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Israel

Received December 11, 1995

The definition of vector measure game is generalized in this paper to include all
cooperative games of the form f (m, where m is a nonatomic vector measure of
bounded variation that takes values in a Banach space. It is shown that if f is
weakly continuously differentiable on the closed convex hull of the range of m then
the vector measure game f (m is in pNA and its value is given by the diagonal`

formula. Moreover, every game in pNA has a representation that satisfies this`

condition. These results yield a characterization of pNA as the set of all differen-`

tiable games whose derivative satisfies a certain continuity condition. Journal of
Economic Literature Classification Numbers: C71, D46, D51. Q 1998 Academic Press

INTRODUCTION

A list of axioms, adapted from those which uniquely characterize the
Shapley value for finite-player cooperative games, determines a unique
value on certain classes of nonatomic cooperative games}games involving
an infinite number of players, each of which is individually insignificant
Ž .Aumann and Shapley, 1974 . Concrete criteria for identifying a given
nonatomic game as belonging to such a class of games, and a formula for
computing the value, are known for certain kinds of vector measure games
Ž .Aumann and Shapley, 1974 . In a vector measure game, the worth of a
coalition S depends only on the value that a particular vector measure on
the space of players takes in S. In this context, the term ‘‘vector measure’’
usually refers to an Rn-valued measure, that is, to a vector of n scalar
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measures. However, certain nonatomic games are more naturally de-
scribed in terms of measures that take values in an infinite dimensional
Banach space.

Ž .Consider, for example, a transferable utility market game ¨ , where the
worth of a coalition S is

¨ S s max u x i , i dm i x i dm i s a i dm i , 1Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H H H½ 5
S S S

the maximum aggregate utility that S can guarantee to itself by an
allocation x of its aggregate endowment H a dm among its membersS
w Ž .Aumann, 1964. In this formula, u j , i is the utility that player i gets from
the bundle j and m, the population measure, is a nonatomic probability

x Ž .measure. Since ¨ S depends on S only through certain integrals over S,
Ž . Ž . Ž . Ž . Ž .if m S _ T s m T _ S s 0 then ¨ T s ¨ S . Thus, ¨ S can be ex-

pressed as a function of the characteristic function x of the coalition S,S
Ž .seen as an element of L m . The market game under consideration can1

Ž .therefore be viewed as a vector measure game based on the L m -valued1
vector measure defined by S ¬ x .S

Only one previous work known to me deals with vector measure games
based on vector measures with values in an infinite dimensional vector

Ž .space. Sroka 1993 studied games based on vector measures of bounded
variation with values in a relatively compact subset of a Banach space with
a shrinking Schauder basis. The vector measure considered above in
connection with the market game is not of this kind: its range is not a

Ž . Ž .relatively compact subset of L m , and L m itself does not have a1 1
Žshrinking Schauder basis. Only a separable Banach space with a separable

dual space can have such a basis. Considering the range of the measure in
question to be a subset of L , say, rather then L , would not help, for the2 1
measure would not then be of bounded variation. Note that if the range
space were taken to be L then the above set function would not even be a`

.measure; specifically, it would not be countably additive. In the first part
of this paper, these limitations on the range of the vector measure and on
the space in which it lies are dispensed with. Thus, the results of Aumann
and Shapley are generalized to a much larger class of vector measure
games.

As the above market game example demonstrates, the present interpre-
tation of ‘‘vector measure games’’ is broad enough to include all games in
which the worth of a coalition is not affected by the addition or subtraction
of a set of players of measure zero}the measure in question being a fixed
nonatomic scalar measure on the space of players. All the games that
belong to one of the spaces of games on which Aumann and Shapley have
proved the existence of a unique value have this property, and can
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therefore be represented as vector measure games. This representation is,
however, not unique. It is therefore desirable to reformulate the condi-
tions for a vector measure game to belong to one of these spaces in a
language that does not make an explicit reference to vector measures.
Such an alternative formulation is presented in the second part of the
paper, where the above conditions are stated as differentiability and
continuity conditions on a suitable extension of the game, an ideal game,
that assigns a worth to every ideal, or ‘‘fuzzy’’, coalition, in which some
players are only partial members.

The last part of the paper contains an example that shows how these
general results can be applied to market games. Another application,
involving cooperative games derived from a particular class of nonatomic

Žnoncooperative congestion games, is given in a separate paper Milchtaich,
.1995 . Two rather technical lemmas, which are of some independent

interest, are given in the Appendix.

PRELIMINARIES

Ž .The player space is a measurable space I, CC . A member of the s-field
CC is called a coalition. A set function is a function from CC into a real
Banach space X. The ¨ariation of a set function ¨ is the extended

< <real-valued function ¨ defined by

n

< < 5 5¨ S s sup ¨ S y ¨ S S g CC ,Ž . Ž . Ž . Ž .Ý i iy1
is1

where the supremum is taken over all finite nondecreasing sequences of
coalitions of the form S : S : ??? : S s S. A set function ¨ is of0 1 n

< <Ž .bounded ¨ariation if ¨ I - `. A game is a real-valued set function ¨
Ž . Ž . Ž .such that ¨ B s 0. A game ¨ is monotonic if T : S implies ¨ T F ¨ S .

BV denotes the normed linear space of all games of bounded variation
endowed with the operations of pointwise addition and multiplication by a
Ž . Žreal scalar and with the ¨ariation norm called the ‘‘variation’’ in Aumann

. 5 5 < <Ž .and Shapley, 1974 ¨ s ¨ I . The monotonic games span this space.BV

The subspace of BV that consists of all finitely additive real-valued set
functions of bounded variation is denoted FA.

Ž .A ¨ector measure is a countably additive set function. A finite, signed
measure is a real-valued vector measure. A vector measure m is nonatomic

Ž .if for every S g CC such that m S / 0 there is a subset T : S such that
Ž . Ž . < < Žm T , m S _ T / 0. The variation m also called the total variation

.measure of a vector measure of bounded variation m is a measure
Ž . < <Diestel and Uhl, 1977, p. 3 . m is nonatomic if and only if m is
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Žnonatomic. The subspace of BV that consists of all nonatomic finite,
.signed real-valued measures is denoted NA.

w xAn ideal coalition is a measurable function h: I ª 0, 1 . For a vector
Žmeasure m and an ideal coalition or a linear combination of ideal

. Ž .coalitions h, m h denotes the integral H h dm. See Dunford and Schwartz
Ž .1958, Section IV.10 for a definition of integration with respect to a vector
measure. The space II of ideal coalitions is topologized by the NA-topol-
ogy, defined as the smallest topology on II with respect to which all

Ž .functions of the form m ? , m g NA, are continuous. As a base for the
neighborhood system of an ideal coalition h one can take the collection of

� < < Ž . < 4all open sets of the form g g II max m g y h - « , with « ) 01F iF k i
and m , m , . . . , m g NA.1 2 k

Ž . ŽThe range of a vector measure m is the set m CC . If the range of m or,
.more precisely, the subspace it spans is finite dimensional then m is

automatically of bounded variation. If m is also nonatomic then its range is
Ž .compact and convex Lyapunoff theorem . The range of a general

nonatomic vector measure need not be compact nor convex. However, for
Ž . � Ž . 4every vector measure m the set m II s m h N h g II is convex and

Ž .weakly compact Diestel and Uhl, 1977, p. 263 . This set coincides with the
Ž .closed convex hull of m CC , and if m is nonatomic then it is also the weak

Ž . Ž . Ž .closure of m CC Diestel and Uhl, 1977, p. 264 . We will call m II the
extended range of m.

Ž .EXAMPLE. Let m be a probability measure on I, CC , and define
Ž . Ž .m: CC ª L m by m S s x . Then m is a vector measure of bounded1 S

variation whose variation is m. Therefore, m is nonatomic if and only if m
Ž .is nonatomic. The range of m consists of all equivalence classes of

characteristic functions of measurable subsets of I. This is a closed, but
Ž .not convex, subset of L m , and if m is nonatomic then it is also not1

Ž .compact. The extended range of m is the set of all equivalence classes of
measurable functions from I into the unit interval. Indeed, for every

Ž .h g II, m h s h. Note that in this example the weak compactness of the
extended range of m follows immediately from Alaoglu’s theorem and
from the fact that the relative weak topology on this set coincides with the

Ž .relative weak* topology on it when seen as a subset of L m .`

We will say that a real-valued function f defined on a convex subset C
of a Banach space X is differentiable at x g C if there exists a continuous

Ž .linear functional Df x g Y *, where Y is the subspace of X spanned by
� 4C y C s y y z N y, z g C and Y * is its dual space, such that for every

y g C
² :f x q u y y x s f x q u y y x , Df x q o uŽ . Ž . Ž . Ž .Ž .

Ž ² :as u ª 0 . The angled brackets ? , ? denote the operation of applyingq
.an element of Y * to an element of Y. This continuous linear functional,
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which is necessarily unique, will be called the derï atï e of f at x. The
Ž .function f is weakly continuously differentiable at x if it is differentiable

Ž . Žin a respectively, weak neighborhood of x in C and Df is respectively,
. Ž .weakly continuous at x. The function f is weakly continuously differen-

Ž .tiable if it is respectively, weakly continuously differentiable in the whole
Ž .of its domain. The restriction of a weakly continuously differentiable

Ž .function to a convex subset of its domain is respectively, weakly continu-
ously differentiable. Continuous differentiability and weak continuous
differentiability are equivalent for functions with compact domain. This
follows from the fact that the relativization of the weak topology to a
compact subset of a Banach space coincides with the relative norm

Žtopology because every set which is closed, and hence compact, with
respect to the relative norm topology is compact, and hence closed, also

.with respect to the relative weak topology . A real-valued function f
Ž .defined on a bounded convex subset C of a Banach space X is weakly

Ž .continuous at every point x at which it is respectively, weakly continu-
wously differentiable. Proof: If U is a convex neighborhood of x in C in

which f is differentiable then it follows from the mean value theorem that
< Ž . Ž . < < ² Ž Ž ..: < < ²f y y f x F sup y y x, Df x q u y y x F y y0 - u - 1

Ž .: < 5 5 5 Ž . Ž .5x, Df x q y y x sup Df z y Df x for every y g U. By a suit-z gU
xable choice of U the last two terms can be made arbitrarily small. If X is

a Euclidean space and C is compact then f is continuously differentiable
if and only if it can be extended to a continuous function on X with
continuous first-order partial derivatives.

ŽThe closed linear subspace of BV that is generated by all powers with
.respect to pointwise multiplication of nonatomic probability measures is

denoted pNA. There exists a unique continuous linear operator w : pNA
Ž k .ª FA that satisfies w m s m for every nonatomic probability measure

Ž .m and positive integer k, called the Aumann]Shapley ¨alue on pNA. See
Ž .Aumann and Shapley 1974 for an axiomatic characterization of the value.

5 5 � Ž . < Ž . Ž . <For a game ¨ , define ¨ s inf m I N m g NA, and ¨ S y ¨ T F`

Ž . 4 Ž .m S _ T for every S, T g CC, T : S inf B s ` . The collection of all
5 5games ¨ such that ¨ - ` is a linear subspace of BV, denoted AC , and` `

5 5 5 5? is a norm on this space. The ? -closed linear subspace of AC that` ` `

is generated by all powers of nonatomic probability measures is denoted
pNA . This space is a proper subset of pNA.`

VECTOR MEASURE GAMES

A composed set function of the form f (m, where m is a nonatomic
vector measure of bounded variation and f is a real-valued function

Ž . Ž .defined on m II such that f 0 s 0, will be called a ¨ector measure game.
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Ž .Aumann and Shapley 1974 proved that if the range of m is finite
dimensional then a sufficient condition for a vector measure game f (m to

Ž .be in pNA actually in pNA is that f be continuously differentiable. The`

value of such a vector measure game is given by the so-called diagonal
Ž .formula. Sroka 1993 generalized this result to the case where the range

of m is a relatively compact subset of a Banach space with a shrinking
Schauder basis. These results are generalized further in the following
theorem.

THEOREM 1. Let m be a nonatomic ¨ector measure of bounded ¨ariation
with ¨alues in a Banach space X. If f is a weakly continuously differentiable

Ž .real-̈ alued function defined on the extended range of m such that f 0 s 0,
Ž .then f (m is in pNA and its ¨alue is gï en by the diagonal formula`

1 ² :w f (m S s m S , Df tm I dt S g CC . 2Ž . Ž . Ž . Ž . Ž . Ž .Ž .H
0

If X is finite dimensional then the con¨erse is also true: a ¨ector measure game
f (m is in pNA only if f is continuously differentiable on the range of m.`

The restriction that X is finite dimensional cannot be removed. For
example, if m is Lebesgue measure on the unit interval and m is as in the

Ž . Ž Ž ..Example in the previous section then the function f : m II : L m ª R1
Ž . 1 y1r2 Ž .defined by f h s H t h t dt is not differentiable according to the0

present definition. Nevertheless, f (m g NA. The question of what condi-
tions on f , if any, are both necessary and sufficient for a general vector

Žmeasure game f (m to be in pNA , or in pNA, remains open cf.`

.Kohlberg, 1973; Aumann and Shapley, 1974, Theorem C; Tauman, 1982 .
ŽNote that if the range of m is relatively compact this is automatically the

case if X is a reflexive space or a separable dual space; see Diestel and
. ŽUhl, 1977, p. 266 then by Mazur theorem Dunford and Schwartz, 1958, p.

.416 the extended range of m is compact. Therefore, in such a case f is
weakly continuously differentiable if and only if it is continuously differ-
entiable.

If a vector measure game f (m is monotonic, then for it to be in pNA it
Ž .suffices that f be continuous, rather than differentiable, at 0 and m I .

PROPOSITION 1. Let m be a nonatomic ¨ector measure of bounded
Ž .¨ariation, and let f : m II ª R be weakly continuously differentiable in

Ž� < < <Ž . < <Ž .4. Ž .m h g II 0 - m h - m I and continuous at 0 and at m I . If f (m is
Ž .a monotonic game then it is in pNA and its ¨alue is gï en by 2 .

The following lemma, which is of some independent interest, is used in
the proofs of Theorem 1 and Proposition 1.
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LEMMA 1. Let m: CC ª X be a nonatomic ¨ector measure of bounded
Ž .¨ariation, and let f be a real-̈ alued function defined on m II . Define

Ž < <. Ž . Ž < < < < .m: CC ª L m by m S s x . Note that m s m . Then there exists aˆ ˆ ˆ1 S

ˆ Ž .unique real-̈ alued function f , defined on m II , such thatˆ

f̂ m h s f m h h g II . 3Ž . Ž . Ž . Ž .Ž . Ž .ˆ

ˆŽ . Ž . ŽFor e¨ery h g II, if f is weakly continuous at m h then f is respectï ely,
. Ž .weakly continuous at m h , and if f is weakly continuously differentiable atˆ

ˆ ˆŽ . Ž . Ž Ž ..m h then f is weakly continuously differentiable at m h and Df m hˆ ˆ
satisfies

ˆ² : ² :m g , Df m h s m g , Df m h g g II . 4Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .ˆ ˆ

It follows from Lemma 1 that, conceptually, there is only one kind of
vector measures that needs to be considered in the present context,
namely, vector measures that map coalitions into their characteristic
functions. One may thus wonder whether vector measures need to be
considered at all. An alternative approach might be to express the above
conditions for a game to be in pNA or in pNA directly in terms of a`

particular ‘‘extension’’ of the game into a function on II. We will see in the
next section that these results can indeed be reformulated in such a
manner.

DIFFERENTIABLE IDEAL GAMES

ŽAn ideal game is a real-valued function on II that vanishes at the
.constant function 0. We will say that an ideal game ¨* is monotonic if
Ž . Ž .h F g implies ¨* h F ¨* g , and that ¨* is differentiable at h g II if there

Ž . Ž .exists a necessarily unique nonatomic measure D¨* h , called the derï a-
tï e of ¨* at h, such that for every g g II

¨* h q u g y h s ¨* h q u D¨* h g y h q o uŽ . Ž . Ž . Ž . Ž .Ž .

as u ª 0 . An ideal game is differentiable if it is differentiable at everyq
point in II. An ideal game ¨* is a continuous extension of a game ¨ if

Ž . Ž . Ž¨* x s ¨ S for every S g CC and ¨* is continuous with respect to theS
. Ž .NA-topology . Aumann and Shapley 1974, Proposition 22.16 showed that

a continuous extension is always unique, and that a sufficient condition for
a game to have such an extension is that there exists a sequence in pNA

5 5 < Ž . <that converges to that game in the supremum norm ¨ 9 s sup ¨ S .S g CC

The set of all games that satisfy this condition is closed under pointwise
addition and multiplication by a real scalar, and is denoted pNA9.
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THEOREM 2. An ideal game ¨* is the continuous extension of some game
¨ in pNA if and only if there is a nonatomic probability measure m such that,`

Ž .for e¨ery h g II, the derï atï e D¨* h exists and is absolutely continuous with
Ž Ž .. Ž Ž ..respect to m, d D¨* h rdm is essentially bounded, and d D¨* ? rdm is

Ž .continuous at h as a function into L m . The ¨alue of ¨ is then gï en by`

1
w¨ S s D¨* t S dt S g CC . 5Ž . Ž . Ž . Ž . Ž . Ž .H

0

The necessary and sufficient condition for an ideal game ¨* to be the
continuous extension of a game in pNA that is given in Theorem 2 is`

apparently stronger then the sufficient condition obtained by Hart and
Ž .Monderer 1997 . In fact, Hart and Monderer’s condition is equivalent to

Ž Ž ..the requirement that d D¨* ? rdm be continuous as a function into
Ž .L m . The above condition is equivalent to the requirement that there is a1

representation of the game as a vector measure game that satisfies the
conditions of Theorem 1. Thus, we have the following result.

LEMMA 2. A game ¨ can be represented as a ¨ector measure game f (m,
with f weakly continuously differentiable on the extended range of m, if and
only if ¨ g pNA . A game ¨ can be represented as a ¨ector measure game`

f (m, with f weakly continuous on the extended range of m, if and only if
¨ g pNA9.

The following sufficient condition for a monotonic ideal game to be the
continuous extension of a game in pNA is derived from Proposition 1.

Ž .PROPOSITION 2. If ¨* is a monotonic ideal game such that lim ¨* tt ª 0q
Ž . Ž .s 0 and lim ¨* t s ¨* 1 , and there exists a nonatomic probabilityt ª 1y

Ž .measure m such that, for e¨ery h g II such that 0 - m h - 1, the derï atï e
Ž . Ž Ž ..D¨* h exists and is absolutely continuous with respect to m, d D¨* h rdm

Ž Ž ..is essentially bounded, and d D¨* ? rdm is continuous at h as a function
Ž . Ž . Ž .into L m , then the game ¨ defined by ¨ S s ¨* x is in pNA and its ¨alue` S

Ž .is gï en by 5 .

PROOFS

Proof of Lemma 1. For every h g II y II and every continuous linear
Ž Ž .. Ž . Ž . < < < <functional x* g X*, x* m h s H h d x*(m s H h d x*(m rd m d m

Ž .by Theorem IV.10.8 of Dunford and Schwartz 1958 . Taking the maximum
5 Ž .5 < < < < 5 Ž .5over the unit sphere in X*, we get m h F H h d m s m h ,ˆX L Ž < m <.1

5 Ž . < < 5 5 5 Ž .since d x*(m rd m F x* for every x*. Therefore, m h ¬ˆL Ž < m <. X *`

Ž . Ž . Ž .m h is a well-defined continuous function from m II onto m II that isˆ
continuous also with respect to the relative weak topologies on these

ˆ Ž . Ž .spaces. It follows that f is well defined by 3 and that it is weakly
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Ž . Ž . Ž .continuous at m h if f is respectively, weakly continuous at m h . Also,ˆ
Ž . Ž .if f is weakly continuously differentiable at m h then Eq. 4 well defines

Ž̂ Ž .. Ž < <. wa continuous linear functional Df m h g L m * which is in fact equalˆ 1
Ž Ž Ž .. . < < Ž < <.xto, or rather identifiable with, d Df m h ( m rd m g L m .`

ˆ ˆ5 Ž Ž .. Ž Ž ..5 5 Ž Ž .. Ž Ž ..5Df m g y Df m h F Df m g y Df m h holdsˆ ˆ L Ž < m <.* SpŽ mŽ II ..*1
ˆŽ . Ž . Ž .for every m g in a weak neighborhood of m h , and therefore Df ? isˆ ˆ

Ž . Ž . Ž . Ž Ž ..weakly continuous at m h . By 3 and 4 , and the definition of Df m h ,ˆ
Ž . Ž .for every m g g m IIˆ ˆ

f̂ m h q u m g y m hŽ . Ž . Ž .Ž .Ž .ˆ ˆ ˆ

ˆ ˆ² :s f m h q u m g y m h , Df m h q o uŽ . Ž . Ž . Ž . Ž .Ž . Ž .ˆ ˆ ˆ ˆ
ˆ Ž .as u ª 0 . This proves that f is differentiable at m h and that theˆq
Ž̂ Ž ..continuous linear functional Df m h is indeed its derivative there. Bˆ

Proof of Theorem 1. Suppose that f satisfies the condition of the
theorem. In light of Lemma 1, it can be assumed without loss of generality

Ž .that X s L m , where m is a nonatomic probability measure, and that1
Ž . Ž . Ž .m S s x S g CC . For a sub-s-field FF of CC, define an L m -valuedS 1

Ž . Ž . Ž .nonatomic vector measure m by m S s E x N FF , where E ?N FF de-FF FF S
notes conditional expectation. If FF is finite then the range of m , which isFF

a subset of the convex hull of the range of m, clearly spans a finite
Ž .dimensional subspace of L m . Therefore, by an immediate extension of1

Ž .Proposition 7.1 of Aumann and Shapley 1974 , f (m g pNA . To proveFF `

that f (m is in pNA it suffices to show that`

5 5lim f (m y f (m s 0 6Ž .`FF
FF

Žas FF varies over the finite subfields of CC, directed by inclusion. That is,
for every « ) 0 there exists a finite measurable partition of I such that, if

5FF is the field generated by some finer finite measurable partition, f (mFF

5 .y f (m - « .`

Let FF be a sub-s-field of CC, and let S, T g CC be such that T : S. For
Ž .0 F t F 1, define h s x q tx g II . By the fundamental theorem oft T S _T

Ž Ž .. Ž Ž Ž . Žcalculus, applied to the function t ¬ f m h s f m T q tm S _FF t FF FF

...T ,

1 ² :f (m S y f (m T s m S _ T , Df m h dtŽ . Ž . Ž . Ž . Ž . Ž .Ž .HFF FF FF FF t
0

1
s m S _ T Df m h dm dtŽ . Ž .Ž .H H FF FF t

0 I
7Ž .

1
s E Df m h N FF dm dt ,Ž .Ž .Ž .H H FF t

0 S_T
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where the last equality follows from the identity

E h N FF g dm s hE g N FF dm h g L m , g g L m ,Ž . Ž . Ž . Ž .Ž .H H 1 `
I I

Ž Ž ..applied to the functions h s x and g s Df m h . Note that theS _T FF t
Ž .same notation is used in 7 for the derivative of f at a point and for the

Ž .representation of that derivative as an element of L m . In the special`

case FF s CC we get

1
f (m S y f (m T s Df m h dm dt. 8Ž . Ž . Ž . Ž . Ž . Ž .Ž .H H t

0 S_T

Ž . Ž .It follows from 7 and 8 that

5 5 5 5f (m y f (m F sup E Df E h N FF N FF y Df m h .Ž . Ž .Ž . Ž .Ž .` L Žm.FF `

hgII

Ž .Hence, in order to complete the proof of 6 if suffices to show that

5 5lim E Df E h N FF N FF y Df E h N FF s 0 9Ž . Ž . Ž .Ž . Ž .Ž . L Žm.`
FF

and

5 5lim Df E h N FF y Df m h s 0 10Ž . Ž . Ž .Ž . Ž . L Žm.`
FF

uniformly in h g II as FF varies over the finite subfields of CC, directed by
inclusion. Df is a weakly continuous function defined on a weakly compact

Ž .subset of L m . Therefore, it is uniformly weakly continuous and its range1
Ž .is compact. Theorem IV.8.18 of Dunford and Schwartz 1958 asserts that,

Ž . 5 Ž . 5for every compact subset K of L m , lim E g N FF y g s 0 uni-L Žm.` FF `

Ž .formly in g g K. This proves 9 . The same theorem, together with the
Ž . Ž .above identity, implies that, for every g g L m , lim H E h N FF g dm s` FF

Ž .lim H hE g N FF dm s H hg dm uniformly in h g II. Thus, with respect toFF

Ž . Ž . Ž .the weak topology on L m , lim E h N FF s m h uniformly in h g II.1 FF

Ž .This, and the uniform weak continuity of Df , together imply 10 .
Since f is weakly continuous, it follows from Lemma 5 in the Appendix

Ž Ž ..that the ideal game defined by h ¬ f m h is a continuous extension of
Ž .f (m. Therefore, by Theorem H of Aumann and Shapley 1974 , the value

of f (m is given by

d1
w f (m S s f tm I q um S dt S g CCŽ . Ž . Ž . Ž . Ž .Ž .H du us00

Žand the derivative on the right-hand side of this equation exists for almost
. Ž .every 0 - t - 1 . By definition of Df , this gives 2 .
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The proof of the second part of the theorem will be given after the proof
of Theorem 2. B

Proof of Proposition 1. We prove Proposition 1 by making the following
two modifications to the proof of the first part of Theorem 1.

Ž .First, since f is continuous at 0, and since m h ª 0 is equivalent to
Ž .m h ª 0, f is actually weakly continuous at 0. Similarly, f is weakly

Ž .continuous at m I . Since f is weakly continuously differentiable, and
Ž� Ž . 4. Ž .hence weakly continuous, in m h g II N 0 - m h - 1 s m II _

� Ž .4 Ž Ž ..0, m I , the ideal game h ¬ f m h is continuous. Aumann and Shapley
Ž .1974, p.150 showed that a continuous extension of a monotonic game is a
monotonic ideal game. It follows that, for every finite subfield FF of CC, the

Ž .restriction of f to m II can be viewed as a nondecreasing continuousFF

function on the unit cube in Rn, where n is the dimension of the subspace
Ž . Ž . Žof L m that is spanned by m II which is equal to the number of atoms1 FF

.of nonzero m-measure of the field FF . This function is continuously
Ž .differentiable outside of the origin and 1, 1, . . . , 1 . Therefore, by an

Žextension of Proposition 10.17 of Aumann and Shapley 1974, proposition
.and extension in p. 92 , f (m g pNA.FF

Ž Ž ..Second, for fixed « ) 0, let 0 - d - 1r2 be such that f m h - « and
Ž Ž .. Ž Ž .. Ž .f m 1 y h ) f m I y « for every h g II that satisfies m h F d . If

S : S : ??? : S : ??? : S : ??? : I is a finite nondecreasing se-0 1 i i0 1
Ž . Ž .quence of coalitions such that m S s d and m S s 1 y d , and if FF isi i0 1

Ž . Ž .a finite subfield of CC, then for every i - i F i Eqs. 7 and 8 hold for0 1
S s S and T s S . The monotonicity of f (m and of f (m implies thati iy1 FF

i0 <Ž .Ž . Ž .Ž . Ž .Ž . Ž .Ž . <Ý f ( m S y f ( m S y f ( m S q f ( m S - 2« ,is1 FF i i FF iy1 iy1
and a similar inequality holds for the sum over i q 1, i q 2, . . . . It1 1

5 5 5 Ž Ž Ž .. .follows that f (m y f (m - sup E Df E h N FF N FF yBVFF d F mŽh.F1yd

Ž Ž ..5 � Ž . Ž . Ž . 4Df m h q 4« . Since the set m h g m II N d F m h F 1 y d isL Žm.`

weakly compact, an argument similar to that given in the proof of Theo-
rem 1 shows that the limit of the last supremum as FF varies over the finite
subfields of CC, directed by inclusion, is zero. Since « is arbitrary, this

5 5proves that lim f (m y f (m s 0, and therefore f (m g pNA. BBVFF FF

Proof of Theorem 2. If ¨* satisfies the condition of the theorem then
Ž . Ž .¨* g s ¨* h for every g and h in II which are equal m-almost every-

where. Indeed, by the mean value theorem, there exists some 0 - u - 1
such that

¨* g y ¨* h s D¨* h q u g y h g y hŽ . Ž . Ž . Ž .Ž .
d D¨* h q u g y hŽ .Ž .Ž .

s g y h dm s 0.Ž .H dm
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Ž .Therefore, there exists a unique function f : m II ª R, where m is the
Ž .L m -valued nonatomic vector measure of bounded variation defined by1
Ž . Ž . Ž Ž .. Ž .m S s x , such that ¨* h s f m h h g II . This function is differen-S

Ž . Ž Ž .. Ž Ž ..tiable. Indeed, its derivative at m h is Df m h s d D¨* h rdm g
Ž . Ž Ž . . Ž Ž ..L m s L m * , and it follows that Df m ? is continuous on II. Hence,` 1

Lemma 5 in the Appendix implies that Df is weakly continuous. There-
Ž .fore, by Theorem 1, f (m g pNA . The formula for the value of ¨ s f (m`

Ž .now follows from 2 and from the above expression for Df.
Conversely, suppose that ¨* is the continuous extension of a game ¨ in

� 4pNA . There exists a sequence ¨ of games in pNA whose continu-` n nG1 `

5 5ous extensions satisfy the condition of the theorem such that ¨ y ¨ -`n
4yn for every n. Indeed, we can take these games to be polynomials in NA
measures. For every u g pNA and for every « ) 0 there is a nonatomic`

< Ž . Ž . < < <Ž5 5probability measure m such that m* h q u g y u* h F u u q`

. Ž . Ž« m g for every g, h g II and u g R such that h q u g g II see the
.Appendix . It follows that if u* is differentiable at h then

< < 5 5 5 5Du* h g F u q « m g F u q « g g II .Ž . Ž . Ž . Ž . Ž .` `

< U Ž .Ž . U Ž .Ž . < 5 5In particular, D¨ h g y D¨ h g F ¨ y ¨ for every n, n9, and`n n9 n n9
U Ž .Ž .g, h g II, and therefore D¨ ? ? converges uniformly to a real-valuedn

Ž . Ž . Žfunction g ?, ? on II = II. For every h, g h, ? is the continuous exten-
. Ž .sion of a nonatomic measure and, for every g, g ?, g is continuous on II.

Since, for every g, h g II and u g R such that h q u g g II and for every
U Ž . U Ž . u U Ž .Ž . Žn, ¨ h q u g y ¨ h s H D¨ h q tg g dt, in the limit we get ¨* hn n 0 n
. Ž . u Ž .q u g y ¨* h s H g h q tg, g dt. This equation implies that ¨* is dif-0

w Ž . Ž .xferentiable at h and D¨* h s g h, ? .
For every n, let m be a nonatomic probability measure such thatn

< U Ž .Ž . Ž .Ž . < yn Ž . Ž .D¨ h g y D¨* h g F 4 m g g, h g II . The nonatomic proba-n n
yk yn Ž . yn Ž .bility measure m s Ý 2 m satisfies 4 m g F 2 m g . There-k G1 k n

U Ž . Ž .fore, D¨ h y D¨* h is absolutely continuous with respect to m andn

Ud D¨ h y D¨* hŽ . Ž .Ž .n ynF 2 .
Ž .L mdm `

Since ¨ satisfies the condition of the theorem, we may assume withoutn
U Ž .loss of generality that, for every h, D¨ h is absolutely continuous withn

respect to m , its Radon]Nikodym derivative with respect to m isn n
Ž U Ž ..essentially bounded, and d D¨ ? rdm is continuous at h as a functionn n

Ž .into L m . This remains true when m is replaced by m. It follows that,` n n
Ž .for every h, D¨* h too is absolutely continuous with respect to m and its

Radon]Nikodym derivative with respect to m is essentially bounded. And
Ž Ž .. Ž .since the function d D¨* ? rdm: CC ª L m is the uniform limit of the`

� Ž U Ž .. 4continuous functions d D¨ ? rdm , this function is continuous, too.n n nG1
B
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Ž .Proof of Theorem 1 continued . Suppose that dim X - `. If a vector
measure game f (m is in pNA then by Theorem 2 its continuous`

Ž .extension ¨* is differentiable. It is shown in the Appendix that ¨* h s
Ž Ž .. Ž . Ž .Ž . < Ž Ž Ž ...f m h h g II . Hence, D¨* h g y h s drdu f m h q u g y hus0q

for every g and h. The value of this derivative clearly depends only on
Ž . Ž . Ž Ž ..Ž Ž ..m h and on m g y h , and can therefore be written as g m h m g y h ,ˆ

Ž . Ž .Ž .where g is a function from m II to X*. By Theorem 2, D¨* ? g isˆ
continuous for every g g II. Therefore, by Lemma 5 in the Appendix,
Ž .Ž Ž ..g ? m g is continuous for every g. This proves that f is continuouslyˆ

Ž .differentiable on m II . B

Proof of Lemma 2. If f is weakly continuously differentiable on the
extended range of a nonatomic vector measure of bounded variation m
then f (m g pNA by Theorem 1. Conversely, if ¨ is in pNA then it is` `

shown in the proof of Theorem 2 that ¨ can be represented as a vector
measure game f (m, with f weakly continuously differentiable.

If f (m is a vector measure game such that f is weakly continuous on
the extended range of m, which is a subset of some Banach space X, then
by Stone]Weierstrass theorem f can be uniformly approximated by poly-

Ž .nomials in elements of the dual space X*. Specifically, since m II is
weakly compact, and since the continuous linear functionals on X sepa-
rate points in this set, for every « ) 0 there are a finite sequence of
functionals xU , xU , . . . , xU g X* and a polynomial p in n variables such1 2 n

< Ž Ž .. Ž U Ž Ž .. U Ž Ž .. U Ž Ž ... <that f m h y p x m h , x m h , . . . , x m h - « for every h g1 2 n
II. Since xU (m g NA for every i, it follows from Lemma 7.2 of Aumanni

Ž .and Shapley 1974 that f (m g pNA9.
Conversely, it is shown in the Appendix that if ¨* is the continuous

extension of a game ¨ in pNA9 then there is a nonatomic probability
measure m such that, for every g, h g II which are equal m-almost

Ž . Ž .everywhere, ¨* g s ¨* h . It follows that there exists a real-valued func-
tion f , defined on the extended range of the nonatomic vector measure of

Ž . Ž Ž ..bounded variation m defined as in the Example, such that ¨* h s f m h
Ž .h g II . Since ¨* is continuous, by Lemma 5 in the Appendix f is weakly
continuous. B

Proof of Proposition 2. It suffices to show that if ¨* satisfies the
conditions of the proposition then there exist a vector measure m and a

Ž .function f , which satisfy the conditions of Proposition 1, such that ¨* h
Ž Ž .. Ž . Ž .s f m h h g II . Once we establish that ¨* h s 0 for every h which

Ž . Ž .is equal m-almost everywhere to 0 and that ¨* g s ¨* 1 for every g
which is equal m-almost everywhere to 1 we can proceed almost exactly as
in the proof of Theorem 2: define m and f as in that proof, and use the

Ž Ž .. �same arguments to show that Df m ? exists and is continuous in h g II N
Ž . 4 � Ž . Ž .40 - m h - 1 s h g II N m h / 0, m I , and that Df is therefore weakly
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Ž . � Ž .4 Ž .continuous in m II _ 0, m I . The proof of Eq. 5 is also similar. Hence,
Ž . Ž . wit only remains to show that ¨* h ª 0 when m h ª 0 or, equivalently,

Ž . x Ž . Ž . Ž . Ž . wwhen m h ª 0 and that ¨* g ª ¨* 1 when m g ª m I or, equiva-
Ž . xlently, when m g ª 1 .

Ž . Ž . Ž Ž ..For every g, h g II such that h F g and m h - m g , ¨* h q t g y h
w xis nondecreasing as a function of t in the interval 0, 1 and has a

nonnegative continuous derivative in the interior of that interval. For
Ž . Ž .h s 0 identically and g s 1 identically this function is continuous also

� 4at the end points. Therefore, for every sequence h : II such thatn
Ž . � 4 Ž .m h ª 0 and for every sequence g : II such that h F g and m gn n n n n

Ž .ª m I ,

lim inf ¨* g y ¨* hŽ . Ž .n n n

1
G lim inf D¨* h q t g y h g y h dtŽ . Ž .Ž .Hn n n n n n

0

1 ² :s lim inf m g y h , Df m tg q 1 y t h dtŽ . Ž .Ž .Ž .Hn n n n n
0

1 ² :G m I , Df tm I dt s ¨* 1Ž . Ž . Ž .Ž .H
0

Ž . � Ž .4by Fatou’s lemma and the continuity of Df in m II _ 0, m I . Taking
Ž .g s 1 for every n shows that ¨* h ª 0. Taking h s 0 for every nn n n

Ž . Ž .shows that ¨* g ª ¨* 1 . Bn

APPLICATION: MARKET GAMES

We give a new proof to the following result, due to Aumann and Shapley
Ž .1974, Chapter VI .

Ž . Žw x . ŽTHEOREM 3. Suppose that I, CC s 0, 1 , the Borel sets . Let m the
. Žpopulation measure be a nonatomic probability measure, k the number of

. Ž .different goods a positï e integer, a the endowment an m-integrable func-
tion from I into the interior of the k-dimensional nonnegatï e orthant Rk , andq
Ž . ku the utility function a real-̈ alued function that is defined on R = I andq

satisfies the following assumptions:

for e¨ery j g Rk , u j , ? is a measurable function on I ; 11Ž . Ž .q

for e¨ery i g I , u ?, i is a continuous function on Rk ; 12Ž . Ž .q
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for e¨ery i g I , u ?, i is strictly increasing in each component separately ,Ž . Ž .
and u 0, i s 0; 13Ž . Ž .

for e¨ery i g I and j, ­ u j , i r­j exists and is continuous at each j g RkŽ . j q

for which j ) 0; and 14Ž .j

u j , i s o j as j ª `, integrably in i , 15Ž . Ž .Ý Ýj jž /
j j

that is, for e¨ery « ) 0 there is an m-integrable function g : I ª R such that,
k Ž . Ž .for e¨ery j g R and i g I, Ý j G g i implies u j , i F « Ý j . Then forq j j j j

Ž .e¨ery coalition S the maximum in 1 is attained, and the market game ¨
defined by this equation is in pNA. The ¨alue of this game coincides with the

Ž .unique competitï e payoff distribution of the transferable utility market.

Ž . Ž . ŽProof. It follows from 11 and 12 that u is Borel measurable Klein
.and Thompson, 1984, Lemma 13.2.3 . Define an ideal game ¨*: II ª R by

¨* h s max u x h dm, 16Ž . Ž . Ž .H
� kwhere the maximum is taken over the set x: I ª R N x is measurable andq

4 Ž . Ž .H xh dm s H ah dm of all feasible allocations and u x denotes the func-
Ž Ž . . Žtion on I whose value at i is u x i , i . This maximum is attained which

means, in particular, that it is finite; Aumann and Shapley, 1974, Proposi-
.tion 36.1 . Furthermore, by Proposition 36.4 and the discussion in pp.

Ž .189]190 of Aumann and Shapley 1974 , for every h such that H h dm ) 0
Ž . kthere is a unique vector p h in the interior of R , called the vector ofq

competitï e prices corresponding to h, such that, for some allocation x,

u x i , i y p h ? x i s max u j , i y p h ? j 17Ž . Ž . Ž . Ž . Ž . Ž .Ž .
kjgRq

Ž . Ž .for m-almost every i for which h i / 0 the dot stands for scalar product .
It is not difficult to see that such an allocation x maximizes the integral in
Ž . Ž .16 . If x is an allocation which satisfies 17 for e¨ery i then the pair
Ž Ž ..x, p h is called a transferable utility competitï e equilibrium corresponding
to h. Such an allocation always exists: Since u is Borel measurable on
Rk = I and is continuous in the first argument, there exists a measurableq

k Ž .function x: I ª R that satisfies 17 for every i for which the maximumq
Žon the right hand side of that equation is attained Wagner, 1977, Theo-

.rem 9.2 . But, as we show next, this maximum is in fact attained for every i.
Ž .It follows that, given an allocation x that satisfies 17 for m-almost every i

Ž .such that h i / 0, we can change the values that x takes at those points
Ž .where 17 does not hold in such a way that the new function be an

Ž .allocation that satisfies 17 everywhere.
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Ž .For every positive integer s there exists, by 15 , an m-integrable
Ž . kfunction g : I ª 0, ` such that, for every i and j g R ,s q

1
e ? j G g i implies u j , i - e ? j , 18Ž . Ž . Ž .s s

Ž .where e is the vector with all components 1. If s ) 1rmin p h thenj j
Ž .1rs e ? j F p ? j . It then follows from 18 that, for every i, the maximum

Ž . � kon the right-hand side of 17 is attained in, and only in, the set j g R Nq
Ž .4 Ž . Ž . Ž .e ? j - g i . Consequentially, if 17 holds, x i / 0, and min p h ) 1rss j j

Ž . Ž .then g i re ? x i ) 1, and hences

g iŽ .s
0 F u x i , i y p h ? x i - u x i , i y p h ? x iŽ . Ž . Ž . Ž . Ž . Ž .Ž . ž /e ? x iŽ .

- g i y p h ? x i 19Ž . Ž . Ž . Ž .s

Ž . Ž . Ž .by 13 and 18 . It follows that if x is an allocation that satisfies 17 for
Ž .every i then H u x dm - Hg dm - `.s

Ž . �LEMMA 3. The function p ? that sends each element of the set II s hm
Ž . 4g II N m h ) 0 to the corresponding ¨ector of competitï e prices is continu-

Ž .ous with respect to the NA-topology .

� 4Proof. It suffices to show that if h : II is such that H gh dm ªn nG 0 m n
Ž . Ž . Ž . ŽH gh dm for every g g L m then p h ª p h . The idea borrowed0 1 n 0

.from Aumann and Shapley, 1974, p. 188 is to identify the competitive
prices corresponding to h g II with equilibrium prices of a suitablem

Ž .exchange economy EE see Hildenbrand, 1974, Chapter 2 . There areh
Žk q 1 kinds of goods in EE : the k original ones plus ‘‘money’’ the 0-thh

. k kq1 Žgood . The consumption set of each player i is R = R s R thus, noq q q
.player is allowed to hold a negative amount of money , his utility function

Ž . Ž . Ž Ž . Ž ..is given by j , j ¬ u j , i q j , and his endowment is g i , a i ,0 0 s
where s is some positive integer, that does not depend on i, such that

Ž .min p h ) 1rs. The population measure is h dm. As is readily verifiedj j
w Ž .x Ž . Ž Ž .see 19 , an allocation x satisfies 17 if and only if the bundle g i ys
Ž . Ž . Ž . Ž . Ž .. �Ž .p h ? x i q p h ? a i , x i maximizes player i’s utility in the set j , j0

k Ž . Ž . Ž . Ž .4 Ž Ž ..g R = R N j q p h ? j s g i q p h ? a i . It follows that 1, p h areq q 0 s
equilibrium prices for EE . Moreover, by the uniqueness of the competitiveh
prices corresponding to h, these are the only equilibrium prices for EEh

Ž .which are of the form 1, p , with min p ) 1rs.j j
Ž .If there is some positive integer s such that inf p h ) 1rs then, forj, n j n

every i and n, we can choose the monetary endowment of player i in EEhn
Ž .to be equal to g i . The exchange economies then differ only in theirs

� 4population measures. The assumption concerning h implies, in this case,n
Ž .that the preference]endowment distribution of EE tends to that of EE ,h hn 0

and similarly for the aggregate endowments. It follows, by Proposition 4 in
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Ž .Section 2.2 of Hildenbrand 1974 , that every cluster point of the corre-
� Žsponding sequence of normalized equilibrium prices 1r 1 q

Ž .. Ž Ž ..4 Ž .Ý p h 1, p h is a k q 1 -tuple of normalized equilibrium pricesj j n n
for EE . The first component of such a cluster point cannot be zero: theh0

equilibrium price of money must be positive. Therefore, the sequence
� Ž .4p h must be bounded. If p is a cluster point of this sequence thenn
Ž . Ž .1, p are equilibrium prices for EE . And since min p ) 1rs, p s p h .h j j 00

� Ž .4 Ž .This proves that p h converges to p h .n 0
Ž .It remains to show that inf p h s 0 is impossible. We will provej, n j n

Ž .this by assuming that p h ª 0 for some j and showing that this leads toj n
Ž Ž ..a contradiction. If, for every n, x , p h is a transferable utility competi-n n

Ž . Ž .tive equilibrium corresponding to h then in particular u x y p h ? xn n n n
Ž j. Ž . Ž j. j kG u x q e y p h ? x q e , where e is the jth unit vector in R ,n n n

Ž j. Ž . Ž .and therefore 0 - u x q e y u x F p h ª 0. This is consistent withn n j n
Ž . Ž . Ž . � Ž12 and 13 only if x i ª ` for every i, and hence only if H max e ? 2 an

. 4 � Žy x , 0 h dm ª 0. But this contradicts the fact that H max e ? 2 a yn n
. 4 Ž .x , 0 h dm G e ? H 2 a y x h dm s e ? H ah dm ª e ? H ah dm ) 0.n n n n n 0

B
Ž .Proof of Theorem 3 continued . Let g and h be two elements of II ,m

Ž Ž .. Ž Ž ..and let y, p g and x, p h be two corresponding transferable utility
Ž .competitive equilibria. Since 17 holds for every i,

¨* g y ¨* h s u y g dm y u x h dmŽ . Ž . Ž . Ž .H H

s u x g y h dm y u x y u y g dmŽ . Ž . Ž . Ž .H H

F u x g y h dm y p h ? x y y g dmŽ . Ž . Ž . Ž .H H 20Ž .

s u x g y h dm y p h ? x y a g dmŽ . Ž . Ž . Ž .H H

s u x y p h ? x y a g y h dm.Ž . Ž . Ž . Ž .H

Similarly,

¨* h y ¨* g F u y y p g ? y y a h y g dm. 21Ž . Ž . Ž . Ž . Ž . Ž . Ž .H

Ž .If h F g then the right-hand side of 21 is nonpositive. Hence, ¨* is
monotonic.
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Let 0 - c - c - ??? be such that the series g s 1rc e ? a q Ý 1rc0 1 0 sG1 s
g converges m-almost everywhere and Hg dm s 1. Let m be thes g

nonatomic probability measure defined by dm s g dm. It follows fromg

Ž . Ž .21 and 22 that, for some 0 F u F 1,

1
¨* g y ¨* h s u x y p h ? x y a q u« g y h dm ,Ž . Ž . Ž . Ž . Ž . Ž .H g , h gg

Ž . w Ž . Ž . Žkwhere « : I ª R is defined by « i s max u j , i y p g ? j yg , h g , h j g Rq
Ž ..x w Ž . Ž . Ž Ž ..xka i y max u j , i y p h ? j y a i . If s is a positive integerj g Rq

Ž . Ž .such that p g , p h ) 1rs for all j then, as shown above, both maximaj j
� k Ž .4are attained in the set j g R N e ? j - g i . Therefore, m-almost every-q s

< < < Ž Ž . Ž .. Ž . < Žwhere, 1rg « F 1rg max p g y p h ? j y a F 1rg g qg , h e?j Fg ss
. < Ž . Ž . < < Ž . Ž . <e ? a max p g y p h F c max p g y p h . Since, by Lemma 3,j j j s j j j

Ž . < Ž . Ž . <p ? is continuous on II , max p g y p h ª 0 when g ª h. Thism j j j
proves that ¨* is differentiable at h, that its derivative there is absolutely
continuous with respect to m , and thatg

d D¨* h 1Ž .Ž .
s u x y p h ? x y a g L m .Ž . Ž . Ž . Ž .` gdm gg

Ž w Ž . Ž . Ž .x Ž .The essential boundness of 1rg u x y p h ? x y a follows from 19
.and from the definition of g . Since, for every g and h as above,

5 Ž Ž .. Ž Ž .. 5 5 5d D¨ * g rdm y d D¨ * h rdm s 1rg« FL Ž m . L Ž m .g g g , h` g ` g

< Ž . Ž . < Ž Ž ..c max p g y p h , the function d D¨* ? rdm is continuous at h.s j j j g

Ž Ž ..A transferable utility competitive equilibrium x, p h corresponding to
an ideal coalition h g II is easily seen to correspond also to th, for everym

Ž . Ž . Ž0 - t - 1. Therefore, ¨* th s ẗ * h for every 0 F t F 1. Incidentally,
.this shows that ¨* is differentiable at 0 if and only if ¨ g NA. In

Ž . Ž . Ž . Ž Ž ..particular, lim ¨* t s 0 and lim ¨* t s ¨* 1 , and if x, p 1 ist ª 0 t ª 1q y
a transferable utility competitive equilibrium corresponding to the ideal

Ž Ž .. w Ž . Ž . Ž .xcoalition h s 1 then d D¨* t rdm s 1rg u x y p 1 ? x y a forg

every 0 - t F 1. It follows, by Proposition 2, that the market game ¨ is in
pNA and its value is given by

w¨ S s u x y p 1 ? x y a dm S g CC .Ž . Ž . Ž . Ž . Ž . Ž .H
S

Thus, the value of ¨ is equal to the competitive payoff distribution
Ž .Aumann and Shapley, 1974, p. 184 of the market. B
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APPENDIX

Approximation Lemma

The method of approximation employed in the proofs of Theorem 1 and
Proposition 1 can be used more generally for approximating games in
pNA , pNA, or pNA9. All three spaces of games are generated by powers`

of nonatomic probability measures, but the norm is different in each case.
5 5The norm on pNA9 is the supremum norm ? 9, the norm on pNA is the

5 5 5 5variation norm ? , and pNA is endowed with the norm ? . TheseBV ``

5 5 5 5 5 5norms satisfy ? 9 F ? F ? , and the spaces themselves satisfyBV `

pNA : pNA : pNA9. Each of the three norms can be ‘‘extended’’ in a`

natural way to a norm on the linear space of extensions of games in the
5 5 < Ž . < 5 5respective space. Specifically, we define ¨* 9 s sup ¨* h , ¨* sBVhg II

n 5 Ž . Ž .5 5 5 � Ž .sup Ý ¨* h y ¨* h , or ¨* s inf m I N m g`0 F h F ? ? ?F h F1 is1 i iy10 n

< Ž . Ž . < Ž . 4NA, and ¨* g y ¨* h F m g y h for every g, h g II, h F g when the
ideal game ¨* is the continuous extension of a game ¨ in pNA9, in pNA,
or in pNA , respectively. The extension operator ¨ ¬ ¨* is linear and`

Žnorm-preserving on each of the three spaces Aumann and Shapley, 1974,
.p. 151; Hart and Monderer, 1997 . If f (m is a vector measure game in

pNA9 such that the range of m is finite dimensional then the continuous
Ž . Ž Ž ..extension ¨* of f (m is given by ¨* h s f m h . This can be shown as

follows. First, since the range of a finite dimensional nonatomic vector
measure coincides with its extended range, for every h g II we can find a

Ž . Ž .coalition S such that m h s m S . Second, for the same reason, for every
given neighborhood of h in II we can choose S in such a way that x is inS

that neighborhood. Therefore, by the continuity of ¨*, for every given
< Ž . Ž . < Ž .« ) 0 we may assume that S satisfies ¨* x y ¨* h - « . But ¨* x sS S

Ž Ž .. Ž Ž ..f m S s f m h .
For every game ¨ in pNA9 there exists a nonatomic probability measure

Ž .m such that ¨ is in pNA9 m , the closed linear subspace of pNA9 that is
generated by powers of nonatomic probability measures which are abso-

w � Žk .4lutely continuous with respect to m. If m is a sequence of vectorsk G1
Žk . Ž Žk . Žk . Žk . .Žk .of nonatomic probability measures, m s m , m , . . . , m , and1 2 n

� Žk .4 5 Žk . Žk . 5p is a sequence of polynomials such that ¨ y p (m 9 ª 0,k G1
Ž k Žk ..Ž Žk . Žk . Žk . . xŽk .then m can be chosen as Ý 1r 2 n m q m q ??? qm . Fork G1 1 2 n

Ž . Ž .every g, h g II such that g s h m-almost everywhere, ¨* g s ¨* h .
Similarly, if ¨ is in pNA or in pNA then there exists a nonatomic`

Ž . Ž .probability measure m such that ¨ is in pNA m or in pNA m , respec-`

Ž .tively. These subspaces are defined in a similar way to pNA9 m . For every
Ž .finite subfield FF of CC and for every g g L m , the conditional expec-1

Ž .tation E g N FF is defined as that function on I which is constant on
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Ž . weach atom S of the field FF and is equal there to 1rm S H g dm s 0,S
Ž . x U U Ž .by convention, if m S s 0 . The ideal game ¨ defined by ¨ h sFF FF

Ž Ž ..¨* E h N FF is easily seen to be continuous. Its ‘‘restriction’’ to CC is the
Ž . U Ž .game ¨ defined by ¨ S s ¨ x .FF FF FF S

Ž . Ž .LEMMA 4. Let X be one of the three spaces, pNA m , pNA m , or`

Ž . 5 5pNA9 m , and let ? be the norm on that space. Then a game ¨ is in X if and
5 5only if ¨ is in X for e¨ery finite field FF : CC and lim ¨ y ¨ s 0 as FFFF FF FF

¨aries o¨er the finite subfields of CC, directed by inclusion.

Proof. One direction in trivial: if ¨ is the limit of a net in X then
¨ g X. Conversely, if ¨ is in X and FF is a finite subfield of CC then it is

5 5 5 5 Ž 5 5.not too difficult to see that ¨ F ¨* s ¨ . Hence, for every game uFF

that is a linear combination of powers of nonatomic probability measures
5 5 5 5which are absolutely continuous with respect to m, ¨ y u F ¨ y u .FF FF

5 5Therefore, it suffices to prove that u g X and lim u y u s 0 forFF FF FF

every such u. Consider, then, a game of the form h k, where h is a
nonatomic probability measure that is absolutely continuous with respect
to m and k is a positive integer.

For every FF, h is a nonatomic probability measure that is absolutelyFF

Ž .continuous with respect to m. In fact, dh rdm s E dhrdm N FF . There-FF

Ž k . Ž .k 5 5 5 5 5 5fore, h s h g X. Since uw F 4 u w for every u, w g pNA` ` `FF FF `

5 5 5 5 Ž .and l F 2 l for every l g NA Monderer and Neyman, 1988 ,` BV
5 k k 5 5 k k 5 5 ky 1 ky ly 1 l Ž . 5h y h F h y h s Ý h h h y h F` `FF FF ls 0 FF FF

ky1 k 5 5 ky ly1 5 5 l 5 5 k 5 Ž . 5Ý 4 h h h y h s k4 E dhrdm N FF y dhrdm .` ` BV L Žm.ls0 FF FF 1

Ž .By Theorem IV.8.18 of Dunford and Schwartz 1958 , the limit of the last
expression as FF varies over the finite subfields of CC, directed by inclusion,
is zero. B

Topological Lemma

The relative weak topology on the extended range of a nonatomic vector
measure of bounded variation m is the strongest topology on that set with

Ž .respect to which m ? is continuous on II. This result constitutes the first
part of the following lemma.

LEMMA 5. If m is a nonatomic ¨ector measure of bounded ¨ariation with
Ž .¨alues in a Banach space X, then a set A : m II is open with respect to the

Ž . � Ž . 4relatï e weak topology on m II if and only if h g II N m h g A is open
Ž .with respect to the NA-topology on II . In this case, a function f from A to

Ž Ž .. �some topological space Y is weakly continuous if and only if f m ? : h g
Ž . 4II N m h g A ª Y is continuous.
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Proof. We have to show that if h ª h is a converging net in II thena

Ž . Ž . Ž Ž .. Ž Ž ..m h ª m h weakly, that is, x* m h ª x* m h for every continuousa a

linear functional x* g X*. But this follows immediately from the fact that
x*(m g NA. Conversely, we have to show that if x ª x is a weaklya

Ž . Ž .converging net in m II then there exists h g II such that m h s x and in
Ž . � 4every neighborhood of h there is some h9 such that m h9 g x . Leta

� 4 Ž .h : II be such that m h s x for every a . It follows from Alaoglu’sa a a

theorem that, by passing to a subnet if necessary, we may assume that
Ž . Ž .there is some h g II such that m h ª m h for every m g NA which isa

< < Ž .absolutely continuous with respect to m . In particular, x* x sa

Ž Ž .. Ž Ž .. Ž Ž .. Ž .x* m h ª x* m h , and therefore x* m h s x* x , for every x* ga

Ž .X*. This proves that m h s x. Every neighborhood of h contains an open
� < Ž . < 4neighborhood of the form g g II N max m g y h - « , where « )1F iF l i

< <0, m , m , . . . , m g NA are absolutely continuous with respect to m , and1 2 k
< <m , . . . , m g NA are singular with respect to m . This follows from thekq1 l

fact that every nonatomic measure can be written as the sum of two
< <nonatomic measures, one absolutely continuous with respect to m and

< < < Ž . <the other singular with respect to m . Let a be such that m h y h - «i a

for every i F k. Let h9 g II be equal to h in some subset of I of
< <m -measure zero in which m , . . . , m are supported and equal to hkq1 l a

Ž . Ž . < Ž . <elsewhere. Then m h9 s m h s x , and m h9 y h - « for every k -a a i
i F l as well as for every i F k.

The second part of the lemma follows from that fact that, for every set
y1Ž . Ž . � Ž .B in Y, f B is weakly open in m II if and only if h g II N m h g

y1Ž .4f B is open. B
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