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Equilibria in repeated games of incomplete information:
The general symmetric case
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Abstract. Every two person repeated game of symmetric incomplete infor-
mation, in which the signals sent at each stage to both players are identical
and generated by a state and moves dependent probability distribution on a
given ®nite alphabet, has an equilibrium payo¨.
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1. Introduction

This paper proves the existence of equilibrium payo¨s for incomplete infor-
mation repeated two person games with symmetric random signals.

The ®rst study, in the deterministic zero sum case, is due to Kohlberg and
Zamir (1974). They show the existence of a value by reducing the problem to
the study of stochastic games with absorbing states (Kohlberg, 1974). This
result was then extended in two directions: by Forges (1982) to the zero-sum
random signal case and by Neyman and Sorin (1997) to the deterministic non
zero sum case.

The framework is given by a ®nite set K of states and for each state k in K ,
by a bi-matrix game Gk de®ned by I � J real valued payo¨ matrices Ak;Bk

and I � J ``signalling matrices'' H k with values in the set D�H� of proba-
bilities on a ®nite set H.

For any initial distribution p on K, the game G�p� is played as follows.
First, the state k in K is chosen once for all according to p. The value of k is
not announced to the players. Then there is in®nite number of stages where
at stage n, player I (resp. player II ) chooses in A I (resp. jn A J). The payo¨



at that stage is thus �ak
in; jn 

; bk
in; jn 
� (for player I and II respectively), but is not

announced. Rather the players are told a ̀`public signal'' hn whose conditional
distribution given the past is H k

in; jn 
. For the signal to contain all the informa-

tion of the players at that stage and for perfect recall to hold, the signal reveals
the moves: i 0 i 0 or j 0 j 0 implies that the distributions of H k

i; j and H
k0
i 0; j 0 have

disjoint supports.

2. The result

Any pair of strategies s of player 1 and t of player 2, together with the
initial probability p, de®nes a probability distribution Pp;s;t on plays
�k; i1; j1; h1; . . . ; in; jn; hn; . . .� and therefore it also induces a probability dis-
tribution on the stream of payo¨s �x1; y1�; . . . ; �xn; yn�; . . . ; where �xt; yt� �
�ak

it; jt 
; bk

it; jt 
�. Let xt�s; t� � Ep;s;t�ak

it; jt 
� be the expected payo¨ of player 1 at

stage t, and set xn�s; t� � �1=n�Pn
t�1 xt�s; t� to be the average expected pay-

o¨ of player 1 up to stage n and similarly for player 2.
A history of length m is a sequence om � �i1; j1; h1; . . . ; im; jm; hm�. Such

histories generate an algebra Fm on the set K � �I � J �H�y. pm�1 is the
conditional distribution on K given Fm induced by Pp;s;t. Therefore any pair
of strategies de®nes a martingale pm, m � 1; 2; . . . (with p1 � p), which re¯ects
the information (equivalently the uncertainty) that the players have at each
stage m about the state k in K .

A payo¨ vector �a; b� A R2 is an e-equilibrium payo¨ if there exist strat-
egies s of player 1 and t of player 2 and a positive integer N � N�e� such that
for any pair of strategies, s0 of player 1 and t0 of player 2, and any n VN,

xn�s; t� � e > a > xn�s 0; t� ÿ e �1�

and

yn�s; t� � e > b > yn�s; t0� ÿ e �2�

(see Mertens, Sorin and Zamir (1994), p. 403).
Such a pair of strategies, s of player 1 and t of player 2, is called an e-

uniform equilibrium with payo¨ �a; b�. An alternative equivalent property is
that there exist N � N�e�, such that for all n;m VN and every strategy pair,
s 0 of player 1 and t0 of player 2,

xn�s; t� > xm�s0; t� ÿ e

and

yn�s; t� > ym�s; t0� ÿ e:

The above de®nition implies that any e-uniform equilibrium with payo¨ �a; b�
induces in fact an e-equilibrium with payo¨ within e of �a; b� in any su½ciently
long game, or in any game with large enough discount factor.

Ee denotes the set of all e-uniform equilibrium payo¨ vectors in G�p�. The
set of equilibrium payo¨s in G�p�, E0�p�, is de®ned as 7e>0 

Ee�p�. Note that
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E0�p� is not empty if and only if, for every e > 0, there exists an e-uniform
equilibrium.

Theorem. For any two person repeated game with symmetric information G�p�,
E0�p� is non empty.

3. Examples

We ®rst illustrate by two examples the way information propagates and then
give some hints of the proof.

The ®rst example deals with a zero sum game and is taken from Mertens
(1982). The state space is K � fL;M;Rg and the initial probability p on K is
uniform. The payo¨s are given by

0 0 0 ÿ2 0 0

0 4 2 0 ÿ4 ÿ2

L M R

and the signals by

lm l lm mr r mr

p q p q p q

L M R

The value of each matrix is obviously 0. Moreover if (Top, Left) is played, lm
will occur with probability 2/3 and r with probability 1/3. In this second case,
the game R is revealed and one can assume that the payo¨ from then on is 0.
Otherwise the game from this stage on is LM, with initial prior (1/2,1/2,0); the
moves are non revealing except (Top, Right) which is completely revealing and
thus leads to the payo¨ 0. Hence the analysis of game LM reduces to the
analysis of the following

0 0*

1 2

where a star � denotes an absorbing payo¨. This stochastic game has value 1.
A similar analysis applies if (Top, Left) is played. Finally if player 1 plays
Bottom, there is no change in information on K and the payo¨ is the expec-
tation. The initial game thus is asymptotically equivalent to the following

((2/3)� 1� (1/3)� 0)* ((2/3)� (ÿ1)� (1/3)� 0)*

ÿ1/3 1/3
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which is again a stochastic game with absorbing states, hence has a value
(Kohlberg, 1974). A similar reduction applies to any game in the zero-sum
deterministic case (Kohlberg and Zamir, 1974). Note that the conditional
probability on the state space can take only a ®nite number of values and
when its value changes its support decreases. Thus an induction analysis based
on the size of K is available. In the non zero sum deterministic case a similar
procedure is feasible (Neyman and Sorin, 1997), replacing the value by an
equilibrium in the reduced game with absorbing states (Vrieze and Thuijsman,
1989).

The second example is a one person decision problem where the decision
maker is uninformed, in the spirit of a ̀ `bandit problem'', with payo¨s given
by

ÿ10 ÿ10

4 0

0 4

L M

and signals satisfying

(2/3)a � (1/3)a 0 (1/3)a � (2/3)a 0

b b

c c

L M

Assume a uniform initial probability. The player will ®rst play Top during a
large number of periods then optimally in the revealed game. In fact the
martingale of posteriors given Top, �pa � �2=3; 1=3�; paa 0 � �1=2; 1=2�; paa �
�4=5; 1=5�; . . .� will converge, hence in this case reach the boundary with
probability one. Here again the natural state space is the set of posterior
probabilities but it is unbounded. Note that in this case the player has in fact
an optimal strategy: play Top on an in®nite set of stages with zero density and
optimally in the one stage game given the statistical information otherwise,
but recall that already in two person zero sum games with absorbing states,
optimal strategies may not exist (Blackwell and Ferguson, 1968). When 2
players are present, they both control the martingale and a backwards analysis
based on the limit points is impossible.

In the previous examples, e-equilibrium strategies at stage m depend only
on the posterior at that stage. In the general case the computation of e-optimal
strategies will take into account the current value of the martingale of poste-
rior probabilities and the number of stages where this value has changed. In
fact the ®niteness assumption on I and J implies that for any positive e and
any strategy pair, there is ®nite a number of jumps, say M, after which, with
probability greater than e, the martingale will be within e of the boundary,
hence the possibility of an induction analysis.

Explicitly the strategies will be constructed as follows: at the Mth jump,
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choose in the boundary of D�K� a closest point p� to the current value p of the
martingale and play an equilibrium in G�p�� from this stage on. This de®nes
payo¨s e�M; p�. Inductively payo¨s e�m; p� are de®ned on D�K� after m
jumps �m UM�. After m ÿ 1 jumps, the players play at p equilibrium strat-
egies in the stochastic game where the payo¨ is the average if the posterior
does not change and is, after a jump, absorbing and equals to e�m; p0� where p0
is the current posterior.

Hence the state space will be a product D�K� � f1; 2; . . . ;Mg, like in the
picture below.

4. The proof

a) Preliminaries

The proof is by induction on the number of elements in the support of p,
hence we assume E0�p�0j for p in the boundary bD�K� of D�K�.

We assume without loss of generality that all payo¨s are bounded in
absolute value by 1. Therefore E0�p�0j if and only if E0�p�X �ÿ1; 1� �
�ÿ1; 1�0j. Note also that a Lipschitz property holds: the payo¨s induced
by a pair of strategies in G�p� and G�p0� di¨er by at most kp ÿ p0k1 �P

k j pk ÿ p
0kj. In particular an e-uniform equilibrium in G�p� is an

�e� kp ÿ p0k1�-uniform equilibrium in G�p0�.
Given 1=2 > d > 0, let Dd�K� � fp A D�K�jEk A K ; pk V � pd=2Kg. Then the
non-emptiness of E0�p� for p A bD�K� implies that Ed�p�X �ÿ1; 1�2 is also non
empty for p A DnDd�K�.

b) The posterior distribution

Let ~q�p; i; j� be the distribution of the posterior probability on D�K�, when the
prior is p and the moves played by the players are �i; j�. Formally, de®ne ®rst

Fig. 1
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a function q : D�K� � I � J �H ! D�K� satisfying

H 
p
i; j�h�qk�p; i; j; h� � pkH k

i; j�h�

where H 
p
i; j�h� �

P
l plHl

i; j�h�. Now for each �p; i; j� A D�K� � I � J, ~q�p; i; j�
has the following distribution:

Prob�~q�p; i; j� � q�p; i; j; h�� � H 
p
i; j�h�:

Let NR denote the subset of I � J for which ~q�p; i; j� is the constant p, for all
p. These are the non revealing entries where the signal h is non informative and
the posterior does not change. The set of revealing entries, �I � J�nNR, is
denoted by R.

From the de®nition of R and the fact that I and J are ®nite we deduce that
bh > 0 such that Ep A Dd�K� and E�i; j� A R,

E 
X

k 

�~qk�p; i; j� ÿ pk�2
ý !

> h: �3�

c) The auxiliary games

We introduce now a new state space K � D�K� � f0; 1; . . . ;Mg, where M is
an integer to be ®xed later and we de®ne inductively mappings a; b from K to
[ÿ1, 1] as follows:

�s�M; p�; t�M; p�� are d-uniform equilibrium strategies with payo¨s
�a�M; p�; b�M; p�� in the game G�p� for p A DnDd�K� (which exist by the
induction hypothesis on the number of elements in the support of p and
the above remark). We write n1 for the corresponding N�d� (see (1), (2)). The
strategy pair is arbitrarily de®ned for p A Dd�K� and �a�M; p�; b�M; p�� are
taken to be 0 there.

For l � 0; 1; . . . ;M ÿ 1 and p A DnDd�K�, let �a�l; p�; b�l; p�� �
�a�M; p�; b�M; p��. Now for l � 0; 1; . . . ;M ÿ 1 and p A Dd�K� we de®ne by
backward procedure the game with absorbing payo¨s G�l; p� played on I � J
and where the �i; j� entry is:

G�l; p�ij �
P

k p
k�ak

i; j; b
k
i; j� if �i; j� A NR,

fE�a�l� 1; ~q�p; i; j��; b�l� 1; ~q�p; i; j���g� if �i; j� A R

(

where as usual a � denotes an absorbing payo¨. By the theorem of Vrieze and
Thuijsman (1989) (see also Mertens, Sorin and Zamir, 1994, p. 406±408) these
games have e0-uniform equilibria strategies �s�l; p�; t�l; p�� with payo¨s
�a�l; p�; b�l; p��. Moreover, the Lipschitz property allows to choose the e0-
uniform equilibria strategies �s�l; p�; t�l; p�� so that the positive integers
N�e0; l; p� associated with them (see (1), (2)) are independent of p and l, and
we thus denote n2 � N�e0; l; p�.
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d) The equilibrium strategies

On the space of plays we de®ne Wl to be the stopping time corresponding
to the l-th time a revealing entry is played, l � 1; . . . ;M and y to be the
entrance time in D�K�nDd�K�. Let Tl � min�Wl; y�.

We now construct a pair of strategies �s�; t�� in G�p� as follows:
�s�; t�� coincides with �s�0; p�; t�0; p�� until time T1. Note that the hypothesis
on the support of the signals implies that standard signalling holds in G�p�
and thus the strategies are well de®ned.
Then, inductively given the past history oTl � �i1; j1; h1; . . . ; iTl ; jTl ; hTl�,�s�; t�� follows �s�l; p�l��; t�l; p�l���, from time Tl � 1 until time Tl�1;
l � 1; . . . ;M, where p�l� is the posterior distribution on K given the past
history oTl . More precisely for every history o, �s�; t���oTl ;o� ��s�l; p�l��; t�l; p�l����o�.

e) The payo¨s

Fix a positive integer n which is greater than n0 � max�n1; n2�, and de®ne the
stopping times Sl � min�Tl; n�; l � 1; . . . ;M; S0 � 0. Set a�l� � a�l; p�l��
and let Hl be the algebra of histories up to stage Sl. The de®nition of s

�
and t� implies that for every l � 0; . . . ;M ÿ 1, and for every strategy s of
player 1,

Es�;t�
XSl�1

t�Sl�1
xt � �n ÿ Sl�1�a�l� 1�jHl

ý !
V �n ÿ Sl��a�l� ÿ e0� ÿ n0 �4�

and

Es;t�
XSl�1

t�Sl�1
xt � �n ÿ Sl�1�a�l� 1�jHl

ý !
U �n ÿ Sl��a�l� � e0� � n0: �5�

Also, on p�M� B Dd�K�

Es�;t�
Xn

t�SM �1
xtjHM

ý !
V �n ÿ SM ��a�M� ÿ d� ÿ n0 �6�

and

Es;t�
Xn

t�SM �1
xtjHM

ý !
U �n ÿ SM ��a�M� � d� � n0 �7�

for every strategy s of player 1. Remark thatùùùùù Xn

t�SM �1
xt ÿ

Xn

t�SM �1
xtI�p�M� B Dd�K��

ùùùùùU �n ÿ SM �I�p�M� A Dd�K��: �8�
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Note also that the event fp�M� A Dd�K�g is included in the event fTM < yg.
Taking expectation in inequalities (4), (5), and summing the resulting equa-
tions over l � 0; . . . ;M ÿ 1 we deduce that

Es�;t�
XSM

t�1
xt � �n ÿ SM �a�M�

ý !
V na�0� ÿ e0nM ÿ n0M

and

Es;t�
XSM

t�1
xt � �n ÿ SM �a�M�

ý !
U na�0� ÿ e0nM � n0M:

Adding to the above two inequalities the expectation of inequalities (6) and (7)
respectively and using (8) we conclude that

Es�;t�
Xn

t�1
xt

ý !
V na�0� ÿ e0nM ÿ n0�M � 1� ÿ dn ÿ nEs�;t� �I�TM < y��

�9�
and

Es;t�

Xn

t�1
xt

ý !
U na�0� � e0nM � n0�M � 1� � dn � nEs;t� �I�TM < y��

�10�

f ) The bound on M

Recall that pm�1 denotes the posterior probability on D�K� given Fm, the
algebra generated by the histories om � �i1; j1; . . . ; im; jm; hm�. Let nm �
�i1; j1; . . . ; im; jm� and denote by Gm the corresponding s-algebra. From (3) it
follows that bh > 0 such that for every strategy pair s; t:

Es;t

X
k 

�pk
m�1 ÿ pk

m�2jnm

ý !
V hI

ý
�im; jm� A R; pm A Dd�K�

!

fpmg being a Fm-martingale with values in D�K�, Es;t�
Pn

m�1 
P

k�pk
m�1ÿpk

m�2�
is uniformly bounded by some constant C. Thus

C VEs;t

Xy
m�1

X
k

I��im; jm� A R�I�pm A Dd�K���pk
m�1 ÿ pk

m�2
ý !

� Es;t

Xy
m�1

I��im; jm� A R�I�pm A Dd�K��E
�X

k 

�pk
m�1 ÿ pk

m�2jGm

�ý !

V hEs;t

Xy
m�1

I��im; jm� A R�I�pm A Dd�K��
ý !

:
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Note that 
Py

m�1 I��im; jm� A R�I�pm A Dd�K��VLI�TL < y� for any L so
that

C V hLEs;t�I�TL < y��

for any L. Hence, for any e > 0, there exists M such that, for any pair of
strategies in G�p�,

Es;t�I�TM < y�� < e=4: �11�

g) End of proof

Given e > 0, choose d � e=4, and let M be determined by e; h and inequality
(11). Then let e0 � e=4M and ®nally de®ne N�e� � 4n0�M � 1�=e. By (9) and
(10), �s�; t�� is an e-uniform equilibrium in G�p� with payo¨ �a�0�; b�0��. 9

5. Comments and open problems

The proof by Forges (1982) in the zero-sum case with random signals uses an
auxiliary game to construct an operator H on (continuous) functions on
D�K�, such that if a player can guarantee some function u, he can also guar-
antee H�u�: the value of the game where the revealing entries are absorbing
with payo¨ induced by u at the relevant posterior. Then an increasing se-
quence of functions �un�yn�1; un�1 � max�H�un�; un�, and dually functions wn

are de®ned. One proves that the limit of both sequences are the same and
de®ne the value of the in®nitely repeated game (see also Mertens and Zamir
1971±1972). Obviously this approach relies on the zero-sum aspect through
the monotonicity of the value operator and therefore cannot be extended to
the non-zero sum case. On the other hand, our construction gives an alterna-
tive proof to Forges's result. One should note that an argument related to the
®nite number of ̀ `interior jumps'' of the martingale of posteriors was men-
tioned in the concluding remarks of her paper.

The result of the present paper extends easily to the case where H and K
are countable. However ®niteness assumptions on I and J are crucial for (3)
to hold.

To conclude, recall that this research is part of a general program which
aims to characterize the information structures for which equilibrium payo¨s
exist.

For two person games with lack of information on one side, existence has
been recently proved by Simon, Spiez and Torunczyk (1995).

Note that in the framework of lack of information on both sides, already
in the zero sum case the value may not exist, see Aumann and Maschler
(1995).

This paper provides a positive answer for a class of two person non-zero
sum games with symmetric incomplete information. A proof for the n person
case would follow in the same way from the proof of existence of equilibria for
n person games with absorbing states.
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