheap-Talk to transfer information and to
choose an equilibrium from a possible set of equilibria. The players can also ignore the Cheap-Talk
and in this case the set of equilibria is the same as in the Incomplete Information game without
Cheap- Talk. The Cheap-Talk enlarges the equilibrium set, and a question that rises in this setup
is the structure of the new set.

A full characterization in the Two-Player One-Sided Information case was given by Aumann and
Hart (1996). In that work they show that the concept of a bi-martingale, first used to characterize
the equilibrium set of Repeated Games with Incomplete Information on One Side (Hart 1985,
Aumann and Hart 1986), is applicable also in the Cheap-Talk games. They also show that the
set of possible messages does not affect the equilibrium set, provided that it includes at least two
different messages.

In this work we study the general (finite) two player case. In the Two-Sided Information case
we show that bi-martingales are replaced by an appropriate class of "admissible martingales".
However, these do not have all the nice properties of bi-martingales. In particular, the size of the
set of possible messages does affect the equilibrium set, and in a very strong sense, as an example
will show.

In section 2 we discuss some general properties of games with incomplete information and in
section 3 we define the notion of admissible martingales and state the main results. In section 4 an
example is analyzed. The three sections are independent and can be read in any order.

2 Games with Incomplete Information

2.1 The model

We define two games - G and r( M). G is a (finite) game of incomplete information, and r( iVJ) is its
cheap-talk extension. In r(M) the cheap-talk occurs after the players have received their private
information.

. G = (N, (Cn)nEN, (Kn)nEN, (Pn)nEN,(Un)nEN) is defined by the following:

1. N is a finite set of players. Without loss of generality (and some abuse of notation) we
assume that N = {1, 2, 3, ..., N}.

2. Cn is a finite set of actions for player n E N. Let C .- TInEN Cn and C-n :=
TImEN\{n} Cm-

3. K n is a finite set of types of player n EN. Each player n E N knows his own type

kn E Kn. Let K := TInEN Kn and fCn := TImEN\{n} Km.
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4. Pn : Kn ---+6.(ICn) for 1 all n EN. The belief of type kn of player n is Pn( kn). We will
denote Pn(kn) by Pkn, hence Pkn(Ln) is the probability assigned by type kn of player n
to the combination of types k-n E lCn.

5. Un : C X K ---+~ is the payoff function of player n. That is, un( c, k) is the payoff of
player n for the profile of actions c E C and profile of types k E K.

6. The game is played as follows: each player n E N chooses (simultaneously) an action

Cn E Cn. Let c := (Cn)nEN. The subjective expected payoff of type kn E Kn of player
n E N is:

Ekn(C) := L Un(C, (kn, k-n))Pkn(Ln)
k-n EK-n

7. 1,2,3,4,5 and 6 are common knowledge.

. The game f(M) = ((N, (Cn)nEN,(Kn)nEN, (Pn)nEN,(Un)nEN,M) is defined by 1,2,3,4,5 and
in addition:

8. A finite set M, the set of possible messages in the talk phase. We assume that 1M! 2: 2.

9. The game f(M) has two phases:

The Talk Phase: This phase is divided into periods t=1,2,3... . For each t and n EN,
player n chooses a message mf EM. The choices are made simultaneously.

The Action Phase: Each player n E N chooses (simultaneously) an action Cn E Cn-
Let C := (cn)nEN. The subjective expected payoff of type kn E Kn of player n E N
is (see item 6 above): Ekn(C):= LLnEK-n un(c,(kn,k-n))PkJk_n).

10. All players have perfect recall.

11. 1,2,3,4,5,8,9,10 are common knowledge.

Definition 2.1: The beliefs (Pn)nEN are said to be (H arsanyi) consistent if there exists a
common prior distribution on K, P E 6.(K), such that

( ) P(kn,k-n).
Pkn Ln = P(kn)

for all (kn, Ln) E A and n E N

(Note that P(kn) := LLnEICn P(kn,l-n) ). In addition we say that the information is independent
if P = TInEN pn for pn E 6.(Kn).
Note: For the results in this paper we do not assume consistency nor independence. These special
cases will be useful in our proofs.

The players have perfect recall, hence mf are functions of the history of messages of length t - 1,
ht-l := ((mLmL...,mf),(m~,m~,...,m!i),...,(mLl,mLu...,m~l))' The actions, chosen by the
players in the action phase, are functions of the infinite sequence defined in the talk phase, hoo :=

((mLmi,...,mn,(m~,m~,...,m!i),...,(mLm;,...,mf)...). Let Ht = (MN)t be the set of histories

of length t. Define Ho = {<p}. Let Hoo = TI~l(MN) be the set of infinite histories. On Hoo,
we define, for every t, a finite field Ht as the field generated by the first t coordinates. That is,

lfor a finite set X, D.(X) is the IXI- 1 dimensional simplex of probability vectors on X.
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h~ , h~ E H 00 are in the same atom of Ht if and only if for every 1 ::; u ::; t there
2 exists

h~(u) = h~(u). Let Hoo be the a-field generated by {Hd~l . Our basic measure space is (D,A)

= (K X Hoo xC, 2K 0Hoo 020). A point in D is a triple (k,hoo,c), where k E K is a profile
of types, hoo E Hoo is an history of the game (the communication that took place) and c E C is a
profile of actions.

Since riM) is a game with perfect recall, we can restrict ourselves to behaviour strategies (see
Aumann 1964). To shorten the writing, whenever we write 'strategy' we will mean a behaviour
strategy.

Definition 2.2: A strategy an of player n E N in G is a function an : Kn -+ ~(Cn).

Let \}In be the set of strategies of player n EN. Denote \}I := TInEN \}In and \}I-n := TImEN\{n} \}1m.

Definition 2.3: The subjective payoff of type kn of player n EN, given a profile of strategies
( 1 2 N ) .

a = a ,a ,..., a IS

EfJa):= L Pkn(k-n) L un(c,(kn,k-n)) II a~(cm)
k-nEK-n C=(Q,c2,...,CN)EO mEN

Definition 2.4:
A strategy an of player n E N in r(M) is an = ({af}tEI\I, a~) such that:

3

1. af : Kn X Ht-1 -+ ~(M) for all t E 1\1.

2. a~ : Kn X Hoo -+ 6.(Cn).

3. a~ is 2K 0 Hoo-measurable.

Note that in r(M) the strategy has a talk component, {af}tEI\I, and an action component, a~.

Let ~n be the set of strategies of player n for n EN. Let ~ := TInEN ~n.

Every pair (a, k) E ~ X K defines a probability measure 1ra,k on (Hoo, Hoo), i.e, let ht :=
((mL mi, ..., ml),(m~, m~, ..., m~), ...,(m}, m;, ..., mf)), then 1ra,k(ht) is the probability that the first
message sent by player 1 is m~, the first message sent by player 2 is mi, the second message sent
by player 1 is m~, and so on, given that k = (k1' k2, ..., kn) is the profile of types and player n plays
according to an (a = (aI, a2, ..., aN)) for all n EN.

Definition 2.5: The subjective expected payoff of type kn in r(M), given a profile of strategies
a = (a1,a2,...,aN), is:

l(M)
'" '" r II m

Ekn (a):= L Pkn(k-n) L..- ,Un(C, (kn, Ln))
JH=

aoo(km, hoo)(cm)d1ra,k(ho:,)
k-nEI\.-n C=(Q,c2,...,CN)EC mEN

Definition 2.6: a E TInEN ~Kn = ~UnENKn is an equilibrium payoff vector in G if there exists
a, a profile of strategies, such that

1. akn = Ef" (a) for all n E Nand kn E K.

2
h= (u) is the vector of N messages sent by the players at period u, according to the infinite history h=.

31\1 denotes the set of natural numbers {1,2,3,...}.
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2. akn
2': Et (o/n, a-n) for all n EN, kn E J( and a'n E wn.

Let [G := {a E IRUnENKns.t. a is an equilibrium payoff vector in G}.

Definition 2.7: a E IRUnENKnis an equilibrium payoff vector in r(M) if there exists a E E (a

profile of strategies) such that

1. akn = E[~M)(O') for all n E Nand kn E J(.

2. akn 2': E[~M)(O'ln,O'-n) for all n E N, kn E J( and O"n E En.

Let [I'(M) := {a E IRUnENKns.t a is an equilibrium vector payoff in r(M)}.

2.2 On some properties of games with incomplete information

Definition 2.8: The games GI = (Nl, (e~)nENl, (J(~)nENl, (P~)nENl, (u~)nENl) and G2 -

(N2, (e~)nEN2, (J(~)nEN2, (p;JnEN2, (u;JnEN2) are equivalent if the following holds:

1. N1 = N2 = N.

2. e~ = e~ = en for all n E N.

3. J(~ = J(~ = J(n for all n E N.

4. Et1(a) = Ef(a) for all n EN, kn E J(n and a E W (note that 1,2 and 3 implies wI = w2 =
w) .

Remark: Instead of the last condition we could use:

5. For every n E Nand kn E J(n there exists an> 0 and bn such that Et1(a) = anEf:(a) + bn
for all a E w.

Definition 2.9: The games rl(M) = (Nl, (e~)nENl, (J(~)nENl, (P~)nENl,(u~)nENl, M) and
r2( M) = (N2, (e~)nEN2, (J(~)nEN2, (P~)nEN2, (u~)nEN2, M) are equivalent if the following holds:

1. NI = N2 = N.

2. e~ = e~ = en for all n EN.

3. J(~ = f(~ = J( n for all n EN.

rl(M) r2(M)
4. Ekn (a) = Ekn (a) for all n E N, kn E f(n and a E E.

remark: similar definition can be defined for repeated games.

Following Myerson (1991) we can state the following theorem:

Theorem 2.10: Every finite game with incomplete information is equivalent to a game with con-
sistent and independent incomplete information.
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Proof:
Fix a game G = (N, (Cn)nEN, (Kn)nEN, (Pn)nEN,(Un)nEN). We define a game, equivalent to G,
G=(N, (Cn)nEN, (Kn)nEN, (Pn)nEN, (Un)nEN) by:

1
PkJk_n) :=

IICn!
for all n EN, kn E Kn and Ln E ICn-

and

un(c,k):= IICnIPkn(Ln)un(c,k) for all n E N, kn E Kn and Ln E K-n.

EfJa):= L Pkn(k-n) L un(c,(kn,k-n)) n ak:,,(cm)
k-nEK-n C=(q,c2,...,CN)EC mEN

1
- L. IICn! L IK-nIPkn(k-n)un(c,(kn,k-n)) n akm(Cm)

k-nEI'I.-n C=(q,c2,...,CN)EC mEN

L Pkn(k-n) L un(c,(kn,k-n)) n akm(Cm) = E~(a)
k-nEK-n C=(Q,c2,...,CN)EC mEN

- -Hence G and G are equivalent and G is a game with independent incomplete information. I
In general theorem 2.10 is not correct for specific families of games with incomplete information.

For example, zero-sum games with incomplete information are not always equivalent to zero-sum
games with independent incomplete information (and indeed the characterization of zero-sum games
with independent incomplete information is in general simpler than the characterization of the
general (even the consistent) zero-sum games with incomplete information). The transformation
in the proof of theorem 2.10 changes zero-sum games with incomplete information into games
with independent incomplete information that are not necessarily zero-sum. On the other hand
theorem 2.10 is still correct for cheap-talk games and for repeated games as the following theorem
shows.

Theorem 2.11: Every cheap-talk game with incomplete information is equivalent to a cheap-talk
game with consistent and independent incomplete information.

Proof:
Fix a game f(M) = (N, (Cn)nEN, (Kn)nEN, (Pn)nEN, (Un)nEN, M). We define a game, f(M)

= (N,(Cn)nEN, (Kn)nEN, (Pn)nEN, (Un)nEN,M), equivalent to f(M), by Pkn(Ln) := IK~nl and

un(c,k) := IICnIPkn(k-n)un(c,k) for all n E N, kn E Kn and Ln E ICn (this is the same
transformation used in the proof of theorem 2.10).

Et~~) = L. Pkn(k-n) L un(c,(kn,Ln))
Loo n a':,(km,hoo)(cm)d7r(J,k(hoo)

k-nEI'I.-n C=(Q,c2,...,CN)EC mEN

= L. IK~nl L IICnIPkn(k-n)un(C,(kn,k_n)) Loo n a':,(km, hoo)(cm)d7r(J,k(hoo)
k-nEI'I.-n c=(Q ,C2"",CN )EC mEN

" " f n m r(M)
= ~. Pkn(k-n) ~ Un(C, (kn, Ln))

JHoo
aoo(km, hoo)(cm)d7r(J,k(hoo) = Ekn (a)

k-nEI'I.-n C=(Cl,C2,...,CN)EC mEN
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Hence f(M) and f(M) are equivalent and f(M) is a game with independent incomplete informa-
tion. I
Remark: The analogous theorem is correct for repeated games (with and without discounting).

The transformation used in the proof of theorems 2.10 and 2.11 may fail to preserve a known-
own-payoffs property (private value assumption, Le un( c, k) = un( c, kn) for all n EN, c E C and
k = (kl,k2,...,kN) E K). This problem can be solved using the next definition and theorem.

Definition 2.12: Gl and G2 are semi - equivalent if
[Gl = [G2. r1(M) and r2(M) are

semi - equivalent if [['I (M) = [12 (M).

Theorem 2.13: every game with incomplete information is semi-equivalent to a game with known
own payoffs and with the same information structur'e (i.e, N, (Kn)nEN and (Pn)nEN are not
changed).

Proof: Fix a game G = (N, (Cn)nEN,(Kn)nEN, (Pn)nEN,(Un)nEN). Let Z be the upper bound of
the absolute value of the possible payoffs, that is Z := maxnEN,cEC,kEldlun(c, k)I}. We define a
game, semi-equivalent to G, G=(N,(Cn)nEN, (I(n)nEN,(Pn)nEN, (Un)nEN) by:

1. For all n E N define Cn := UknEKn Ckn, where Ckn is a set isomorphic to Cn with the

isomorphism Skn : Ckn ---+Cn. Denote Sn = UknEKnSkn (i.e, Sn : Cn ---+Cn). Define a function
kn : Cn ---+Kn by kn(cn) = kn if cn E Ckn.

2. For all n EN, C = (Cl,C2,...,CN) E TImENCm and k = (kl,k2,...,kN) E K define:

- (- k)'-
{

Un((Sl(Cl),...,SN(CN)),(kl(Cl),...,kn-l(cn-l),kn,kn+l(cn+l),...,kN(CN)))
1tn C, .-

-( Z + 1)
Cn E Ckn

otherwise

G is a game with known own payoff property. We will prove now that G and G are semi-equivalent.
Fix a E [G. We will show that a E [G. There exists a E \!1satisfying items 1 and 2 of definition 2.6.
Define a E ~ by:

-n ( - ) '-
{

akJSkn(Cn))
akn Cn .- 0

Cn E Ckn

otherwise

for all n EN, kn E Kn and cn E Cn. Despite the abuse of notation we will denote by Cn the
strategy that assigns probability 1 to the action cn. Now E~ (a) = akn for all n E Nand kn E Kn
and Ef: (a-n, c~) ::; EfJ a-n, sn( c~)) ::; akn for all n EN, kn E Kn and c~ E Cn, hence a E [G.

Thus we proved that [G C [G. to prove that [G :J [G fix a E [G. There exists a such that

1. E~(a) = akn for all n E Nand kn E Kn.

2. Ef:(a-n,c~)::; akn for all n E N, kn E Kn and c~ E Cn.

The second condition implies that akn (cn) = 0 for all cn rt Ckn (Le, akn (Ckn) = 1). Define a E \!1
by akn(CkJ:= a(skn(Ckn)). EfJa) = EfJa) = a and EfJa-n,c~) = Ef:(a-n,Sk';(C~))::; akn for

all n EN, kn E Kn and c~ E Cn. Hence a E [G. I
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Remarks:

1. Theorem 2.13 is also correct for cheap-talk games. One can prove it using the same transfor-
mation defined in the proof of theorem 2.13.

2. Theorem 2.13 is correct for repeated Aames with discounting. Here the transformation should
be slightly changed, putting -(2f+1 in the definition of Un instead of -(Z + 1), for A-

discounted games.

3. This will not work in the case ofrepeated games (where the payoff is defined to be the limit of
means), as the expected payoff of a player is not affected by the payoff from a finite number
of periods. And indeed the theorem is not true for repeated garnes, as every equilibrium in
repeated games with known own payoffs can be achieved by complete revelation of all the
information in the first period of the game (Shalev (1994), Koren (1988)). This is not true in
general for repeated games.

4. Theorem 2.13 is correct for stochastic garnes, and for repeated games with absorbing states.
Here the -( Z + 1) should be replaced by an absorption with probability 1 and payoff -( Z + 1).

(in discounted games -(2f+l)).

5. The finiteness condition is not essential. We only need Un to be bounded for every n EN.

3 Characterization of the set of equilibria

We characterize the set of equilibria for two player cheap-talk games. Using theorem 2.11 we
can assume that the game is of independent incomplete information (using theorem 2.13 we can
even assume that the game is with known own payoffs, but this assumption does not make the
characterization simpler). In section 3.1 we define the model and in section 3.2 we introduce
the concept of admissible-martingales. The geometrical properties of admissible-martingales are
discussed in section 3.3 and in section 3.4 we give the main result.

3.1 The model

We repeat the definitions, given in the previous section, because here we deal with two-player games
with consistent and independent information, which enable us to simplify the notations. In addition
we insert the information structure (p, q) explicitly into the notations of the games. We define two
games - G(p, q) and f(p, q, M). G(p, q) is a game of incomplete information on both sides. and
f(p, q, M) is its cheap-talk extension. In f(p, q, M) the cheap-talk occurs after the players have

received their private information.

. G(p, q) is defined by the following:

1. Two players: player 1 and player 2.

2. A finite set of actions I for player 1, and a finite set of actions J for player 2.

3. Two finite sets, K and L, such that to each pair (k E K, l E L) there corresponds a pair
of I X J matrices (Ak,l , Bk,l). Ak,l = (Ak,l(i,j))iEI,jEJ , Bk,l = (Bk,l(i,j))iEl,jEJ.
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4. Two probability vectors: p E t1(K), p = (p(k))kEK and q E t1(L), q = (q(l))IEL.
5. The game G(p, q) has two phases: 4

The Information Phase: Nature chooses k E K according to p and I E L according
to q. The choices are made independently, i.e, Prob(k = k and I = I) = p(k)q(l). k
is told to player 1 and I is told to player 2.

The Action Phase: Player 1 chooses i E I and player 2 chooses j E J. The choices
are made simultaneously. The payoff to player 1 is Ak,l( i, j) and the payoff to player

2 is Bk,l (i, j).

6. 1,2,3,4,5 are common knowledge to both players.

. The game r(p, q, M), a cheap-talk extension of G(p, q), is defined by 1,2,3,4 and:

7. A finite set M, the set of possible messages in the Talk phase. We assume that IMI 2: 2.

8. The game r(p, q, M) has three phases:

The Information Phase is the same as in G(p, q).

The Talk Phase: This phase is divided into periods t=1,2,3oo. . For each t, player 1
chooses a message m} E M and player 2 chooses a message m; EM. The choices
are made simultaneously.

The Action Phase: Player 1 chooses an action i E I and player 2 chooses an action
j E J. The choices are made simultaneously. The payoff to player 1 is Ak,l(i,j) and
the payoff to player 2 is Bk,l( i, j).

9. The players have perfect recall.

10. 1,2,3,4,7,8,9 are common knowledge to both players.

The players have perfect recall, so m} and m; are functions of the history of length t - 1, ht-1

:= ((mLmD,(m~,mD,oo.,(mL1,mL1))' The actions, chosen by the players in the action phase,
are functions of 11,00:= ((mLmD,(m~,mD,.oo,(mLmn,...), the infinite sequence defined in the
talk phase. Let Ht = (M X M)t be the set of histories of length t. Define Ho = {4>}. Let Hoo

= TI~l(M X M) be the set of infinite histories. On Hex, , we define for every t, a finite field Ht.
h~ , h~ E H00 are in the same atom of Ht if and only if for every 1 ::; u ::; t there 5 exists
h~(u) = h~(u). Let Hoo be the a-field generated by {Hd~l . Our basic probability space is
(n, A) = (Ii X L X Hoo X I X J , 2K @2L @Hoo @2f @2J). A point in n is a five-tuple (k, I, 11,00'i, j),

where (k, I) is a possible state of nature, 11,00E Hoo is an history of the game (the communication
that took place), i is an action of player 1 and j is an action of player 2. Defining sequences of
random variables, we will use the following notation: at, bt, Ct,... will usually be random variables
measurable with respect to (Ht,Ht), and aht,bhpCht,oo. will denote at(ht),bt(hd,Ct(hd,oo.. For
x E t1(I) and y E t1(J) we will write Ak,l(x,y) instead of LiEf,jEJx(i)y(j)Ak,l(i,j) and Bk,l(x,y)

instead of LiEf,jO x(i)y(j)Bk,l( i, j).

Since r(p, q, M) is a game with perfect recall, we can restrict ourselves to behaviour strategies
(see Aumann 1964). To shorten the writing, whenever we write 'strategy' we will mean a behaviour
strategy.

4This is an equivalent model to the model described in chapter 2. k and 1 are the types of the players.
5

h= (u) is the two messages sent by the players at period u, according to the infinite history h=.
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Definition 3.1:
A strategy a of player 1 in r(p,q,M) is a = ({atLEN, 0'00) such that:

6

1. at: J( X Ht-l ~ ~(M) for all tEN.

2. 0'00 : J( X Hoo ~ ~(I).

3. 0'00 is 2K (2)Hoo-measurable.

A strategy T of player 2 in r(p, q, M) is T = ({ Td tEN, Too) such that:

1. Tt : L X Ht-l ~ ~(M) for all tEN.

2.Too:LxHoo~~(J).

3. Too is 2L (2)Hoo-measurable.

Let ~' be the set of strategies for player i for i = 1,2. Denote:

Z := ,max. {IAk,l(i,j)l, IBk,l(i,j)I}.
kEK,IEL,'EI,)EJ

That is, Z is the upper bound of the absolute value of the possible payoffs.
Now we define the equilibrium in the game G(p, q). Later, we will use the equilibrium in G(p, q)

in the characterization of the equilibrium in the cheap-talk extension r(p, q, M).

Definition 3.2:

a E [O,Z]K and b E [O,Z]L are equilibrium vector payoffs in G(p,q) if there exist 0' E (~(I))K
and (3 E (~( J))L such that:

3.2.1 ak = LIELq(l)Ak,l(O'k,(3I) for all k E J( such that p(k) > O.

3.2.2 bl = LkEK p(k)Bk,I(O'k,(3I) for all I E L such that q(l) > O.

3.2.3 ak::;::LIELq(l)Ak,l(r,(3I) for all k E J( and, E ~(I).

3.2.4 bl::;::LkEKP(k)Bk,I(O'k,15) for all I ELand 8 E ~(J).

Note the difference between definition 3.2 and definition 2.6. In definition 3.2 we allow ak to be
greater then the payoff of type k when p( k) = O.

Going back to the Cheap-Talk extension, we need a few definitions. Every 4-tuple (a,T,k,l) E
~l X ~2 X J( x L defines a probability measure 7r<T,T,k,1on (Hoo, Hoo), i.e, for an history ht :=
(( mL mi),( m§, mD, ..., (m}, mD), 7r<T,T,k,t(hi) is the probability that the first message sent by player
1 is mi, the first message sent by player 2 is mi, the second message sent by player 1 is m§, and
so on, given that k = k, 1 = I, player 1 plays according to a and player 2 plays according to To We
derive from 7r<T,T,k,l another probability measure on (Hoo X J( xL, Hoo (2)2K (2)2L)

P<T,T,p,q(ht,k, I) := p(k)q(l)7r<T,T,k,l(ht)

Note that P<T,T,p,q(k= k,l = I) = LhtEHt P<T,T,p,q(ht,k,l) = p(k)q(l). Denote by E<T,T,p,qthe expec-

tation with respect to P<T,T,p,q.We will denote P<T,T,p,q(.1k = k), E<T,T,p,q(-I k = k), P<T,T,p,q(.ll = 1)

and E<T,T,p,q(.ll = I) by pk'(.), Ek.(.), yl(-) and £'1(.) respectively and P<T,T,p,qby P. Denote by
a and b the (random) payoff of player 1 and player 2 respectively.

6N denotes the set of natural numbers {1,2,3,...}.

9



Definition 3.3:
a E [_Z,Z]K and bE [-Z,Z]L are equilibrium payoffs in r(p,q,M) if there exist a E ~I and

T E ~2 such that:

El : ak = Ea,T,p,q(aI k = k) for all k E K such that p(k) > 0.

E2 : bl = Ea,T,p,q(b 11 = I) for alII E L such that q(l) > 0.

E3: ak~Ea"T,p,q(alk=k)forallkEKanda'E~I.

E4 : bl ~ Ea,T',p,q(b 11 = I) for alII ELand T' E ~2.

We need some notations. Let Q := [-Z, Z]K X [-Z, Z]L X t!.(K) X t!.(L). That is, a point in
Q is a 4-tuple (a, b,p, q) such that a is a vector payoff of player 1, b is a vector payoff of player 2,
p E t!.(K) and q E t!.(L).

Let
EQ := {(a, b, p, q) E Q s.t. (a, b) are equilibrium vector payoffs in G(p, q) }

3.2 Basic Definitions

In this section we introduce three definitions, based upon the concept of admissible split. We will
try to explain the motivation for these definitions. Assume that r(p, q, M) is a Cheap-Talk game
with independent incomplete information. Let (a, b) E IRK X IRL be equilibrium payoff vectors in
r(p, q, M), and let a and T be strategies (of player 1 and player 2 respectively) that implement

the equilibrium. Let am1,m2 and bm1,m2 be the expected payoff vectors after the first period (i.e,
after each player sent one message), when player 1 sent mI and player 2 sent m2. For k E K let

Pm1.m2(k) be the a posteriori probability that player 2 assigns to the event of k being the k chosen
by nature, given a and mI. For I E L let qm1,m2(I) be the a posteriori probability that player 1
assigns to the event of I being the 1 chosen by nature, given T and m2. Clearly Pm1.m2 = Pm1,m'2
for all m,2 and qm!,m2 = qmll ,m2 for all mil. Let /L(mI) be the probability of player 1 sending the
message mI in the first period, given a and let A(m2) be the probability of player 2 sending the
message m2 in the first period, given T. am1 := Lm2EM A(m2)am1 ,m2 is the expected payoff vectors
of player 1 after sending mI. Note that am1 ~ a (i.e, a~1 ~ ak for all k E K) for all mI E M,
otherwise player 1 will gain more than a by sending mI with probability one, in contradiction to
the assumption that a and T are equilibrium strategies. On the other hand Lm1 EM /L(m 1)am1 = a,
therefore am! = a when /L(mI) > 0. Similarly bm2 := Lm1EM/L(mI)bm1,m2 ~ band bm2 = b when
A(m2) > 0.

Denote by [n] the set {I, 2, 3, ..., n}. A split is a convex combination of a scalar or a vector, i.e,
if a E IRI then (aI,a2,...,an;/L) E (1R1)n X t!.([n]) is a split of a if Li=I/L(i)ai = a. For example
3 = ~ .

° + ~
. 2 + ~ .5, thus we say that the scalar 3 can be split into 0,2 and 5 with probabilities

~,~ and ~ respectively. Or in shorter writing, (0,2,5;(~,~,~)) is a split of 3. We are going to
define two types of splits. We start with an example.

(3,2) is split into

l
5

t

(

0, o

4" 2, o

~ 5, o

l 1
5 5

0,3 0,4

)
2,3 2,4
5,3 5,4
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This split is called a split of type 1 of (3,2) and is read as follows: the vector (0,0) has probability

t. ~,the vector (5,3) has probability ~. ~ and so on (see figure 1). In general, ( {( ai, bj) h~i,j~n; IL,>')

y

5
1 1
405

1 1
405

~01
4 5

4 . .
1.~
4 5

10~
4 5

~o~
4 5

3 . .
2 8

1
10~
4 5

10~
4 5

~o~
45

1 2 3 4 5 x

Figure 1: A split type 1 of the point (3,2)

is called a split of type 1 of (a, b) if the following holds:

1. ({(ai,bj)h~i,j~n;1L X >') is a split of (a, b).

2. ai,.i = ai,j' for all 1 ::; i,j,j'::; n.

3. bi,j = bi',j for all 1::; i,i',j::; n.

Note that a split of type 1 can be viewed as a product of two splits (one on the a coordinate with
the probability vector (t, t,~) and one on the b coordinate with the probability vector (~,~, t}).
However we need a more complex split, for example:

(3,2) is split into

~
5

t
(

0,0

=1 2,-2

~ 5,3

2 1
- -5 5

2,3 4,4

)
0,7 4,0
5,0 2,4

See figure 2. This split is not of type 1 but it has the property that the average (according to
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y

7

1.1
4 5

6

5

4

2 1-.-
4 5.

1.1
4 5.

1.1
4 5

1.1
4 5

3 . .
2 8

1
1.1
4 5

1.1
4 5

1.1
4 5

1 2 3 4 5 x
-1

1.1
4 5

-2 .
Figure 2: A split of type 2 of the point (3,2)

J.l = (~, ~, ~)) of the first coordinate is constant (and equals to 3) on each column, and the average
(according to A = (~, ~, ~)) of the second coordinate is constant (and equals to 2) on each line.
This is a split of type 2. In general, ({(ai,bj)h~i,j~n;J.l,A) is called a split of type 2 of (a,b) if
the following holds:

1. a = 2:::i=l J.l(i)ai,j for all 1 :::; j :::; n.

2. b = 2:::']=1 A(j)bi,j for all 1 :::; i :::; n.

Note that a split of type 1 is always a split of type 2, and that a split of type 2 is a split. Similarly,

splits can be defined for vectors instead of scalars.
In definition 3.4 we introduce a combination of a split of type 1 (of (p, q)) and a split of type 2

(of(b,a)).
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Let x = (a,b,p,q) E Q and let n be a positive integer. Let S = ({xU,V}l~u,v~n,f1,>') E Qn2 X
~([n]) X ~([n]), where Xu,v = (au,v, bu,v,Pu,v, qu,v).

Definition 3.4:
S is called an n - admissible split of x if ( {Pu,v, qu,vh <u,v<n' f1, >') is a split of type 1 of (p, q), and

({bu,v,au,vh~u,v~n,f1, >') is a split of type 2 of (b,a), i.e,
-

1. x = L~=l L~=l f1(u».( v )xu,v

2. (a) a = L~=l >.(v)au,v for all u such that 1 :::;u:::; n.
(b) b = L~=l f1( u )bu,v for all v such that 1 :::; v :::; n.

(c) Pu,v = Pu,v' for all u,v,v' such that 1:::; u,v,v':::; n.

(d) qu,v = qu',v for all u, u', v such that 1 :::;u, u', v :::;n.

S is called an exact n-admissible split if it is an n-admissible split and in addition:

3. f1(u) > 0 and >.(v) > 0 for all U,v such that 1:::; u,v:::; n (The split is into exactly n2 points).

Remarks:

1. From 1. and 2( c) it follows that p = L~=l f1( U)Pu,v for all 1 :::; v :::; n.

2. From 1. and 2(d) it follows that q = L~=l >.(v)qu,v for alII:::; u:::; n.

Definition 3.5:
Let F1 C F2 be two finite fields (F2 is thus a refinement of F1). Let Xl and X2 be Q-valued
random variables, measurable with respect to F1 and F2 respectively. X2 is called an (exact) n -

admissible split of Xl if for every atom j1 of F1, such that P(P) > 0, there exists an (exact)
n-admissible split S = ({x~V}

l< <
, f1, >') of x j1 := E( Xl I j1), such that j1 is partitioned into, U,v n

disjoint F2-measurable sets {JJ,v};~u,v~n (thus U1~u,v~nj~,v = P and j~,v n j~"v' = 4Yif u ~ u' or
v i= v') satisfying:

1. P(J~,v I j1) = f1(u».(v).

2. X2 = x~,v on j~,v (i.e, x~,v = E(X2 I j~,v)) whenever P(J~,v) > O.

Let No be the set of non-negative integers, Le, 1'110:={0,1,2,3,...}.

Definition 3.6:
Let x = (c,d,w,s) E Q. Let C c Q. An (exact) n - admissible martingale starting at x and
converging to C is a sequence {XdtENo = {(Ct,dt,wt,sd}tENo of Q-valued random variables
satisfying:

3.6.1 Xo = x a.s. (almost surely).

3.6.2 There exists a non decreasing sequence {Ft}tENo of finite fields (Fo = {4Y,n}) with respect
to which {XdtENo is a martingale, i.e: Xt is measurable with respect to Ft and Xt =
E(Xt+1 1Ft) a.s.

3.6.3 Xt+1 is an (exact) n - admissible split of Xt for every t E No.

3.6.4 Every a.s. limit Xoo of {XtLENo satisfies Xoo E C a.s.

13



3.3 The Geometrical properties of Admissible Martingales

Following Aumann and Hart (Aumann and Hart 1986) we will analyze the relations between admis-
sible martingales and admissible convex functions (definition 3.9). We will actually analyze a more
general case. Let X be a compact convex subset of an Euclidean space. Let A be a set of probability
measures on X with finite support. We will apply this for A equals the set of n-admissible splits.

Definition 3.7: x is an A - convex combination of Xl, X2, ..., Xn if there exists Jl E A such that

2:i=l Jl(x;) = 1 and x = 2:i=l Jl( X;)Xi (note that an A - convex combination is always a convex
com bination).

Definition 3.8:
elements.

c c X is an A - convex set if it contains all the A-convex combinations of its

Definition 3.9: Let C c X be an A-convex set. f : C -+ IRis an A-convex function if for every
n E N, Jl E A and X1,X2,"',Xn E C, 2:i=lJl(Xi) = 1 implies:

n n

fCLJl(Xi)Xi)::; LJl(Xi)f(x;)
i=l i=l

Definition 3.10: A sequence {Xt}tENo of X-random variables is an A - martingale if:

1. There exists a nondecreasing sequence {Ft}tENo of finite fields with respect to which {Xt}tENo
is a martingale, i.e: Xt is measurable with respect to Ft and Xt = E(Xt+1 1Ft) a.s.

2. For all ft EFt, with P(fd > 0, the conditional distribution of Xt+1 conditioned on ft
belongs to A (that is, for all ft E Ft with P(ft) > 0 the probability distribution JlIt defined
by JlIJE(Xt+1 I ft+1») := P(ft+1 I fd satisfies JlIt E A).

3. Xl is constant a.s.

For C C X let

C* := {x E X s.t. there exists an A-martingale {XdtENo converging to XX)

s.t. Xoo E C a.s. and Xl = x a.s.}

Definition 3.11: Let C c B c X such that B is an A-convex set. nscc(B) is the set of all
the points in B that can not be separated from C by any bounded A-convex function which is
continuous on C. That is, x E nscc(B) if and only if f(x)::; suPcEcf(c) for all the bounded
A-convex functions, f, which are continuous on C.

Theorem 3.12: Assume that C is a closed set. Then the largest set D C X satisfying D -
nscc(D) is precisely C* (i.e C* = nscc(C*) and B = nscc(B) implies B C C*).

Proof: The proof of theorem 4.7 in Aumann & Hart (1986) also applies here.
By choosing A to be the set of n-admissible splits we get that an A-martingales is exactly an

admissible martingale, hence the last theorem can be applied to admissible martingales. Similarly
bi-convex martingales are also a special case of A-martingales.
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3.3.1 Infinite Splits

We can define Infinite Admissible Splits by replacing n by 00 in definition 3.4. The following
example shows that there exists a point, which is an infinite admissible combination of a certain set
of points, but not an admissible combination of any finite subset (Note that this can not happen
for bi-convex combinations).
Example:
Let Q = [0, IF X [0, IF X ,6,(2) X ,6,(2). Let JL(i) = -b for all i E Nand A(j) = iJ for all j E N. Let

x:= (a,b,p,q) = ((~,~),(~,~),(~,~),(~,D). For all i,j EN define Xi,j := (ai,j,bi,j,Pi,j,qi,j) E Q
by:

1 1
P ..- p '- ( 1 )',J - ,- 2i' - 2i

1 1
q ..- q .- ( 1 )I,J - J - 2j' - 2j

a1 . = {
2'~J i;:: j

I,J 0 i < j

2 . -
{

2'+\-J i + 5 ;:: j
a',J - 0 i + 5 < j

b1 = {
2}-' j;:: i

',J 0 j < i

b2 . = {
2J}S-, j + 5 ;:: i

I,J 0 j + 5 < i

Lemma 3.13: ({Xi,j};,jEN,JL, A) is an infinite admissible split of x.

Lemma 3.14: No finite split of x can be obtained from any finite subset of {Xi,j}i,jEN'

Proof: Assume that ({Xikoj/hSk,l~n'P,,).) is an admissible split of x. Let imax := max1~k~nik
and let jmax := max1<I<njl. W.l.o.g assume that imax ;:: jmax' From the definition of admissible
splits we have that ~

-=- a2
= LI=1).(jI)aimax,j/ but aLax,j ::; ~ for all j ~ imax + 5,imax + 6, a

contradiction to the fact that jl ::; imax for aliI. I

3.4 Main Result

We can now state and prove the main result.

Theorem 3.15:
Let p > 0 and q > o. (a, b) E IRK X IRL are equilibrium payoffs in f(p, q, M), a cheap-talk extension
of G(p,q), if and only if there exists an IMI- admissible martingale starting at (a,b,p,q) and
converging to EQ.

We need some definitions and lemmas. Let p E b.(K) and q E b.(L). Denote:
Wq1:= {a E [-Z,Z]K s.t.:Jp E (,6,(J))L s.t. LIELqk(I)Ak,I(r,pl)::; ak Vk E K and, E b.(I)}.

W; := { bE [-Z, Z]L s.t. 30: E (,6,(I)/< s.t. LkEK pl(k)Bk,l(o:k,I5)::; bl VI ELand 15E b.(J) }.
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That is, a E Wi if and only if player 2 can guarantee that player 1 will not get more than ak for
all k E J( simultaneously, and b E W; if and only if player 1 can guarantee that player 2 will not
get more than bl for alll E L simultaneously. Wi is upper semi continuous with respect to q, and
W; is upper semi continuous with respect to p.
Denote WI:= {(a,q) E [-Z,Z]Kx~(L) s.t. a E Wi)} and W2:= ((b,p) E [-Z,Z]LX~(J() s.t. b E
W;)}. Denote IR := {(a,b,p,q) E Q s.t. (a,q) E WI and (b,p) E W2 } (i.e, IR is the Cartesian

product of WI and W2). That is (a,b,p,q) E IR if and only if (a,b) are individually rational
payoffs in G(p,q) (and therefore in r(p,q,M)). Note that IR C EQ.

Lemma 3.16:
WI and W2 are convex sets.

Proof: We will prove that WI is convex. The proof for W2 is similar. Let (aI, qd E WI,
(a2,q2) E wI, and 0 < fJ < 1. Let (a,q) := fJ(aI,qI) + (1- fJ)(a2,q2)' We have to show that
(a,q) E WI. (ai,qd E WI (for i=1,2), therefore there exists (3i: L -* ~(J) such that for all k E J(

and 0' E ~(1) we have:
Lqi(l)Ak,I(O',(3!)::; a7
IEL

Define (:II:= §2.Ull(:II+ (I-8)q2(1) (:II (from the definition of q we have 0IlW
+

(I-8)q2(l)
= 1 thereforefJ --qcrr fJI q(l) fJ2 --qcrr q(l) ,

(31E tl(J). If q(l) = 0 we define (31 arbitrarily). For all k E J( and 0' E ~(I) we have:

Lq(l)Ak,I(O',(3I)= L q(l)Ak,I(O',(3I)= L q(l)Ak,I(0',fJqI(
l
l)(3i+(1-fJ)q2(

l
l)(3~)

lEL IEL s.t. q(I»O IEL s.t. q(I»O
q( ) q( )

=fJ L qI(l)Ak,l(O',(3i) + (l-fJ) L q2(l)Ak,l(0',(3~)

IEL s.t. q(l»o IEL s.t. q(l»o

note that q(l) = 0 implies qI(l) = q2(l) = 0 hence

= fJLqI(l)Ak,I(O',(3i) + (1- fJ) L q2(l)Ak,I(0',(3~)::;fJa~+ (1- fJ)a~= ak

IEL lEL s.t. q(l»o

I

Corollary 3.17:
I R is a convex set.

Definition 3.18:
Let ht E Ht , hs E H s . Denote by (hi, hs) E Ht+s the history hs following ht, i.e:

.
'-

{
ht( i) for i ::; t

(ht,hs)(t).-
hs(i-t) fort<i::;t+s

Similarly, (hi, hoo) E H 00 denotes the history hoo E H 00 following ht. For all hoo E H 00 and for all
t E No denote the initial i-history, (hoo(l), hoo(2), ..., hoo(t)), by (hoo)t . (hoo)t E Ht.
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In the next lemma we will show that we can assume that every finite history has positive probability
with respect to Pa,T,p,q'

Lemma 3.19:
(a, b) is an equilibrium in f(p, q, M) if and only if there exist a and T satisfying conditions El,E2,E3

and E4 of definition 3.3 and in addition:
3.19.1 Pa,T,p,q(hd > 0 for all t E No and ht E Ht.

Proof: It is enough to show that if a and T satisfy E1,E2,E3 and E4 then there exist a' and T'
satisfying E1,E2,E3,E4 and 3.19.1 . We will build a' and T', based on a and T, such that every
message that has zero probability to be sent (after some history and according to a or T), will have
positive probability to be sent according to a' or T'. The idea is to "identify" un sent messages with
those which have positive probability of being sent. From the moment that such a message was
sent, the two players will continue playing as if another message was sent, one which had positive
probability (according to a or T).

Formally: We will build a sequence of functions, Ft : Ht 7 Ht, by induction, together with the
definition of a' and T'. Fo«jY) := <jY,and we define Ft+I based on Ft. Let ht E Ht. Denote: 7

Cht := {mI E M such that Pa,T,p,q(m}= mI I ht) > O}and mt := min{m E ChJ.
Dht := {m2 E M such that Pa,T,p,q(m;= m2 Iht) > O}and mt := min{mE Dht}.
For all m E M define:

Rht(m):=
{ -~

for m E Cht
Sht(m):=

{ -~
for m E Dht

mht otherwise mht otherwise

Now define for every mI,m2 E M,k E K,l E L:

Ft+I(ht,(ml,m2)):= (Ft(ht), (RhJmI),Sht(m2)))

a' (k h )(mI):=
at+I(k,Ft(ht))(Rht(mI))

t+I , t.
IRh}(Rht(mI ))1

T' (I h )(m2):=
Tt+I(l,Ft(ht))(Sht(m2))

t+I , t
IShtI(Sht{m2))1

From the definitions we have 3.19.1 and:

Vht Vk E K VmI E M L a~+I(k,hd(m)
mERhtl(ml )

at+I(k,Ft(ht))(mI)

Vht VI E L Vm2 E M L Tf+I(l,ht)(m)
mEShtl(m2)

Tt+I(I, Ft(ht))(m2)

Therefore if Pa,T,p,q(ht) = 0 then Ft-I(ht) = <jYand otherwise:

7M being finite, is assumed to be the set {I, 2, 3, ..., IMI} in order to simplify the writing.
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Pa',T',p,q(Ft-l(ht)) = Pa,T,p,q(ht) for all k E]( and I E L (1)

Define F= : H= --+ H= by : for all h= E H= and t E No (F=(h=))t = Ft((h=)t). F= is well
defined. Now define: a~(', h=) = a=(., F=(h=)) , T:x,(-,h=) = T=(', F=(h=)). From equation ( 1)
we get that Pa',T',p,q( a~(', h=) = , , T:x,(., h=) = {j) = Pa,T,p,q(a=(-, h=) = , , T=(-, h=) = {j )

for all k E ](, I E L, , E !1(I) and {j E !1(J). For a" E ~l let a'} be the strategy a" in which

for every hi, every message m; rt Chi is replaced by mt and every message m; rt Dht is replaced
by m~. p;I"T,(T:x,(.,h=) = {j) p-l" (T=(.,h=) = {j) for all a" E ~1, and IE L. And

t , aF,T

P:"T,,(a~(.,h=) = ,) = pk ',,(a=(.,h=) = ,) for all T" E ~2, and k E](. Therefore conditions, a,TF

El,E2,E3,E4 and 3.19.1 are satisfied by a' and T'. I

Definition 3.20:
Recall that a and b are the random payoffs to player 1 and player 2, respectively. Let a and
T be equilibrium strategies in r(p, q, M). Let ht E Ht, h= E H=, k E ](, I E L. Define: a} :=

E(a I ht, k = h), b~ := E(b I ht, 1 = I), pt(k) := Pa,T,p,q(k = k I hd, and qt(l) := Pa,T,p,q(l = II hd.

Phi = Lht+l Pa,T,p,q(ht+l!hdpht+l and qht = Lht+l Pa,T,p,q( hHllht)qht+l' therefore {PtLENo and

{qdtENo are bounded Pa,T,p,q-martingales and P= and q= exist Pa,T,p,q-a.s. (see also corollary 3.24).
Recall that m; and m; are the messages sent at period t, by player 1 and player 2 respectively. Let

a= and b= be the RK -valued random variable and the RL-valued random variable defined by

a~:= Lq=(l)Ak,l(a=(k,h=),T=(I,h=))
IEL

and

b~ := L p=(k)Bk,l(a=(k, h=), T=(l, h=))
kEK

Note that a~ is defined only when qhoo exists and b~> is defined only when Phoo exists. a~oo can

be think of as the expected payoff of player 1 given h= and k = k. a} = E(a~ I ht,k = k) and
b~= E (b~ I ht, 1= I).

Lemma 3.21:
If (a, b) is an equilibrium in r(p, q, M) and a and T satisfy conditions E1,E2,E3,E4 and 3.19.1 then
there exist a' and T' satisfying conditions E1,E2,E3,E4, 3.19.1 and:

3.21.1 (a=,b=) are equilibrium payoffs in G(p=,q=) for Pa,T,p,q-almost every h=.

Proof: 8
q= exists pk'-a.s., for all k E ]( (because it exists Pa,T,p,q-a.s. and p(k) > 0). Therefore

for all k E ]( and for pk. -almost every h= we can define:

,~:= min{i E I s.t. Lq=(l)Ak,l(i,T=(I,h=)) = max Lq=(l)Ak,I(!,T=(I,h=))}
!

lEL
,Et.(I)

lEL

(The minimum in the above definition has no special significance. It is only a tool for choosing one
member from the set, when it has more then one member). Phoo exists for p-l-almost every hoc>for
all I E L. Therefore for all I ELand p-l-almost every h= we can define:

{j:x, := min{j E J s.t. L p=(k)Bk,l(a=(k,h=),j) = max L p=(k)Bk,l(a=(k,h=),{j)}
J

kEK
OEt.(J)

kEK

8To simplify the proof we will assume w.l.o.g. that I = {I, 2, 3, ..., III} and J = {I, 2, 3, ..., IJI}.
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,~ and 8~ are measurable functions. For all hoo and k such that qhoo exists we have:

a~oo= Lqhoo(l)Ak,l(aoo(k,hoo),Too(l,hoo)) S; max Lqhoo(l)Ak,l("Too(l,hoo))
lEL

,E.6.(I)
lEL

hence (note that qoo exists a.s.)

E(a I k = k) = E(a':x,Ik = k) S;E(Lqoo(l)Ak,l(,~,Too(l,hoo)) Ik = k)
lEL

If player 1 changes his strategy a, in the action phase of the game, by playing , ~ instead of
a( k, hoo), it will change his expected payoff (given k = k and assuming that player 2 plays T) from
E(a I k = k) to E(LlELqoo(l)Ak,l(,koo,Too(l,hoo)) I k = k). a and T are equilibrium strategies and
player 1 can achieve E(LlEL qoo(l)Ak,lb~, Too(l, hoo)) I k = k) when player 2 plays T and given
k = k, thus we have

(2)

E(a Ik = k) ~ E(Lqoo(l)Ak,lb~,Too(l,hoo)) Ik = k)
lEL

(3)

and from ( 2 ) and ( 3 )

E(a':x, I k = k) = E(Lqoo(l)Ak,l(,~,Too(l,hoo)) I k ==k))
lEL

hence

1

1
. k 1

1
.

"""
kl k- (k ) poo(k)aoodP(hoo) = - (k ) Poo(k)~qoo(l)A 'boo,Too(l,hoo))dP(hoo)

p Roo P. Roo IEL

Therefore

poo(k)a':x, = Poo(k) L qoo(I)Ak,lb~, Too(l, hoo)) for P-almost every hoo.
lEL

Therefore, for all k E J( and for P-almost every hoo such that Phoo (k) > 0 we have:

L qoo(I)Ak,l(aoo(k, hoo), Too(l, hoo)) = max L qoo(l)Ak,lb, Too(l, hoo))
lEL ,E.6.(I)

IEL
(4)

Similarly, for alII ELand for P-almost every hoo such that qoo(l) > 0 we have:

L poo(k)Bk,l(aoo(k,hoo),Too(l,hoo)) = max L poo(k)Bk,l(aoo(k, hoo), 8)
kEf{ /JE.6.(J) kEf{

(5)

Now we can define a' and T':
For all t let a~ := at and T! := Tt, and

a'oo(k,hoo):=
{ aoo

'(k~oo

,hoo)
if Phoo(k) = 0 and qhooexists

otherwise

Here '~oo stands for the vector in b..(I) whose '~oo
th coordinate is 1 and the others are o.

{
8 if qhoo(I) = 0 and Phooexists8'oo(hc<",I) := 8oo(~:, I) otherwisE
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We changed the mixed actions chosen by the players only on a subset of J( X L X H= which has
measure zero (with respect to P = Pa,T,p,q= Pa',T',p,q)' Therefore a' and T' are also equilibrium
strategies with vector payoffs a and b. For a' and T' equations ( 4) and ( 5) are satisfied for al-
most every h= for all k and 1. These equations are stronger than the conditions for equilibrium in
G(p=, q=) (definition 3.2). I

Fix (a, b,p, q), a and T satisfying conditions E1,E2,E3,E4, 3.19.1 and 3.21.1 .

Definition 3.22:
Denote by J-LhJ ml) the probability of player 1 sending the message ml after the history ht and

denote by AhJ m2) the probability of player 2 sending the message m2 after the history hi.

J-Lht(ml) = 2:Pht(k)at(k,ht)(ml)
kEf{

and Aht(m2) = 2:qht(l)Tt(l,ht)(m2)
lEL

3.19.1 implies that J-Lht(ml) > 0 and Aht( m2) > 0 for all ml, m2 E M. Define, for ht E Ht, k E J(

and l E L

Xkt '- sup Ea',T,p,q(a Ihi)
a'

Y~t := sup Ea,T',p,q(b I hi)
T'

xt is the supremum of what player 1 can achieve, given that player 2 plays the strategy T and
given hi. Y~t is the supremum of what player 2 can achieve, given that player 1 plays the strategy
a and given hi,

Recall that Z is the upper bound of the possible payoffs. Clearly Xkt ::;; Z and Y~t ::;; Z. The next
lemma is the main part of the first part of the proof, and in it the admissible martingale is being
built.

Lemma 3.23:

1. For all ht E Ht and k E J( there exists ct E IR such that:

(a) xt ::;; ct ::;Z and if pko(ht) > 0 then ct = xt = Eko(a I hi),

(b) c~o - ak.

(c) ct = Lm2EM Aht( m2)ct,(ml,m2) for all ml EM.

2. For all ht E Ht and l E L there exists d~t E IR such that:

(a) Y~t ::;; d~t ::;; Z and if P-l(ht) > 0 then d~t = Y~t= gl(b Ihi),
(b) d~o - bl.

(c) d~t = LmIEMJ-Lht(ml)d~t,(ml,m2) for all m2 E M.
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Proof: We will prove the first part of the lemma (the other part is similar), using induction on t. For
t = 0 define ct := ak. Condition (a) is satisfied for ho because a and T are equilibrium strategies.

Fix k E J(, ht E Ht and mI. Assume that ct is defined correctly and define, simultaneously,
ck

h ( 1 2 ) for every m2 EM. There are two cases to consider.t,m ,m

case 1: pko(ht)at(k,ht)(ml) = o.
In this case pko(ht,(ml,m2)) = 0 for all m2 E M, hence we have to prove only condition (c) and
the first part of (a). Define:

""'
2 k k

Um1:= L..J Aht(m )Xht,(m1,m2) ::; Xht

m2EM

Using the induction hypothesis we have

Um1 ::; ma
M
x Um = Xkt ::; ct ::; z = L Aht(m2)Z

mE
m2EM

(6)

and Xt,(m1,m2) ::; Z for all m2 E M. Therefore we can choose (simultaneously for m2) for all
m2 EM, ck

h ( 1 2 ) such that X h
k

( 1 2 ) ::; Ch
k

( 1 2 ) ::; Z, and such that (c) is satisfied:t,m,m t,m,m t,m,m

{

ck -u
k Xk + (Z - Xk ht m1

ch ( 1 2):= ht,(m1,m2). ht,(m1,m2)) Z-Um1t,m,m
Z

Z > Um1

Z = Um1

The inequality X h
k

( 1 2 ) ::; Ch
k

( 1 2 ) follows from the two inequalities: Z 2: X h
k

( 1 2 ) andt,m,m t,m,m t,m,m

ct 2: Um1. The inequality Ct,(m1,m2) ::; Z follows from the inequality Z 2: ct because the later
ck -u

yields ~t-u m1
::; 1. Thus, we proved that X h

k
( 1 2 ) ::; Ch

k
( 1 2 ) ::; Z. To complete this part of

m1 t,m,m t,m,m
the proof we have to show that (c) is satisfied. We have two cases to consider: If Um1 = Z then
c~ = Z (see 6) and for all m2 E M we have ckh ( 1 2 ) = Z, hence (c) is satisfied. If Um1 < Zt t,m,m
then:

L Aht(m2)ct,(m1,m2) =
m2EM

""'
2 k c~ - Um1

""'
2

""'
2 k

L..J Aht(m )Xht,(m1,m2) + zt
- U 1

( L..J Aht(m)Z - L..J Aht(m )Xht,(m1,m2))
m2EM m m2EM m2EM

c~ - Um1 k
= Um1 + zt

- U 1
(Z - Um1) = ChI

m

and (C) is satisfied.
case 2: pko(ht)at(k,ht)(ml) > o.

In this case pko(ht,(ml,m2)) > 0 for all m2 E M (recall that Aht(m2) > 0). Define:

Ct,(m1,m2):= Eko(a I (ht,(ml,m2)))::; X~t,(m1,m2) .

Denote (ht,(ml,m2)) by hs and we will show that ct = xt. The idea is that if Eko(aIhs) < xt
then type k of player 1 can achieve more than Eko(a) by playing a and switching to a strategy
guaranteeing almost Xk after hs, a contradiction. We will choose an arbitrary strategy a' and shows

21



that player 1 can gain no more than Ek"(a I hs), playing a' after hs and given k = k (otherwise he
can get more than Ek"(a) by playing a and switching to a' after hs), hence ct = xt. Formally,
let a' be a strategy of player 1. Define a" as follows:

a"(k' h ) '= {
a~(k', hx) for hr = (hs, hx)

r , r' a r (k', hr) otherwise

" (k' h ) .=
{

a'oo(k', h'oo) for hoo = (hs, h'oo)
a 00 , 00' a (k' h ) otherwise00 , 00

Recall that pk"( hs) > O. a" is the strategy of playing a and switching to a' if hs has occurred.
Denote E~I;,T by J;k " and p!;"",r by pk ". Denote the set of strategies different from hs (i.e, Hs \ {hs})
by "not hs". a and T are equilibrium strategies, therefore

Ek"(a) = pk"(hs)Ek"(alhs) + (1 - pk"(hs))Ek"(a I not hs)

2':
pk "(hs)J;k "(alhs) + (1 -

pk "(hs))j;k "(a I not hs)

pk"(hs) =
pk "(hs) > 0 and Ek"(a I not hs) = j;k"(a I not hs) therefore

Ek"(a I hs) 2': j;k '(a I hs)

This is true for all a', thus Ek"(a I hs) 2': xt and therefore Ek"(alhs) = xt (because Ek"(a I hs) ::;
x~ ). Thus ct = x~ . From the induction" hypothesis we have c~ = Ek"(a I hd, therefores

"S t

ct - L at(k, ht)(ml) L Aht(m2)ct,(ml,m2)
ml S.t. at(k,ht)(ml »0 m2EM

(7)

On the other hand:

ct = xt = m~x L AhJm2)xt,(ml,m2)
m m2 EM

hence

c~ 2': max ~ Aht( m2)c h
k

( 1 2 )t 1 t (kh)( 1 ) ~ t,m,mmS..at,tm>02
Mm E

(8)

From ( 7) and ( 8) follows that for all ml such that at( k, ht)( ml) > 0 (in case 2 always at( k, hd( ml) >
0) we have

ct = L AhJm2)ct,(ml,m2)
m2EM

I

Corollary 3.24:
{( Ct, dt, Pi, qt)} ~o is a martingale with respect to the fields {Ht} ~o and the probability P: =Pa,T,p,q"

Ct is also a martingale with respect to pk" and dt is a martingale with respect to yl.
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Proof: We will prove this only for Ct and P.

E(Ct+llhd= L P((ht,(m\m2))lht)Cht,(ml,m2) = L L fLhJml)Aht(m2)cht,(ml,m2)

ml,m2EM mlEMm2EM

= L fLhJml) L Aht(m2)Cht,(ml,m2)= L fLht(ml)cht=Cht=E(ctlht)
mlEM m2EM mlEM

I
Define Coo := limt-+oo Ct and doo := limt-+oo dt. From the bounded martingales convergence theorem
we have that these limits exist a.s.

Lemma 3.25: lim inft-+oo Xtk 2::a~ P-a.s. for all k E J{.

Let A := {hoo s.t. liminft-+oo Xtk < a~}. We have to show that P(A) = O. P(A) > 0 implies that
there exists l ELand k' E J{ such that 1ro-,T,k',l(A) > 0 and therefore

Ll'EL q(l')1ro-,T,k"dA) > 0
hence P;k;) A) > O. (ak' is the strategy in which all the types of player 1 play according to
a in the action phase but according to the strategy of type k' in the talk phase of the game).

a~ := E\o, (a~ I hi) = E\o, (a I hi) ~ X~ for all hi. a~k is a martingale with respect to
t 0- ,T 0- ,T t

p\o, , hence liminft-+oo X; 2:: liminft-+oo a~k = a~ is satisfied p\o, -a.s. , a contradiction to0- oT 0- ,T
p\; (A) > O. I

0- ,T

Corollary 3.26:
(coo, doo) is an equilibrium in G(poo, goo) P-a.s.

Proof: From corollary 3.24 we have that Coo, doo, Poo and goo exist a.s. Fix k E J{. For all t we have

c12:: Xtk (lemma 3.23), hence c~ 2:: a~ P-a.s. (lemma 3.25). If Phoo(k) > 0 then P(hoo)t(k) > 0 for

11 h P ko ((h )t ) p(hoo)dk)P((hoo)t)
d h f k E ko ( k I(h )t ) (1 )a t, ence 00 = p(k) > 0 an t ere ore c(hoo)t = aoo 00. emma 3.23 .

Hence c~ = a~ for pko -almost every hoo such that Phoo(k) > 0, which is P-almost every hoo

such that Phoo(k) > 0 (because EkO(H) = p(\) IH Phoo(k)dP). Now conditions 3.2.1 and 3.2.3 of
definition 3.2 follow from 3.21.1. The proof of conditions 3.2.2 and 3.2.4 is similar. I

Thus we get that {(ct,dt,Pt,qt)}~o is an IMI-admissible martingale starting at (a,b,p,q) and
converging to EQ: Condition 3.6.1 follows from lemma 3.23 and condition 3.6.2 follows from
corollary 3.24. Condition 3.6.3 follows from lemma 3.23 and the fact that the messages of player
2 have no influence on Pi, and similarly player 1 does not affect qt. Condition 3.6.4 follows from
corollary 3.26. This ends the proof of the first part of the theorem.

Next, we assume that {(ct,dt,Wt,st)}~o is an n-admissible martingale starting at (a,b,p,q) and
converging to EQ, and we build equilibrium strategies a and T for a cheap-talk extension, [(p, q, M)

(M:= {1,2,3,...,n}), such that a will be the expected payoff vector for player 1, and b for player
2.

Lemma 3.27:
If there exists an n-admissible martingale starting at (a, b, P, q) and converging to EQ, then there
exists an exact n-admissible martingale starting at (a, b, P, q) and convel'ging to EQ.

Proof: This lemma is analogous to lemma 3.19 , and so is its proof. One can transform S -

({xu,v}l~u,v~n;fL,A), an n-admissible split of x E Q, into an exact split using the following steps:
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1. Choose 1 ::; it ::; nand 1 ::; v ::; n such that IL(it) > 0 and A( v) > o.

2. Replace Xu,v by:

(a) xu,v if IL(U) = 0 and A(V) > 0

(b) Xu,v if IL(u) > 0 and A(v) = 0

(c) xu,v if IL(U) = 0 and A(V) = 0

(d) xu,v if IL(U) > 0 and A(V) > 0

3. If IL(U)= 0 or U = it replace IL(U) by l{l~u'~n:/uJ(u')=O}I+l

4. If A(V) = 0 or v = v replace A(V) by l{l~v'~n s~/vl(v')=O}I+l

Given an admissible martingale, one can make it into an exact one by making all the splits into
exact ones. I

Using lemma 3.27, we can assume that we have an exact martingale {(Ct,dt,Wt,St)}~l starting
at (a,b,p,q) and converging to EQ. Let Xt := (Ct,dt,Wt,sd. Let P E Ft. There is an exact
split of E(Xt I P), S = ({E(Xt+11 j~,v)}l<u,v<n;lLft,Aft). Ll~u,v~nE(J~,v I P) = 1, therefore if
E(JHl I P) > 0 then p+l E { j~ v 11 ::; u,-v ::;-n }. FHl :J Ft, hence for all jHl E FHl such that
P(JHl) > 0 there exists a uniqu~ P E Ft such that E(JHl I P) > 0 , and therefore jt+l = j~ v

for some (u, v) E [n] X [n]. From the last two facts we can conclude that to every P E Ft, such th~t
PUt) > 0, there corresponds a unique sequence from ([n] X [n])t .This map is one-to-one, since
the martingale is exact. M = [n], so to every P EFt, such that pUt) > 0 there corresponds an
ht E Ht. Denote by ht the jt E Ft corresponding to hi. We will write ht instead of ht'

We will
write ILht' Aht, Cht, dht, Wht and Sht instead of ILht '

A
ht'

Cfht' d
ht'

Wht and Sht respectively. Now we

can define the equilibrium strategies. Define for ht E Ht, ml E M and k E K such that Wh,( k) > 0

1 . 1 Wht,(ml,m2)(k)
at(k,ht)(m ).= ILht(m)

wht(k)

If wht(k) = 0 we define at(k, ht)(ml) arbitrarily. at(k, ht)(ml) is well defined because Wht,(ml,m2) is
constant for all m2 E M and LmlEMlLht(ml)wht,(ml,m2)(k) = wht(k). Define for ht E Ht,m2 E M
and 1 E L such that Sht (1) > 0

(1 h )( 2) '=' ( 2)
Sht,(ml,m2)(1)

Tt , t m . "'ht m
Sht (1)

If ,Sht(1) = 0 we define Tt(1, hd(m2) arbitrarily. Again, Tt(1, hd(m2) is well defined. For p' E 1:::.(K)
and b' E W;, let ab',p' E (1:::.(I))Kbe a strategy of player 1 in G(p', q'), guaranteeing that for every

1 E L player 2 will not get more than b'z (It is immediate from the definition of WI;, that such

a strategy exists). For q' E 1:::.(L)and a' E Wi, let (3a',q' E (1:::.(J)l be a strategy of player 2 in

G(p',q'), guaranteeing that for every k E K player 1 will not get more than a,k. For (a', b',p', q') E
EQ let "Ya',b',p',q'E (1:::.(I)t and Da',b',p',q'E (1:::.(J))Lbe equilibrium strategies for players 1 and
player 2 respectively, with expected payoff vectors a' and b'. Choose arbitrary a' E (1:::.(I)t and
(3' E (1:::.(J)l. Define: Coo:= limt--+ooCt, doo := limt--+oodt, Woo:= limt--+ooWt and Boo:= limt--+ooSt.

24



If (c(X),d(X),w(X),s(X)) exists and (c(X),d(X),w(X),s(X))E EQ then define:

a(X) := /coo,doc"woo,soo and T(X) := I5coo,doo,woo,soo

otherwise define:

a(X) :=
{

O:doo,woo if d(X) and W(X) exist
T .-

{
;3coo,soo if C(X) and S(X) exist

0:' otherwise
(X)

'-;3' otherwise

Remark: we will prove later (lemma 3.30) that a(X) and T(X)are well defined.

Lemma 3.28:

1. PCJ,T,p,q(ht)= P(Jht) > 0 for all ht E Ht.

2. Wht = PhI for all ht E Ht. (recall that Pht(k) := PCJ,T,p,q(k= k I hi)),

3. Sht = qht for all ht E Ht. (recall that qht(l) := PCJ,T,p,q(l= II hd).

Proof: We will prove the lemma by induction.For t = 0 : ho = <p and PCJ,T,p,q(ho) = P(fho) = 1.

Who = P = Pho and Sho = q = qho' Now we assume that 1, 2 and 3 are correct for ht and prove for
(ht, (ml, m2)). The proof of 3 is similar to the proof of 2, so we will just prove 1 and 2.

1.

PCJ,T,p,q(hi, (m\ m2)) = PCJ,T,p,q(ht) L PhI (k )at( k, hd( m 1) L qht (l)Tt(l, ht)( m2)
kEK tEL

= P(fht) L whJk)at(k,ht)(ml) LSht(l)Tt(l, ht)(m2)
kEK tEL

and from the definition of a and T

'"'
1

'"'
2= P(fht) L /-lht(m )Wht,(ml,m2)(k) L Aht(m )Sht,{ml,m2)(l)

kEK tEL

= P(Jht )/-lht( ml )Aht( m2) = P(Jht,(ml,m2))

/-lht(ml) > 0, Aht(m2) > 0 (the martingale is exact) and P(Jht) > 0 (the induction hypothesis),
thus we have P(Jht,(ml,m2)) > O.

2.

(k) -
Pht(k)at(k,ht)(ml)

-
wht(k)at(k,ht)(ml)

Pht,(ml,m2) -
Lk'EKPht(k')at(k',ht)(ml) - Lk'EKWht(k')at(k',ht)(ml)

/-lht(ml)wht,(ml,m2)(k)
= 1 =Wht(mlm2)(k)

Lk'EK /-lht(m )Wht,{ml,m2)(k') "

I

Lemma 3.29:

Xt = (ct,dt,pt,qt) E JR for all t.

Proof: Fix ht E Ht. DenotePht(-) := PC I hd. Let Eht be the expectationwith respectto

PhI, X(X)E EQ P-a.s. (3.6.4), EQ C JR and P(ht) > 0 (lemma 3.28), hence X(X)E JR Pht-a.s.

Xht = Eht(X(X)) and JR is convex (corollary 3.17) hence Xht E JR. I
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Lemma 3.30:

1. If Ce<) and Soo exist then Ce<)E f;t1}(X).

2. If de<) and Woo exist then de<) E W~oo'

Proof: We will prove 1; The proof of 2 is similar. Fix he<) such that Choc, and Shex exist.
c(h(X))t E W~h(X))t for all t (lemma 3.29). Wi is upper semi continuous with respect to q, there-

fore Ch= E W;h(X)' I

Lemma 3.31: c7 is a martingale with respect to pk'.

Proof:
Ek'(C~+ll htJ = 2.: pk'«ht,(ml,m2)) Iht)ct,(m1,m2)

m1,m2EM

= 2.: 2.: a(k,hd(ml)Aht(m2)ct,(m1,m2) = L a(k,ht)(ml) 2.: AhJm2)ct,(m1,m2)
m1EMm2EJ\1 mIEN! m2EM

= 2.: a(k,hd(ml)ct=ct=Ek'(c~lhd
m1EM

I

a~, = c~, pk'-a.s. (because (coo, de<)'woo, soo) E EQ Pcr,r,p.q-a.s., hence also pk'-a.s. and ax,
and Too are equilibrium strategies in G with payoffs c,X)and doo whenever (coo,doo,Poc"q,X») E EQ),
therefore Ek'(a) = ak (lemma 3.31). Similarly gl(b) = bl. We have to show that no player can

get more by using a different strategy. We will prove it for player 1. Assume that player 2 plays T

and player 1 plays a'. Denote by J-l~t(ml) the probability of player 1 sending the message ml after

history ht, using a'. AhJm2) is the probability of player 2 sending m2 after hi.

Lemma 3.32: {cd~o and {sd~o are martingales with respect to P;;,r'

Proof: We will prove this only for {cd ~o . The proof for {sd ~o is similar.

E~;,T(Ct+l IhtJ = L 2.: a~(k,htJ(ml)Aht(m2)cht,{ml,m2)

mIEMm2EM

= 2.: a~(k,htJ(ml) 2.: Aht(m2)Cht,(m1,m2)= 2.: a~(k,hd(ml)cht=Cht=E;;,r(ctlhtJ
mIEM m2EM m1EM

.

{Ct}~o and {sd~o are bounded martingales with respect to P;;,T' hence they converge P;;,T-a.s.
to Ceoand Seo respectively, and Ct = E:;, T(coc>I ht). Therefore

k k E k' k
I h )a = Co = crJ,T(CCX'0

Define a~ := LIEL qoo(l)Ak,l(a'(k, hco), T(l, hoc;)).
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Lemma 3.33:
ck > a/k pk. -a sCXJ

-
CXJ (J',T ..

Proof: limt--CXJ(ct,St) exists P;;T-a.s. and equals (cCXJ,sCXJ)' From lemma 3.28 WCXJ= PCXJand

SCXJ= qCXJ'There are 2 cases to co~sider (when (cCXJ,qCXJ)= (cCXJ,sCXJ)exists):

1. dCXJand PCXJexist and (cCXJ'dCXJ)is an equilibrium in G(pCXJ'qCXJ):In this case player 2 plays

ticoo,doo,poo,qoo,hence player 1 can get no more than CCXJ'Hence c~ 2': a~.

2. dCXJor qCXJdo not exist or (cCXJ'dCXJ)is not an equilibrium in G(pCXJ' qCXJ): In this case player 2

plays (3coo,qooguaranteeing that player 1 will not get more than CCXJand again c~ 2': a,/::,.

I
From lemma 3.33 follows:

I

ak = E~;,T(C':x,) 2': E~;,Aa/cx,) = E~;,T(a)

4 On the number of possible messages

In this section we provide an example of a game, for which there exists a pair of payoff vectors,
(c, d), such that (c, d) is an equilibrium when there are at least 3 possible messages, and is not an
equilibrium when there are only 2 possible messages (Moreover, with 2 messages one can not obtain
(c,d), neither any equilibrium payoffs 2': (c,d)). Analogous examples can be built showing that for
every natural number n, there exist a game and a pair of payoff vectors, (c, d), such that (c, d) is
an equilibrium when there are at least n possible messages, and is not an equilibrium when there
are less than n possible messages.

We define a game f(p, q, M) with independent incomplete information on both sides. Let J( =
L = {I, 2, 3} and p = q = O'~, ~). Let
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=
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(

0 0
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(

0 0

n
B3" ~(

0 0

n
0 0 0 0 0 0
0 0 0 0 -3 -3

Proposition 4.1: Let c = d = (1,1,1).

1. IfIMI2:: 3 then (c,d) are equilibrium payoffs in f(p,q,M).

2. If IMI = 2 then (c, d) are not equilibrium payoffs in f(p, q, M).

Proof: Note that for every k E J( and I E L the following holds:

Ak,l (i " ) +
Bk,l (i, " ) = {

2 if j = k an.d i = I, J J
0 otherwIse

Therefore (c, d) will be achieved if and only if in the action phase of the .game, player 1 plays i = 1
and player 2 plays j = k. This can be done only after complete revelation of the private information
of the two players (k and 1).

If IMI 2:: 3 the two players can reveal k and 1 simultaneously in the first period of the talk phase
of the game. Then in the action phase player 1 plays 1 and player 2 plays k. These are clearly
equilibrium strategies of f(p, q, M) with payoffs (c,d). Formally, let M = {ZI, Z2,Z3, ..., ZIMI}'
Denote by mi and m; the tth messages sent by player 1 and player 2 respectively. The equilibrium
strategies are as follows: In the first period of the talk phase player 1 sends the massage mi = Zk

and player 2 sends the massage mi = Zl (i.e, 9 a(k, ho) = Zk for all k E J( and T(/, ho) = Zl for all
I E L). For t > 0, a(k, ho) and T(l, ho) can be chosen arbitrarily, as they have no influence on the
action phase. In the action phase player 1 plays according to mi (which is according to I), i.e, he
will play the action 1 if mi = ZI , 2 if mi = Z2 and 3 if mi = Z3. similarly, player 2 plays according
to mi. The payoffs obtained by this pair of strategies are clearly (c, d). To see that the strategies
defined above are equilibrium strategies, note that no player can gain more than 1 by deviating in
the action phase. By deviating in the talk phase a player can make the other player change his
action in the action phase of the game. This may bring him a payoff of 3 instead of 1 in one of the
payoff matrices (and with probability ~), but this can not be made without receiving payoff 0 with
probability ~, and the expected payoff can not exceed 1.

If IMI = 2 the private information can not be totally revealed in one period. Assume that there

exist equilibrium strategies in which the two players reveal k (player 1) and 1 (player 2) during the
talk phase of the game and then play i = 1 (player 1) and j = k (player 2) in the action phase of
the game. Assume also that M = {ZI, Z2}. At least one of the players must receive some of the
information of the other player before revealing all of his. Assume w.l.o.g that this is player 1 and
assume that t+ 1 is the first period in which information is being revealed. This means that there
exists an history ht such that P(ht) > 0 and PhI = qht = (~,~,~) and q(ht,{ml,zl)) 01 (~,!,!) (for all
mI). w.l.o.g assume that q(ht,(ml,zIJ)(l) > ~ and q(ht,(ml,zl))(2) < ~. Given (ht, (mI, zlJ) and k = 1

9despite the abuse of notation Zk also denotes the probability vector in 2.(1\1) which gives probability 1 to Zk"
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player 1 will get 3 X q(ht,{ml ,Zl))(1) > 1 by making player 2 think that k oJ 1 (i.e, switching to the
strategy that he should play given k = 2 or to the strategy that he should play given k = 3. Using
this strategy player 1 will get a payoff of 3 when I = 1, Le, with probability q(h,,(ml,zl))(l), and
0 otherwise, having expected payoff of 3 X q(h,,(ml,zJ))(I) > 1 ). This can not be done only when
P(h,,(ml,zl))(1) E {a, I}. We assumed that these are equilibrium strategies, therefore player 1 can not
achieve more than 1, and therefore P(h,,(ml,zl))(1) E {a, I}, hence also P(h,,(ml,z2))(1) E {a, I}. Now,

q(h,,(ml,z2j/2) > ~ (because q(h,,(ml,zJ))(2) < ~) and as before we must have Ph,,(ml,m2)(2) E {a, I}
for all m E M and therefore also Ph,,(ml,m2)(3) E {a, I} for all m2 E M, which means a complete
revelation of k in one period - a contradiction. I

Remark: Analogous examples can be built for every n 2: 2, i.e, for every n 2: 2 there exists a
game and two payoff vectors (c, d) such that

1. If IMI2: n then (c,d) are equilibrium payoffs in f(p,q,M).

2. If 1M! < n then (c, d) are not equilibrium payoffs in f(p, q, M).

One way is to define n2 games, in which the sets of actions are of size n. Let J( = L =
{1,2,3,...,n} p = q = (~,~,...,~). The structure of the n X n payoff matrices is similar
to the structure of the 3 X 3 matrices defined above:

Ak,l(l,k) = Bk,l(l,k) = 1 for alll:S:: k,l:S::n

Ak,k(k,j) = n , Ak,k(j, k) = -n , Bk,k(k,j) = -n , Bk,k(j, k) = n for all k oJj

and Ak,l(i,j) = Bk,l(i,j) = 0 otherwise
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