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   Congestion externalities may result in non-optimal equilibria. For these to occur, it 

suffices that facilities differ in their fixed utilities or costs. As this paper shows, the only 

case in which equilibria are always socially optimal, regardless of the fixed components, in 

that in which the costs increase logarithmically with the size of the set of users. Therefore, 

achieving a socially optimal choice of facilities generally requires some form of external 

intervention or cooperation. For heterogeneous populations (in which the fixed utilities or 

costs vary across users as well as across facilities), this raises the question of utility or cost 

sharing. The sharing rule proposed in this paper is the Harsanyi transferable-utility value 
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INTRODUCTION 

Nonatomic strategic (or noncooperative) games ([ 20]) model interactions involving a 

large number of individuals, each with a negligible ability to affect the others. Only 

coalitions, comprising many individuals, can significantly affect the utility of those 

outside them. Congestion games ([ 14], [ 17]) are strategic games in which the 

contribution to a player’s utility from choosing a particular action or facility varies 

with the number of other players making the same choice. Such games aim at 

modeling the congestion externalities occurring in many real-life situations in which 

several, or many, independent decision-makers interact by using the same facilities. In 

the nonatomic congestion games studied in this paper, each player only chooses one 

action or facility, and his utility strictly decreases as the size of the set of other players 

choosing the same action or facility increases. Different players do not necessarily 

achieve the same utility when making the same choice. In this respect, the population 

of players is heterogeneous. However, the manner in which utility decreases with 

increased congestion is the same for all. The following example (adapted from [ 4]) 

illustrates these assumptions. People in a professional meeting may prefer to go to 

different sessions, since the intrinsic quality they assign to each session varies. As 

more people crowd into a room, it becomes more difficult to see and hear. The actual 

quality each person assigns to a session therefore depends on both the intrinsic quality 

and the number of other people present. The delays experienced by clients in a 

computer network when many of them simultaneously try to access the same server 

are another example.  

   In nonatomic congestion games of the kind considered here, the equilibrium payoffs 

are always unique. Moreover, the equilibria are Pareto efficient in the sense that it is 

not possible to modify an equilibrium in such a way that some players become better 

off without making some of the others worse off. However, the equilibria need not be 

socially optimal. That is, they may all be inferior to some non-equilibrium assignment 

of facilities in terms of the aggregate, or equivalently average, utility or cost. (Note 

that, unlike Pareto efficiency, the notion of social optimality involves interpersonal 

comparisons of utilities.) For the equilibria to maximize social welfare, a player’s 

utility from choosing a facility should reflect the external effects of his choice on the 

other players. In other words, the cost or benefit for the individual must mirror the 

social cost or benefit. The first main result of this paper is that, under the assumption 
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that the marginal social costs of congestion are increasing and there are at least three 

facilities, a necessary and sufficient condition for always reaching maximum 

aggregate utility at the equilibria of the game is that the players’ utility from choosing 

a particular facility decreases logarithmically as the size of the set of other players 

choosing the same facility increases. For non-logarithmic cost functions, there are 

always fixed utilities or costs for which none of the equilibria is socially optimal. If 

there are only two facilities, the class of cost functions for which equilibria are always 

socially optimal is somewhat larger. 

   An alternative way of demonstrating the connection between social optimality of the 

equilibria and a logarithmic relation between congestion and utility is the so-called 

potential approach. For a given nonatomic congestion game, there is always some 

function attaining its maximum at the equilibria of the game. Indeed, there are always 

cost functions such that the aggregate utility with respect to them is maximized at the 

equilibria of the original game. If, up to an additive constant, these cost functions are 

equal to the original ones, then, clearly, all the equilibria in the original game are 

socially optimal. For logarithmic congestion externalities, this is, indeed, the case. 

   The result that social optimality of the equilibria is guaranteed if and only if the cost 

functions are logarithmic may very well be interpreted as a negative one. Unless the 

congestion externalities have this special form, maximum aggregate utility or 

minimum aggregate cost cannot generally be achieved without some form of external 

intervention or, alternatively, cooperation among the players. This raises the question 

of how this utility or cost should be shared among them. This may be viewed either in 

a normative light, as a question of each player’s “appropriate” or “just” share, or in a 

positive light, as a question of the likely outcome of negotiations among the players. 

The utility or cost-sharing rule proposed in this paper is derived from a very general 

solution concept, the Harsanyi transferable-utility value of a strategic game ([ 2], [ 9],  

[ 21]). This solution concept is based on the players’ marginal contributions to the 

bargaining power of various coalitions, each bargaining with its complement about its 

share of the maximum aggregate utility. More specifically, the Harsanyi TU value is 

defined as the Aumann-Shapley value of the coalitional game in which the worth of 

each coalition and that of its complement add up to the maximum aggregate utility in 

the strategic game, and are determined as Nash’s solution to the corresponding 

bargaining problem with threats. The second main result of this paper is that, if the 
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marginal social costs of congestion are increasing and the cost functions themselves 

are not “too” convex, then optimal threat strategies for this bargaining problem exist 

and the resulting coalitional game has a well-defined Aumann-Shapley value. The 

Harsanyi TU value of the game can then be expressed by an explicit formula, which 

specifies the share of the maximum aggregate utility that should be allocated to each 

group of players.  

THREE MOTIVATING EXAMPLES 

An example of how congestion externalities may lead to an inefficient use of facilities 

is shown in Fig. 1. It involves a simple network of four arcs, with cost functions 

giving the time it takes to traverse each arc as a function of the flow through it. A 

continuum of identical players simultaneously choose one route leading from the 

common point of origin o to the common destination d. Each player’s goal is to find 

the fastest such route. If all players succeed in doing this, their choice of routes 

constitutes an equilibrium. Since, in this example, choosing the left route from o to d, 

comprising the two left arcs, is a dominant strategy, every player making this choice 

is the unique equilibrium. However, this equilibrium is not Pareto efficient. If half the 

players were taking the left arc from o to the intermediate point v and then the right 

arc from there to d, and the other half were taking right, then left, everyone’s travel 

time would go down from 10 minutes to 9.5. This is still not socially optimal; it is 

possible to reduce the players’ average travel time even further. Indeed, if 0.7 of the 

players take the equilibrium (i.e., left) route and 0.3 take the right one, the average 

travel time is only 9.1 minutes. This is a social optimum, since the minimum of x1 (1 + 

4x1) + x2 (6 + x2) under the constraint x1 + x2 = 1 is attained at x1 = 0.7, x2 = 0.3. Note 

that, at a social optimum, some players are worse off than at the equilibrium. In fact, 

the travel time of any player not taking the equilibrium route is at least 10.1 minutes. 

Whereas, by definition, a Pareto improvement is beneficial to all the players, moving 

from an equilibrium to a social optimum may be beneficial only on average. Any 

socially optimal equilibrium (or other arrangement) is Pareto efficient, but the 

converse is not true.  
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Fig. 1. A Pareto inefficient equilibrium. The time (in minutes) it takes to transverse 

each of the four arcs is shown as a function of the fraction of the population x whose 

route from o to d passes through the arc. At equilibrium, all the players take the route 

marked in bold, which takes 10 minutes to complete. However, this is not Pareto 

efficient. If half the players were taking the left–right route and the other half the 

right–left one, each play’s travel time would be only 9.5 minutes.  

   An example in which the equilibrium is Pareto efficient but not socially optimal is 

shown in Fig. 2. In this example, the population of players is heterogeneous. For 

three-quarters of the population (type I players), the left route from o to d is faster 

than the right one when both routes are equally congested. For the rest (type II 

players), the opposite is true. (If the two routes represent, for example, two parallel 

bridges over a river, the different travel times may reflect the distance each user has to 

travel to get to the bridge.) When all the type I players take the left route and all the 

type II players take the right one, their travel times are 7 and 3 minutes, respectively. 

For each player, this is less than the travel time on the alternative route—which is 

greater than 7 minutes as long as that route is used by some other players. This shows 

both that the above arrangement is an equilibrium and that it is Pareto efficient. 

However, it is not socially optimal. To achieve the social optimum, 1/16 of the 

population (all type I) should shift from the left to the right route. This reduces the 

average travel time from 6 minutes to 5.9375. The social optimum is not an 

equilibrium, since the travel time of type I players taking the right route is 3 minutes 

longer than of identical players taking the left route.  
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Fig. 2. A socially non-optimal equilibrium. The travel times of type I and type II 

players (3/4 and 1/4 of the population, respectively) on each route from o to d are 

shown as functions of the fraction of the population x taking the route. At equilibrium, 

each type of player takes a different route. This is not socially optimal: The players’ 

average travel time at equilibrium is 1/16 of a minute longer than the minimum 

average travel time.  

   Non-optimality of the equilibrium in the last example can be attributed to overuse of 

the left route (by type I players). It is possible to reduce the use of that route to the 

socially optimal level by charging a toll equivalent to 3 minutes of travel time for the 

use of the left route. This toll and the resulting increased congestion in the right route 

would make everyone worse off in comparison with the equilibrium. However, if toll 

revenues are returned to the players, for instance, in the form of a lump sum transfer 

to each player, then the toll’s net effect is positive, at least on average. If the 

population of players were homogeneous (as it is in the first example), there would be 

little question that the transfers to players should be equal, and bring their net costs to 

the social optimum level. However, in the present heterogeneous case, the question of 

whether and to what extent the transfers to type I and type II players should differ 

arises.  

   There are a number of alternative principles that may be evoked to answer this 

question, each prescribing different lump sum transfers to players and different net 

costs. Some of the possibilities are shown in Table 1. One option is simply equal net 
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costs to all players, regardless of type. However, this option, which involves negative 

transfers to type II players, may be difficult to justify in view of these players’ much 

lower equilibrium costs. Another option is equal transfers, regardless of type. This has 

the opposite effect of favoring type II players to a degree that may be hard to justify. A 

third conceivable principle is that everybody should be equally better off compared 

with the equilibrium, i.e., equal distribution of the surplus arising from the shift from 

the (non-cooperative) equilibrium to the social optimum. A possible objection to this 

arrangement is that type II players, who have no active role in this shift, would benefit 

from it as mush as type I players. A fourth scheme for sharing the gains from shifting 

to the social optimum among the players, described later in this paper, is the Harsanyi 

transferable-utility value of the nonatomic congestion game. In the example at hand, 

this rule prescribes giving most of the toll revenues to the type I players and much less 

to type II, so that the former are better off while the latter are worse off compared to 

the equilibrium. This reflects the payoffs, at the social optimum, of those players still 

using their equilibrium strategies.  

 

 Type I  Type II  

Equilibrium  7 3 

With toll (but no transfers)  9.5 3.5 

Equal net costs 5.9375 5.9375 

Equal transfers 7.4375 1.4375 

Equal distribution of the surplus 6.9375 2.9375 

Harsanyi TU value 6.8750 3.1250 

 

Table 1. Schemes of cost sharing. For the example in Fig. 2, net costs (in minutes of 

travel time) of type I and type II players are shown: at equilibrium; with an optimal 

toll charged for the use of the left route, but without returning toll revenues to players; 

and with the toll revenues distributed according to each of the four alternatives 

described in the text.  
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   An obvious difference between the networks in Figs. 1 and 2 is that, in the latter, 

different routes do not cross. Therefore, the negative externalities of the players’ 

choice of routes only affect those making the same choice. The fact that the 

equilibrium in the second example, but not in the first, is Pareto efficient can be 

attributed to this difference in network topology. Specifically, the class of all two-

terminal networks in which, regardless of the cost functions, all equilibria are Pareto 

efficient includes (but is not limited to) the networks with parallel routes. A complete 

characterization of this class of networks is given in [ 13, Theorem 3]. As the first 

example makes clear, the network in Fig. 1 does not belong to this class. The 

nonatomic congestion games studied in this paper are such that each player’s payoff is 

only affected by the measure of the set of players whose choice of action or facility is 

the same as his. This corresponds to a network with parallel routes and excludes the 

one in Fig. 1. Therefore, for these games, Pareto efficiency of the equilibria is 

guaranteed. The only issue is their social optimality. 

   As a final example, consider the situation in Fig. 3. Here, for each type of player, 

choosing each of the facilities brings a certain utility (that may be positive or 

negative), which depends on the size of the set of other players making the same 

choice. As the size of this set increases, the utility decreases. When it tends to zero, 

the utility tends to infinity. At equilibrium, 3/7 of the players, all type I, choose facility 

1, and the rest choose facility 2. The payoff of type I players choosing either facility is 

then log 7/8, and that of type II is log 35/32. To find the social optimum, observe, 

first, that increasing the utility of type II players choosing facility 1 by a positive 

constant ε can only increase the maximum average utility, or leave it without a 

change. Setting ε = log 15/8 makes the difference between the utility of type II and 

type I players choosing the same facility equal to the constant log 5/4. Therefore, with 

this ε, the maximum average utility is given by max 0 ≤ x ≤ 1 [x (log 3 − log 8x) + (1 − x) 

(log 4 − log 8(1 − x))] + 1/4 log 5/4. This maximum (which is attained at x = 3/7) can 

easily be shown to be equal to the average utility at equilibrium in the original game. 

This proves that the equilibrium in that game is socially optimal. As it turns out, this 

finding is not a coincidence. It is shown below that, when the cost of congestion is 

given by a logarithmic function, the equilibria are always socially optimal. 
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Fig. 3. A socially optimal equilibrium. The utility of type I and type II players (3/4 

and 1/4 of the population, respectively) from choosing each of the two facilities is 

shown as a function of the fraction of the population x choosing that facility. At 

equilibrium, 3/7 of the players, all type I, choose facility 1, and the rest choose 

facility 2. This equilibrium is socially optimal. 

THE SETUP 

An infinite population I of players uses a finite number m of facilities. A nonatomic 

probability measure µ, the population measure, is defined on a σ-algebra C of subsets 

of I. The elements of C are called coalitions. For each coalition S, µ(S) is interpreted 

as the “size” of S (with the normalization µ(I) = 1). Each player uses one, and only 

one, facility. The externality generated by the fact that the same facility j is shared by 

others is captured by a continuous and strictly increasing cost function cj : (0, ∞) → R, 

with lim x→0 x cj(x) = 0.3 If the size of the set of players using facility j is xj > 0, the 

cost of congestion for each of them is cj(xj). For different facilities j, the cost of 

congestion may take different functional forms. This reflects the fact that certain 

roads, for example, are more easily congested than others. The social cost of 

congestion is ∑j xj cj(xj). Marginal social costs of congestion are said to be increasing 

if, for all facilities j, the derivative  

(1)    MCj(x) 
def
=  

d
dx [x cj(x)] 

exists and is strictly increasing in (0, ∞). It can be shown that, in this case, each cost 

function cj is continuously differentiable in (0, ∞), satisfies dcj/dx > 0, and has a 

                                                 
3 Note that the cost function cj may take negative as well as positive values. Also, for technical 

convenience, the cost function is assumed to be defined for values of xj both above and below unity. 

However, the values that cj takes for xj > 1 have no effect on the actual costs. 
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second derivative almost everywhere (with respect to Lebesgue measure); and each 

marginal social cost function MCj is continuous in (0, ∞) and (since MCj > cj) satisfies 

lim x → 0 x MCj(x) = 0. The cost and (when defined and increasing) marginal social 

cost functions can be extended to continuous functions on R+ by setting cj(0) = 

lim x → 0 cj(x) and MCj(0) = lim x → 0 MCj(x). These two limits are, in fact, equal. They 

may, however, be −∞. (In this paper, standard rules for the arithmetic of extended real 

numbers, e.g., ±∞ ⋅ x = ±∞ if x > 0, = m∞ if x < 0, and = 0 if x = 0, are used.) For (x1, 

x2, … , xm) ∈ R+
m, the vectors (c1(x1), c2(x2), … , cm(xm)) and (MC1(x1), MC2(x2), … , 

MCm(xm)) are written as c(x1, x2, … , xm) and MC(x1, x2, … , xm), respectively. 

A similar notation is also used for other vector-valued functions. 

   The utility each player i achieves is made up of two terms:  

 fj(i) − cj(xj). 

The first term fj(i) is the fixed utility player i gains from the facility j he uses. This 

does not depend on the other players’ choices of facility, and may be positive or 

negative. In the latter case, it may be interpreted as a fixed cost. The second term cj(xj) 

is the cost of congestion. Note that the heterogeneity of the population is assumed to 

involve only the fixed utility (or cost) and not the cost of congestion (the variable 

cost). For a more general model, in which different players may be affected to a 

different degree by congestion, see [ 12]. The fixed-utility assignment f : I → Rm, 

defined by f(i) = (f1(i), f2(i), … , fm(i)), is assumed to be bounded and measurable (with 

respect to C). 

   A (pure-) strategy profile is any measurable function σ : I → {0, 1}m assigning each 

player i a binary vector σ(i) = (σ1(i), σ2(i), … , σm(i)) such that σj(i) is 1 for some 

facility j and 0 for all the others. A value of 1 indicates that player i uses facility j. The 

size of the set of players using facility j equals the integral ∫ σj(i) dµ(i), henceforth 

written as µ(σj). The set of all strategy profiles is denoted by Σ. For a given strategy 

profile σ, the utility each player i achieves can be written as  

ui(σ) 
def
=  (f(i) − c(µ(σ))) ⋅ σ(i), 

where µ(σ) is the vector (µ(σ1), µ(σ2), … , µ(σm)) and the dot denotes scalar product. 

For given cost functions c and fixed-utility assignment f, this defines a nonatomic 

congestion game Γ(c, f), with utility functions ui. A strategy profile σ is a (pure-
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strategy Nash) equilibrium in Γ(c, f) if, for (µ-) almost all players i, 

(2)           ui(σ) = max
j

 (fj(i) − cj(µ(σj))). 

In this case, the expression on the right-hand side of  (2) gives player i’s equilibrium 

payoff. The indefinite integral4 (with respect to µ) of this expression is the equilibrium 

payoff distribution.  

   A strategy profile σ is Pareto efficient if, for every strategy profile τ such that ui(τ) ≥ 

ui(σ) for almost all players i, an equality holds for almost all i. A strategy profile σ 

will be said to be hyper-efficient if it satisfies the following stronger condition:  

(H) For every τ ∈ Σ, if ui(τ) ≥ ui(σ) for almost all players i with τ(i) ≠ σ(i), 

then ui(τ) = ui(σ) for almost all i.  

In other words, a strategy profile is hyper-efficient if any effective change of 

strategies is harmful to some of those whose strategies change.5 The assumed 

continuity of the cost functions implies that such a strategy profile is an equilibrium. 

Indeed, it is a strong, and even strictly strong, equilibrium.6 This means that 

deviations are unprofitable, not just for individuals but also for groups of players, or 

coalitions: Any deviation that makes some members of the coalition better off must 

leave some of the others worse off. From a social-welfare point of view, a strategy 

profile σ is socially optimal, or welfare maximizing, in Γ(c, f) if it maximizes the 

aggregate utility, i.e., for all τ ∈ Σ,  

(3)           j
I

 ui(τ) dµ(i) ≤ j
I

 ui(σ) dµ(i). 

Social optimality implies Pareto efficiency. However, it does not imply hyper-

efficiency, or vice versa.  

                                                 
4 The indefinite integral of an integrable function g : I → R is the measure η defined by η(S) = ∫S g dµ 

(S ∈ C). 
5 Note that, in contrast to Pareto efficiency, the definition of hyper-efficiency involves both the players’ 

utilities and their strategies. The term “hyper-efficiency,” generalized in a straightforward manner, is 

also applicable to other situations in which utilities are determined by some map on the space of 

players, such as a strategy profile or an allocation of goods. 

6 A strategy profile σ is a strictly strong equilibrium ([ 23]) if the following is true: For every strategy 

profile τ, if ui(τ) ≥ ui(σ) for almost all players i with τ(i) ≠ σ(i), then ui(τ) ≤ ui(σ) for almost all i.  
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EXISTENCE AND SOCIAL OPTIMALITY OF EQUILIBRIA 

The existence of equilibrium in all nonatomic congestion games in the class 

considered in this paper is an immediate corollary of [ 12, Theorem 3.1]. 

Proposition 1. For every c and f, the nonatomic congestion game Γ(c, f) has at least 

one equilibrium.  

It can be shown (cf. [ 12]) that, in some precise sense, the equilibrium is generically 

unique. However, for present purposes, it suffices to establish the uniqueness of the 

equilibrium payoffs. The proof of the following proposition is given in Appendix B. 

Proposition 2. For every c and f, a strategy profile is an equilibrium in Γ(c, f) if and 

only if it is hyper-efficient (i.e., has the property H). For each facility j, the measure of 

the set of players using j is the same in all the equilibria in Γ(c, f). Consequently, the 

equilibrium payoffs are unique.  

   By Proposition 2, in all nonatomic congestion games, all equilibria are hyper-, and 

hence Pareto, efficient. (As already mentioned, this result is, in fact, true in a much 

larger class of nonatomic congestion games than the one considered here. See [ 13, 

Theorem 3].)7 The equilibria need not, however, be socially optimal. This is because 

players choosing their facilities do not take into consideration the negative external 

effects of their choice on the other players. As is well known, to guarantee social 

optimality, players should bear, not the cost cj of using facility j, but rather the 

marginal social cost MCj. The following proposition establishes and extends this fact. 

The proof of the proposition is given in Appendix B. 

Proposition 3. Suppose that the marginal social costs of congestion are increasing. 

Then, for every fixed-utility assignment f, the nonatomic congestion game Γ(c, f) has 

at least one socially optimal strategy profile. Moreover, the set of all socially optimal 

strategy profiles coincides with the set of equilibria in Γ(MC, f). Either it also coincides 

with the set of equilibria in the original game Γ(c, f), or the two sets are disjoint.  

                                                 
7 It can easily be shown that, if there were only a few, non-identical, players, the equilibria would not 

have to be Pareto efficient. In this respect, finite congestion games and nonatomic ones differ 

significantly.  
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   It is not difficult to see that, for an arbitrary socially optimal strategy profile σ, it is 

possible to replace the marginal social cost functions MC in Proposition 3 by any 

vector of cost functions c̃ satisfying c̃j(µ(σj)) = MCj(µ(σj)) for all j. (If this condition 

holds, then σ, which by Proposition 3 is an equilibrium in Γ(MC, f), is also an 

equilibrium in Γ(c̃, f), and it therefore follows from Proposition 2 that the sets of 

equilibria in these two games coincide.) One cost function satisfying this is given by  

c̃j(x) = cj(x) + µ(σj) dcj/dx(µ(σj)). (If µ(σj) = 0, the second term is understood as 0.) 

This observation establishes the following result.  

Proposition 4. Suppose that the marginal social costs of congestion are increasing. 

Then, for every fixed-utility assignment f, there is a nonnegative vector w ∈ R+
m such 

that a strategy profile is socially optimal in Γ(c, f) if and only if it is an equilibrium in 

Γ(c + w, f).  

   The vector w may be interpreted as follows: Its jth component wj is a (Pigouvian) 

toll charged for the use of facility j.8 Proposition 4 thus asserts that, with increasing 

marginal social costs of congestion, there is always a toll system guaranteeing socially 

optimal use of the facilities.9 Clearly, for every ε > 0, subtracting ε from all the 

components of w does not change any of the players’ behavior. Therefore, it is always 

possible to maximize social welfare and run a balanced budget by implementing a 

system of tolls and subsidies which, at equilibrium, cancel out one another. It also 

follows from these considerations that if for some (and, hence, every) socially optimal 

strategy profile σ the product µ(σj) dcj/dx(µ(σj)) has the same value for all j, then no 

tolls or subsidies are required since all the equilibria are automatically socially 

optimal. If the cost functions (up to arbitrary additive constants) are logarithmic with 

a common base a > 1, then this condition clearly holds, and hence social optimality of 

the equilibria is guaranteed for every fixed-utility assignment f. The following 

                                                 
8 The idea of imposing tolls in order to increase social welfare was first proposed by Pigou. See also 

Knight’s [ 10] discussion of it, and the much more detailed analysis in [ 5].  

9 This conclusion depends critically on the infiniteness of the set of players. With a finite number of 

players, for any toll system there may be at least one equilibrium that is not even Pareto efficient (see  

[ 18]). The difference in this respect between the finite- and infinite-player cases may be due to the 

effective discontinuity of the cost functions in the former case.  
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theorem shows that, if there are three or more facilities, then this is, in fact, the only 

case in which the equilibria are guaranteed to be socially optimal. Note that the proof 

of the theorem, which is given in Appendix B, does not rely on the potential 

heterogeneity of the population. Therefore, the theorem would also be true if, in the 

definition of nonatomic congestion game, players were assumed to be identical (i.e., 

only constant fixed-utility assignments were allowed).  

Theorem 1. Suppose that the marginal social costs of congestion are increasing. 

If m ≥ 3, then the following three conditions are equivalent: 

(i) For every fixed-utility assignment f, the set of all socially optimal strategy 

profiles in Γ(c, f) coincides with the set of equilibria in this game.10 

(ii) For every strictly positive probability vector (x1, x2, … , xm) (with xj > 0 for all j 

and ∑j xj = 1), xj 
dcj
dx(xj) = xk 

dck
dx (xk) for all j and k. 

(iii) For some a > 1, cj(x) = loga x + cj(1) for all j and 0 < x < 1. 

If m = 2, then (i) and (ii) are still equivalent, and are implied by (iii), but the reverse 

implication need not hold. 

   As the last part of Theorem 1 asserts, if there are only two facilities, there exist 

certain non-logarithmic cost functions (which are, however, similar in some respect to 

the logarithmic functions; see the proof of Theorem 1) that satisfy the condition of 

increasing marginal social costs of congestion, for which equilibria are always 

socially optimal. For such cost functions, condition (ii) in the theorem holds. The 

following cost functions are an example of this:  

(4)  c1(x) = ∫ −
x

t dte
t1

)2/1  arctan(1   and  c2(x) = ∫ −
x

t dte
t1

)  2/1arctan(1 . 

Even with more than two facilities, there are certain non-logarithmic cost functions c 

for which social optimality of the equilibria in Γ(c, f) holds for some fixed-utility 

assignments f. For example, if all the players are identical, with f = 0, then this is the 

case when the cost functions are homogeneous of the same degree, i.e., for some 

                                                 
10 By Proposition 3, this is equivalent to social optimality of some equilibrium in Γ(c, f). 
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−1 < β ≠ 0, cj(x) = cj(1) xβ for all j (see [ 4]). This is because, for such cost functions, 

the marginal social costs are proportional to the respective costs, and therefore the sets 

of equilibria in Γ(c, 0) and Γ(MC, 0) coincide. However, with more than two facilities, 

non-logarithmic cost functions cannot guarantee social optimality of the equilibria for 

all fixed-utility assignments. 

THE POTENTIAL 

By Proposition 3, if the marginal social costs of congestion are increasing, then, for 

every fixed-utility assignment f, the set of all socially optimal strategy profiles in 

Γ(c, f) coincides with the set of equilibria in another nonatomic congestion game, 

namely, Γ(MC, f). The same result implies that the set of equilibria in Γ(c, f) coincides 

with the set of all socially optimal strategy profiles in any nonatomic congestion game 

Γ(ĉ, f) such that the marginal social cost functions with respect to ĉ are given by c, 

i.e., M jĈ = cj for all j (in which case the marginal social costs are automatically 

increasing, since cj is increasing by definition of cost function). This condition is 

clearly satisfied by the following cost function: 

  ĉj(x) = 
1
x j

0

x
 cj(t) dt. 

Aggregate utility in Γ(ĉ, f) is given by the function P : Σ → R defined by 

   P(σ) = j
I

 f(i) ⋅ σ(i) dµ(i) − ∑
j

 j
0

µ(σj)
 cj(x) dx. 

Therefore, as a corollary of Proposition 3, we get the following result.  

Proposition 5. Suppose that, for all facilities j, the integral ∫1
0 cj(x) dx is finite. Then, 

for every fixed-utility assignment f, a strategy profile σ is an equilibrium in Γ(c, f) if 

and only if it maximizes P, i.e.,  

P(σ) = max
τ ∈ Σ

 P(τ). 

   In the transportation literature, the fact that the equilibrium assignment problem can 

be formulated as a maximization problem is well known (see, e.g., [ 22, p. 59]). The 

original formulation, in the case of a homogeneous population of players, is due to 
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Beckmann et al. [ 5]. As these authors remark, the function P is not to be interpreted as 

the consumers’ surplus. This is because cj is the average, rather than marginal, social 

cost. P can be interpreted as a potential for Γ(c, f). Recall that, in a finite-player 

congestion game ([ 7], [ 14], [ 17]), the potential is defined as any real-valued function 

over the set of strategy profiles with the property that, for all strategy profiles and all 

single-player deviations from them, the gain or loss for the deviator equals the 

corresponding change in the potential. Any strategy profile maximizing the potential 

is clearly an equilibrium, and for certain finite-player congestion games with concave 

potentials ([ 16]), as well as certain symmetric ones ([ 23]), the converse is also known 

to be true. In the present infinite-player model, the potential P has similar properties. 

Intuitively, when a single player switches from one facility to another, the change in 

that player’s utility has the same sign as the corresponding infinitesimal change in P. 

This provides an intuition for the “if” part of Proposition 5. The “only if” part can be 

demonstrated by a simple concavity argument. Proposition 5 can be used for giving an 

alternative proof for the existence of an equilibrium and the uniqueness of the 

equilibrium payoffs in Γ(c, f). Indeed, the potential approach can also be used to 

establish these properties in more general models, in which each player chooses a 

combinations of facilities, rather than a single one (e.g., a number of road segments, 

constituting a particular route from his point of origin to the destination). See, e.g., [ 1].  

   Proposition 5 also sheds some new light on Theorem 1. Suppose that, for some 

constant b, cj(x) = ĉj(x) + b for all j and 0 < x < 1. Then, for every strategy profile σ, 

aggregate utility in Γ(c, f) is equal to P(σ) + b. Therefore, a strategy profile maximizes 

the aggregate utility if and only if it maximizes the potential, and hence, by 

Proposition 5, if and only if it is an equilibrium. This shows that a sufficient condition 

for (i) in Theorem 1 to hold is that a constant b as above exists. This condition can 

easily be shown to be equivalent to (iii) in that theorem. 

COOPERATION 

It follows from Theorem 1 (and the uniqueness of the equilibrium payoffs) that, in 

many nonatomic congestion games of the type considered here, none of the equilibria 

is socially optimal. To maximize social welfare in such games, outside intervention, or 

alternatively cooperation among the players, is required. This may, for example, take 

the concrete form of a toll system, since, by Proposition 4, social optimality can 
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always be achieved by charging suitable tolls for the use of certain facilities. 

However, regardless of the way it is achieved, social optimality generally requires that 

some players choose their facilities in an individually non-optimal way, relative to the 

original fixed utilities and cost functions. Arguably, these players should be 

compensated, e.g., by transferring to them some toll revenues. Thus, achieving 

maximum aggregate utility or minimum aggregate cost involves both a mechanism 

and a predetermined rule for sharing this utility or cost among the players.  

   If all players are identical, and their fates vary only because social good dictates that 

some of them make different choices than others, then arguably the maximum 

aggregate utility should be shared equally among them. However, in a heterogeneous 

population, in which players’ innate preferences differ, there is much less basis for 

arguing that everybody should be treated equally. For, even in the absence of 

externalities, players would differ in the choices they make and the utility they 

achieve. One alternative to equal distribution of the aggregate utility is equal 

distribution of the surplus. According to this alternative, all players’ shares of the 

maximum aggregate utility should be higher than their equilibrium payoffs by the 

same amount. However, there are arguments against this idea, too. For example, if the 

players’ contributions to achieving the social optimum differ, then it is not clear why 

their gains from it should be equal. Suppose, for example, that the population of 

players is made up of several sub-populations, favoring and using disjoint sets of 

facilities. It seems reasonable to argue that, since different sub-populations do not interact 

in any way with one another, the gains from cooperation within each sub-population 

should be shared among its members only, and not with the other sub-populations.  

   As already mentioned, one concrete tool for achieving social optimality in a 

nonatomic congestion game is a suitable system of tolls, which make players 

internalize the social effects of their choices. This suggests a third way of sharing the 

maximum aggregate utility achievable in such games, namely, equal distribution of 

toll revenues. This can be done either by making equal lump-sum transfers to all 

players or by lowering tolls uniformly for all facilities, so that some of them became 

negative (i.e., subsidies). Again, this raises the question of why players who are not 

affected in any way by the tolls should get the same share of the toll revenues as those 

who are affected.   
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   The three schemes mentioned above for sharing the aggregate utility or cost of the 

social optimum among the players are illustrated by the example in Table 1. This table 

also gives the solution prescribed by a fourth sharing rule, which will now be 

described. The idea behind this utility or cost-sharing rule is that the players’ shares 

should reflect their marginal contributions to the bargaining power of various 

coalitions of players to which they may belong. In the present context, a coalition is a 

potential alliance, capable of coordinating its members’ actions in any way deemed 

right and negotiating with other coalitions. It is assumed that essentially any group of 

players may form a coalition. (More precisely, any group belonging to the collection C 

that defines the measurable structure on I.) The first step in formalizing this idea is to 

determine each coalition’s bargaining power or, more concretely, the particular 

division of the aggregate utility between the coalition and its complement determined 

by their relative bargaining powers.  

   Denote the maximum aggregate utility that can be achieved in a given nonatomic 

congestion game Γ(c, f) by v(I). Arguably, if the division of v(I) between a coalition 

of players S and its complement I \ S is decided by bilateral bargaining, it depends on 

what each coalition would do if negotiations break down, i.e., on the two coalitions’ 

threat strategies. If these are chosen so as to put each coalition in the best possible 

bargaining position vis-à-vis the other, the division of v(I) between the two 

complementary coalitions may be viewed as an instance of the Nash bargaining 

problem with threats ([ 15]). The specification of this problem has two elements. The 

first is the set of all possible joint actions, which, in the present case, is the set of all 

divisions of the maximum aggregate utility between the two coalitions. The second is 

the two-person strategic game that determines the outcome if there is no agreement 

about the joint action. In the case under consideration, the set of strategies available to 

S is {1S σ | σ ∈ Σ}, where 1S denotes the indicator function of the set S, and the 

strategy set of I \ S is {1I \ S σ | σ ∈ Σ}. For each strategy σS of S and each strategy 

σ I \ S of I \ S, the payoffs of S and I \ S are the respective aggregate utilities, ∫ (f(i) − 

c(µ(σS + σ I \ S))) ⋅ σS(i) dµ(i) and ∫ (f(i) – c(µ(σS + σ I \ S))) ⋅ σ I \ S(i) dµ(i). The difference 

between these payoffs is  

(5)  HS(σS, σ I \ S) 
def
=  j

I

 (f(i) – c(µ(σS + σ I \ S))) ⋅ (σS(i) − σ I \ S(i)) dµ(i). 

According to Nash, with threat strategies σS and σ I \ S, v(I) is divided between S and 
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I \ S in such a way that the difference between the two coalitions’ shares equals 

HS(σS, σ I \ S). Therefore, S would like the right-hand side of  (5) to be as large as 

possible, and I \ S would like it to be as small as possible. Each coalition’s threat 

strategy is optimal, given the other’s, if and only if (σS, σ I \ S) is a saddle point of HS. 

In this case, S’s share of v(I) is given explicitly by 

(6)    v(S) 
def
=  

1
2 [HS(σS, σ I \ S) + v(I)]. 

This will be referred to as the worth of coalition S. If, for each coalition S, the 

function HS has a saddle point, then Eq.  (6) defines a coalitional game v, called the 

coalitional form of Γ(c, f).11 A sufficient condition for HS to have a saddle point for 

each coalition S, and hence for every coalition to have a well-defined worth, is given 

below. It requires (i) increasing marginal social costs and (ii) cost functions that are 

not “too” convex. However, this condition, which involves the functional form of the 

congestion externalities, would not itself be sufficient to guarantee a well-defined v. 

Also important is the assumption, made throughout this paper, that the cost of 

congestion is the same for all players. The fact that neither of these assumptions can 

be dispensed with is shown in Appendix A. 

   It is generally impossible to share the maximum aggregate utility among the players 

in such a way that each coalition S gets at least its worth v(S). Indeed, when such a 

scheme of distribution exists, it belongs to the core of v. However, since v is a fixed-

sum game, its core is nonempty only if v is additive, or inessential (in which case the 

only core element is v itself). Since this is not generally the case, the core is of little 

relevance here. An alternative solution concept, which is based on the players’ 

marginal contributions to the worth of coalitions, is the Aumann-Shapley value. (If the 

core of v is nonempty, its unique element coincides with the value.) The Aumann-

Shapley value of v, which is denoted by ϕv, is referred to in this paper as the Harsanyi 

transferable-utility value of Γ(c, f).12 It is shown below that, under the condition 

                                                 
11 Aumann and Kurz [ 2] call v the “Harsanyi coalitional form” of the strategic game. Selten [ 21] uses 

the term “1/2-characteristic” to refer to essentially the same thing. 

12 The Harsanyi TU value is essentially the same thing Harsanyi [ 9], Aumann and Kurz [ 2], and Selten [ 
21] call the “modified Shapley value,” “Harsanyi-Shapley TU value,” and “1/2-value” of the game, 

respectively. The term “Harsanyi-Selten value” is also sometimes used. 
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mentioned in the previous paragraph, both v and its Aumann-Shapley value are well 

defined. Specifically, v belongs to a space of coalitional games, namely pNA, on 

which a unique value exists. For definitions of the Aumann-Shapley value of 

nonatomic coalitional games, the space pNA, and related terms, see [ 3]. 

Definition. The cost functions satisfy the convexity condition if, for all j and all y ≥ 0, 

the partial derivative 

 MCj*(x, y) def=  
∂
∂x [(x – y) cj(x + y)] 

exists and is strictly increasing as a function of x in (0, ∞). 

   It can be shown that, if the cost functions satisfy the convexity condition, then each 

MCj* can be extended in a unique way to a continuous extended real-valued function 

on R2
+. This function, which will also be denoted by MCj*, may take an infinite value 

(namely, −∞) only at (0, 0). It satisfies MCj*(x, 0) = MCj(x) for all x ≥ 0; 

lim x → 0 x MCj*(x, y) = 0 for all y ≥ 0; and MCj*(x, y) = cj(x + y) + (x − y) dcj/dx(x + y) 

for all x ≥ 0 and y ≥ 0, where the second term is understood as 0 if (x, y) = (0, 0). 

Clearly, the convexity condition is stronger than increasing marginal social costs of 

congestion. The additional requirement it represents is explicitly spelt out in the 

following proposition, the proof of which is given in Appendix B. 

Proposition 6. The convexity condition holds if and only if  

(i) the marginal social costs of congestion are increasing, and 

(ii) for each j, the function cj(
3

x)) (x > 0) is concave. 

   Condition (ii) in Proposition 6 is equivalent to the following: For each j, there is a 

convex function ϕj such that ϕj(cj(x)) = x3  for all x > 0. (This function is the inverse of 

that in (ii).) This can be viewed as a requirement that the cost functions be less, or as 

convex as, the cubic function x3. Using Proposition 6, or directly from the definition, 

it is easy to show that each of the following cost functions satisfies the convexity 

condition: cj(x) = (x + b)β, with 0 < β ≤ 3 and b ≥ 0; cj(x) = −(x + b)γ, with −1 < γ < 0 

and b ≥ 0, or γ = −1 and b > 0; and cj(x) = loga(x + b), with a > 1 and b ≥ 0. (Note that 

the last function is concave.) The two cost functions in  (4) also satisfy this condition. 

By contrast, for cj(x) = x4, the convexity condition does not hold: this cost function is 

“too” convex. This is consequential. As shown in Appendix A, with this cost function, 
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the worth of coalitions may not be well defined. This shows the importance of 

assuming the convexity condition in the following theorem, the proof of which is 

given in Appendix B. 

Theorem 2. Suppose that the cost functions satisfy the convexity condition. Then, for 

every fixed-utility assignment f, the coalitional form v of Γ(c, f) is well defined and is 

in pNA, and the Harsanyi TU value of Γ(c, f) is given by the formula  

(7)   (ϕv)(S) = j
0

1
 j
S

 max
j

 (fj(i) – MCj*(µ(σjt), µ(σj1–t))) dµ(i) dt      (S ∈ C), 

where, for every 0 ≤ t ≤ 1, the inner integral is uniquely determined by the following 

condition: There exists a pair of strategy profiles σ and σ  such that  

σt = tσ   and  σ1–t = (1 − t)σ  

and, for almost all players i,  

    (f(i) – MC*(µ(σt), µ(σ1–t))) ⋅ σ(i) = max
j

 (fj(i) – MCj*(µ(σjt), µ(σj1–t))) 

(8) and 

        (f(i) – MC*(µ(σ1–t), µ(σt))) ⋅ σ (i) = max
j

 (fj(i) – MCj*(µ(σj1–t), µ(σjt))). 

   To understand the last part of the theorem, note that, by  (8), for every 0 < t ≤ 1, the 

corresponding strategy profile σ is an equilibrium, and the inner integral in  (7) gives 

the equilibrium payoff distribution, in the nonatomic congestion game Γ(ct, f) with 

cost functions cjt(x) 
def
=  MCj*(tx, µ(σj1−t)). In particular, for t = 1/2, σ is an equilibrium, 

and the inner integral gives the equilibrium payoff distribution, in the original game 

Γ(c, f). This follows from the fact that setting t = 1/2 and σ  = σ reduces both 

equations in  (8) to  (2). For t = 1, σ is an equilibrium, and the inner integral in  (7) gives 

the equilibrium payoff distribution, in Γ(MC, f). By Proposition 3, this strategy profile 

σ is socially optimal in the original game Γ(c, f). 

   In some cases, the inner integral in  (7) can also be given a similar interpretation for 

other values of t. Specifically, consider the case of linear cost functions of the form 

cj(x) = cj(1) x. In this case, direct computation gives cjt(x) = 2t cj(x). Therefore, Eq.  (7) 

implies that the Harsanyi TU value of Γ(c, f) equals the integral mean of the 

equilibrium payoff distributions in all games of the form Γ(2t c, f), with t varying 

between 0 and 1. At one end of this interval, the costs of congestion tend to zero, 

while at the other, they tend to the respective marginal social costs.  
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Example. Consider again the nonatomic congestion game Γ(c, f) described in Fig. 2. 

At the unique equilibrium in this game, all the type I and type II players take the left 

and right routes, respectively. This separating equilibrium is common, in fact, to all 

games of the form Γ(2t c, f), with 0 < t ≤ 3/4. However, for 3/4 < t ≤ 1, the equilibria 

in Γ(2t c, f) involve some type I players joining the type II players in taking the right 

route, thereby decreasing the cost for the remaining type I players and increasing it for 

the type II players. It therefore follows from  (7) that the value of Γ(c, f) to type I 

players is greater than their equilibrium payoff and the value to type II players is less 

than their equilibrium payoff. Exact computation shows, in fact, that, compared to the 

equilibrium, type I and type II players are better off and worse off, respectively, by the 

equivalent of exactly 1/8 minute of travel time.  

   In the last example, some players’ equilibrium, or noncooperative, payoffs, which 

are obtained when all the players seek to maximize their own utility or minimize their 

own cost, disregarding those of the others, are greater than their cooperative payoffs, 

which are given by the formula  (7). For other players, the converse is true. This may 

also occur in nonatomic congestion games with socially optimal equilibria, and in this 

case, the Harsanyi TU value of the game is different not only from the equilibrium 

payoff distribution but also from the payoff distribution induced by any strategy 

profile; in other words, a value strategy profile does not exist. (Indeed, by 

Proposition 3, a strategy profile that is not an equilibrium is not even socially 

optimal.) A very different case, in which the equilibrium payoff distribution and the 

value always coincide, is that of logarithmic cost functions. The proof of the 

following proposition is given in Appendix B. 

Proposition 7. Suppose that the cost functions are as in (iii) in Theorem 1. Then, for 

every fixed-utility assignment f, the equilibrium payoff distribution in Γ(c, f) 

coincides with the Harsanyi TU value of the game. 

   It follows from Theorem 1 and Proposition 7 that, with three or more facilities, the 

logarithmic cost functions are the only ones satisfying the convexity condition for 

which the coincidence of the Harsanyi TU value and the equilibrium payoff 

distribution is guaranteed. Proposition 7 is illustrated by the following example. 

Example. Consider again the nonatomic congestion game Γ(c, f) described in Fig. 3. 

Clearly, for each coalition, the aggregate equilibrium payoff depends only on the 
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fraction of the type I players and the fraction of the type II players belonging to the 

coalition. Similarly, in the coalitional form v of Γ(c, f), the worth of each coalition 

depends only on these fractions. The aggregate equilibrium payoff and the worth of a 

coalition as functions of the fraction of the players of each type belonging to it are 

shown in Fig. 4.13 As seen in this figure, for coalitions S comprising most of the 

players of one type and only few of the other type, the worth v(S) differs from the 

aggregate equilibrium payoff. For example, for the coalition represented in Fig. 4 by 

the point (1, 0), which consists of all the type I players and none of the type II players, 

the worth is greater than the aggregate equilibrium payoff. This reflects the greater 

bargaining power of this coalition relative to the complementary one, which consists 

of all the type II players. Specifically, the second coalition would suffer a greater loss 

than the first if negotiations would break down and both coalitions would carry out 

their optimal threat strategies. Because of this, the first coalition is able to extract 

from its rival some of the latter coalition’s equilibrium aggregate utility.14 However, 

for less homogeneous coalitions, whose composition is closer to that of the whole 

population, the worth and the aggregate equilibrium payoff are equal. Such coalitions 

consist of a certain fraction of the type I subpopulation and roughly the same fraction 

of the type II subpopulation. In Fig. 4, they are represented by points lying close to the 

diagonal joining the (0, 0) and (1, 1) vertices. Now, the computation of the Aumann-

Shapley value of a coalitional game is based on the so-called diagonal formula. This 

entails that it only takes into consideration the worth of coalitions that are more-or-

less scaled down versions of the whole population. (For a discussion of this property 

of the Aumann-Shapley value, see [ 3].) Because of this, coalitions of the kind 

mentioned before, in which the ratio between the two types is highly biased, are 

                                                 
13 Note that the former function is linear. This is so by definition. The latter function is obviously 

nonlinear, which implies that the core of v is empty. For further discussion of this nonlinearity, see below. 

14 Another aspect of the difference in bargaining power between the two coalitions is the fact that the 

marginal contribution of type I players to the worth of either coalition is greater than that of type II 

players. In fact, the marginal contribution of the former is positive while that of the latter is negative. 

This difference stems from the different abilities of these two types of players to help the coalition they 

join while simultaneously causing maximum harm to the rival coalition. For coalitions lying closer to 

the diagonal (see below), the marginal contributions have the reverse signs: negative for type I players 

and positive for type II. The reason, as explained below, is that the marginal contributions to the worth 

of such coalitions are equal to the players’ equilibrium payoffs. 
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irrelevant to the computation of the value. In fact, the value is completely determined 

by any open set of coalitions that contains the relative interior of diagonal (that is, the 

diagonal without its endpoints). As seen in Fig. 4, there are some (indeed, many) such 

sets in which, for all coalitions, the worth and the aggregate equilibrium payoff are 

equal. The existence of such sets, which in some sense (that will not be explained 

here) is a generic property of nonatomic congestion games with logarithmic cost 

functions, implies that, close to the diagonal, the marginal contributions of players to 

the worth of coalitions are equal to their equilibrium payoffs. Therefore, the Harsanyi 

TU value, which reflects the players’ marginal contributions to the worth of coalitions 

lying along the diagonal, equals the equilibrium payoff distribution. This may help 

understand why, in games with logarithmic cost functions, the players’ noncooperative 

(i.e., equilibrium) and cooperative (i.e., value) payoffs coincide. 

0

1 

0 

1 

Type I

Type II 

 

Fig. 4. For the nonatomic congestion game described in Fig. 3, each coalition’s 

aggregate equilibrium payoff (semi-transparent, black meshed, surface) and worth 

(opaque, gray meshed, surface) are shown as functions of the fractions of the type I 

and type II players who are members of the coalition.   
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CONCLUDING REMARKS 

The efficiency of noncooperative equilibria, and comparison between noncooperative 

and cooperative payoffs, are much-studied themes in economics. Market economies 

are one context in which such studies are particularly prevalent. For a transferable-

utility market economy (in which the utility functions are quasilinear with respect to a 

numeraire commodity, which may appear in positive as well as negative quantities), 

the first fundamental theorem of welfare economics asserts that every competitive 

equilibrium is Pareto efficient. Pareto efficiency is equivalent, in this case, to social 

optimality. The value equivalence theorem for TU market economies with a 

continuum of traders ([ 3, Proposition 32.3]) asserts that, under certain conditions, the 

competitive payoff distribution is unique and coincides with the Aumann-Shapley 

value of the corresponding market game. In this (coalitional) game, a coalition’s 

worth is the maximum aggregate utility it can obtain for its members when they are 

only allowed to trade among themselves. The Aumann-Shapley value of a market 

game is directly affected by the value of each trader’s initial endowment to the other 

traders. The competitive payoff, by contrast, is affected by this only indirectly, 

through the market price of the initial endowment. Nevertheless, the value 

equivalence theorem tells us that these two are, in fact, equal.  

   The present paper represents an attempt to make comparisons similar to those for 

market economies in the context of strategic games. While questions similar to those 

considered here can be raised for any strategic game with, or even without, 

transferable utility, this study is only concerned with one specific class of nonatomic 

congestion games. As it shows, even in this restricted context it is not possible to 

obtain results as general as the first fundamental theorem of welfare economics or the 

value equivalence theorem. In fact, equilibria may or may not be socially optimal, 

and, even when they are, the players’ equilibrium, or noncooperative payoffs need not 

coincide with their cooperative ones.  

   There are two exceptions to these findings. The most striking are logarithmic cost 

functions. For these, not only are the equilibria always socially optimal, but also the 

equilibrium payoff distribution coincides with the value. The other special case is that 

of linear cost functions. For these, another connection between the value and certain 

equilibrium payoffs holds. Namely, the value can be computed by first finding the 

equilibrium payoff distribution in all games differing from the original one only in 
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that the slopes of the cost functions are multiplied by a positive constant, which is less 

than two, and then taking the average of these payoffs. 

   The fact that in nonatomic congestion games equilibria may fail to be socially 

optimal raises the question of how far these equilibria can be from the social 

optimum. A recent paper addressing this question in a model related to, but not 

identical with, the present one is [ 19]. For example, for a homogeneous population of 

users and linear, nonnegative costs (such as those in Fig. 1), the average cost in 

equilibrium is shown in [ 19] not to exceed 4/3 of that at the social optimum. For cost 

functions that are given by higher-degree polynomials, the corresponding upper bound 

is higher.  

APPENDIX A: NONCONVEXITIES 

In this appendix, the convexity condition and the assumption that the cost of 

congestion is the same for all players are both shown to be crucial for a well-defined 

coalitional form of nonatomic congestion games. If the convexity condition does not 

hold, there may be coalitions S for which the function HS, which measures the 

difference between the aggregate utilities of S and I \ S, does not have a saddle point. 

The worth of such coalitions is not well defined. A similar phenomenon might occur if 

the cost of congestion were allowed to vary across players. 

   The importance of the convexity condition. There are two facilities, with identical 

cost functions c1(x) = c2(x) = x4. (It follows from Proposition 6 that this cost function 

does not satisfy the convexity condition.) All players are identical, with f1 = f2 = 0. 

Coalition S consists of 1/10 of the population, and its complement I \ S consists of the 

rest. For each strategy σS of S and strategy σ I \ S of I \ S, there is a corresponding pair 

of numbers 0 ≤ x ≤ 0.1 and 0 ≤ y ≤ 0.9 such that µ(σS) = (x, 0.1 − x) and µ(σ I \ S) = 

(y, 0.9 − y). Without loss of generality, it may be assumed that x > 0. Computation of 

the right-hand side of  (5) gives  

(9)  HS(σS, σ I \ S) = (y − x) (x + y)4 + (0.8 + x − y) (1 − x − y)4. 

A necessary condition for (σS, σ I \ S) to be a saddle point of HS is that the members of 

S cannot increase HS by moving from facility 1 to facility 2, i.e., by decreasing x. 

A necessary condition for this is that the partial derivative of the expression on the 

right-hand side of  (9) with respect to x is nonnegative:  
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(10) −(x + y)4 + 4 (y − x) (x + y)3 + (1 − x − y)4 − 4 (0.8 + x − y) (1 − x − y)3 ≥ 0. 

A second necessary condition for (σS, σ I \ S) to be a saddle point of HS is that members 

of I \ S cannot decrease HS by moving between facilities. If all the members of I \ S 

use the same facility, then this condition is not satisfied, for it is easy to see that, in 

such a case, moving a few members of I \ S to the other facility would increase this 

coalition’s aggregate utility more than it would increase the aggregate utility of S (if at 

all). Therefore, a necessary condition for a saddle point is that members of I \ S use 

both facilities, i.e., 0 < y < 0.9. This implies that, for (σS, σ I \ S) to be a saddle point, 

the partial derivative of the expression on the right-hand side of  (9) with respect to y 

must vanish: 

(11) (x + y)4 + 4 (y − x) (x + y)3 − (1 − x − y)4 − 4 (0.8 + x − y) (1 − x − y)3 = 0. 

Subtracting  (11) from  (10) gives (1 − x − y)4 ≥ (x + y)4, or equivalently x + y ≤ 0.5. 

Adding these equations gives (y − x) (x + y)3 ≥ (0.8 + x − y) (1 − x − y)3. Now, if x = 

0.1, then the right-hand side of the last inequality is equal to (1 − x − y)4, and therefore 

(y − x) (x + y)3 ≥ (x + y)4, which contradicts the assumption that x > 0. Therefore, it 

must be that 0 < x < 0.1, i.e., members of S use both facilities. This implies that a 

necessary condition for (σS, σ I \ S) to be a saddle point is that  (10), as well as all the 

weak inequalities that follow from it, hold as equalities. In particular, x + y = 0.5 and 

(y − x) 0.53 = (0.8 + x − y) 0.53. The unique solution of these two linear equations is 

x = 0.05 and y = 0.45. Thus, the members of both coalitions are equally divided 

between the two facilities. This condition, which implies HS(σS, σ I \ S) = 0.05, is a 

necessary condition for (σS, σ I \ S) to be a saddle point. However, with such x and y, 

(σS, σ I \ S) is not a saddle point. In fact, with respect to coalition S’s strategies, it is a 

minimum rather than a maximum point. For example, if all the members of S move to 

facility 1, HS increases to 0.05048. This proves that a saddle point does not exist. 

   The importance of the assumption that all players have the same cost functions. 

There are three facilities, with linear cost functions, and two types of players. For 

type I (half of all players), f1 = 1/4, f2 = 1/8, f3 = 1/2, and c1(x) = c2(x) = c3(x) = x. For 

type II (the other half), f1 = 1/8, f2 = 1/4, f3 = 4, and c1(x) = c2(x) = x, but c3(x) = 8x. 

Thus, the third cost function is type-specific. For the coalition S consisting of half the 

type I players and half the type II players, and for a given strategy σS of S and a given 
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strategy σ I \ S of I \ S, consider the difference between the aggregate utilities of S and 

I \ S. This is given by a function HS which is a straightforward generalization of  (5) to 

type-specific cost functions. It is not difficult to see that, because S and its 

complement are identical in composition, a necessary condition for HS to have some 

saddle point is that is has a symmetric one, in which the facility choice of each type of 

player is the same in S and I \ S. The symmetry of the saddle point implies that, if a 

small group of players in S switches from one facility to another, the first-order 

change in HS equals the change in these players’ aggregate utility. By definition, at a 

saddle point the change in HS cannot be positive. Therefore, a symmetric saddle point 

must correspond to an equilibrium in the nonatomic congestion game. When half of 

the type I players use facility 1, half the type II players use facility 2, and the rest of 

the players use facility 3, the game is at equilibrium. In fact, this is the only kind of 

equilibrium in the game. It follows that, in every symmetric saddle point of HS, the 

players in both S and I \ S choose their facilities in the manner just indicated. 

However, suppose that, at such a point, a small group of type II members of S using 

facility 2 switch to facility 3, and at the same time a group of type I members of S 

who use facility 3 switch to facility 1. Brief computation shows that, if these groups 

have measures ε and 2ε, respectively, then HS increases by ε2. (Incidentally, this 

shows that, at the point under consideration, HS is not concave in its first argument.) 

The fact that the change in HS is positive contradicts the assumption that the original 

point was a saddle point. This contradiction proves that HS does not have a saddle 

point.  

APPENDIX B: PROOFS 

This appendix contains the proofs of the two theorems in this paper, as well as those 

of Propositions 2, 3, 6, and 7. First, several new definitions, and two lemmas, are 

given.  

   An ideal coalition is a measurable function h : I → [0, 1]. The set of all ideal 

coalitions is denoted by I. In the following, I is seen as a subset of the Banach space 

L∞(µ) endowed with the relative weak* topology.15 Thus, ideal coalitions that are 

equal almost everywhere are identified. By Alaoglu’s theorem, the space I is compact.  

                                                 
15 This is equivalent to seeing I as a subset of L1(µ) endowed with the relative weak topology. 
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   For h ∈ I, let Σh denote the set {σh = (σ1h, σ2h, … , σmh) ∈ I m | ∑j σjh = h}. For 

g, h ∈ I and (σh, σg) ∈ Σh × Σg, define  

       H(σh, σg) 
def
=  j

I

 (f – c(µ(σh + σg))) ⋅ (σh − σg) dµ 

= j
I

 f ⋅ (σh − σg) dµ – c(µ(σh) + µ(σg)) ⋅ (µ(σh) – µ(σg)). 

This is a generalization of (the two-person game) HS defined in  (5). Note that 

H(σh, σg) = −H(σg, σh). For given h ∈ I, a pair (σh, σ1–h) ∈ Σh × Σ1−h will be said to 

be a saddle point if, for all (τh, τ1−h) ∈ Σh × Σ1−h, 

(12)   H(τh, σ1−h) ≤ H(σh, σ1−h) ≤ H(σh, τ1−h). 

It is easy to see that if the pair (τh, τ1−h) is also a saddle point, then both inequalities 

in  (12) are, in fact, equalities.  

Lemma 1. Suppose that the cost functions satisfy the convexity condition. Then, for 

every h ∈ I, there is a saddle point in Σh × Σ1−h. Moreover, there is a saddle point of 

the form (hσ, (1 − h)σ ), where σ, σ  ∈ Σ (i.e., strategy profiles). For each j, there is a 

continuous function Θj : I → [0, 1]2 such that, for every h ∈ I, Θj(h) = 

(µ(σjh), µ(σj1−h)) for all saddle points (σh, σ1−h) in Σh × Σ1−h. 

Proof. For given h ∈ I, both Σh and Σ1−h can be seen as compact convex sets in a 

locally convex Hausdorff linear topological space (namely, L∞(µ)m with the product 

weak* topology). The function H(⋅, ⋅) is easily seen to be continuous on Σh × Σ1−h. By 

the convexity condition, H(⋅, σ1−h) is concave for all σ1−h ∈ Σ1−h and H(σh, ⋅) is 

convex for all σh ∈ Σh. Therefore, by the minimax theorem in locally convex 

Hausdorff linear topological spaces ([ 8, Theorem 3]), there is a saddle point in 

Σh × Σ1−h.  

   It follows from [ 6, Theorem 4] that, for every (σh, σ1−h) ∈ Σh × Σ1−h, there is some 

σ ∈ Σ such that, for all j, ∫ σjh dµ = ∫ h σj dµ and ∫ f σjh dµ = ∫ f h σj dµ. Clearly, 

H(σh, τ1−h) = H(hσ, τ1−h) for all τ1−h ∈ Σ1−h. Similarly, there is some σ  ∈ Σ such 

that H(τh, σ1−h) = H(τh, (1 − h)σ ) for all τh ∈ Σh. These equations imply that, if 

(σh, σ1−h) is a saddle point, then so is (hσ, (1 − h)σ ). 
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   Let (σh, σ1−h) and (τh, τ1−h) be two saddle points in Σh × Σ1−h. If µ(σh) ≠ µ(τh) 

then, by the convexity condition and the remark that follows Eq.  (12), H(1/2 σh + 

1/2 τh, σ1−h) > 1/2 H(σh, σ1−h) + 1/2 H(τh, σ1−h) = H(σh, σ1−h). This, however, 

contradicts the definition of saddle point. Therefore, µ(σh) = µ(τh). By a similar 

argument, µ(σ1−h) = µ(τ1−h). To complete the proof of the lemma it remains to show 

that, for every j, the function Θj : I → [0, 1]2 (well-) defined by Θj(h) = 

(µ(σjh), µ(σj1−h)), where (σh, σ1−h) is an arbitrary saddle point in Σh × Σ1−h, is 

continuous. Consider the set S of all triplets (h, ρ, ρ ) in I × I m 
× I m such that ∑j ρj 

= h, ∑j ρ j = 1 − h, and H(hσ1, ρ ) ≤ H(ρ, ρ ) ≤ H(ρ, (1 − h)σ1) for all σ1 ∈ Σ1. (By 

definition, ∑j σj1 is the constant function 1.) Since the set S is easily seen to be closed, 

and hence compact, the range of the continuous function Ξj : S → I × [0, 1]2 defined 

by Ξj(h, ρ, ρ ) = (h, (µ(ρj), µ( ρ j))) is also compact. The range of Ξj coincides with 

the graph of Θj. Therefore, the latter function has a compact graph, and hence is 

continuous.  

Lemma 2. Suppose that the cost functions satisfy the convexity condition. For every 

h ∈ I, a pair (σh, σ1−h) in Σh × Σ1−h is a saddle point if and only if it satisfies the 

following equations: 

(13)      (f – MC*(µ(σh), µ(σ1−h))) ⋅ σh = h  max
j

 (fj – MCj*(µ(σjh), µ(σj1−h))) 

and 

(14) (f – MC*(µ(σ1−h), µ(σh))) ⋅ σ1−h = (1 – h) max
j

 (fj – MCj*(µ(σj1−h), µ(σjh))). 

In this case, MCj*(µ(σjh), µ(σj1−h)) is finite (i.e., > −∞) for all j. 

   The intuitive content of  (13) is that the facility choice of each “member” of the ideal 

coalition h maximizes his contribution to the difference between the aggregate utilities 

of the complementary ideal coalitions h and 1 – h. If the player chooses facility j, his 

contribution is equal to his fixed utility from using j minus the effect of his choice on 

the difference between the aggregate costs of using the facility to the members of h 

and 1 − h. The intuitive content of  (14) is similar.  

Proof of Lemma 2. Fix h ∈ I, and (σh, σ1−h) ∈ Σh × Σ1−h. For every g ∈ I and every 

τg ∈ Σg,  
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H(τg, σ1−h) – H(σh, σ1−h) = j
I

 f ⋅ (τg – σh) dµ 

   − [c(µ(τg) + µ(σ1−h)) ⋅ (µ(τg) – µ(σ1−h)) – c(µ(σh) + µ(σ1−h)) ⋅ (µ(σh) – µ(σ1−h))]. 

If µ(τg) ≠ µ(σh), then, by the convexity condition, the expression in square brackets is 

strictly greater than MC*(µ(σh), µ(σ1−h)) ⋅ (µ(τg) – µ(σh)). Therefore, if  (13) holds, 

then 

(15) H(τg, σ1−h) – H(σh, σ1−h) ≤ j
I

 (f – MC*(µ(σh), µ(σ1−h))) ⋅ (τg – σh) dµ 

≤ j
I

 max
j

 (fj – MCj*(µ(σjh), µ(σj1−h))) (g – h) dµ. 

In the special case g = h, this gives the left inequality in  (12). (The general case is 

only required later.) The right inequality is similarly implied by  (14). Therefore,  (13) 

and  (14) together imply that (σh, σ1−h) is a saddle point.  

   Conversely, for h ∈ I, suppose that (σh, σ1−h) is a saddle point. Suppose also that 

∫ h dµ is strictly positive, say equal to ε. (If h = 0 almost everywhere,  (13) holds 

trivially.) Let σ be an equilibrium in the nonatomic congestion game in which the 

population measure µh is defined by µh(S) = (1/ε) ∫S h dµ, the cost functions are 

cj
h(x) 

def
=  MCj*(ε x, µ(σj1−h)), and the fixed-utility assignment is f. By definition of 

equilibrium, Eq.  (13) holds with  hσ substituted for σh. Therefore, by  (15), 

H(τh, σ1−h) ≤ H(hσ, σ1−h) for all τh ∈ Σh. Moreover, inspection of the proof of  (15) 

shows that the last inequality holds as an equality only if µ(τh) = µ(hσ) and (f − 

MC*(µ(hσ), µ(σ1−h))) ⋅ τh = h maxj (fj − MCj*(µ(hσj), µ(σj1−h))). It follows that, for 

every τh ∈ Σh such that H(τh, σ1−h) ≥ H(hσ, σ1−h), MC*(µ(τh), µ(σ1−h))) ⋅ τh = 

h maxj (fj − MCj*(µ(τhj), µ(σj1−h))). Since H(σh, σ1−h) ≥ H(hσ, σ1−h) by definition of 

saddle point, this proves  (13). The proof of  (14) is similar.  

   For every h ∈ I, every (σh, σ1−h) ∈ Σh × Σ1−h, and every j such that µ(σjh) > 0 or 

µ(σj1–h) > 0, MCj*(µ(σjh), µ(σj1−h)) > −∞. Therefore, the left-hand sides of  (13) and  

(14) are finite almost everywhere. If (σh, σ1−h) is a saddle point, then these two 

equations hold, and therefore their right-hand sides are also finite almost everywhere. 

Hence, in this case, MCj*(µ(σjh), µ(σj1−h)) > −∞ for all j.  
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Proof of Proposition 2. For given cost functions c and fixed-utility assignment f, let σ 

be an equilibrium in Γ(c, f), and τ some strategy profile. If µ(σ) ≠ µ(τ), then the set J 

of all facilities j such that µ(σj) < µ(τj) is nonempty, and therefore ∑j∈J µ(σj) < 

∑j∈J µ(τj). This inequality implies that, for some j ∈ J and k ∉ J, the set of all players i 

such that σk(i) = 1 and τj(i) = 1 has positive measure. Since k ∉ J means that µ(σk) ≥ 

µ(τk), ui(σ) = fk(i) – ck(µ(σk)) ≤ fk(i) – ck(µ(τk)) for all players i in this set. And, since 

j ∈ J means that µ(τj) > µ(σj) and σ is an equilibrium, ui(τ) = fj(i) – cj(µ(τj)) < fj(i) – 

cj(µ(σj)) ≤ ui(σ) for almost all of them. Together, these equalities and inequalities give 

(16)    ui(τ) < ui(σ) ≤ fk(i) – ck(µ(τk)). 

   Two conclusions can be drawn from this. First, if τ is such that µ(σ) ≠ µ(τ), then  

(16) shows that τ is not an equilibrium. This proves the uniqueness of the measure of 

the set of players using each facility at equilibrium. Second, if τ is such that ui(τ) ≥ 

ui(σ) (and hence  (16) does not hold) for almost all players i with τ(i) ≠ σ(i), then µ(σ) 

= µ(τ). Clearly, in this case, ui(τ) = ui(σ) for all players i with τ(i) = σ(i). And since σ 

is an equilibrium, ui(τ) = (f(i) – c(µ(σ))) ⋅ τ(i) ≤ ui(σ) for almost all i. For almost all 

players i with τ(i) ≠ σ(i), the reverse inequality, ui(τ) ≥ ui(σ), holds by assumption. It 

follows that, for almost all i, ui(τ) = ui(σ). This proves that the equilibrium σ satisfies 

the condition H. 

   It remains to show that every strategy profile σ that is not an equilibrium does not 

satisfy H. It follows from the assumed continuity of the cost functions that, for every 

strategy profile σ that is not an equilibrium, there is some facility j and some ε > 0 

such that the set of all players i with ui(σ) < fj(i) − cj(µ(σj) + ε) has positive measure. 

Let Ij be a subset of this set with 0 < µ(Ij) < ε, and τ the strategy profile defined by 

τj(i) = 1 for i ∈ Ij and τ(i) = σ(i) for i ∉ Ij. Since, clearly, ui(τ) > ui(σ) for all players i 

with τ(i) ≠ σ(i), the strategy profile σ does not satisfy condition H.   

Proof of Proposition 3. Let σ be a strategy profile. Clearly, σ ∈ Σ1 and 0 ∈ Σ0, where 

0 and 1 denote the corresponding constant functions. Since, as shown in the proof of 

Lemma 1, for every τ1 ∈ Σ1 there is some τ ∈ Σ such that H(τ1, 0) = H(τ, 0), the pair 

(σ, 0) is a saddle point in Σ1 × Σ0 if and only if σ is socially optimal in Γ(c, f). On the 

other hand, by Lemma 2 and the identity MCj*(x, 0) = MCj(x), if the convexity 
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condition holds, then (σ, 0) is a saddle point if and only if 

(17)   (f – MC(µ(σ))) ⋅ σ  =  max
j

 (fj – MCj(µ(σj))). 

Quick inspection of the proof of Lemma 2 shows, in fact, that the last equivalence 

remains true if the convexity condition is replaced by the weaker condition of 

increasing marginal social costs. Therefore, if the latter condition holds, σ is socially 

optimal in Γ(c, f) if and only if it satisfies  (17), i.e., it is an equilibrium in Γ(MC, f). 

This proves that the set of socially optimal strategy profiles in Γ(c, f) coincides with 

the set of equilibria in Γ(MC, f). Since, by Proposition 1, the latter set is nonempty, 

and, by Proposition 2, all its elements are the same in terms of the measure of the set 

of players using each facility, the same two properties hold for the set of all socially 

optimal strategy profiles in Γ(c, f). It remains to show that if this set has at least one 

element in common with the set of equilibria in Γ(c, f), then the two sets are, in fact, 

equal. 

   Suppose there is some equilibrium σ in Γ(c, f) that is socially optimal. It then 

follows from the uniqueness of the equilibrium payoffs (Proposition 2) that all the 

equilibria in Γ(c, f) are socially optimal. Conversely, let τ be a socially optimal 

strategy profile. As shown above, µ(τ) = µ(σ). It therefore follows from  (2) that ui(τ) ≤ 

ui(σ) for almost all i, and hence the inequality  (3) holds. However, since τ is assumed 

to be socially optimal,  (3) must, in fact, be an equality. Therefore, the equality ui(τ) = 

ui(σ) must hold for almost all i. This, together with  (2) and the equality µ(τ) = µ(σ), 

implies that τ is an equilibrium.  

Proof of Theorem 1. Clearly,  (iii) implies  (ii). And if m ≥ 3, then the converse holds as 

well. For if m ≥ 3 and  (ii) holds, then, for every j and every 0 < xj < 1,  

(18)    xj 
dcj
dx(xj) = x 

dck
dx (x) 

for all k ≠ j and 0 < x < 1 − xj. This implies that the limit lim x → 0 x c'k(x) (where c'k = 

dck/dx) exists, does not depend on k, and is positive. Denoting this limit by b, Eq.  (18) 

gives c'j(xj) = b/xj, for all j and 0 < xj < 1. Integrating both sides of this equality, we get 

cj(xj) – cj(1) = b ln xj. This gives  (iii), with a = e1/b. 
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   If m = 2, then, in general,  (ii) ;  (iii). For example, the cost functions in  (4) also 

satisfy  (ii). However, even if m = 2,  (ii) does imply cj(0) = −∞, for all j. Indeed, if 

x c'1(x) = (1 − x) c'2(1 − x) for all 0 < x < 1, then lim x → 0 x c'1(x) = c'2(1) > 0. This 

implies that there are two constants b, b' > 0 such that b < x c'1(x) < b' for all 0 < x < 1. 

Hence, b ln x > c1(x) – c1(1) > b' ln x for all such x. Similar inequalities hold for c2(x). 

Therefore, c1(0) = c2(0) = −∞. This result will help to prove the equivalence of (i) and 

(ii). 

   To prove that  (ii) implies  (i), suppose that  (ii) holds, and let f be a fixed-utility 

assignment and σ a strategy profile. As shown above, MCj(0) = cj(0) = −∞ for all j. 

Therefore, if µ(σj) = 0 for some j, then maxj (fj(i) – MCj(µ(σj))) = maxj (fj(i) – 

cj(µ(σj))) = ∞ for all i. In this case, σ is not an equilibrium in either Γ(MC, f) or 

Γ(c, f). If µ(σj) > 0 for all j, then, by  (ii), there is some b > 0 such that MCj(µ(σj)) = 

cj(µ(σj)) + µ(σj) c'j(µ(σj)) = cj(µ(σj)) + b for all j, and it follows that σ is an 

equilibrium in Γ(MC, f) if and only if it is an equilibrium in Γ(c, f). Since, by 

Proposition 3, σ is an equilibrium in Γ(MC, f) if and only if it is socially optimal in 

Γ(c, f), this proves that  (i) holds. 

   To prove that (i) implies  (ii), suppose that  (ii) does not hold, and let (x1, x2, … , xm) 

be a strictly positive probability vector such that xj c'j(xj) is not the same for all j. Since 

µ is nonatomic, there is a strategy profile σ such that µ(σj) = xj for all j. Consider the 

constant fixed-utility assignment f defined by f(i) = c(µ(σ)) for all i. Clearly, σ is an 

equilibrium in Γ(c, f). Therefore, the aggregate equilibrium payoff (indeed, each 

player’s equilibrium payoff) in this game is zero. A necessary condition for the vector 

µ(σ) to be a local maximum of the function z a (c(µ(σ)) – c(z)) ⋅ z, where z = 

(z1, z2, … , zm) ranges over the set of all strictly positive probability vectors, is that, at 

the point z = µ(σ), there is some λ (i.e., a Lagrange multiplier) such that cj(µ(σj)) – 

cj(zj) – zj c'j(zj) = λ for all j. However, since, by assumption, µ(σj) c'j(µ(σj)) is not the 

same for all j, this necessary condition is not satisfied. Hence, there is some 

τ ∈ Σ such that ∫I (f – c(µ(τ))) ⋅ τ dµ = (c(µ(σ)) – c(µ(τ))) ⋅ µ(τ) > 0. Therefore, the 

equilibrium σ is not socially optimal in Γ(c, f). This proves that (i) does not hold.  
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Proof of Proposition 6. Setting y = 0 in the convexity condition gives (i). Assume, 

then, that the marginal social costs are increasing. As already remarked, this implies 

that each cost function cj is continuously differentiable in (0, ∞), its derivative 

satisfies c'j > 0, and the second derivative c"j exists almost everywhere. For each j, let 

the function cj(
3  x) (x > 0) be denoted by ψj. To complete the proof, it suffices to show 

that, for each j, ψj is concave if and only if, for all y > 0, MCj*(x, y) is strictly 

increasing as a function of x in (0, ∞).  

   Suppose that MCj*(x, y) satisfies the last condition. Then,  

(19)   lim inf
∆x → 0

  
MCj*(∆x, y) − MCj*(0, y)

∆x  ≥ 0 for all y > 0. 

Consider the nominator in  (19). As ∆x tends to zero, MCj*(∆x, y) − MCj*(0, y) = 

(∆x − y) c'j(y + ∆x) + y c'j(y) + cj(y + ∆x) − cj(y) = [((∆x)2 − y2)/(y + ∆x)] c'j(y + ∆x) + 

(y + ∆x) c'j(y) + o(∆x) = − y2 (y + ∆x) [c'j(y + ∆x)/(y + ∆x)2 − c'j(y)/y2] + o(∆x). 

Therefore, for every y > 0, the inequality in  (19) is equivalent to lim sup ∆x → 0 (1/∆x) 

[c'j(y + ∆x)/(y + ∆x)2 − c'j(y)/y2] ≤ 0. It follows, in particular, from this equivalence 

that  

d
dy 



c'j(y)

y2  ≤ 0, 

provided that this derivative exists (which is the case for almost all y > 0, since c"j 

exists almost everywhere). Since c'j(y)/y2 = 3ψ'j(y3), this proves that the derivative of 

ψ is nonincreasing. Therefore, ψ is concave.    

   Conversely, suppose that ψj is concave, and its derivative is therefore nonincreasing. 

As shown above, this implies  (19). For every x ≥ 0, y > 0, and ∆x > 0, a little algebra 

gives that   

(20) MCj*(x + ∆x, y) − MCj*(x, y) = 
x

x + y [MCj(x + y + ∆x) − MCj(x + y)] 

+ 
y

x + y [MCj*(∆x, x + y) − MCj*(0, x + y)]. 

Therefore, by the assumption of increasing marginal costs of congestion and  (19), 

lim inf ∆x → 0 (1/∆x) [MCj*(x + ∆x, y) − MCj*(x, y)] ≥ 0. In particular,   
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∂
∂x MCj*(x, y) ≥ 0, 

provided that this derivative exists (which, for every y > 0, is the case for almost all x 

≥ 0). This proves that, for every y > 0, MCj*(x, y) is nondecreasing as a function of x 

in [0, ∞). By this and the assumption of increasing marginal costs of congestion, the 

first and second terms on the right-hand side of  (20) are, respectively, positive and 

nonnegative, for every x > 0, y > 0, and ∆x > 0. Therefore, the left-hand side is 

positive. This proves that, for every y > 0, MCj*(x, y) is strictly increasing as a 

function of x in (0, ∞).  

Proof of Theorem 2. Fix a fixed-utility assignment f. To prove that v is well defined, it 

has to be shown that, for every coalition S, the function HS defined by  (5) has a saddle 

point. The existence of such a saddle point is implied by Lemma 1. This lemma 

asserts that, for every ideal coalition h, there is a saddle point in Σh × Σ1−h of the form 

(hσ, (1 − h)σ ), where σ, σ ∈ Σ. In particular, there is such a point for h = 1S.  

   Next, it has to be shown that v ∈ pNA. As a first step, it will be shown that the ideal 

game v* : I  → R defined by  

  v*(h) = 
1
2 [

hh Σ∈σ
max

hh −− Σ∈ 11
min

σ
H(σh, σ1–h) + 

1
max

Σ∈σ
H(σ, 0)] 

is differentiable in the sense of [ 11]. This ideal game “extends” the coalitional game v 

in the sense that v(S) = v*(1S) for all coalitions S. 

   For g, h ∈ I, and for every pair of saddle points (σh, σ1−h) ∈ Σh × Σ1−h and 

(τg, τ1−g) ∈ Σg × Σ1−g, a little algebra gives  

2(v*(g) – v*(h)) = H(τg, τ1−g) – H(σh, σ1−h) 

= [H(τg, σ1−h) – H(σh, σ1−h)] + [H(σ1−h, τg) – H(τ1−g, τg)]. 

Using  (15) twice, first in its original form and then with τ1−g, τg, and σ1−h substituted 

for σh, σ1−h, and τg, respectively, gives 

(21)  2(v*(g) – v*(h)) ≤ j
I

 max
j

 (fj – MCj*(µ(σjh), µ(σj1−h))) (g – h) dµ  

  + j
I

 max
j

 (fj – MCj*(µ(τj1−g), µ(τjg))) ((1 – h) – (1 – g)) dµ 
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= j
I

 [max
j

 (fj – MCj*(Θj(h))) + max
j

 (fj – MCj*(Θj(1 – g)))] (g – h) dµ, 

where the function Θj is as in Lemma 1. Multiplying both sides of  (21) by −1 and 

interchanging g and h, we get 

2(v*(g) – v*(h)) ≥ j
I

 [max
j

 (fj – MCj*(Θj(g))) + max
j

 (fj – MCj*(Θj(1 – h)))] (g – h) dµ. 

It follows from this inequality and  (21) that, for some constant 0 ≤ θ ≤ 1,  

v*(g) − v*(h) = j
I

 
1
2[max

j
(fj– MCj*(Θj(h))) + max

j
(fj− MCj*(Θj(1−h))) + εθ

g,h] (g–h) dµ, 

where εθ
g,h : I → R is defined by  

εθ
g,h(i) = θ [max

j
 (fj(i) – MCj*(Θj(g))) – max

j
 (fj(i) – MCj*(Θj(h)))] 

        + (1–θ) [max
j

 (fj(i) – MCj*(Θj(1 – g))) – max
j

 (fj(i) – MCj*(Θj(1 – h)))]. 

Since, for every i ∈ I and 0 ≤ θ ≤ 1, |εθ
g,h(i)| ≤ maxj |MCj*(Θj(g)) − MCj*(Θj(h))| + 

maxj |MCj*(Θj(1 − g)) − MCj*(Θj(1 − h))|, the continuity of Θj and MCj* implies that 

εθ
g,h(i) → 0 uniformly in i and θ when g → h. This proves (see  

[ 11]) that v* is differentiable at the point h, its derivative there Dv*(h) is (a nonatomic 

measure which is) absolutely continuous with respect to µ, and 

(22)    
µd

hDd ))(*( v  = 
1
2 [max

j
 (fj – MCj*(Θj(h))) + max

j
 (fj – MCj*(Θj(1 – h)))]. 

It follows from the last part of Lemma 2 that the right-hand side of  (22) is in L∞(µ). 

   The function d(Dv*(⋅))/dµ : I  → L∞(µ) is continuous. Indeed, ||d(Dv*(g))/dµ – 

d(Dv*(h))/dµ||∞ = ||ε1/2
g,h ||∞ → 0 when g → h. It follows, by [ 11, Theorem 2], that the 

game v is in pNA (indeed, pNA∞) and its Aumann-Shapley value ϕv is given by 

  (ϕv)(S) = j
0

1
 Dv*(t)(S) dt   (S ∈ C) 

(where t is identified with the corresponding ideal coalition). By  (22), this formula 

gives  (7). The two equations in  (8), and the fact that the inner integral in  (7) is 

uniquely determined by them, follow from Lemmas 1 and 2.  
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Proof of Proposition 7. To prove the conclusion of the proposition, it suffices to 

assume that condition (ii) in Theorem 1 holds (which is weaker than condition (iii)). 

As shown in the proof of that theorem, this condition implies that, for every fixed-

utility assignment f and every equilibrium σ in Γ(c, f), µ(σj) > 0 for all j. Hence, by 

condition (ii), there is a constant b such that, for all j and 0 ≤ t ≤ 1, 

(23) MCj*(µ(tσj), µ((1 – t)σj)) = cj(µ(σj)) + (tµ(σj) – (1 – t)µ(σj)) c'j(µ(σj)) 

    = cj(µ(σj)) + (2t − 1) b. 

Therefore, it follows from  (2) that, for all 0 ≤ t ≤ 1,  (8) holds with σ = σ, σt = tσ, and 

σ1−t = (1 − t) σ. Eqs.  (7) and  (23) then give (ϕv)(S) = ∫S (f – c(µ(σ))) ⋅ σ dµ −  

b µ(S) ∫10 (2t − 1) dt (S ∈ C). Since the second integral is zero, this shows that the 

Harsanyi UT value is equal to the equilibrium payoff distribution.  
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