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Ž .Aumann and Myerson 1988 defined a noncooperative linking game leading to
the formation of cooperation structures. They asked whether it is possible for a
simple game to have a stable structure in which no coalition forms, i.e., in which
the cooperation graph is not internally complete but is connected and stable. We
answer this question affirmatively; specifically, we present a simple proper weighted
majority game with a connected incomplete structure, and we prove it to be stable
under any protocol for the strategic formation of new links. This result implies that
strategically refused communication can be a robust stable phenomena. Journal of
Economic Literature Classification Numbers: C71, C72. Q 1998 Academic Press

1. INTRODUCTION

Consider the formation of a government in a multi-party parliament
where parties are assumed to be disciplined, i.e., each party acts as one
agent. Assume that parties can make bilateral cooperation agreements}
open a line of communication. A coalition of parties is a winning coalition

Ž .with respect to a given cooperation structure a graph of bilateral links , if
it contains a connected winning coalition, i.e., a coalition of parties that
agree directly or indirectly to cooperate and possesses the required num-
ber of seats in parliament to govern.

Intuitively, if two parties do not form a link, it is as if they commit to
refuse direct cooperation, but they do not rule out the possibility of
cooperation via a third party. Thus, a right wing party and a left wing party
might refuse to form a government comprising only their two parties, even

*The author thanks Robert Aumann for his advice and guidance.
† E-mail address: yossi@nwu.edu.

2

0899-8256r98 $25.00
Copyright Q 1998 by Academic Press
All rights of reproduction in any form reserved.



INCOMPLETE COOPERATION STRUCTURE 3

though they both may have enough seats in parliament; but they both may
agree to sit in the government providing that a center party is included.
This kind of behavior might seem strange from a strategic point of view. If
we measure the power of a party in a given cooperation structure by its

wMyerson value the Shapley value of the game induced by the cooperation
Ž .xstructure}Myerson 1977 , then it seems even more unreasonable when

we observe that in this game adding a single link only benefits the two
linking parties. However, it turns out that strategically refusing new links
may be the best thing to do, since these links may motivate other links
leading eventually to a decrease in power.

Ž .Aumann and Myerson 1988 suggested a model for the endogenous
formation of cooperation structures. By allowing players to strategically
form or to refuse links they wished to study the nature of the cooperation
structures that will emerge under the assumption that payoffs are deter-
mined by the Myerson value. A natural question asked by Aumann and
Myerson was whether a coalition will form? Or, stated in terms of the
situation described above, will all communication channels be open in the
formed government? Aumann and Myerson were able to prove that for a
small class of voting games the answer to this question is positive. They
showed that for general cooperative games the answer is negative. How-

Ž .ever, they left the question for simple i.e., win]lose games open.
ŽIn this paper we show that there is a simple game actually it is even a

.proper weighted majority game with a cooperation structure that is stable
Ž . Žno new links will be formed but is not ‘‘internally complete’’ no coalition

.has emerged . Moreover, this structure is robust in the sense that new
links will not be formed no matter what protocol for link formation is used.

The stable structure we present has the following three properties: It is
connected, i.e., every pair of parties is connected via a chain of links. It is
incomplete}not all links are present. It is stable under every protocol, i.e.,
no new links will be added strategically to the cooperation structure under
the restriction to subgame perfect equilibria in a linking game with an
arbitrary protocol. The third property implies that when a new link is
offered to two parties, at least one of them will refuse it}the reason being
that the refusing party foresees a decrease in its strength if that link is
added to the cooperation structure due to the triggering of the addition of
other links.

Our example is of a parliament with 19 seats and eight parties having
5, 1, 2, 2, 2, 2, 4, 1 seats, respectively, where a government is required to
have at least 12 seats to rule. The cooperation structure depicted in Fig. 1
satisfies the three properties above. For the most part this paper is devoted
to proving that this structure indeed satisfies stability.

Basically, under this structure, players 1, 2, 6, 7, and 8 stand to lose,
eventually, if new links are added to the cooperation structure. What we
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ŽFIG. 1. We denote this graph by g ; numbers at the vertices denote the ‘‘weight’’ number
.of seats of each party, and the small numbers in italic are used to index these eight parties.

The gray area indicates that each of the players 1 through 6 is connected to each other one.

observe is a tangled web of credible threats which are made by these
players and which lend this structure its stability.

Various approaches were used in the study of coalition formation and
Ž .communication structures. Hart and Kurz 1983 incorporated a strategic

approach to the formation of coalition structures by allowing agents to
Ž .choose coalitions. Bloch 1996 analyzed the sequential nature of coalition

wstructure formation. These studies and others cf. the references in Bloch
Ž .x1996 considered coalition structures}the choice of belonging to a
coalition}as opposed to the approach taken by Aumann and Myerson
Ž .1988 where communication or bilateral cooperation act as primitives and
coalitions may not form at all. In a sense the former analyze which
coalitions can be formed rather than whether coalitions will be formed at
all. Approaching coalition formation from the communication perspective,

Ž . ŽKirman et al. 1986 analyzed an economy where randomly formed non-
.strategic communication structures determine admissible coalitions. Ran-

dom communication and coalition formation was also studied by Rosen-
Ž . Ž .thal 1992 . In Borm, van den Nouweland and Tijs 1994 and the refer-

ences there one can find the most related work on communication and
Ž .coalition formation. In van den Nouweland 1995 one can find, among

other things, an investigation and various extensions of the Aumann and
Myerson model.1

This paper is constructed as follows: In Section 2 we present the linking
Ž .game as defined in Aumann and Myerson 1988 . Section 3 contains two

lemmas used in the proof of stability, which is given in Section 4. The last
section contains some remarks.

1It should be noted that recently a counterexample to the formation of coalitions in convex
Žgames under the Aumann and Myerson model was found by R. Holzman private communi-

. Ž .cation , this answers a question raised by van den Nouweland 1995, Conjecture 6.1.8 .
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2. DEFINITIONS

Let N be a finite non-empty set of players. Let g be a non-directed
�� 4 4graph whose set of vertices is N, i.e., g ; i, j N i, j g N and i / j . Let ¨

be a coalitional form game on the player set N, i.e., let ¨ : 2 N ª R and let
Ž . Ž . w¨ B s 0. Given N, ¨ , the linking game gï en the graph g Aumann and

Ž .xMyerson 1988 is defined as follows: The game starts with players linked
according to the graph g. At each stage a pair of players is offered to form
a link. If both players agree then the link is formed and the graph is

Ž .updated the link is added to the current graph ; once formed, a link
cannot be destroyed. The links are offered according to some definite list
of links; this list is always assumed to be finite and includes all possible
links. The list of links and the history of offers and responses at each stage
are assumed to be common knowledge among players. Once the list is
exhausted the offers start again from the top of the list. The game stops
once no new links are formed in a consecutive run of the whole list. If h is
the graph reached when the game ends then the payoff to each player is
the Myerson value for the player in the game ¨ with the cooperation

w Ž .xstructure given by the graph h Myerson 1977 .
hŽ .We denote by w ¨ the Myerson value for player i g N in the game ¨i

with cooperation structure given by h, we will omit the notation for the
game ¨ when there is no risk of confusion, e.g., we will write w h. Wei

� c N wdenote by w the Shapley value of the game recall that w s w Myerson
Ž .x N 41977 where C is the complete graph on the set N , and we define the

q � h 4 0 � h 4 ysets of players N s i g N N w ) w , N s i g N N w s w , and Nh i i h i i h
� h 4 Ž .s i g N N w - w . Let PEG g }perfect equilibrium graphs of g}de-i i

note the set of all graphs that are reached by a sub-game perfect equilib-
Ž .rium in the linking game given g, with any finite list ¨ is fixed . The

Ž . Ž Ž ..Myerson value operator is naturally defined on PEG g using w PEG g
� h Ž .4s w N h g PEG g . A graph g is called stable if for every possible list of

links, all sub-game perfect equilibria of the linking game given g dictate
that no additional links are formed, i.e., the game stops with the graph g.

Ž . � 4Using the notation above, g is stable if and only if PEG g s g . The
restriction of a graph g to a subset of vertices S is defined as the graph

�� 4 4grS [ i, j g g N i, j g S . Two vertices i, j are said to be connected in a
graph g if there exist n ) 1 and i , . . . , i such that i s i, i s j, and for1 n 1 n

� 4all k s 1, . . . , n y 1 we have i , i g g. A non-empty set of vertices Sk kq1
is said to be connected in the graph g if each two vertices in S are
connected in g. A connected set S is called a connected component of a
graph g if it is connected in g and none of the vertices in S are connected

S �� 4 4to vertices not in S. Denote by c s i, j N i, j g S and i / j the com-
plete graph on the set of vertices S. A graph g is called internally complete
if its restriction to any of its connected components is a complete graph.
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The partition of a set of vertices S into connected components induced by
�a graph g is denoted by Srg s T ; S N T is a connected component of

4grS . Thus a graph g on a player set N is internally complete if for all
S Ž .S g Nrg one has grS s c . The game restricted to induced by the graph

w Ž .x Ž . Ž .g is denoted ¨rg and defined Myerson 1977 by ¨rg S [ Ý ¨ T .T g Sr g
Ž . gŽ .Recall that w ¨rg s w ¨ .

3. TWO LEMMAS

LEMMA 1. Let g be a graph which satisfies c Ny
g j N 0

g ; g and Nq / B. Ifg
h Ž . � 4 Ž . � 4w s w for all h g PEG g _ g then PEG g s g .

ŽProof. Consider an arbitrary list of links L finite and including all
.possible links . Adding a new link to g requires that at least one of the

players in Nq agrees to that link. Consider the last of the links in the listg
which includes a member of Nq , and denote the link by l. Now considerg
the list L9 obtained by the cyclic permutation of L starting with the link l.
Assume that none of the links prior to l were made under the list L. Then
that link will be made only if there is a sub-game perfect equilibrium
under the list L9 at which the link l is made. But under our assumption,
had there been such an equilibrium, it would have yielded the payoff w,
which means that at least one of the players in the link l will be worse off

Žif he agrees to the link under the list L recall that since no prior links
where made, if l is not added to the graph, the linking game results with

.the original graph g . Going to the last link prior to l which includes a
member of Nq and assuming no prior links were made, we know that ifg
this link is not added than l is not added. Using the same argument and
the fact that we are considering only sub-game perfect equilibria, that link
will not be added either. Using backward induction we see that none of the
links of L which include a member of Nq will be formed, hence no linksg
will be formed under L. We have actually shown that g is stable under L,
and since L was arbitrary g is stable. B

Ž .LEMMA 2. Let g be a maximal inclusionwise graph which satisfies
w g / w and c Ng

y; g. If c Ny
g j N 0

g ; g then g is stable.

Proof. Let h be a maximal graph strictly containing g which satisfies
w h / w, hence c Ny

h o h. Since h is maximal all graphs strictly containing it
yield the Shapley value. Thus under any list the players in Ny will alwaysh

Ž .agree to form links with one another. So h f PEG h . Using backward
h Žinduction, all graphs h strictly containing g which satisfy w / w and

Ny
h . Ž .hence c o h by g ’s maximality must satisfy h f PEG h . This follows

from the fact that the players in Ny know that if they link so will theh
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players getting less than the Shapley value in the resulting graph, and so
eventually we reach a graph where all the players receiving less than the
Shapley value are connected. This graph must yield the Shapley value since

Ž . Ž .g is maximal. But if h g PEG g then h g PEG h , this is seen by taking
the list leading from g to h in sub-game equilibrium. By the definition of
the linking game, applying this list starting with the graph h with no new
links added is supported by a sub-game perfect equilibrium. We conclude
that any graph h strictly containing g which satisfies w h / w is not in

Ž . Ž . � 4 hPEG g , in other words for all h g PEG g _ g we have w s w which
implies according to Lemma 1 that g is stable. B

4. PROOF OF STABILITY

wRecall that we are considering the weighted majority game 12;
x5, 1, 2, 2, 2, 2, 4, 1 and the cooperation structure given by the graph g in

Fig. 1. The Shapley value of this game is

122 22 41 41 41 41 90 22
w s , , , , , , ,ž /420 420 420 420 420 420 420 420

and the Myerson value of the game with the cooperation structure given
by g is2

123 27 42 38 38 38 91 23
gw s , , , , , , , .ž /420 420 420 420 4210 420 420 420

y � 4 Ny
g 0Note that N s 4, 5, 6 , c ; g, and N s B. By Lemma 2 it suffices tog g

show that for all graphs h such that h > g and h / g, one gets either
w h s w or c Ny

h o h. Let h be a graph strictly containing g, we divide the
proof according to the following four cases.

� 4Case 1. 1, 8 g h. In this case the Myerson value of players 1, 2, and 8
is at least their Shapley value. This results from the fact that for every

� 4 Ž .i g 1, 2, 8 and for every coalition S such that i f S, ¨ S s 0, and
Ž � 4. � 4¨ S j i s 1 we also get that the coalition S j i is connected in h, i.e.,

Ž � 4. Ž .¨rh S j i s 1 and ¨rh S s 0. Furthermore, if in the graph h player 7
is linked to any of the players 3, 4, 5, or 6, then w h s w since all winning
coalitions in ¨ are winning in ¨rh. If player 7 is not linked to the set of

� 4 y � 4players 3, 4, 5, 6 then we have N s 3, 4, 5, 6, 7 . To see this observe thath

2 Ž .The Shapley value is approximately w ( 0.290, 0.052, 0.098, 0.098, 0.098, 0.098, 0.214, 0.052
g Žand the Myerson value is approximately w ( 0.293, 0.064, 0.100, 0.090, 0.090, 0.090, 0.217,

.0.055 .
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� 4 Ž � 4. Ž .for every i g 3, 4, 5, 6, 7 and every coalition S, ¨rh S j i y ¨rh S s 1
Ž � 4. Ž . Ž� 4. Ž� 4implies ¨ S j i y ¨ S s 1, but ¨rh 3, 4, 5, 6, 7 y ¨rh 3, 4, 5, 6, 7 _

� 4. Ž� 4. Ž� 4 � 4.i s 0 while ¨ 3, 4, 5, 6, 7 y ¨ 3, 4, 5, 6, 7 _ i s 1, hence players
3, 4, 5, 6, and 7 get strictly less than their Shapley value.

�� 4 � 4 � 4 � 44 � 4Case 2. h ; g j 3, 7 , 4, 7 , 5, 7 , 6, 7 . Here for every i g 1, 8
Ž � 4. Ž .and for every coalition S, if ¨rh S j i y ¨rh S s 1 then we have

Ž � 4. Ž .¨ S j i y ¨ S s 1. Yet there exists a coalition to which players 1 or 8
Ž� 4.contribute in ¨ but not in ¨rh, namely, ¨rh 1, 4, 5, 6, 8 y

Ž� 4 � 4. Ž� 4. Ž� 4 � 4.¨rh 1, 4, 5, 6, 8 _ i s 0 while ¨ 1, 4, 5, 6, 8 y ¨ 1, 4, 5, 6, 8 _ i s 1.
Thus, the Myerson value under h for players 1 and 8 is strictly less than
their Shapley value.

� 4 � 4 � 4 � 4Case 3. i, 7 g h and j, 8 g h for some i g 3, 4, 5, 6 , j g 4, 5, 6 . In
this case the winning coalitions in the game ¨rh are exactly those of the
game h, and we have w h s w.

�� 4 � 4 � 44Case 4. h ; g j 4, 8 , 5, 8 , 6, 8 . First we note that this case
exhausts all of the remaining graphs. Graphs in which player 7 links with

� 4the set of players 3, 4, 5, 6 fall into one of the previous cases. Case 1
includes such links when 1 and 8 also link, Case 2 includes all graphs in
which only such links are made, and Case 3 covers the rest of the graphs in

� 4which player 7 links with players 3, 4, 5, 6 . Since Case 1 covers all graphs
� 4which include the link 1, 8 , we are left only with graphs in which player 7

� 4 � 4and the set 3, 4, 5, 6 are not connected and the link 1, 8 does not appear.
This leaves us with graphs in which the only links added are the links of

� 4player 8 to the set of players 4, 5, 6 . For all graphs h of this case we have

249 49 79 79 79 79 177 49
hw s , , , , , , ,ž /840 840 840 840 840 840 840 840

while

122 22 41 41 41 41 90 22
w s , , , , , , ,ž /420 420 420 420 420 420 420 420

y � 4thus N s 3, 4, 5, 6, 7 and this set is not completely connected in h. Bh

5. REMARKS

The example we gave has the following property: If you start with the
cooperation structure given in Fig. 1, then subgame perfect equilibrium
implies you will remain with that cooperation structure. However, it is not

Ždetermined whether this or any incomplete cooperation structure for a
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.voting game can be both stable and a result of a subgame perfect
equilibrium when starting out with no links at all. We note that one stable

Žstructure may be contained in another stable structure both for the same
.game ; this is indeed the case in the following game:

� 4Let N s 1, . . . , 8 be the set of players and let ¨ be defined as follows,

< <¡ � 41 S l 1, 2, 3, 4, 5, 6 G 5
< <� 41 1, 6 g S and S l 2, 3, 4, 5 s 2~¨ S s .Ž .

� 41 1, 7, 8 ; S¢
0 otherwise
�1, 2, 3, 4, 54 �� 4 � 44Here the graph g s c j 1, 6 , 7, 8 and the graph h s g j

�� 4 � 4 � 442, 7 , 3, 7 , 6, 8 are both stable. Furthermore, the graph g has two
connected components. The proof of stability for these graphs can be done
by observing all graphs strictly containing these graphs and using Lemma 2
as before. However, it is quite tedious and mechanical and thus is omitted.3

These examples demonstrate that even in the most simple cooperative
situations, communication unfolds a complicated strategic structure that

Ž .allows for sophisticated intrigue and carefully balanced yet robust non-
trivial equilibria.
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