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The definition of vector measure game is generalized in this paper to include all
cooperative games of the form fo u, where w is a nonatomic vector measure of
bounded variation that takes values in a Banach space. It is shown that if f is
weakly continuously differentiable on the closed convex hull of the range of w then
the vector measure game fo w is in pNA, and its value is given by the diagonal
formula. Moreover, every game in pNA, has a representation that satisfies this
condition. These results yield a characterization of pNA., as the set of all differen-
tiable games whose derivative satisfies a certain continuity condition. Journal of
Economic Literature Classification Numbers: C71, D46, D51.  © 1998 Academic Press

INTRODUCTION

A list of axioms, adapted from those which uniquely characterize the
Shapley value for finite-player cooperative games, determines a unique
value on certain classes of nhonatomic cooperative games—games involving
an infinite number of players, each of which is individually insignificant
(Aumann and Shapley, 1974). Concrete criteria for identifying a given
nonatomic game as belonging to such a class of games, and a formula for
computing the value, are known for certain kinds of vector measure games
(Aumann and Shapley, 1974). In a vector measure game, the worth of a
coalition S depends only on the value that a particular vector measure on
the space of players takes in S. In this context, the term *‘vector measure”
usually refers to an R”-valued measure, that is, to a vector of n scalar
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measures. However, certain nonatomic games are more naturally de-
scribed in terms of measures that take values in an infinite dimensional
Banach space.

Consider, for example, a (transferable utility) market game v, where the
worth of a coalition § is

v(S) = max{fsu(x(i),i) dm(i) fsx(i)dm(i) = /Sa(i)dm(i)}, (1)

the maximum aggregate utility that § can guarantee to itself by an
allocation x of its aggregate endowment [, adm among its members
[Aumann, 1964. In this formula, u( &, i) is the utility that player i gets from
the bundle ¢ and m, the population measure, is a nonatomic probability
measure.] Since v(S) depends on S only through certain integrals over S,
if m(S\T)=m(T\S)=0 then v(T) =v(S). Thus, v(S) can be ex-
pressed as a function of the characteristic function y, of the coalition S,
seen as an element of L,(m). The market game under consideration can
therefore be viewed as a vector measure game based on the L,(m)-valued
vector measure defined by S — xs.

Only one previous work known to me deals with vector measure games
based on vector measures with values in an infinite dimensional vector
space. Sroka (1993) studied games based on vector measures of bounded
variation with values in a relatively compact subset of a Banach space with
a shrinking Schauder basis. The vector measure considered above in
connection with the market game is not of this kind: its range is not a
relatively compact subset of L,(m), and L,(m) itself does not have a
shrinking Schauder basis. (Only a separable Banach space with a separable
dual space can have such a basis. Considering the range of the measure in
question to be a subset of L,, say, rather then L,, would not help, for the
measure would not then be of bounded variation. Note that if the range
space were taken to be L_ then the above set function would not even be a
measure; specifically, it would not be countably additive.) In the first part
of this paper, these limitations on the range of the vector measure and on
the space in which it lies are dispensed with. Thus, the results of Aumann
and Shapley are generalized to a much larger class of vector measure
games.

As the above market game example demonstrates, the present interpre-
tation of “vector measure games” is broad enough to include all games in
which the worth of a coalition is not affected by the addition or subtraction
of a set of players of measure zero—the measure in question being a fixed
nonatomic scalar measure on the space of players. All the games that
belong to one of the spaces of games on which Aumann and Shapley have
proved the existence of a unique value have this property, and can



VECTOR MEASURE GAMES 27

therefore be represented as vector measure games. This representation is,
however, not unique. It is therefore desirable to reformulate the condi-
tions for a vector measure game to belong to one of these spaces in a
language that does not make an explicit reference to vector measures.
Such an alternative formulation is presented in the second part of the
paper, where the above conditions are stated as differentiability and
continuity conditions on a suitable extension of the game, an ideal game,
that assigns a worth to every ideal, or “fuzzy”, coalition, in which some
players are only partial members.

The last part of the paper contains an example that shows how these
general results can be applied to market games. Another application,
involving cooperative games derived from a particular class of nonatomic
noncooperative congestion games, is given in a separate paper (Milchtaich,
1995). Two rather technical lemmas, which are of some independent
interest, are given in the Appendix.

PRELIMINARIES

The player space is a measurable space (1, #). A member of the o-field
% is called a coalition. A set function is a function from % into a real
Banach space X. The wvariation of a set function v is the extended
real-valued function |v| defined by

01(8) = sup £ lIo(S) — (S, Dl (S <#).

where the supremum is taken over all finite nondecreasing sequences of
coalitions of the form S, c S, € --- € §,=S. A set function v is of
bounded variation if |v[(I) < . A game is a real-valued set function v
such that v(J) = 0. A game v is monotonic if T c S implies v(T) < v(S).
BV denotes the normed linear space of all games of bounded variation
endowed with the operations of pointwise addition and multiplication by a
(real) scalar and with the variation norm (called the “variation” in Aumann
and Shapley, 1974) ||v|lzy = lvI). The monotonic games span this space.
The subspace of BV that consists of all finitely additive real-valued set
functions of bounded variation is denoted FA.

A vector measure is a countably additive set function. A (finite, signed)
measure is a real-valued vector measure. A vector measure w is nonatomic
if for every S € & such that u(S) # 0 there is a subset T C S such that
w(T), S\ T) # 0. The variation |u| (also called the total variation
measure) of a vector measure of bounded variation w is a measure
(Diestel and Uhl, 1977, p. 3). |ul| is nonatomic if and only if w is
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nonatomic. The subspace of BV that consists of all nonatomic (finite,
signed real-valued) measures is denoted NA.

An ideal coalition is a measurable function 4: I — [0,1]. For a vector
measure w and an ideal coalition (or a linear combination of ideal
coalitions) &, w(h) denotes the integral [/ du. See Dunford and Schwartz
(1958, Section 1V.10) for a definition of integration with respect to a vector
measure. The space .# of ideal coalitions is topologized by the NA-topol-
ogy, defined as the smallest topology on .# with respect to which all
functions of the form w(:), u € NA, are continuous. As a base for the
neighborhood system of an ideal coalition / one can take the collection of
all open sets of the form {g €. #Imax,_,_, Im(g — h)| < &}, with &> 0
and my, m,,...,m, € NA.

The range of a vector measure u is the set u(%). If the range of w (or,
more precisely, the subspace it spans) is finite dimensional then u is
automatically of bounded variation. If wu is also nonatomic then its range is
compact and convex (Lyapunoff theorem). The range of a general
nonatomic vector measure need not be compact nor convex. However, for
every vector measure u the set w(#) ={u(h) | h €7} is convex and
weakly compact (Diestel and Uhl, 1977, p. 263). This set coincides with the
closed convex hull of w(%), and if w is nonatomic then it is also the weak
closure of w(%) (Diestel and Uhl, 1977, p. 264). We will call w(.¥) the
extended range of .

EXAMPLE. Let m be a probability measure on (I,%), and define
w & — L(m) by u(S)= xs. Then p is a vector measure of bounded
variation whose variation is m. Therefore, u is nonatomic if and only if m
is nonatomic. The range of w consists of all (equivalence classes of)
characteristic functions of measurable subsets of I. This is a closed, but
not convex, subset of L,(m), and if m is nonatomic then it is also not
compact. The extended range of w is the set of all (equivalence classes of)
measurable functions from [ into the unit interval. Indeed, for every
h €7, u(h) = h. Note that in this example the weak compactness of the
extended range of u follows immediately from Alaoglu’s theorem and
from the fact that the relative weak topology on this set coincides with the
relative weak* topology on it when seen as a subset of L (m).

We will say that a real-valued function f defined on a convex subset C
of a Banach space X is differentiable at x € C if there exists a continuous
linear functional Df(x) € Y*, where Y is the subspace of X spanned by
C—-C={y—zly,ze C}and Y* is its dual space, such that for every
yeC

f(x+0(y —x)) =f(x) + 6y —x,Df(x)) + 0(8)
as 6 — 0. (The angled brackets { -, - ) denote the operation of applying
an element of Y* to an element of Y.) This continuous linear functional,
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which is necessarily unique, will be called the derivative of f at x. The
function f is (weakly) continuously differentiable at x if it is differentiable
in a (respectively, weak) neighborhood of x in C and Df is (respectively,
weakly) continuous at x. The function f is (weakly) continuously differen-
tiable if it is (respectively, weakly) continuously differentiable in the whole
of its domain. The restriction of a (weakly) continuously differentiable
function to a convex subset of its domain is (respectively, weakly) continu-
ously differentiable. Continuous differentiability and weak continuous
differentiability are equivalent for functions with compact domain. This
follows from the fact that the relativization of the weak topology to a
compact subset of a Banach space coincides with the relative norm
topology (because every set which is closed, and hence compact, with
respect to the relative norm topology is compact, and hence closed, also
with respect to the relative weak topology). A real-valued function f
defined on a bounded convex subset C of a Banach space X is (weakly)
continuous at every point x at which it is (respectively, weakly) continu-
ously differentiable. [Proof: If U is a convex neighborhood of x in C in
which f is differentiable then it follows from the mean value theorem that
1f(y) = fOIl < supgoyeq 1<y — x, Df(x + 6(y — X)) | < [y —

x, Df(x)) | + lly — xllsup, c ; IDf(z) — Df(x)ll for every y € U. By a suit-
able choice of U the last two terms can be made arbitrarily small.] If X is
a Euclidean space and C is compact then f is continuously differentiable
if and only if it can be extended to a continuous function on X with
continuous first-order partial derivatives.

The closed linear subspace of BV that is generated by all powers (with
respect to pointwise multiplication) of nonatomic probability measures is
denoted pNA. There exists a unique continuous linear operator ¢: pNA
— FA that satisfies ¢(u*) = u for every nonatomic probability measure
w and positive integer k, called the (Aumann—Shapley) value on pNA. See
Aumann and Shapley (1974) for an axiomatic characterization of the value.

For a game v, define ||vll. = inf{m(I) | m € NA, and |v(S) — v(T)| <
m(S\T) for every S, T &, T c S}(infd = »). The collection of all
games v such that ||v]l. < o is a linear subspace of BV, denoted AC., and
I |l.. is @ norm on this space. The || - |l.-closed linear subspace of AC,, that
is generated by all powers of nonatomic probability measures is denoted
PNA... This space is a proper subset of pNA.

VECTOR MEASURE GAMES

A composed set function of the form fo u, where w is a nonatomic
vector measure of bounded variation and f is a real-valued function
defined on w(_#) such that f(0) = 0, will be called a vector measure game.
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Aumann and Shapley (1974) proved that if the range of u is finite
dimensional then a sufficient condition for a vector measure game fo u to
be in pNA (actually in pNA,) is that f be continuously differentiable. The
value of such a vector measure game is given by the so-called diagonal
formula. Sroka (1993) generalized this result to the case where the range
of w is a relatively compact subset of a Banach space with a shrinking
Schauder basis. These results are generalized further in the following
theorem.

THEOREM 1. Let p be a nonatomic vector measure of bounded variation
with values in a Banach space X. If f is a weakly continuously differentiable
real-valued function defined on the extended range of u such that f(0) = 0,
then f o w is in pNA,, and its value is given by the (diagonal) formula

e(f=m)($) = [(u($), Df (1)) dt (S€®).  (2)

If X is finite dimensional then the converse is also true: a vector measure game
feowisin pNA, only if f is continuously differentiable on the range of L.

The restriction that X is finite dimensional cannot be removed. For
example, if m is Lebesgue measure on the unit interval and w is as in the
Example in the previous section then the function f: u(.*)(c L(m)) - R
defined by f(h) = [}t Y2h(¢)dt is not differentiable according to the
present definition. Nevertheless, fo u € NA. The question of what condi-
tions on f, if any, are both necessary and sufficient for a general vector
measure game feou to be in pNA,, or in pNA, remains open (cf.
Kohlberg, 1973; Aumann and Shapley, 1974, Theorem C; Tauman, 1982).
Note that if the range of w is relatively compact (this is automatically the
case if X is a reflexive space or a separable dual space; see Diestel and
Uhl, 1977, p. 266) then by Mazur theorem (Dunford and Schwartz, 1958, p.
416) the extended range of w is compact. Therefore, in such a case f is
weakly continuously differentiable if and only if it is continuously differ-
entiable.

If a vector measure game f o u is monotonic, then for it to be in pNA it
suffices that f be continuous, rather than differentiable, at 0 and w(1).

PropPosITION 1. Let w be a nonatomic vector measure of bounded
variation, and let f: u(¥) - R be weakly continuously differentiable in
udh €710 < |ulth) < | ul(DY) and continuous at 0 and at u(I). If f o w is
a monotonic game then it is in pNA and its value is given by (2).

The following lemma, which is of some independent interest, is used in
the proofs of Theorem 1 and Proposition 1.
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LEMMA 1. Let wu: % — X be a nonatomic vector measure of bounded
variation, and let f be a real-valued function defined on u(¥%). Define
w @ — L(luD by g(S) = xs. (Note that |l = | nl) Then there exists a
unique real-valued function f, defined on (%), such that

F(a(h)) =f(m(h))  (hes). (3)

For every h €7, if f is (weakly) continuous at u(h) then f is (respectively,
weakly) continuous at (h), and if f is weakly continuously differentiable at
w(h) then f is weakly continuously differentiable at fi(h) and Df(i(h))
satisfies

(B(g), DF( (M) = (p(8) DF(u(h)))  (g€7).  (4)

It follows from Lemma 1 that, conceptually, there is only one kind of
vector measures that needs to be considered in the present context,
namely, vector measures that map coalitions into their characteristic
functions. One may thus wonder whether vector measures need to be
considered at all. An alternative approach might be to express the above
conditions for a game to be in pNA, or in pNA directly in terms of a
particular “extension’ of the game into a function on .#. We will see in the
next section that these results can indeed be reformulated in such a
manner.

DIFFERENTIABLE IDEAL GAMES

An ideal game is a real-valued function on .7 that vanishes at (the
constant function) 0. We will say that an ideal game v* is monotonic if
h < g implies v*(h) < v*(g), and that v* is differentiable at h € .7 if there
exists a (necessarily unique) nonatomic measure Dv*(h), called the deriva-
tive of v* at h, such that for every g € .7

v*(h + 0(g — h)) =v*(h) + 6Dv*(h)(g — h) +0(0)

as 6 — 0,. An ideal game is differentiable if it is differentiable at every
point in 7. An ideal game v* is a continuous extension of a game v if
v*( xg) = v(S) for every S € € and v* is continuous (with respect to the
NA-topology). Aumann and Shapley (1974, Proposition 22.16) showed that
a continuous extension is always unique, and that a sufficient condition for
a game to have such an extension is that there exists a sequence in pNA
that converges to that game in the supremum norm ||v]' = supgc ¢ [0(S)I.
The set of all games that satisfy this condition is closed under pointwise
addition and multiplication by a real scalar, and is denoted pNA'.
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THEOREM 2.  An ideal game v* is the continuous extension of some game
v in pNA,, if and only if there is a nonatomic probability measure m such that,
for every h €7, the derivative Dv*(h) exists and is absolutely continuous with
respect to m, d(Dv*(h))/dm is essentially bounded, and d(Dv*(-))/dm is
continuous at h as a function into L. (m). The value of v is then given by

(ov)(S) = folDU*(t)(S)dt (S e®). (5)

The necessary and sufficient condition for an ideal game v* to be the
continuous extension of a game in pNA, that is given in Theorem 2 is
apparently stronger then the sufficient condition obtained by Hart and
Monderer (1997). In fact, Hart and Monderer’s condition is equivalent to
the requirement that d(Dv*(-))/dm be continuous as a function into
L,(m). The above condition is equivalent to the requirement that there is a
representation of the game as a vector measure game that satisfies the
conditions of Theorem 1. Thus, we have the following result.

LEMMA 2. A game v can be represented as a vector measure game f o u,
with f weakly continuously differentiable on the extended range of w, if and
only if v € pNA,,. A game v can be represented as a vector measure game
f o w, with f weakly continuous on the extended range of w, if and only if
v € pNA'.

The following sufficient condition for a monotonic ideal game to be the
continuous extension of a game in pNA is derived from Proposition 1.

PROPOSITION 2. If v* is @ monotonic ideal game such that lim, _, o v*(¢)
=0 and lim,, v*(t) = v*(), and there exists a nonatomic probability
measure m such that, for every h € 7 such that 0 < m(h) < 1, the derivative
Duv*(h) exists and is absolutely continuous with respect to m, d(Dv*(h))/dm
is essentially bounded, and d(Dv*(-))/dm is continuous at h as a function
into L (m), then the game v defined by v(S) = v*( x,) is in pNA and its value
is given by (5).

PROOFS

Proof of Lemma 1. For every h € .# —.# and every continuous linear
functional x* € X*, x*(w(h)) = [hd(x*op) = [h d(x*o w)/d| ul d| pl
by Theorem 1V.10.8 of Dunford and Schwartz (1958). Taking the maximum
over the unit sphere in X*, we get || w(Wllx < [ |Aldl pl = | BN L, up,
since [ld(x*o w)/d| plllz.up < lx*lx« for every x*. Therefore, u(h) —
u(h) is a well-defined continuous function from u(.#) onto u(_#) that is
continuous also with respect to the relative weak topologies on these
spaces. It follows that f is well defined by (3) and that it is (weakly)
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continuous at w(h) if f is (respectively, weakly) continuous at u(4). Also,
if f is weakly continuously differentiable at w(/) then Eq. (4) well defines
a continuous linear functional Df( (k) € L (| uD* [which is in fact equal
to, or rather _identifiable with, d(Df(u(h))e w)/dlul € L(| D]
IDf(a(g)) — DFCRI L,y < IDFCu(g)) — DFCu(h)lspc uryy=  holds
for every u(g) in a weak neighborhood of (%), and therefore Df(-) is
weakly continuous at (/). By (3) and (4), and the definition of Df( w(h)),
for every u(g) € u(”)

F(R(R) + 6(R(g) — A(h)))

= f(A(R)) + 6<A(8) — B(h), DF(B(h))) + o(6)

as 0 — 0,. This proves that f is differentiable at @(#) and that the
continuous linear functional Df( (k) is indeed its derivative there. ®

Proof of Theorem 1. Suppose that f satisfies the condition of the
theorem. In light of Lemma 1, it can be assumed without loss of generality
that X = L,(m), where m is a nonatomic probability measure, and that
uw(S) = xg (§ € %). For a sub-o-field & of #, define an L, (m)-valued
nonatomic vector measure u; by u (S) = E( xg |.%), where E(-|.%) de-
notes conditional expectation. If .7 is finite then the range of u, which is
a subset of the convex hull of the range of w, clearly spans a finite
dimensional subspace of L,(m). Therefore, by an immediate extension of
Proposition 7.1 of Aumann and Shapley (1974), f o u, € pNA,.. To prove
that fo u isin pNA, it suffices to show that

limllfopy—foull.=0 (6)
7

as .7 varies over the finite subfields of #, directed by inclusion. (That is,
for every £ > 0 there exists a finite measurable partition of I such that, if
& is the field generated by some finer finite measurable partition, || f o
—foull. < &)

Let # be a sub-o-field of %, and let S, T € & be such that T C S. For
0 <t <1, define h, = x; + t x5\ r(€). By the fundamental theorem of
calculus, applied to the function ¢ — f(u(h,) (= fQuAT) + tu(S\
1)),

(Fom)(8) = (fom)(T) = [*Cun(S\NT). Df (s (h))))

- foljlﬂy(S\T)Df( po(h,)) dmdt (7)

- fol fS\TE(Df( ps(h,)) 1.5) dmadt,
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where the last equality follows from the identity
JE(h1F)gdm = [hE(g1F)dm  (h € Ly(m), g € L.(m)),
1 1

applied to the functions i = xg\, and g = Df(u,(h,)). Note that the
same notation is used in (7) for the derivative of f at a point and for the
representation of that derivative as an element of L.(m). In the special
case ¥ = & we get

(F () = (Fo)(T) = [* [ DF(w(h)) dmat.— (8)

It follows from (7) and (8) that

1f e by = foplle < SUpIECDF(E(h 15)) 15) = DF( w(B))llL.omy-
hes

Hence, in order to complete the proof of (6) if suffices to show that
I E(Df(E(h 1)) 17) = DF(E(h 19)llon =0 (9)

and
mIIDF(E(h 15)) = Df(w(1))llL.m = 0 (10)

uniformly in & .7 as .7 varies over the finite subfields of #, directed by
inclusion. Df is a weakly continuous function defined on a weakly compact
subset of L,(m). Therefore, it is uniformly weakly continuous and its range
is compact. Theorem 1V.8.18 of Dunford and Schwartz (1958) asserts that,
for every compact subset K of L.(m), lim [|[E(g|%) — gll._m) = 0 uni-
formly in g € K. This proves (9). The same theorem, together with the
above identity, implies that, for every g € L.(m), lim_ [ E(h | F)gdm =
limg [hE(g | F)dm = [hgdm uniformly in h €_7. Thus, with respect to
the weak topology on L,(m), lim, E(h | %) = w(h) uniformly in h €7
This, and the uniform weak continuity of Df, together imply (10).

Since f is weakly continuous, it follows from Lemma 5 in the Appendix
that the ideal game defined by 4 — f(u(h)) is a continuous extension of
f o n. Therefore, by Theorem H of Aumann and Shapley (1974), the value
of fo w is given by

d
e(fom)(S) = [ 2ol fn(D) + ou($)) i (S€®)

(and the derivative on the right-hand side of this equation exists for almost
every 0 <t < 1). By definition of Df, this gives (2).



VECTOR MEASURE GAMES 35

The proof of the second part of the theorem will be given after the proof
of Theorem2. ®

Proof of Proposition 1.  We prove Proposition 1 by making the following
two modifications to the proof of the first part of Theorem 1.

First, since f is continuous at 0, and since w(#) — 0 is equivalent to
m(h) — 0, f is actually weakly continuous at 0. Similarly, f is weakly
continuous at w(I). Since f is weakly continuously differentiable, and
hence weakly continuous, in u({h € 710 < m(h) < 1}) = w(F)\
{0, w(D)}, the ideal game & — f( w(h)) is continuous. Aumann and Shapley
(1974, p.150) showed that a continuous extension of a monotonic game is a
monotonic ideal game. It follows that, for every finite subfield . of #, the
restriction of f to wu,(#) can be viewed as a nondecreasing continuous
function on the unit cube in R", where n is the dimension of the subspace
of L,(m) that is spanned by () (which is equal to the number of atoms
of nonzero m-measure of the field %). This function is continuously
differentiable outside of the origin and (1,1,...,1). Therefore, by an
extension of Proposition 10.17 of Aumann and Shapley (1974, proposition
and extension in p. 92), f e u, € pNA.

Second, for fixed & > 0, let 0 < & < 1/2 be such that f( u(h)) < ¢ and
fCu@ —h)) > f(uI)) — & for every h €.7 that satisfies m(h) < 6. If
Soc8 ¢S, S, ¢ cl is a finite nondecreasing se-
guence of coalitions such that m(S J=238and m(S;)=1-§,andif 7
a finite subfield of &, then for every ip<i<i Eqs (7) and (8) hold for
S =S,and T = §,_;. The monotonicity of fo u and of fo u, implies that
T [(fome)S) = (foudS) — (fous)S;,1) + (fouXS,_pI < 26,
and a similar inequality holds for the sum over i; +1,i; +2,.... It
follows that [If o us — fo ullsy < SUPs - imy<1- 5 IECDF(E(h | 9)) |.F) —
DFC (M)l my + 4e. Since the set {u(h) € w(#) | § <m(h) <1 — 8} is
weakly compact, an argument similar to that given in the proof of Theo-
rem 1 shows that the limit of the last supremum as % varies over the finite
subfields of &, directed by inclusion, is zero. Since & is arbitrary, this
proves that limg ||f o uws — fo ullpy = 0, and therefore fou € pNA. W

Proof of Theorem 2. If v* satisfies the condition of the theorem then
v*(g) = v*(h) for every g and & in .# which are equal m-almost every-
where. Indeed, by the mean value theorem, there exists some 0 < 6 < 1
such that

v*(g) —v*(h) =Dv*(h + 6(g —h))(g — h)

S PP U L)) P
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Therefore, there exists a unique function f: w(#) —» R, where w is the
L,(m)-valued nonatomic vector measure of bounded variation defined by
u(S) = xq, such that v*(h) = f(w(h)) (h €.#). This function is differen-
tiable. Indeed, its derivative at w(h) is Df(u(h)) = d(Dv*(h))/dm €
L.(m) (= L,(m)*), and it follows that Df( u(-)) is continuous on .#. Hence,
Lemma 5 in the Appendix implies that Df is weakly continuous. There-
fore, by Theorem 1, f o u € pNA... The formula for the value of v (= fo u)
now follows from (2) and from the above expression for Df.

Conversely, suppose that v* is the continuous extension of a game v in
PNA... There exists a sequence {v,},., of games in pNA,, whose continu-
ous extensions satisfy the condition of the theorem such that [lv, — vll.. <
47" for every n. Indeed, we can take these games to be polynomials in NA
measures. For every u € pNA,, and for every £ > 0 there is a nonatomic
probability measure m such that |u*(h + 0g) — u*(h)| < 10(lull. +
g)m(g) for every g, h €. and 6 € R such that 4 + 0g .7 (see the
Appendix). It follows that if u* is differentiable at 7 then

[ Du*(h)(g)l < (llull. + e)ym(g) < llull. + & (g er).

In particular, | Dvf(h)(g) — Dvi(hX(g)l < llv, — v, |l for every n, n’, and
g, h €7, and therefore Dv*(-)(-) converges uniformly to a real-valued
function y(-,-) on .# X_% For every h, y(h,-) is (the continuous exten-
sion of) a nonatomic measure and, for every g, y(-, g) is continuous on _%.
Since, for every g, h € .# and 6 € R such that & + 0g €.7 and for every
n, v¥(h + 0g) — v¥(h) = [¢ DuF(h + 1g)(g) dt, in the limit we get v*(h
+ 0g) — v*(h) = [{ y(h + 1g, g) dt. This equation implies that v* is dif-
ferentiable at 4 [and Dv*(h) = y(h, )]

For every n, let m, be a nonatomic probability measure such that
|Dvi(h)(g) — Du*(h)(g)l < 4 "m,(g) (g, h €.#). The nonatomic proba-
bility measure m = ¥, ., 2 “m, satisfies 4~"m,(g) <2 "m(g). There-
fore, Dv*(h) — Duv*(h) is absolutely continuous with respect to m and

‘d(Du;f(h) — Dur(h))
dm

Since v, satisfies the condition of the theorem, we may assume without
loss of generality that, for every h, Dv*(h) is absolutely continuous with
respect to m,, its Radon—Nikodym derivative with respect to m, is
essentially bounded, and d(Duv}(-))/dm,, is continuous at % as a function
into L.(m,). This remains true when m,, is replaced by m. It follows that,
for every h, Dv*(h) too is absolutely continuous with respect to m and its
Radon—Nikodym derivative with respect to m is essentially bounded. And
since the function d(Dv*(-))/dm: & — L.(m) is the uniform limit of the
continuous functions {d(Dv}(-))/dm,}, . ,, this function is continuous, too.
[ |

<27

L.(m) -
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Proof of Theorem 1 (continued). Suppose that dim X < «. If a vector
measure game fou is in pNA, then by Theorem 2 its continuous
extension v* is differentiable. It is shown in the Appendix that v*(h) =
fCu(h)) (h €.7). Hence, Dv*(h)X(g — h) = d/d0lg-o, f(u(h + 6(g — h)))
for every g and h. The value of this derivative clearly depends only on
w(h) and on u(g — h), and can therefore be written as y( w(h)(u(g — h)),
where y is a function from w(.¥) to X*. By Theorem 2, Dv*(-)(g) is
continuous for every g €.7. Therefore, by Lemma 5 in the Appendix,
y(-)(u(g)) is continuous for every g. This proves that f is continuously
differentiable on w(_#). =

Proof of Lemma 2. If f is weakly continuously differentiable on the
extended range of a nonatomic vector measure of bounded variation u
then fo u € pNA, by Theorem 1. Conversely, if v is in pNA_ then it is
shown in the proof of Theorem 2 that v can be represented as a vector
measure game f o u, with f weakly continuously differentiable.

If fo w is avector measure game such that f is weakly continuous on
the extended range of w, which is a subset of some Banach space X, then
by Stone—Weierstrass theorem f can be uniformly approximated by poly-
nomials in elements of the dual space X*. Specifically, since w(#) is
weakly compact, and since the continuous linear functionals on X sepa-
rate points in this set, for every £ > 0 there are a finite sequence of
functionals x§, x%,..., x* € X* and a polynomial p in n variables such
that |f(u(h) — p(xF (), x5Cu(h), ..., x5 (uw(h))| < & for every h €
. Since xf o u € NA for every i, it follows from Lemma 7.2 of Aumann
and Shapley (1974) that fo u € pNA'.

Conversely, it is shown in the Appendix that if v* is the continuous
extension of a game v in pNA' then there is a nonatomic probability
measure m such that, for every g, h €. which are equal m-almost
everywhere, v*(g) = v*(h). It follows that there exists a real-valued func-
tion f, defined on the extended range of the nonatomic vector measure of
bounded variation w defined as in the Example, such that v*(h) = f( w(h))
(h €.%). Since v* is continuous, by Lemma 5 in the Appendix f is weakly
continuous. W

Proof of Proposition 2. It suffices to show that if v* satisfies the
conditions of the proposition then there exist a vector measure w and a
function f, which satisfy the conditions of Proposition 1, such that v*(h)
= f(uw(h)) (h €.5). Once we establish that v*(h) = 0 for every & which
is equal m-almost everywhere to 0 and that v*(g) = v*(1) for every g
which is equal m-almost everywhere to 1 we can proceed almost exactly as
in the proof of Theorem 2: define w and f as in that proof, and use the
same arguments to show that Df( u(-)) exists and is continuous in {h €.7 |
0 <m(h) <1} ={h 5| wh) # 0, u(1)}, and that Df is therefore weakly
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continuous in u(#)\ {0, u(1)}. The proof of Eq. (5) is also similar. Hence,
it only remains to show that v*(h) — 0 when w(h) — 0 [or, equivalently,
when m(h) — 0] and that v*(g) — v*(1) when u(g) — u(I) [or, equiva-
lently, when m(g) — 1].

For every g, h €.# such that & < g and m(h) < m(g), v*(h + t(g — h))
is nondecreasing as a function of ¢ in the interval [0,1] and has a
nonnegative continuous derivative in the interior of that interval. For
h = 0 (identically) and g = 1 (identically) this function is continuous also
at the end points. Therefore, for every sequence {4,} .7 such that
wu(h,) — 0 and for every sequence {g,} .7 such that #, < g, and u(g,)
- (D),

liminf, [v*(g,) — v*(h,)]

> liminf, [ Do*(h, + 1(g, = h,))(g, — h,) dt
0
_ Iiminfnf()l<p(gn — h,), Df( m(1g, + (1 — 1)h,))) dt

= ["Cu(n), Df(n(1))) de = v%(1)

by Fatou’s lemma and the continuity of Df in u()\ {0, u(1)}. Taking
g, = 1 for every n shows that v*(h,) — 0. Taking 4, = 0 for every n
shows that v*(g,) —» v*(1). =

APPLICATION: MARKET GAMES

We give a new proof to the following result, due to Aumann and Shapley
(1974, Chapter VI).

THEOREM 3. Suppose that (I,%) = ([0, 1], the Borel sets). Let m (the
population measure) be a nonatomic probability measure, k (the number of
different goods) a positive integer, a (the endowment) an m-integrable func-
tion from I into the interior of the k-dimensional nonnegative orthant R* , and
u (the utility function) a real-valued function that is defined on R* X I and
satisfies the following assumptions:

forevery £ € Rﬁ, u( &,-) is a measurable function on I (11)

foreveryi € I,u(-,i) is a continuous function on R*; (12)
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foreveryi € I,u(-,i) is strictly increasing (in each component separately),

and u(0,i) = 0; (13)
foreveryi € Iandj, du( §,i)/dé; exists and is continuous at each & € RK
for which & > 0; and (14)
u(é,i) =O(Z§j) as ) & — o, integrably in i, (15)
J J

that is, for every & > O there is an m-integrable function y: I — R such that,
forevery § € RS andi € I, L, & = y(i) implies u(&,1) < £ ¥; & Then for
every coalition S the maximum in (1) is attained, and the market game v
defined by this equation is in pNA. The value of this game coincides with the
unique competitive payoff distribution of the (transferable utility) market.

Proof. It follows from (11) and (12) that u is Borel measurable (Klein
and Thompson, 1984, Lemma 13.2.3). Define an ideal game v*:.# - R by

v*(h) = max [ u(x)hdm, (16)

where the maximum is taken over the set {x: I — R* | x is measurable and
[xhdm = [ahdm} of all (feasible) allocations and u(x) denotes the func-
tion on I whose value at i is u(x(i), ). This maximum is attained (which
means, in particular, that it is finite; Aumann and Shapley, 1974, Proposi-
tion 36.1). Furthermore, by Proposition 36.4 and the discussion in pp.
189-190 of Aumann and Shapley (1974), for every h such that [hdm > 0
there is a unique vector p(h) in the interior of R, called the vector of
competitive prices corresponding to A, such that, for some allocation x,

u(x(i), ) = p(h) (i) = max [u(&.0) —p(h)- €] (17)
for m-almost every i for which A(:) # 0 (the dot stands for scalar product).
It is not difficult to see that such an allocation x maximizes the integral in
(16). If x is an allocation which satisfies (17) for every i then the pair
(x, p(h)) is called a transferable utility competitive equilibrium corresponding
to h. Such an allocation always exists: Since u is Borel measurable on
RX x I and is continuous in the first argument, there exists a measurable
function x: I — RX that satisfies (17) for every i for which the maximum
on the right hand side of that equation is attained (Wagner, 1977, Theo-
rem 9.2). But, as we show next, this maximum is in fact attained for every i.
It follows that, given an allocation x that satisfies (17) for m-almost every i
such that /(i) # 0, we can change the values that x takes at those points
where (17) does not hold in such a way that the new function be an
allocation that satisfies (17) everywhere.
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For every positive integer s there exists, by (15), an m-integrable
function v,: I — (0, %) such that, for every i and ¢ € RX,

1
e- &> vy(i)impliesu(¢,i) < ;e'f, (18)

where e is the vector with all components 1. If s> 1/min; p]-(h) then
1/se- &< p- & It then follows from (18) that, for every i, the maximum
on the right-hand side of (17) is attained in, and only in, the set {& € R |
e - ¢ < y(i)}. Consequentially, if (17) holds, x(i) # 0, and min; p,(h) > 1/s
then v, (i) /e - x(i) > 1, and hence

¥,(1)

0 <u(x(i),i) —p(h)-x(i) <u e x(1) x(i),i] — p(h) -x(i)
< x%(i) —p(h) x(i) (19)

by (13) and (18). It follows that if x is an allocation that satisfies (17) for
every i then [u(x)dm < [y, dm < .

LEMMA 3. The function p(-) that sends each element of the set .7, = {h
e 7| m(h) > 0} to the corresponding vector of competitive prices is continu-
ous (with respect to the NA-topology).

Proof. It suffices to show that if {#,},. , €.%, is such that [gh, dm —
[gho dm for every g € L,(m) then p(h,) = p(h,). The idea (borrowed
from Aumann and Shapley, 1974, p. 188) is to identify the competitive
prices corresponding to & €.7, with equilibrium prices of a suitable
exchange economy &, (see Hildenbrand, 1974, Chapter 2). There are
k + 1 kinds of goods in &,: the k original ones plus “money” (the 0-th
good). The consumption set of each player i is R, X R = RE*? (thus, no
player is allowed to hold a negative amount of money) h|s utlllty function
is given by (&,, &) = u(&,i) + £&,, and his endowment is (v,(i), a(?)),
where s is some positive integer, that does not depend on i, such that
min; p,(h) > 1/s. The population measure is 7 dm. As is readily verified
[see (19)], an allocation x satisfies (17) if and only if the bundle (v,(i) —
p(h) - x(@) + p(h) - a(i), x(i)) maximizes player i's utility in the set {( £, ¢)
€ R, X RX| & + p(h)- &= v,(i) + p(h) - a(i)}. It follows that (1, p(h)) are
equilibrium prices for &,. Moreover, by the uniqueness of the competitive
prices corresponding to &, these are the only equilibrium prices for &,
which are of the form (1, p), with min; p, > 1/s.

If there is some positive integer s such that inf, , p,(h,) > 1/s then, for
every i and n, we can choose the monetary endowment of player i in &,
to be equal to v,(i). The exchange economies then differ only in their
population measures. The assumption concerning {#,} implies, in this case,
that the (preference—endowment) distribution of &, tends to that of &, ,
and similarly for the aggregate endowments. It follows, by Proposition 4 in
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Section 2.2 of Hildenbrand (1974), that every cluster point of the corre-
sponding sequence of normalized equilibrium prices {1/(1 +
L pi(h, ), p(h,))} is a (k + 1)-tuple of normalized equilibrium prices
for &, . The first component of such a cluster point cannot be zero: the
equilibrium price of money must be positive. Therefore, the sequence
{p(h,)} must be bounded. If p is a cluster point of this sequence then
(1, p) are equilibrium prices for &, . And since min; p; > 1/s, p = p(hy).
This proves that { p(h,)} converges to p(h,).

It remains to show that inf; , p,(h,) = 0 is impossible. We will prove
this by assuming that p;(h,) — 0 for some j and showing that this leads to
a contradiction. If, for every n, (x,, p(h,)) is a transferable utility competi-
tive equilibrium corresponding to 4, then in particular u(x,) — p(h,) - x,
> u(x, +e) — p(h,) - (x, + e’), where ¢/ is the jth unit vector in R,
and therefore 0 < u(x, + ¢/) — u(x,) < p,(h,) — 0. This is consistent with
(12) and (13) only if x,(i) — o for every i, and hence only if [ max{e - (2a
—x,),0} h,dm — 0. But this contradicts the fact that [ max{e-(2a —
x,),00 h,dm >e-[Qa—x,)h,dn =e- [ah,dn — e [ahydm > 0.
[ |

Proof of Theorem 3 (continued). Let g and h be two elements of .7,
and let (y, p(g)) and (x, p(h)) be two corresponding transferable utility
competitive equilibria. Since (17) holds for every i,

v*(8) = vx(h) = [u(y)gdm = [u(x)hdm
= [u(x)(g — hydm — [ [u(x) —u(y)]gdm
< [u(x)(g —h)ydm — [ p(h) - (x —y)gdm (20)
= [u(x)(g = hydm = p(h) - [ (x — a)gdm
= [ [u(x) = p(h) - (x = a)](g — hydm.
Similarly,
o*(h) = v*(g) < [ [u(y) =p(8) - (v = @)](h = g)dm. (21)

If & <g then the right-hand side of (21) is nonpositive. Hence, v* is
monotonic.
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Let0 <cy <c¢, < --- besuchthattheseriesy=1/cje-a+ X,.,1/c,
Y, converges m-almost everywhere and [ydm =1. Let m, be the
nonatomic probability measure defined by dm., = ydm. It follows from
(21) and (22) that, for some 0 < 6 < 1,

1
vH(8) = vr(h) = [ S [u(x) = p(h) - (x = ) + 05 4] (g = hydm,,

where &, ,: I — R is defined by &, ,(i) = max, c g [u(¢,i) — p(g)- (& -
a()] — max, ¢ gelu(€, i) — p(h) - (¢ —a@@))]. If s is a positive integer
such that p,(g), p;,(h) > 1/s for all j then, as shown above, both maxima
are attalned in the set {¢ € RX| e &£ < y,(i)}). Therefore, m-almost every-
where, 1/yle, ;| <1/y max,.., [(p(g) —p(h))- (& —a)l < 1/y(y, +

e - a)max; |p](g) pi(MW| < c;max; |p(g) — p,(h)l. Since, by Lemma 3,
p(-) is continuous on Sy Max; ij(g) —pj(Wl - 0 when g — h. This
proves that v* is differentiable at %, that its derivative there is absolutely
continuous with respect to m.,, and that

d(Dv*(h))
dm

1
= —[u(x) = p(h) - (x — a)] € L(m,).

y Y
(The essential boundness of 1/ [u(x) — p(h) - (x — a)] follows from (19)
and from the definition of vy.) Since, for every g and 4 as above,
ld(Dv*(g)/dm., — d(Dv*(h))/dm L m,) = 11/ ve, 4l im,) <
¢, max; | p(g) — p;(h)], the function d(Dv*(-))/dm., is continuous at h.

A transferable utility competitive equilibrium (x, p(h)) corresponding to
an ideal coalition & €.7, is easily seen to correspond also to ¢4, for every
0 <t < 1. Therefore, v*(th) = tv*(h) for every 0 < ¢ < 1. (Incidentally,
this shows that o* is differentiable at 0 if and only if v € NA) In
particular, lim,_,, v*(¢) = 0and lim,_,; v*(?) = v*(1), and if (x, p(1) is
a transferable utility competitive equilibrium corresponding to the ideal
coalition & =1 then d(Dv*(t))/dm,=1/y [u(x) — p(1)-(x — a)] for
every 0 <t < 1. It follows, by Proposition 2, that the market game v is in
PNA and its value is given by

(90)(8) = [ [u(x) =p(1) - (x =) dm (5 €®).

Thus, the value of v is equal to the competitive payoff distribution
(Aumann and Shapley, 1974, p. 184) of the market. =
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APPENDIX

Approximation Lemma

The method of approximation employed in the proofs of Theorem 1 and
Proposition 1 can be used more generally for approximating games in
PpNA.., pNA, or pNA'. All three spaces of games are generated by powers
of nonatomic probability measures, but the norm is different in each case.

The norm on pNA' is the supremum norm || -||’, the norm on pNA is the
variation norm || - |3y, and pNA,, is endowed with the norm || - |l... These
norms satisfy [I-II' <|l-llsy <|l-|l., and the spaces themselves satisfy

PNA,, € pNA € pNA'. Each of the three norms can be “extended” in a
natural way to a norm on the linear space of extensions of games in the
respective space. Specifically, we define [lo*[I" = sup, < , [v*(W), [lv*||zy =
SUPg < py <<, <1 -1 10F(R) = v*(h, DI, or [[v*]l. = inf{m(1) | m €
NA, and |v*(g) — v*(h)| < m(g — h) for every g, h €7, h < g} when the
ideal game v* is the continuous extension of a game v in pNA’, in pNA,
or in pNA,, respectively. The extension operator v — v* is linear and
norm-preserving on each of the three spaces (Aumann and Shapley, 1974,
p. 151; Hart and Monderer, 1997). If fo u is a vector measure game in
PpNA' such that the range of w is finite dimensional then the continuous
extension v* of fo u is given by v*(h) = f(u(h)). This can be shown as
follows. First, since the range of a finite dimensional nonatomic vector
measure coincides with its extended range, for every h €. we can find a
coalition S such that w(k) = u(S). Second, for the same reason, for every
given neighborhood of % in .# we can choose S in such a way that xg is in
that neighborhood. Therefore, by the continuity of v*, for every given
& > 0 we may assume that S satisfies [v*( x;) — v*(h)| < &. But v*( x,) =
FCu(S) = fCulh)).

For every game v in pNA' there exists a nonatomic probability measure
m such that v is in pNA'(m), the closed linear subspace of pNA' that is
generated by powers of nonatomic probability measures which are abso-
lutely continuous with respect to m. [If { u®’}, _ , is a sequence of vectors
of nonatomic probability measures, u® = (u, u, ..., u'd), and
{p®™}, ., is a sequence of polynomials such that [lv — p® o u®|" - 0,
then m can be chosen as X, ., 1/Q*n™ N + w + - + uld).] For
every g,h €. such that g =h m-almost everywhere, v*(g) = v*(h).
Similarly, if v is in pNA or in pNA, then there exists a nonatomic
probability measure m such that v is in pNA(m) or in pNA.(m), respec-
tively. These subspaces are defined in a similar way to pNA'(m). For every
finite subfield & of & and for every g € L,(m), the conditional expec-
tation E(g|%) is defined as that function on I which is constant on
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each atom S of the field & and is equal there to 1/m(S) [y gdm [= 0,
by convention, if m(S) = 0]. The ideal game v% defined by vi(h) =
v*(E(h | 5)) is easily seen to be continuous. Its “restriction” to  is the
game v, defined by v;(S) = vE( xo).

LEMMA 4. Let X be one of the three spaces, pNA(m), pNA(m), or
PpNA'(m), and let || - || be the norm on that space. Then a game v is in X if and
only if vy is in X for every finite field ¥ C € and limg ||lvs — vll =0 as &
varies over the finite subfields of &, directed by inclusion.

Proof. One direction in trivial: if v is the limit of a net in X then
v € X. Conversely, if v isin X and % is a finite subfield of # then it is
not too difficult to see that [[vll < [lv*]| (= |lv]). Hence, for every game u
that is a linear combination of powers of nonatomic probability measures
which are absolutely continuous with respect to m, llvg — ugll < |lo — ull.
Therefore, it suffices to prove that u, € X and limg |lu, — ull = 0 for
every such u. Consider, then, a game of the form n*, where 7 is a
nonatomic probability measure that is absolutely continuous with respect
to m and k is a positive integer.

For every &, m is a nonatomic probability measure that is absolutely
continuous with respect to m. In fact, dn,/dm = E(dn/dm | ). There-
fore, (n*), = (n,)* € X. Since luwl.. < 4llull.llwll.. for every u,w € pNA,,
and [[All. < 2||Allgy for every A € NA (Monderer and Neyman, 1988),
Ink — 4l < llnk = ¥l = IE52¢ nE iy — . <
Tt a1 il Nimg — mll e = k4MIIECdn/dm | F) — dn/dmll o,
By Theorem 1V.8.18 of Dunford and Schwartz (1958), the limit of the last
expression as # varies over the finite subfields of #, directed by inclusion,
iszero. W

Topological Lemma

The relative weak topology on the extended range of a nonatomic vector
measure of bounded variation p is the strongest topology on that set with
respect to which w(-) is continuous on .#. This result constitutes the first
part of the following lemma.

LEMMA 5. If u is a nonatomic vector measure of bounded variation with
values in a Banach space X, then a set A € u(%) is open with respect to the
relative weak topology on u(%) if and only if {h € 71| u(h) € A} is open
(with respect to the NA-topology on .#). In this case, a function f from A to
some topological space Y is weakly continuous if and only if f(u(-)):{h €
S| u(h) € A} - Y is continuous.
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Proof. We have to show that if #, — A is a converging net in .# then
u(h,) = p(h) weakly, that is, x*( u(h,)) = x*( u(h)) for every continuous
linear functional x* € X*. But this follows immediately from the fact that
x*o u € NA. Conversely, we have to show that if x, —»x is a weakly
converging net in w(_#) then there exists # €. such that w(4) = x and in
every neighborhood of 4 there is some A’ such that w(h') € {x,}. Let
{h,} <7 be such that w(h,) = x, for every a. It follows from Alaoglu’s
theorem that, by passing to a subnet if necessary, we may assume that
there is some i .7 such that m(h,) — m(h) for every m € NA which is
absolutely continuous with respect to |ul In particular, x*(x,) =
x*(u(h,)) = x*(u(h)), and therefore x*( u(h)) = x*(x), for every x*
X*. This proves that w(h) = x. Every neighborhood of 4 contains an open
neighborhood of the form {g € .7 max,_,_, Im,(g — h)| < &}, where & >
0, m;, m,,...,m, € NA are absolutely continuous with respect to | u|, and
My, q,-..,m; € NA are singular with respect to | u|. This follows from the
fact that every nonatomic measure can be written as the sum of two
nonatomic measures, one absolutely continuous with respect to | u| and
the other singular with respect to | ul. Let « be such that [m;(h, — h)| < &
for every i <k. Let W' €. be equal to & in some subset of I of
| wl-measure zero in which m,, ,,...,m, are supported and equal to 4,
elsewhere. Then w(h') = w(h,) = x,, and |m;(h' — h)| < & for every k <
i <[ as well as for every i < k.

The second part of the lemma follows from that fact that, for every set
B in Y, f~Y(B) is weakly open in w(.?) if and only if {h €.7| w(h) €
fY(B)isopen. m
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