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Abstract

We provide a characterization of the set of equilibria of two-person cheap-talk
games with incomplete information on both sides. Each equilibrium generates a
martingale with certain properties and one can obtain an equilibrium from each
such martingale. Moreover, the characterization depends on the number of possi-
ble messages. It is shown that for every natural number n, there exist equilibrium
payoffs that can be obtained only when the number of possible messages is at
least n.
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1 Introduction

Cheap-Talk is a communication that costs nothing and occurs before the players choose their
actions. The payoffs to the players depend only on their actions and not on the messages that
were sent during the Cheap-Talk phase. Cheap-Talk with Incomplete Information is a three phase
game. In the first phase the players receive their private information, in the second phase they
talk (communicate) and in the last phase they choose actions and get payoffs. Again, the payoffs
depend only on the actions. The players can use the Cheap-Talk to transfer information and to
choose an equilibrium from a possible set of equilibria. The players can also ignore the Cheap-Talk
and in this case the set of equilibria is the same as in the Incomplete Information game without
Cheap-Talk. The Cheap-Talk enlarges the equilibrium set, and a question that rises in this setup
is the structure of the new set.

A full characterization in the Two-Player One-Sided Information case was given by Aumann and
Hart (1996). In that work they show that the concept of a bi-martingale, first used to characterize
the equilibrium set of Repeated Games with Incomplete Information on One Side (Hart 1985,
Aumann and Hart 1986), is applicable also in the Cheap-Talk games. They also show that the
set of possible messages does not affect the equilibrium set, provided that it includes at least two
different messages.

In this work we study the general (finite) two player case. In the Two-Sided Information case
we show that bi-martingales are replaced by an appropriate class of “admissible martingales”.
However, these do not have all the nice properties of bi-martingales. In particular, the size of the
set of possible messages does affect the equilibrium set, and in a very strong sense, as an example
will show.

In section 2 we discuss some general properties of games with incomplete information and in
section 3 we define the notion of admissible martingales and state the main results. In section 4 an
example is analyzed. The three sections are independent and can be read in any order.

2 Games with Incomplete Information

2.1 The model

We define two games - G and I'(M). G is a (finite) game of incomplete information, and T'(M ) is its
cheap-talk extension. In I'(M) the cheap-talk occurs after the players have received their private
information.

o G =(N,(Cr)nenNs(Kp)neN, (Pr)neN, (tn)nen) is defined by the following:

1. N is a finite set of players. Without loss of generality (and some abuse of notation) we
assume that N = {1,2,3,..., N}.

2. Cy is a finite set of actions for player n € N. Let C := [[,enCr and C_,, =
[Tnen\n} Cm-

3. K, is a finite set of types of player n € N. Each player n € N knows his own type
kn € K. Let K :=[],en Kn and K_,, := HmEN\{n} K,,.



4. pp: K, — A(K_,) for ! all n € N. The belief of type k,, of player n is p,(k,). We will
denote p,(ky) by px,, hence pg, (k_,) is the probability assigned by type k, of player n
to the combination of types k_, € K_,.

5. u, : C x K — R is the payoff function of player n. That is, u,(c, k) is the payoff of
player n for the profile of actions ¢ € C' and profile of types k£ € K.

6. The game is played as follows: each player n € N chooses (simultaneously) an action
cn € Cp. Let ¢ := (¢p)nen. The subjective expected payoff of type k, € K, of player
n € N is:

Ey,(c) = Z Un (€, (kn, k—r))Pkn (k—r)

k_n€K-n

7. 1,2,3,4,5 and 6 are common knowledge.

e The game I'(M) = (N, (Cr)nen, (K )nen, (Pr)neN, (Un)nen, M) is defined by 1,2,3,4,5 and
in addition:

8. A finite set M, the set of possible messages in the talk phase. We assume that |M| > 2.
9. The game I'(M ) has two phases:

The Talk Phase : This phaseis divided into periods t=1,2,3... . Foreachtandn € NV,
player n chooses a message m} € M. The choices are made simultaneously.

The Action Phase : Each player n € N chooses (simultaneously) an action ¢, € C,,.
Let ¢ := (¢y)nen. The subjective expected payoff of type k, € K, of player n € N
is (see item 6 above): Ey (¢):= 3 p  ex_ tn(c,(kn,k_n))pr,(k_n)-

10. All players have perfect recall.

11. 1,2,3,4,5,8,9,10 are common knowledge.

Definition 2.1:  The beliefs (p,)nen are said to be (Harsanyi) consistent if there exists a
common prior distribution on K, P € A(K), such that

P(ky, k_p)

P(k.) for all (kp,k_p,)€ K andn € N

pkn(k—n) =

(Note that P(k,) := 3",  cx_ P(kn,l_5) ). In addition we say that the information is independent
if P=Tl,eny P" for P" € A(K,).
Note: For the results in this paper we do not assume consistency nor independence. These special
cases will be useful in our proofs.

The players have perfect recall, hence m} are functions of the history of messages of length ¢ — 1,

hioy = ((mi,m3, . omd),(md,md, ..., m)), ... ,(ml_,m? ,...,m} ). The actions, chosen by the
players in the action phase, are functions of the infinite sequence defined in the talk phase, hy :=

(mi,m?, ..,m]),(md,m2,...,md), ... (m},m?, ...,mN)...). Let H; = (MN)! be the set of histories

of length t. Define Hy = {¢}. Let Hy = Hfil(MN) be the set of infinite histories. On H,,
we define, for every ¢, a finite field H; as the field generated by the first ¢ coordinates. That is,

Hor a finite set X, A(X) is the | X| — 1 dimensional simplex of probability vectors on X.



h})O , hgo € H, are in the same atom of H, if and only if for every 1 < u < t there ? exists
Rl (u) = h% (u). Let Ho, be the o-field generated by {H;}¢2, . Our basic measure space is ({2, .4)
= (KX Ho xC , 2% ®Hoo ®29). A point in Q is a triple (k,ho,c), where k € K is a profile
of types, ho € Ho is an history of the game (the communication that took place) and ¢ € ' is a
profile of actions.

Since I'(M) is a game with perfect recall, we can restrict ourselves to behaviour strategies (see
Aumann 1964). To shorten the writing, whenever we write ’strategy’ we will mean a behaviour
strategy.

Definition 2.2: A strategy o™ of player n € N in G is a function o™ : K,, — A(Cy).

Let W™ be the set of strategies of player n € N. Denote ¥ := [[,cn U™ and 7" := [[eny ) ¥

Definition 2.3: The subjective payoff of type k, of player n € N, given a profile of strategies
a=(a',a? ...,aV)is

Ean(a) = Z Pk, (k—n) Z wn(e, (kn, k_pn )Hak Cm)

k_n€K_p, c=(c1,¢2,...,cN)EC meN

Definition 2.4:
A strategy o™ of player n € N in T(M) is 6™ = ({07}1eN » 01%) such that:

1.0} K, X Hi—y — A(M) for all t € N.
2. 0% K, x Hye — A(C)).
3. o7 is 2/ @ H,,-measurable.

Note that in I'(M) the strategy has a talk component, {07} N, and an action component, o7,
Let X" be the set of strategies of player n for n € N. Let ¥ := [[,cn X",

Every pair (0,k) € ¥ x K defines a probability measure 7,1 on (Hoo,Hoo), 1€, let hy :=
(ml,m¥, .. ,mP),(ml,mi, ...,m3),....(mi, m2,...,m})), then 7, x(h;) is the probability that the first
message sent by player 1 is ml, the first message sent by player 2 is m?, the second message sent
by player 1 is ml, and so on, given that k = (kq, kg, ..., k) is the profile of types and player n plays

according to o™ (o = (o!,02,...,0N)) forall n € N.

Definition 2.5: The subjective expected payoff of type k, in ['(M), given a profile of strategies

o= (o, 0%, ...,aM), is:
EE™o)i= S prlhen) S tn(e (hns ko / T o7 (ks hooY(em)do s hoc)
ken€K_pn c=(c1,¢2,....¢cN)EC Heo meN

Definition 2.6: a € [,y RE" = RUrenBn is an equilibrium payoff vector in G if there exists
o, a profile of strategies, such that

1. a* = Egl(a) forall n € N and &, € K.

heo(u) is the vector of N messages sent by the players at period u, according to the infinite history hoo
°N denotes the set of natural numbers {1,2,3,...}.



2. akn > E,?n(a’",a‘”) forall n € N, k, € K and o™ € ¥".
Let £¢ := {a € R¥~eNKn gt g is an equilibrium payoff vector in G'}.

Definition 2.7: a € RUren&n is an equilibrium payof f vector in T(M) if there exists ¢ € ¥ (a
profile of strategies) such that

1. af = E,l;fM)(U) foralln € N and %, € K.

r

2. akr > Ek(M)(a’",a‘”) forallne N, k, € K and o™ € ¥%.

n

Let E'M) .= {q € RUneNKn 5.t g is an equilibrium vector payoff in I'(M)}.

2.2 On some properties of games with incomplete information

Definition 2.8:  The games G' = (N',(C}) ents (K} ) nents (Phnents (uh)pent) and G2 =
(N2, (C2)nenz, (K2)nen2y (PE)nen2s (u2),en2) are equivalent if the following holds:

1. N\ =N2=N.
2.Cl=C?=C,foralln € N.
3. K]l = K!=K, forallne N.

4. E,g’:(a) = Eg%(a) forall n € N, k, € K,, and o € ¥ (note that 1,2 and 3 implies ¥! = W2 =
V).

Remark: Instead of the last condition we could use:

5. For every n € N and k, € K, there exists a,, > 0 and b, such that Eg(a) = anEgj(a) + b,
forall o € .

Definition 2.9: The games FI(M) = (va (Crlz)nGNl ) (A’rlz)nGNl > (p}z)nENl > (u}L)nGNl > M) and
I3 (M) = (N2 (C)enes (KD nenzs (P2)nen2s (u)penz, M) are equivalent if the following holds:

1. N'=N?=N.

2.Cl=C2=C,forallneN.

3. K1 =K?= K, foralln€ N.

4. E]IC:(M)(U) = E{:(M)(a) foralln € N, k, € K,, and 0 € ¥.

remark: similar definition can be defined for repeated games.

Following Myerson (1991) we can state the following theorem:

Theorem 2.10: FEvery finite game with incomplete information is equivalent to a game with con-
sistent and independent incomplete information.



Proof:
Fix a game G = (N, (Co)nenN, (Kn)nenNs (Pr)nen, (Un)nen). We define a game, equivalent to G,
:(N, (Cn)nGN’ (A’n)nENv (i)n)nGN» ({’/n)nEN) by:

1
P, (k) = HT—T foralne N, k,€ K, and k_, € K_,.

and
tn(c, k) = | K_n|pg, (k—n)un(c, k) forallne N, k, € K,, and k_, € K_,,.

ES ()= S pra(kon) 3 (e, (knyk_)) TT Z.(cm)

k_n€K_n c=(c1,62,.-scN ) EC mEN
1 .
= Z E—| Z | K —npk,, (k—n)un(c, (kn, k_p, H ap (em)
k_n€K_, -n e=(c1,¢2,....cN)EC meN
- Z Phn(k-r) Z un(e, (kn,k_n)) H a}?m(cm) = E/?n(a)
k-n€K_n c=(c1,¢2,...,cN)EC meN

Hence G and G are equivalent and G is a game with independent incomplete information. §

In general theorem 2.10 is not correct for specific families of games with incomplete information.
For example, zero-sum games with incomplete information are not always equivalent to zero-sum
games with independent incomplete information (and indeed the characterization of zero-sum games
with independent incomplete information is in general simpler than the characterization of the
general (even the consistent) zero-sum games with incomplete information). The transformation
in the proof of theorem 2.10 changes zero-sum games with incomplete information into games
with independent incomplete information that are not necessarily zero-sum. On the other hand

theorem 2.10 is still correct for cheap-talk games and for repeated games as the following theorem
shows.

Theorem 2.11: Every cheap-talk game with incomplete information is equivalent to a cheap-talk
game with consistent and independent incomplete information.

Proof:

Fix a game T'(M) = (N,(Cpn)neNs (Kp)nenNs (Pn)neN, (Un)nens M). We define a game, I'(M)
= (N, (Cr)nenN, (K )neN, (Pn)nens (tn)nen, M), equivalent to T(M), by pi, (k_n) := ﬁ and
Up(c, k) == |K_p|pr,(k=rn)un(c, k) for all n € N, k, € K, and k_,, € K_, (this is the same
transformation used in the proof of theorem 2.10).

EEM = Y k) Y (ks e /H " By hoo )€ )dTo 1( Boc)

k-n€K_n c=(cl,cz,...,cN)€C *® meN

I

) Ile—I S Kl (ko n (e (on k) / TT 07 (ks o) ()T k(o)

kon€K_qn c=(c1,¢2,..,cN)EC *© meN
= Y i) S we kn,k_n)/ T 07 (kums oo} () 7o k(o) = EEM(0r)
k_n€K_n ce=(c1,c2,...,cN)EC *® meN



Hence T'(M) and f(M) are equivalent and f(M) is a game with independent incomplete informa-

tion. I

Remark: The analogous theorem is correct for repeated games (with and without discounting).
The transformation used in the proof of theorems 2.10 and 2.11 may fail to preserve a known-

own-payoffs property (private value assumption, i.e u,(c,k) = un(c,ky) forall n € N, ¢ € C and

k = (ky,ka,...,kn) € K). This problem can be solved using the next definition and theorem.

Definition 2.12: G' and G? are semi — equivalent if £G4 = £9°, I'Y(M) and T?(M) are
semi — equivalent if ELHM) — gl*(M)

Theorem 2.13: every game with incomplete information is semi-equivalent to a game with known
own payoffs and with the same information structure (i.e, N, (K,)nen and (pp)nen are not

changed).

Proof: Fix a game G = (N,(Cp)nen, (Kn)neN, (Pn)neN, (¥n)nen). Let Z be the upper bound of -
the absolute value of the possible payoffs, that is Z := max,en,cec kek {|un(c, k)|}. We define a
game, Selni'equiva’lent to Ga G:(N7 (Cn)nENa (I(n)nENa (pn)nENa (ﬂn)neN) by:

1. For all n € N de]‘ine C, = UkneKnék", where C*n is a set ~isomorphic to (), with the
isomorphism s, : C** — C,. Denote Sn = Ukn ek, Skn (i-e, s : C,, — C},). Define a function
k™ . C, — K, by k™(é,) = k, if é&, € C*n.

2. Foralln € N, é = (é,¢2,....,¢N) € [Tmen Cp, and k = (k1,ke,....,kn) € K define:

i (é k) L un((sl(él)v~--73N(6N))7(k1(61)5"'7kn_1(6n—1)7knvkn+1(€n+l)a---akN(éN))) gn € ék"
e —(Z+1) otherwise

G is a game with known own payoff property. We will prove now that G' and G are semi-equivalent.

Fix a € £°. ‘We will show that a € £Y. There exists a € ¥ satisfying items 1 and 2 of definition 2.6.
Define & € ¥ by:

n oz ) 0p (Sk,(En)) & € Chn
¥ (En) 1= { 0 otherwise

forall n € N, k, € K, and é, € C,. Despite the abuse of notation we will denote by ¢,, the
strategy that assigns probability 1 to the action ¢,,. Now Eﬁ(d) = ay, foralln € N and k, € K,

and Ei(d‘”,é;) < Ef (07", 8,(8)) < ay, foralln € N, k, € K, and &, € Cn, hence a € £9.
Thus we proved that £ C €. to prove that £% D £% fix a € £Y. There exists & such that

1. E¢ (@) = a, for all n € N and ky, € K,.
2. E,?n(d‘",é’n) <ag, forallne N, k, € K,, and &, € Ch.

The second condition implies that @, (¢,) = 0 for all ¢, ¢ Ckn (i.e, ag, (.C"k") =1). Define a € ¥
DY ek, (Cky) := @k, (Gk,)). B (@) = EF(6) = a and EF (a7, ¢}) = EJ (a7, s/ (c},)) < ay, for
alln € N, k, € K, and ¢, € C,,. Hence a € £°. I



Remarks:

1. Theorem 2.13 is also correct for cheap-talk games. One can prove it using the same transfor-
mation defined in the proof of theorem 2.13.

2. Theorem 2.13 is correct for repeated ﬁames with discounting. Here the transformation should
be slightly changed, putting — 2§+1 in the definition of @, instead of —(Z 4 1), for A-
discounted games.

3. This will not work in the case of repeated games (where the payoff is defined to be the limit of
means), as the expected payoff of a player is not affected by the payoff from a finite number
of periods. And indeed the theorem is not true for repeated games, as every equilibrium in
repeated games with known own payoffs can be achieved by complete revelation of all the
information in the first period of the game (Shalev (1994), Koren (1988)). This is not true in
general for repeated games.

4. Theorem 2.13 is correct for stochastic games, and for repeated games with absorbing states.
Here the —(Z+1) should be replaced by an absorption with probability 1 and payoff —(Z+1).
(in discounted games j2§_+11)

5. The finiteness condition is not essential. We only need u, to be bounded for every n € N.

3 Characterization of the set of equilibria

We characterize the set of equilibria for two player cheap-talk games. Using theorem 2.11 we
can assume that the game is of independent incomplete information (using theorem 2.13 we can
even assume that the game is with known own payoffs, but this assumption does not make the
characterization simpler). In section 3.1 we define the model and in section 3.2 we introduce
the concept of admissible-martingales. The geometrical properties of admissible-martingales are
discussed in section 3.3 and in section 3.4 we give the main result.

3.1 The model

We repeat the definitions, given in the previous section, because here we deal with two-player games
with consistent and independent information, which enable us to simplify the notations. In addition
we insert the information structure (p, ¢) explicitly into the notations of the games. We define two
games - G(p,q) and I'(p,q, M). G(p,q) is a game of incomplete information on both sides, and
I'(p,q, M) is its cheap-talk extension. In T'(p, ¢, M) the cheap-talk occurs after the players have
received their private information.

o G(p,q) is defined by the following:

1. Two players: player 1 and player 2.
2. A finite set of actions I for player 1, and a finite set of actions J for player 2.

3. Two finite sets, K and L, such that to each pair (k € K,l € L) there corresponds a pair
of I x J matrices (AR! | BB, ARb = (ARG, ) )ierjeq » B = (B5Y(4,5))ierjes-



4. Two probability vectors: p € A(K), p = (p(k))kex and ¢ € A(L), ¢ = (¢(1))ieL-

5. The game G(p, q) has two phases: *

The Information Phase : Nature chooses k € K according to p and 1 € L according
to q. The choices are made independently, i.e, Prob(k = k and 1 = 1) = p(k)q({). k
is told to player 1 and 1is told to player 2.

The Action Phase : Player 1 chooses ¢ € I and player 2 chooses j € J. The choices

are made simultaneously. The payoff to player 1 is Ak*l(i,j) and the payoff to player
2 is B¥1(i, ).
6. 1,2,3,4,5 are common knowledge to both players.
e The game I'(p, q, M), a cheap-talk extension of G(p,q), is defined by 1,2,3,4 and:

7. A finite set M, the set of possible messages in the Talk phase. We assume that |M| > 2.
8. The game I'(p, ¢, M) has three phases:

The Information Phase is the same as in G(p, ¢).

The Talk Phase : This phase is divided into periods t=1,2,3... . For each t, player 1
chooses a message m} € M and player 2 chooses a message m? € M. The choices
are made simultaneously.

The Action Phase : Player 1 chooses an action ¢ € I and player 2 chooses an action
7 € J. The choices are made simultaneously. The payoff to player 1 is Akvl(i,j) and
the payoff to player 2 is Bkvl(i,j).

9. The players have perfect recall.
10. 1,2,3,4,7,8,9 are common knowledge to both players.

The players have perfect recall, so m} and m? are functions of the history of length ¢t — 1, h;_;

:= ((m],m?),(m},m3),...,(m{_y,m?_;)). The actions, chosen by the players in the action phase,
are functions of he, := ((m},m?),(m}, m2),...,(mi, m?),...), the infinite sequence defined in the

talk phase. Let H, = (M x M)' be the set of histories of length ¢. Define Hy = {¢}. Let H,
= [121(M X M) be the set of infinite histories. On H, , we define for every ¢, a finite field H,.
R, , A% € H,, are in the same atom of H; if and only if for every 1 < u < ¢ there ° exists
hl (u) = h% (u). Let Hy be the o-field generated by {H;}52, . Our basic probability space is
(QA) = (KXLXxHoxIxJ 28028 @Ho ®2! ®27). A point in Q is a five-tuple (k. 1, hoo, 1, 75),
where (k,1) is a possible state of nature, ho, € Ho, is an history of the game (the communication
that took place), ¢ is an action of player 1 and j is an action of player 2. Defining sequences of
random variables, we will use the following notation: a4, by, ¢y, ... will usually be random variables
measurable with respect to (H;, H;), and ap,, by,, ch,, ... will denote a;(hy), bs(he), ci(hy),... . For
z € A() and y € A(J) we will write A*!(z,y) instead of Yieljed z(i)y(j) A4, 7) and B (2, y)
instead of 3", icy :v(i)y(j)Bk’l(i,j).

Since I'(p,q, M) is a game with perfect recall, we can restrict ourselves to behaviour strategies
(see Aumann 1964). To shorten the writing, whenever we write ’strategy’ we will mean a behaviour
strategy.

*This is an equivalent model to the model described in chapter 2. k and 1 are the types of the players.
®heo(u) is the two messages sent by the players at period u, according to the infinite history Aco.



Definition 3.1:
A strategy o of player 1 in T'(p,q. M) is 0 = ({0¢},cN » 0co) such that: 6

1. oyt K X Hi1 — A(M) for all t € N.
2. 00+ K X Hoo — A(I).
3. 00 is 2 @ Hoo-measurable.
A strategy T of player 2 in I'(p,q, M) is 7 = ({7 };eN » Too) such that:
1.7 L x Hi_y — A(M) for all t € N.
2. Too : L X Hoy — A(J).
3. Too is 2L ® H..-measurable.

Let ¥ be the set of strategies for player ¢ for ¢ = 1,2. Denote:

— klo: - Elo: -
= enamax L AAR DL BRG I}

That is, Z is the upper bound of the absolute value of the possible payoffs.
Now we define the equilibrium in the game G(p, ¢). Later, we will use the equilibrium in G(p, q)
in the characterization of the equilibrium in the cheap-talk extension I'(p, ¢, M).

Definition 3.2: ’
a € [0,Z)8 and b € [0, Z]" are equilibrium vector payof fs in G(p,q) if there exist « € (A(I))A
and 8 € (A(J))* such that:

3.2.1 @ = Yep q(H)AR ok, 8Y) for all k € K such that p(k) > 0.
3.2.2 bl = ek plk) B (a®, B1) for all | € L such that ¢(I) > 0.
3.2.3 af > Y cr (AR (7, 8Y) for all k € K and v € A(I).
3.24 b > ¥ e p(k)BR(a*,6) for all | € L and 6 € A(J).

Note the difference between definition 3.2 and definition 2.6. In definition 3.2 we allow a* to be
greater then the payoff of type & when p(k) = 0. ‘

Going back to the Cheap-Talk extension, we need a few definitions. Every 4-tuple (o, 7,k,) €
Y! x ©2 x K x L defines a probability measure okl o0 (He, Ho ), ie, for an history h, :=
((mi,m?),(md, md), ..., (m},m?)), 7y, r1(h:) is the probability that the first message sent by player
1 is m{, the first message sent by player 2 is m?, the second message sent by player 1 is m}, and
so on, given that k = k, 1 = [, player 1 plays according to ¢ and player 2 plays according to 7. We

derive from 7, ;1 another probability measure on (Hoo X K X L , Hoo ® 2K & QL)

Pa,T,p,q(htv k‘, l) = p(k)qu)ﬂ-a,r,k,l(ht)

Note that Py ., q(k = k,1=1) = 3 p.en, Porpalhs, k1) = p(k)gq(l). Denote by E, ., , the expec-
tation with respect to P, ;, .. We will denote P, , (- |k =k), Esrpo(- | k=k), Prrpol-|1=1)
and E,,pq(-|1=1) by P**(-), E**(:), P"!(-) and E"!(-) respectively and P, ,,, by P. Denote by
a and b the (random) payoff of player 1 and player 2 respectively.

5N denotes the set of natural numbers {1,2,3,...}.



Definition 3.3:
a € [-Z,Z)K and b € [-Z, Z]" are equilibrium payoffs in I'(p,q, M) if there exist o € ©! and
T € ¥? such that:

El: a*=E,,,.a|k=k)for all k € K such that p(k) > 0.
E2 : b= E;;,4b|1=1)foralll € L such that ¢() > 0.
E3: ¢*>E, . (alk=Fk)forall k€ K and ¢’ € T1.

E4: b/ >E, 1, ,(b|l=10)forallle L and 7 € £2

We need some notations. Let @ := [-Z, Z]¥ x [-Z,Z]" x A(K) x A(L). That is, a point in
Q is a 4-tuple (a,b, p, q) such that a is a vector payoff of player 1, b is a vector payoffl of player 2,
p€ A(K) and g € A(L).

Let
EQ := {(a,b,p,q) € Q s.t. (a,b) are equilibrium vector payoffs in G(p,q) }

3.2 Basic Definitions

In this section we introduce three definitions, based upon the concept of admissible split. We will
try to explain the motivation for these definitions. Assume that I'(p,q, M) is a Cheap-Talk game
with independent incomplete information. Let (a,b) € RX x RY be equilibrium payoff vectors in
I'(p,q, M), and let o and 7 be strategies (of player 1 and player 2 respectively) that implement
the equilibrium. Let a1 ,,> and b,,1 ,,> be the expected payoff vectors after the first period (i.e,
after each player sent one message), when player 1 sent m! and player 2 sent m?. For k € K let
Pm1t.m2(k) be the a posteriori probability that player 2 assigns to the event of k£ being the k chosen
by nature, given o and m!. For [ € L let @2 m2(l) be the a posteriori probability that player 1
assigns to the event of / being the 1 chosen by nature, given 7 and m?. Clearly p,,1 .2 = Pt 2
for all m'? and Gt m2 = Qpn 2 for all m’t. Let u(m') be the probability of player 1 sending the
message m! in the first period, given ¢ and let A(m?) be the probability of player 2 sending the
message m? in the first period, given 7. a1 := 3 2eps A(m?)a,,1 2 is the expected payoff vectors
of player 1 after sending m!. Note that a,,; < a (i.e, a¥, < a* for all k € K) for all m! € M,
otherwise player 1 will gain more than a by sending m' with probability one, in contradiction to
the assumption that ¢ and 7 are equilibrium strategies. On the other hand 3 1¢cp u(m?t)a,n = a,
therefore a,,1 = a when p(m') > 0. Similarly b2 := 3, .1car p(m!)byn1 2 < b and b2 = b when
A(m?) > 0.

Denote by [n] the set {1,2,3,...,n}. A split is a convex combination of a scalar or a vector, i.e,
if @ € R then (ay,as,...,a,; 1) € (R)™ x A([n]) is a split of a if "7, u(i)a; = a. For example
3= i -0+ % -24 % -5, thus we say that the scalar 3 can be split into 0,2 and 5 with probabilities
%,% and % respectively. Or in shorter writing, (0,2,5;(i, %,%)) is a split of 3. We are going to
define two types of splits. We start with an example.

(3,2) is split into
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This split is called a split of type 1 of (3,2) and is read as follows: the vector (0,0) has probability
1.2 the vector (5, 3) has probability 2-2 and so on (see figure 1). In general, ({(a;,b;)}1<ij<ni 15 A)

1'5

Y

1.1 1.1 2,1

.

4 5 4 5 4 5
4 ¢ o o

1,2 1,2 2,2

4 5 s 4 5

[ 15Y
.
[CRINY
a e
[N
LM
.

u N

L
1 2 3 4 5 x

Figure 1: A split type 1 of the point (3,2)
is called a split of type 1 of (a,b) if the following holds:
L. ({(@:, b5)}1<ij<ns X A) is a split of (a,b).
2. a;;=a;; forall 1 <4,7,7°<n.
3. bij=by forall 1 <i,¢,j<n.

Note that a split of type 1 can be viewed as a product of two splits (one on the a coordinate with

the probability vector (%, %, %) and one on the b coordinate with the probability vector (%, %, %)).
However we need a more complex split, for example:

2 2 1

5 5 5
% 0,0 2,3 4,4
(3,2) is split into 3 | 2,-2 0,7 4,0
£\ 53 50 24

See figure 2. This split is not of type 1 but it has the property that the average (according to
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Y i iz
4 5
7
6
5
2.1 1,1
‘s 45
4 ® °
2
o o
3 ® ®
2 ®
1
1,2 1.1 2,2
é 5 s 45
-0 - @ -
© 1 2 3 4 5 x
-1
1,2
4 5
Figure 2: A split of type 2 of the point (3,2)
i =(%,%,2)) of the first coordinate is constant (and equals to 3) on each column, and the average

(according to A = (-g-, 2 1)) of the second coordinate is constant (and equals to 2) on each line.

This is a split of type 2. In general, ({(a:,b;)}1<i j<n; i, A) is called a split of type 2 of (a,b) if
the following holds:

Loa=3{,pwia;;forall 1 <j<m.

2.0=37" A(J)b;;forall 1 <i<n.

Note that a split of type 1 is always a split of type 2, and that a split of type 2 is a split. Similarly,
splits can be defined for vectors instead of scalars.

In definition 3.4 we introduce a combination of a split of type 1 (of (p,q)) and a split of type 2
(of (b,a)).
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Let = (a,b,p,q) € @ and let n be a positive integer. Let 5 = ({Zu,v} iy ans b A) € Q" x
A([n]) X A({n])v where Ty = (au,vabu,uapu,vv qu,v)- B -

Definition 3.4:
S is called an n — admissible split of x if ({PuvsQuw}icy yenr 4> A) is @ split of type 1 of (p,q), and
({bu,vs Cuw}ycyvens #> A) is @ split of type 2 of (b,a),ie,

Lo =370 2=y Mu)M0) 2w
2. (a) a=3)1_; AMv)ay, for all u such that 1 < u < n.
(b) b=73""—1 u(w)by, for all v such that 1 < v < n.
(¢) Puw = Pu, for all u,v,v" such that 1 < u,v,v" < n.
(d) Guw = qu o for all u,v’, v such that 1 < wu,u’,v < n.
S is called an exact n-admissible split if it is an n-admissible split and in addition:
3. p(u) > 0 and A(v) > 0 for all u, v such that 1 < u,v < n (The split is into exactly n? points).
Remarks :
1. From 1. and 2(c) it follows that p = >"7_; p(u)py, forall 1 < v < n.
2. From 1. and 2(d) it follows that ¢ = >°7_; AM(v)gy,, forall 1 < u < n.

Definition 3.5:
Let F; C F; be two finite fields (F, is thus a refinement of Fi). Let X! and X? be Q-valued
random variables, measurable with respect to F! and F? respectively. X2 is called an (ezact) n —
admissible split of X1 if for every atom f! of F1, such that P(f!) > 0, there exists an (exact)
n-admissible split 5 = ({:L‘Z’U}Ku yens My A)of gy i= E(X1] f1), such that f! is partitioned into
disjoint F2-measurable sets {fg,v}l_szt,vSn (thus Us<up<n f2, = fland f2,Nf% , =¢if us v or
v # v') satisfying:

L P(f2, | 1) = pw)A(v).

2. X? =22, 0n f2 (ie 2%, = E(X?]| f2,)) whenever P(f2,) > 0.
Let Ng be the set of non-negative integers, i.e, Ng := {0,1,2,3,...}.

Definition 3.6:

Let 2 = (¢,d,w,s) € Q. Let C C Q. An (ezact) n — admissible martingale starting at x and
converging to C is a sequence {Xi};en, = {(ct,di, e, 8¢)}eN, ©f @-valued random variables
satisfying:

3.6.1 Xp = x a.s. (almost surely).

3.6.2 There exists a nondecreasing sequence {}—t}teNo of finite fields (Fo = {¢,Q}) with respect

to which {Xt}teNo is a martingale, i.e: X, is measurable with respect to F; and X; =
E()(t-{-l | ft) a.s.

3.6.3 X411 is an (exact) n — admaissible split of X for every t € No.

3.6.4 Every a.s. limit X, of {Xt}teNo satisfies X, € C a.s.

13



3.3 The Geometrical properties of Admissible Martingales

Following Aumann and Hart (Aumann and Hart 1986) we will analyze the relations between admis-
sible martingales and admissible convex functions (definition 3.9). We will actually analyze a more
general case. Let X" be a compact convex subset of an Euclidean space. Let A be a set of probability
measures on X with finite support. We will apply this for A equals the set of n-admissible splits.

Definition 3.7: z is an A — convexr combination of ©1,z,..., 2, if there exists p € A such that
Yoiim(z;) =1and = 3, p(z;)z; (note that an A — convex combination is always a convex
combination).

Definition 3.8: ' C X is an A — convex set if it contains all the A-convex combinations of its
elements.

Definition 3.9: Let C' C A be an A-convex set. f:C — R is an A-convex function if for every
n €N, u € Aand 21,29,...,2, € C, Y i=q u(z;) = 1 implies:

n

SO () € 3 (e )

1=1
Definition 3.10: A sequence {X;};cn, of X'-random variables is an A — martingale if:

1. There exists a nondecreasing sequence {F;},.N, of finite fields with respect to which {X;};cn,
is a martingale, i.e: X; is measurable with respect to F; and X; = F(X41 | F¢) a.s.

2. For all f; € F;, with P(f;) > 0, the conditional distribution of X1 conditioned on f;
belongs to A (that is, for all f; € F; with P(f;) > 0 the probability distribution gy, defined

by ps (E(Xiq1 | fig1)) := P(fig1 | fi) satisfies py, € A).

3. X, is constant a.s.

For C' C X let
C™ = {z € X' s.t. there exists an A-martingale {X;},cN, converging to X
s.t. Xoo € C as. and Xy = @ a.s.}

Definition 3.11: Let C C B C X such that B is an A-convex set. nscc(B) is the set of all
the points in B that can not be separated from C' by any bounded A-convex function which is
continuous on €. That is, z € nscc(B) if and only if f(z) < sup.eq f(c¢) for all the bounded
A-convex functions, f, which are continuous on C.

Theorem 3.12:  Assume that C s a closed set. Then the largest set D C X satisfying D =
nscc (D) is precisely C* (i.e C* = nscc(C™) and B = nsce(B) implies B C C*).

Proof: The proof of theorem 4.7 in Aumann & Hart (1986) also applies here.

By choosing A to be the set of n-admissible splits we get that an A-martingales is exactly an
admissible martingale, hence the last theorem can be applied to admissible martingales. Similarly
bi-convex martingales are also a special case of A-martingales.
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3.3.1 Infinite Splits

We can define Infinite Admissible Splits by replacing n by oo in definition 3.4. The following
example shows that there exists a point, which is an infinite admissible combination of a certain set
of points, but not an admissible combination of any finite subset (Note that this can not happen
for bi-convex combinations).

Example:

Let @ = [0,1]% X [0,1]2 x A(2) x A(2). Let u(i) = % for all i € N and A(j) = 5 for all j € N. Let
i (0 b,pad) = (53, (3:2). (5. 2). (5. 2)). For all i, € N define i, 1= (a0.bi.pise0is) € Q
by:

1 1
Pij =i = (5,1 - g)

1 1
G = q; = (g»l - 5)

1 . .
ol o= T 2
0 0 i<j

2 :{2z+15—; 1’+52.]

b 0 i+5<j
pl. — #]’Zi
b 0 j<i

b2 = §7+15——-z' Jt+5>1
" 0 J+5<1

Lemma 3.13: ({2}, ;N i, A) is an infinite admissible split of x.
Lemma 3.14: No finite split of x can be obtained from any finite subset of {z;;}; ;eN-

Proof: Assume that ({$ik,j1}1§k,1§n7ﬂ75\) is an admissible split of z. Let tp0, 1= MmaTi<i<nis
and let joor 1= mazi<i<nji- W.lo.g assume that 4,40 > jmae- From the definition of admissible
splits we have that £ = «? = Y74 A(j1)aira, 5, but aj ;< 1 for all j # dpae + 5, iman + 6, @
contradiction to the fact that j; < i,,,, for all . i

3.4 Main Result

We can now state and prove the main result.

Theorem 3.15:

Let p> 0 and ¢ > 0. (a,b) € RE x RY are equilibrium payoffs in T(p,q, M), a cheap-talk extension
of G(p,q), if and only if there exists an |M| — admissible martingale starting at (a,b,p,q) and
converging to EQ).

We need some definitions and lemmas. Let p € A(K) and ¢ € A(L). Denote:
W) ={a€[-2, Z)¥ st. 38 € (A(J))L st Yen " (AR (v, Y < aF Vk € K and v € A(1)}.
w2:.={be[-Z, Z)E s.t. 3a € (AT s.t. Skex P(k)B¥ (k. 6) < b VIe Land b€ A(J) }.
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That is, @ € qu if and only if player 2 can guarantee that player 1 will not get more than a* for
all k£ € K simultaneously, and b € Wz? if and only if player 1 can guarantee that player 2 will not
get more than o' for all [ € L simultaneously. qu is upper semi continuous with respect to ¢, and
sz is upper semi continuous with respect to p.

Denote W' := {(a,q) € [-Z, Z]KxA(L) s.t.a € WH} and W2 := {(b,p) € [-Z, Z]" X A(K) s.t. b €
W2)}. Denote IR := {(a,b,p,q) € Q s.t. (a,q) € W' and (b,p) € W? } (i.e, IR is the Cartesian
product of W! and W?2). That is (a,b,p,q) € IR if and only if (a,b) are individually rational
payoffs in G(p, ¢) (and therefore in I'(p, ¢, M)). Note that IR C EQ.

Lemma 3.16:
W1 and W? are convez sets.

Proof: We will prove that W1l is convex. The proof for W? is similar. Let (ai,q1) € W1,
(a2,q2) € W' and 0 < 6 < 1. Let (a,q) := 8(a1,q1) + (1 — §)(az,q2). We have to show that
(a,q) € W. (a;,q;) € W! (for i=1,2), therefore there exists 8; : L — A(J) such that for all k € K

and « € A(I) we have:
> a(DAM (o, B) < af
leL
Define ! := SQI(l)ﬂl (1= 6 q2(l 3L (from the definition of g we have 228 4 (1=822() — 1 therefore

g(D) a(0)
Be ). If q( ) =0 we deﬁne B arbitrarily). For all k € K and a € A(J) we have:

Sahates) = Y a0t = Y aaieeBs 4 - 025

leL leL s.t. q(1)>0 leL s.t. ¢(1)>0 ( ) l)
=6 > aAMam)+(1-8) Y a4 (es)
leL s.t. g(1)>0 leL s.t. q(1)>0

note that ¢({) = 0 implies ¢1(!) = ¢2(1) = 0 hence
=86y aDAM (. B+ (1-8) Y @AM (a,fy) < bdaf + (1 - 6)ag = d*

leL IEL s.t. q(1)>0
1

Corollary 3.17:
IR is a convex set.

Definition 3.18:
Let hy € Hy , hs € Hy . Denote by (h¢, hs) € Hyys the history h, following hy, i.e:

(heyhs)(7) = { ha(7) fori <t

hs(i—1t) fort<i<t+s

Similarly, (h¢, heo) € Ho, denotes the history ho, € H,, following h¢. For all k., € H., and for all
t € No denote the initial -history, (Aeo(1)sheo(2), vy Poo(t))s by (heo)t . (heo)' € Hy.

16



In the next lemma we will show that we can assume that every finite history has positive probability
with respect to P, ;.

Lemma 3.19: :
(a,b) s an equilibrium in U'(p, q, M) if and only if there exist o and T satisfying conditions F'1,E2,E3
and FE4 of definition 3.3 and in addition:

3.19.1 ngf’pyq(ht) > 0 for allt € Ng and h; € H;.

Proof: It is enough to show that if o and 7 satisfy E1,E2,E3 and E4 then there exist ¢’ and 7’
satisfying E1,E2,E3,E4 and 3.19.1 . We will build ¢’ and 7’, based on ¢ and 7, such that every
message that has zero probability to be sent (after some history and according to ¢ or 7), will have
positive probability to be sent according to ¢’ or 7°. The idea is to “identify” unsent messages with
those which have positive probability of being sent. From the moment that such a message was
sent, the two players will continue playing as if another message was sent, one which had positive
probability (according to o or 7).

Formally: We will build a sequence of functions, F; : Hy — Hy, by induction, together with the
definition of ¢’ and 7°. Fyp(¢) := ¢, and we define Fiy; based on F;. Let hy € H;. Denote: 7
Ch, = {m! € M such that P, +4(mi = m! | hy) > 0} and my := min{m € Cy,}.
Dy, :={m* € M such that P, ;, (m} = m? | hy) > 0} and m} := min{m € Dy, }.
For all m € M define:

L m  for m € C}, L m  for m € Dy,
Rn (m) = { Th}” otherwise S (m) := fn%t otherwise

Now define for every m!, m? € M,k e K,l€ L :

Ft+1(hta(mlam2)) = ( Ft(ht) N (Rht(ml)75ht(m2)) )

1
oiy1(k, he)(m') := UtH(k’_f;t(ht))(Rh,(m )
A |R;, (Rp,(m?))]
2
i (L he)(m?) = Tt+1(l’ﬁ(ht))(5ht(m ))
155, (Sh,(m?))]
From the definitions we have 3.19.1 and:
Vhy Yk € K Ym' e M Z orp1(k h)(m) = ok, Fy(he))(m?)
meR; ! (m)
Y IEL Ve M Z (L h)(m) = miga(l, Fi(he))(m?)

mES;tl (m?)

Therefore if P, ;, ,(h:) = 0 then Ft_l(ht) = ¢ and otherwise:

"M being finite, is assumed to be the set {1,2,3,...,| M|} in order to simplify the writing.
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P(,,’lepiq(Ft_l(ht)) = Pyrpqlhy) forallke Kandl e L (1)

Define F, : Hoo — Ho by : for all ho, € Hy, and t € Ny (Fio(hoo )) Fi((hoo ) ). Fuo is well
defined. Now define: 0. (-, hoo) = ool Foo(boo)) s Too(*3 hoo) = Too(*, Foo(huo)). From equation ( 1)
we get that Py v, (0L (heo) =7 5 To(hoo) =8 ) = Porpgl aoo( Jheo) =7, Toolos h o) =90)
forall k € K,l € L,y € A(I) and § € A(J). For ¢” € X! let o} be the strategy ¢” in which
for every h;, every message m; ¢ Cp, is replaced by mht and every message m? ¢ Dy, is replaced
by ﬁz%t Pl (th( hee) = 8) = P'l,, AToo(r, hoo) = 6) for all ¢ € ¥, and { € L. And
Pt (b (e h o) = ) = PF(00(-h ) =) for all 7" € %2, and k € K. Therefore conditions

O'T

E1,E2,E3,E4 and 3.19.1 are satlsﬁed by ¢’ and 7. §

Definition 3.20:

Recall that a and b are the random payoffs to player 1 and player 2, respectively. Let o and
7 be equilibrium strategies in I'(p,q, M). Let h; € Hy,hoo € Hoook € K,I € L. Define: af :=
E(a| hy,k = k), bl := E(b | hy,1 = 1), pi(k) i= Pyrpolk = k| hy), and ¢(1) := Py, (1= 1] hy).
Phe = Lohiyy FPorpa(beeilhe)Phey, and qn, = 34, Porpg(hesr|hi)gn,,,, therefore {p:},cN, and
{‘It}teNo are bounded P, ; , ,-martingales and p., and go, exist P, 7, 4-a.s. (see also corollary 3.24).
Recall that m] and m? are the messages sent at period ¢, by player 1 and player 2 respectively. Let
e and by, be the R¥-valued random variable and the RE-valued random variable defined by

a];o = Z QOO(I)Ak'I(UOO(ka hoo)s Too(ls heo))
leL

and

= Poc(k)B* (000 (k, P ) Teo( 1y hisc))
keK

Note that @, is defined only when g exists and b’ is defined only when pj_ exists. aﬁm can
be think of as the expected payoff of player 1 given hy, and k = k. af = E(a%, | hy,k = k) and
b= E(b, | hs, 1= 1).

Lemma 3.21:
If (a,b) is an equilibrium in I'(p, ¢, M) and o and 7 satisfy conditions EF1,F2,E3,E{ and 3.19.1 then
there exist ' and 1’ satisfying conditions E1,E2,E3,F4, 3.19.1 and:

3.21.1 (ac,bu) are equilibrium payoffs in G(peo, qoc) for Po rpq-almost every ho

Proof: 8 ¢, exists P¥-a.s., for all k € K (because it exists P, ,,-a.s. and p(k) > 0). Therefore
for all k € K and for P*-almost every ho, we can define:

Nk = mln{z €l st Zqoo VAR (i, 7oo (1, hoo)) = max Z%o(l ARy oo (L hse)) }
leL vea)ier,

(The minimum in the above definition has no special significance. It is only a tool for choosing one
member from the set, when it has more then one member). p;_ exists for P'-almost every h., for
all | € L. Therefore for all | € L and P*-almost every ho, we can define:

6l '*mln €J s.t OokBklaookh = maX o0 Bklaookh 6
{J kezhp( (0o (ks hoc), ) §A(‘]kezlxp (Too(ks heo), 8) }

8To simplify the proof we will assume w.l.o.g. that I = {1,2,3,...,|7|} and J = {1,2,3,...,|J|}.
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~% and 6!, are measurable functions. For all h,, and k such that g, exists we have:

af . =3 qha (DAY (00o(k, hoo ), Too(l hoo)) € max > gho, (1AM (7, 7ol hoc))
leL V€A o7

hence (note that g, exists a.s.)

E(alk=k)=E(at, |k=k) < EQ_ oo(DAM (YL, 7ol heo)) | k = k)
el

(2)

If player 1 changes his strategy o, in the action phase of the game, by playing 'yfo instead of
o(k,h), it will change his expected payoff (given k = k and assuming that player 2 plays 7) from
Ea|k=k)to E(3 e qoo(l)Ak*l(y,ljoo,Too(l, hs)) | k = k). 0 and 7 are equilibrium strategies and
player 1 can achieve E(Y s qoo(I) AR (¥5, 7o0(l, hoo)) | k = k) when player 2 plays 7 and given

k = k, thus we have
E(alk=k) > EQQ qoo(DAM (15, ool hoo)) | k = k)
leL
and from ( 2 Yand ( 3)
E(a%, |k =k)=E(Q_ goa(DAM (75, ool hoo)) | k = k)
leL
hence
1 / <k 1 / , klr k

—_— ool(k)ai dP(he) = —= ok oo DA™ (VS s Too (1 hoo ) YA P (heo

ST Je o) (hoo) = 5 o P )gq (DARHYE, Too(ly hoo ) AP (o )
Therefore

poo(k)a];o = poo(k)Zqoo(l)AkJ(’ygovToo(lvhoo)) for P-almost every he.
leL

Therefore, for all £ € K and for P-almost every h,, such that p,_ (k) > 0 we have:

Y Goa (DA (00 (ky hog )y Too(l, hoo)) = max > qoe (1) AR (7, 7e0(l, o))
leL veAlD e

Similarly, for all [ € L and for P-almost every h., such that ¢..(l) > 0 we have:

D Poo(k)BM (00 (ky hoo ), Too(l, hoo)) = max > pec(k)B* (000 (K, heo), 6)
keK €al) kex

Now we can define ¢’ and 7':
For all t let o} := 0; and 7{ := 14, and

k . A - .
o/ (kyhoo) 1= Voo if pho(k)=0 an'd Gh., €T1STS
&0 Ooolky hoo) otherwise

Here 'yfoo stands for the vector in A(I) whose 7}’footh coordinate is 1 and the others are 0.

6200 if gn.. (1) = 0 and pp_exists
oo (Pooy ) otherwise

/ . —_—
0ro(heo, 1) = { 5

19
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We changed the mixed actions chosen by the players only on a subset of K x I X H,, which has
measure zero (with respect to P = P, ., . = Py 11,,). Therefore ¢’ and 7/ are also equilibrium
strategies with vector payoffs @ and b. For ¢’ and 7’ equations ( 4) and ( 5) are satisfied for al-
most every h, for all k and 1. These equations are stronger than the conditions for equilibrium in
G(Poos Goo) (definition 3.2). B

Fix (a,b,p,q), o and 7 satisfying conditions E1,E2,E3,E4, 3.19.1 and 3.21.1 .

Definition 3.22:
Denote by pp,(m!) the probability of player 1 sending the message m' after the history h; and
denote by Ap,(m?) the probability of player 2 sending the message m? after the history h,.

Hh (M tht Yoi(k,he)(m')  and A, (m?) tht (1, hy)(m?)
keK leL

3.19.1 implies that pj, (m!) > 0 and Ay, (m?) > 0 for all m!,m? € M. Define, for by € Hy, k€ K
and [ € L

X,]f = sup By rpq(al hy)
0/

t

th = sup Eyrpq(b| he)

t

Xi]f: is the supremum of what player 1 can achieve, given that player 2 plays the strategy 7 and
given hy. tht is the supremum of what player 2 can achieve, given that player 1 plays the strategy
o and given hy.

Recall that Z is the upper bound of the possible payoffs. Clearly X,’ft < Z and tht < Z. The next
lemma is the main part of the first part of the proof, and in it the admissible martingale is being
built.

Lemma 3.23:

1. Forall hy € H; and k € K there exists cﬁt € R such that:
(a) XF <cf < Z and if P¥(hy) > 0 then ¢ = Xf = E¥(a| hy).
(b) cﬁo = d*.
(c) ¢k = Ymeem Ane(m )ch for allm! € M.

2. Forall hy € H; and | € L there exists dﬁlt € R such that:
(a) Y} < dj < Z and if P'(hy) >0 thend}, =Y/ = E'(b|h).

l — nl

(b) dy, = b.
(C) délt = ZmIGM :u’ht(ml)d;u,(ml,m2) fOT‘ all m2 E M'
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Proof: We will prove the first part of the lemma (the other part is similar), using induction on ¢. For
t = 0 define cﬁo := a*. Condition (a) is satisfied for hg because o and T are equilibrium strategies.
Fix k € K, hy € H; and m'. Assume that cﬁt is defined correctly and define, simultaneously,
cit,(ml,n‘ﬁ) for every m? € M. There are two cases to consider.

case 1: P¥(hy)ay(k, hy)(m!) = 0.
In this case P (hy,(m!',m?)) = 0 for all m? € M, hence we have to prove only condition (c) and
the first part of (a). Define:

Z Aht Xh J(m1,m?) < Xht
m2eM

Using the induction hypothesis we have

U1<maxUm—Xh <cﬁ<Z—Z)\ht Y/ (6)
ZEM
and X]]L“h(mlymg) < Z for all m? € M. Therefore we can choose (simultaneously for m2) for all

m? e M, cﬁt(

ml,m2)

such that X}]fc,(mlmﬂ) < cih(ml,m% < Z, and such that (c) is satisfied :

X +(Z - Xy AN
h, (ml,m2) ‘= he,(m!,m?) hey(m?m?)) Z=U, 1 ml
’ il Z Z _ Uml

The inequality Xllft,(ml,nﬂ) < cﬁt,(ml,m2) follows from the two inequalities: Z > Xk ( and

he,(mt,m?)
cﬁ > U 1. The inequality cﬁ (m1,m2) < Z follows from the inequality Z > C}fit because the later

-U
yields — —ﬁ—— < 1. Thus, we proved that X

the proof we have to show that (c) is satlsﬁed. We have two cases to consider: If U,,1 = Z then

hey(mlm?) S clg“(ml’mQ) < Z. To complete this part of

c’fu = 7 (see 6) and for all m? € M we have cf” (mlm2) = Z, hence (c) is satisfied. If U, 1 < Z
then:
Z /\hz(mQ)c]}th,(ml,mz) =
m2eM
k
Ch _ Um]
2 MlmOXG gy + G (2 ()2 = 3 Ma(m)XE, )
m?eM T m2eM m2eM
k
Cht Uml
= m1+Z_Um1 (Z—Uml)—Cht

and (c) is satisfied.
case 2: P¥(hy)ay(k, h)(m?) > 0.
In this case P*(hy,(m',m?)) > 0 for all m? € M (recall that Ay, (m?) > 0). Define:

Ci“(ml’m2) = E¥(a | (h, (m}, m?))) < Xht (m1,m?) -

Denote (hy,(m!, m?)) by hs and we will show that ¢f = XF . The idea is that if E*(a | hy) < X}
then type k of player 1 can achieve more than E*(a) by playing ¢ and switching to a strategy
guaranteeing almost Xffs after h,, a contradiction. We will choose an arbitrary strategy ¢’ and show

21



that player 1 can gain no more than E*(a | h,), playing o' after h, and given k = k (otherwise he
can get more than Ek'(a) by playing o and switching to ¢’ after hs), hence cﬁs = X}]js. Formally,
let ¢’ be a strategy of player 1. Define ¢” as follows:

oK ) { o4 (K hg) for by = (he, hy)

!
o (k' hy) otherwise
" , . O'(’)o(k/’hgo) fOI‘ hoo = (hsvhloo)
Ok, heo) := { Too( k', hiso) otherwise

Recall that Pk'(hf) > 0. ¢ is the strategy of playing o and switching to ¢’ if h, has occurred.
Denote E¥,; - by EF and Pf//.ﬂ. by P* . Denote the set of strategies different from h; (i.e, H,\{hs})
by “not hg " o and T are equilibrium strategies, therefore

E¥(a) = P¥(h,)E*(alhs) + (1 — P*(hy))E*(a | not hy)
> P*(ho)E* (alhs) + (1 — P* (hy))EF (a | not hy)
P¥(hy) = P (hy) > 0 and E*(a | not h,) = E*(a | not h,) therefore
E*(a| hy) > EX(a| hy)
This is true for all ¢/, thus E*(a | h,) > X} and therefore E*(alh,) = X} (because E¥(a| hy) <

Xf ). Thus ¢f, = Xf . From the induction hypothesis we have cf = E¥(a| hy), therefore

cf = > ai(k, he)( Z A (m )Ch, (m1,m2) (7)
m! 8.b. oc(k,he)(m1)>0 m2eM
On the other hand:
Cht = Xht = max Z Ap (m )X
m2eM

J(ml,m?)
hence

k N
> max Ap,(m c 8
RSt St ook (m 2ZE:M A oot )

From ( 7) and ( 8) follows that for all m! such that o,(k, h;)(m!) > 0 (in case 2 always a;(k, hy)(m?') >

0) we have
Cht Z Aht ch (m!,m?2)
m2eM

Corollary 3.24:
{(ets diy e, 1) Yoo 1S @ martingale with respect to the fields {H,}5°, and the probability P:=P, ; , ;.
c: is also a martingale with respect to P* and dy is a martingale with respect to P*.
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Proof: We will prove this only for ¢; and P.

E(cipr | he) = Y P((hsy(m'ym?®)) [R)en, mimz) = Do Do Hhel )M (m)en, (m1 m2)

ml,m2eM mleM m2eM
= Z Nht(ml) Z /\ht(m2)chh(m1,m2) = Z ,uht(ml)cht = Ch, = E(Ct | ht)
mleM m2eM mleM

Define ¢y := limy_ ¢; and dy, := lim¢_, o, d;. From the bounded martingales convergence theorem
we have that these limits exist a.s.

Lemma 3.25: liminf,_.., Xf > a¥ P-a.s. forallk € K.

Let A := {ho s.t. liminf,_.., X} < a® }. We have to show that P(4) = 0. P(A) > 0 implies that
there exists | € L and k¥’ € K such that 7, ;4 ;(A) > 0 and therefore > 7 ¢(I") 7y 11 00(A) > 0
hence P(fk', (4) > 0. (6% is the strategy in which all the types of player 1 play according to

¢ in the action phase but according to the strategy of type k' in the talk phase of the game).

a;ﬁ = E:k',‘T(a];o | h) = E(’:k',ﬁ(a | hy) < X,’ft for all h;. a/f is a martingale with respect to
P:k', . hence liminf,_, Xf > liminf,;_, o a’tk = a’go is satisfied PZ:;Q J-a.s. A contradiction to

Ph, (4)>0.1

Corollary 3.26:
(Coos o) 1s an equilibrium in G(Poo, o) P-a.s.

Proof: From corollary 3.24 we have that ¢, deo, Poo and g, exist a.s. Fix & € K. For all ¢ we have
cf > X} (lemma 3.23), hence ¢£ > af, P-a.s. (lemma 3.25). If ps_ (k) > O then P(hoo)t (k) > 0 for

t
all ¢, hence P*((hy)?) = p(h”)t(:():)((hw) ) > 0 and therefore c](choo)t = E*(a% |(hw)?) (lemma 3.23).
Hence cf, = a* for P¥-almost every h., such that p,_(k) > 0, which is P-almost every A,
such that ps_ (k) > 0 (because E¥(H) = ﬁprhoo(k)dP). Now conditions 3.2.1 and 3.2.3 of
definition 3.2 follow from 3.21.1 . The proof of conditions 3.2.2 and 3.2.4 is similar. 1

Thus we get that {(cs, de, pr, g1)}ioo is an |M|-admissible martingale starting at (a,b,p,q) and
converging to EQ: Condition 3.6.1 follows from lemma 3.23 and condition 3.6.2 follows from
corollary 3.24. Condition 3.6.3 follows from lemma 3.23 and the fact that the messages of player
2 have no influence on p;, and similarly player 1 does not affect ¢;. Condition 3.6.4 follows from
corollary 3.26. This ends the proof of the first part of the theorem.

Next, we assume that {(c;, ds, wy, 8¢)} ;o0 18 an n-admissible martingale starting at (a, b, p, ¢) and
converging to £(), and we build equilibrium strategies o and 7 for a cheap-talk extension, I'(p, ¢, M)
(M :={1,2,3,...,n}), such that a will be the expected payoff vector for player 1, and b for player
2.

Lemma 3.27:
If there exists an n-admissible martingale starting at (a,b,p,q) and converging to EQ, then there
exists an exact n-admissible martingale starting at (a,b,p,q) and converging to EQ.

Proof: This lemma is analogous to lemma 3.19 , and so is its proof. One can transform 5 =
({%u,v} <y veni i A)> an n-admissible split of 2 € @, into an exact split using the following steps:
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1. Choose 1 < @ < n and 1 < & < n such that u(#) > 0 and A(?) > 0.

2. Replace z,, by:

(a) g, if p(u) =0 and A(v) >0

(b) zys if p(u) >0 and A(v) =0

(¢) zap if p(u)=0and A(v)=0

(d) 2y if p(u) >0 and A(v) >0
3. If u(u) = 0 or v = @ replace u(u) by << s.t.au(u’):O}|+1
4. If A(v) =0 or v = ¥ replace A(v) by i< <n :‘t(.a/z(vf)zo}Hl

Given an admissible martingale, one can make it into an exact one by making all the splits into
exact ones. 1

Using lemma 3.27 , we can assume that we have an exact martingale {(c¢;, dy, wy, 8¢)}52, starting
at (a,b,p,q) and converging to FQ. Let z; := (¢4, dg, wy,8). Let f' € F;. There is an exact
split of E(X; | f), S = ({E(z¢41 | f"t"7U)}1<u,u<n;'uft’/\ft)' Li<uwen P(fiy | f1) = 1, therefore if
E(f*1] fY) > 0then fi*1 e { fi 1< u,v <1 }. Fepr D Fi, hence for all fi+1 € F,,; such that
P(f'"1) > 0 there exists a unique f* € F; such that E(f**' | f') > 0, and therefore f*! = f!
for some (u,v) € [n] X [n]. From the last two facts we can conclude that to every f* € F;, such that
P(f') > 0, there corresponds a unique sequence from ([n] x [n])* .This map is one-to-one, since
the martingale is exact. M = [n], so to every f' € F;, such that p(f') > 0 there corresponds an
h: € H;. Denote by f;, the f* € F; corresponding to h;. We will write h; instead of fj,,. We will
Write fp,, Ahys Chyy dhy» Wh, and sp, instead of [ fn, o )\fhﬂcfht’dfht’ wg, and 8 fn, respectively. Now we
can define the equilibrium strategies. Define for h; € H;,m' € M and k € K such that wy, (k) > 0

wht,(ml,mz)(k)

ai(k, he)(m') := pp, (m') wn (F)

If wp, (k) = 0 we define o4(k, hy)(m?) arbitrarily. oy(k, hs)(m!) is well defined because Wh, (m1,m2) 18
constant for all m? € M and ¥_,,1¢p fir (M)W, (1 m2)(k) = w, (k). Define for h; € Hy,m* € M
and [ € L such that sz, (I) > 0

Shy,(m? ,mz)(l)
‘Sht(l)

If sp,(1) = 0 we define 74(I, he)(m?) arbitrarily. Again, 7({, hy)(m?) is well defined. For p' € A(K)
and b’ € Wz?’ let oy € (A(I1)" be a strategy of player 1 in G(p',¢'), guaranteeing that for every
I € L player 2 will not get more than b" (It is immediate from the definition of Wp2, that such
a strategy exists). For ¢’ € A(L) and &’ € qu, let By q € (A(J)Y be a strategy of player 2 in
G(p',q'), guaranteeing that for every k € K player 1 will not get more than a’*. For (a',b',p,¢') €
EQ let Yo prp g € (AN and 6414 g € (A(J))* be equilibrium strategies for players 1 and
player 2 respectively, with expected payoff vectors o’ and b’. Choose arbitrary o’ € (A(I))* and
3 e (A(J))L. Define: co 1= lim¢—oo €1, doo := lims oo dy, Woo 1= limy_ oo wy and oo 1= limy_ o ;-

(1, ht)(mQ) = )\ht(mQ)

24



If (€ooy Qoo, Woo, Soo) €Xists and (Coos oo, Woo, Soo) € EQ then define:

O 1= 7Cquw7wquoo (an Too += 6000 oo , Woo 1800
otherwise define:
oo e J oo if doo and w, exist o Beoose I Coo and s exist
ha o otherwise e B otherwise

Remark: we will prove later (lemma 3.30) that ., and 7., are well defined.

Lemma 3.28:
1. Pyrpqlhe) = P(fr,) >0 for all hy € Hy.
2. wh, = pu, for all hy € Hy. (recall that py,(k) := Py .,k =k | hy)).
3. Sh, = qn, for all hy € Hy. (recall that qp, (1) 1= Py pqo(l=1]hy)).

Proof: We will prove the lemma by induction. Fort = 0: hg = ¢ and P, ; p 4(ho) = P(fr,) = 1.
Why, = P = Pp, and Sp, = ¢ = qp,. Now we assume that 1, 2 and 3 are correct for h; and prove for

(ht, (m!,m?%)). The proof of 3 is similar to the proof of 2, so we will just prove 1 and 2.
1.

Py rpglhe, (mt,m?)) = Porpo(he) D pr(R)ou(k, he)(m') D an (D7l he)(m?)
keK €L

= P(fn,) Y wh,(k)oe(k, h)(m') Y sp, (D7l he)(m?)
keK ler
and from the definition of ¢ and 7

= P(fht) Z Nht(ml)wht,(ml,m"’)(k)z )‘ht(mZ)Sht,(ml,mz)(l)
keK leL
= P(fht):u’ht(ml)’\ht(mQ) = P(fht,(ml,m2))

fn (mt) > 0, Ap,(m?) > 0 (the martingale is exact) and P(fs,) > 0 (the induction hypothesis),
thus we have P(fy, (m1,m2)) > 0.
2.
B PO 9 (7 0 M T (3 L LU
oo mtm) Lwer Phe(K)oe(K h)(mb)  Ype wh (K)ae(K's he)(m?)

_ Mht(ml)whc,(ml,m2)(k)
Zk’eK Hh, (Tnl)wh:,(m1 ,m2)(k,)

= wht,(ml,m2)(k)
|

Lemma 3.29:
zt = (¢, de, pisqt) € IR for all t.

Proof: Fix h; € H;. Denote Py,(-) := P(- | hy). Let Fj, be the expectation with respect to
Py,. 25 € EQ P-ass. ( 3.64), FQ C IR and P(h;) > 0 (lemma 3.28), hence 2, € IR Pp,-a.s.
th, = Ep,(2s) and IR is convex (corollary 3.17) hence x5, € IR. I
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Lemma 3.30:

1. If coo and s, exist then co, € W

Sco ”

2. If do, and woo exist then do € W2

Proof: We will prove 1; The proof of 2 is similar. Fix h, such that ¢, and s, exist.
Clhoo)t € Wsl(h )l for all t (lemma 3.29). W! is upper semi continuous with respect to ¢, there-

9
1
fore cp,, € W;, . K

Lemma 3.31: ¢} is a martingale with respect to P*.

Proof:
EFl Th) = Y PE((he(mbym®) [ hedek, gnt ey
ml m2eM

Z Z a(k,ht)(ml)z\h_,(m?)cﬁ“(ml,mz): Z ok, hy)(m?) Z /\ht('mz)cﬁh(ml_mg)

mPeM m2eM mleM m2eM
1y,.k k k-
= Z ok, hi)(m )Cht =¢,, = F (Cx | he)
mleM
1
a"\ = P’C -a.8. (because (coo,doc, Woo, S00) € EQ Py, p4-a.5., hence also P¥.as. and ou

and 7, are equlhbrlum strategies in G with payoffs ¢, and do, whenever (co, deo, Poc, oo ) € EQ),
therefore E¥(a) = ¢* (lemma 3.31). Similarly E*(b) = b'. We have to show that no player can
get more by using a different strategy. We will prove it for player 1. Assume that player 2 plays 7
and player 1 plays ¢’. Denote by ,u;”(ml) the probability of player 1 sending the message m! after
history hy, using o’. Ap,(m?) is the probability of player 2 sending m? after h;.

Lemma 3.32: {c;};=, and {s:};=, are martingales with respect to Pf,"r.

Proof: We will prove this only for {¢;};=, . The proof for {s;};-, is similar.

El ewn [ h) = D 3 aflk, h)(mh)An (m?)en, (mr me)
mleM m2eM

= Z G;(’k>h’1)(‘nll) Z /\h:(m2)cht,(mlmﬂ) = Z U;(ﬁkvht)(ml)chc = Ch, = Ef;;,r(cf i he)

mleM m2eM mlenM

{e1}i2o and {s};=, are bounded martingales with respect to P(f”,T’ hence they converge Pf,’ﬂ—a.s.
to ¢ and s, respectively, and ¢; = Ef} (€s | hy). Therefore

ok ke ok
af =k = Eg (cn | o)

Deﬁnea -Zlequo(l)A“(a(kh ), (L, hoo ).
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Lemma 3.33:
k 1k k-
e, > al Pa,yT—a.s.

Proof: lim;_..(c¢, s:) exists Pf,"T-a.s. and equals (€s,800). From lemma 3.28 w,, = p and
Sco = Goo. There are 2 cases to consider (when (¢x, @oc) = (Coo, Soo) €Xists):

1. dy and ps, exist and (coo,doo) is an equilibrium in G(pso, goo): In this case player 2 plays
] hence player 1 can get no more than cs,. Hence ¢* > o’k .

Co01800,Po0sg00 2

2. ds Or g do not exist or (a0, doo) is not an equilibrium in G(pse, ¢oo ): In this case player 2
plays 3., 4.. guaranteeing that player 1 will not get more than c., and again ¢&, > a’k.

1
From lemma 3.33 follows:

aF = B (h) > EE (d,) = EF (a)

o1

4 On the number of possible messages

In this section we provide an example of a game, for which there exists a pair of payoff vectors,
(c,d), such that (c,d) is an equilibrium when there are at least 3 possible messages, and is not an
equilibrium when there are only 2 possible messages (Moreover, with 2 messages one can not obtain
(¢,d), neither any equilibrium payoffs > (¢,d)). Analogous examples can be built showing that for
every natural number n, there exist a game and a pair of payoff vectors, (¢, d), such that (¢, d) is
an equilibrium when there are at least n possible messages, and is not an equilibrium when there
are less than n possible messages.

We define a game I'(p, ¢, M) with independent incomplete information on both sides. Let K =
L=A{1,2,3}and p=¢=(3},5,3). Let

33
1 3 3 0 0 0 0 0 0
A=t -3 0 0 Al? = 1 0 0 AV? = 0 0 0
-3 0 0 0 0 0 1 0 0
0 1 0 0 -3 0 0 0 0
A% = 0 0 0 A?? = 3 1 3 A% = 0 0
0 0 0 0 -3 0 0 1 0
0 0 1 0 0 O 0 0 -3
A3 = 0 0 A3? = 0 0 1 A3 = 0 0 -3
0 0 0 0 0 0 3 3 1
1 -3 -3 0 0 0 0 0 0
B = 3 0 0 B? = 1 0 0 B'? = 0 0 0
3 0 0 0 0 1 0 0
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0 1 0 0 3 0 0 0 O
B*'=| 0 o0 o B¥=|-3 1 -3 B¥=1| 0 0
0 0 O 0 3 0 0 1 0
0 0 1 0 0 0 0 3
B>! = 0 0 O B3? = 0 0 1 B33 = 0 0 3
0 0 0 0 0 0 -3 -3 1

Proposition 4.1: Letc=d = (1,1,1).

1. If |M| > 3 then (c,d) are equilibrium payoffs in I'(p,q, M).

2. If [M| = 2 then (c,d) are not equilibrium payoffs in I'(p,q, M).
Proof: Note that for every £ € K and [ € L the following holds:

kilgs - kilr: oy 2 zf]:kandz:l
A(EJ) + BY(G 5) = { 0 otherwise
Therefore (¢,d) will be achieved if and only if in the action phase of the game, player 1 plays i =1
and player 2 plays j = k. This can be done only after complete revelation of the private information
of the two players (k and 1).

If [M| > 3 the two players can reveal k and 1 simultaneously in the first period of the talk phase
of the game. Then in the action phase player 1 plays 1 and player 2 plays k. These are clearly
equilibrium strategies of I'(p,q, M) with payoffs (¢,d). Formally, let M = {zy, 29, 23, ..., 2}p1}-
Denote by m} and m? the t** messages sent by player 1 and player 2 respectively. The equilibrium
strategies are as follows: In the first period of the talk phase player 1 sends the massage mi = z
and player 2 sends the massage m? = 21 (i.e, ? o(k,ho) = 2z for all k € K and 7(l, hg) = 2 for all
leL). Fort>0,o0(k,hg)and 7(I, ho) can be chosen arbitrarily, as they have no influence on the
action phase. In the action phase player 1 plays according to m? (which is according to 1), i.e, he
will play the action 1 if m? = z, , 2 if m? = z5 and 3 if m? = z3. similarly, player 2 plays according
to m}. The payoffs obtained by this pair of strategies are clearly (c,d). To see that the strategies
defined above are equilibrium strategies, note that no player can gain more than 1 by deviating in
the action phase. By deviating in the talk phase a player can make the other player change his
action in the action phase of the game. This may bring him a payoff of 3 instead of 1 in one of the
payoff matrices (and with probability %), but this can not be made without receiving payoff 0 with
probability %, and the expected payoff can not exceed 1.

If |M| = 2 the private information can not be totally revealed in one period. Assume that there
exist equilibrium strategies in which the two players reveal k (player 1) and 1 (player 2) during the
talk phase of the game and then play ¢ =1 (player 1) and j = k (player 2) in the action phase of
the game. Assume also that M = {z1,22}. At least one of the players must receive some of the
information of the other player before revealing all of his. Assume w.l.o.g that this is player 1 and
assume that t+1 is the first period in which information is being revealed. This means that there
exists an history h; such that P(hs) > 0 and ps, = gr, = (3, 3, 1) and Uhey(mi 1)) 7 (3,1, 1) (for all

m'). wlo.g assume that Qe (1,21 )) (1) > 1 and U, N(2) < L. Given (h¢,(m!,z)) and k =1

J(mt,zy

®despite the abuse of notation zx also denotes the probability vector in A(M) which gives probability 1 to z.
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player 1 will get 3 X g(n, (m1,z))(1) > 1 by making player 2 think that k # 1 (i.e, switching to the
strategy that he should play given k = 2 or to the strategy that he should play given k = 3. Using
this strategy player 1 will get a payoff of 3 when 1 = 1, i.e, with probability g, (m1.))(1), and
0 otherwise, having expected payoff of 3 X Q(hh(m],zl))(l) > 1 ). This can not be done only when
Plhe(ml,z1))(1) € {0, 1}. We assumed that these are equilibrium strategies, therefore player 1 can not
achieve more than 1, and therefore ps, (m1.,))(1) € {0, 1}, hence also p(, (1 z,))(1) € {0,1}. Now,
q(ht7(m11222))(2) > 1 (because U (m?,21))(2) < 1) and as before we must have py, (1 ,2)(2) € {0,1}
for all m? € M and therefore also pj, (m1,m2)(3) € {0, 1} for all m? € M, which means a complete
revelation of k in one period - a contradiction. 1

Remark: Analogous examples can be built for every n > 2, i.e, for every n > 2 there exists a
game and two payoff vectors (¢, d) such that

1. If [M| > n then (¢, d) are equilibrium payoffs in I'(p, ¢, M).

2. If |M| < n then (¢, d) are not equilibrium payoffs in I'(p, q, M ).

One way is to define n? games, in which the sets of actions are of size n. Let K = L =
{1,2,3,...n} , p=gq= (%,%,...,% . The structure of the n X n payoff matrices is similar

to the structure of the 3 x 3 matrices defined above:
AN LRy = BR(Lk)=1 forall 1 < kI < n

AR, ) =n . ARG k)= —n , BM(k,j)=-n , BM(jk)=n forall k #j
and AF(i,j) = B®!(i,) = 0 otherwise
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