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General Properties of Option Prices

YAACOV Z. BERGMAN, BRUCE D. GRUNDY, and ZVI WIENER*

ABSTRACT

When the underlying price process is a one-dimensional diffusion, as well as in
certain restricted stochastic volatility settings, a contingent claim’s delta is bounded
by the infimum and supremum of its delta at maturity. Further, if the claim’s payoff
is convex (concave), the claim’s price is a convex (concave) function of the underlying
asset’s value. However, when volatility is less specialized, or when the underlying
process is discontinuous or non-Markovian, a call’s price can be a decreasing, concave
function of the underlying price over some range, increasing with the passage of time,
and decreasing in the level of interest rates.

MUCH OF THE FINANCIAL OPTIONS literature derives precise option prices, when the
underlying asset price process is completely specified. Since it is empirically
difficult to ascertain what the true underlying process is, another part of that
literature is concerned with deriving general properties of option prices, when
the underlying price process is not fully specified, but instead is assumed to
belong to some general class of stochastic processes (Merton (1973), Cox and
Ross (1976), Jagannathan (1984)). In particular, in the absence of arbitrage
opportunities and assuming that the risk-neutralized stock price follows a
proportional stochastic process (a risk-neutral return distribution independent
of price), Merton (1973) and Jagannathan (1984) show that a call option’s price
is an increasing, convex function of the stock price. Cox and Ross (1976)
generalize this result and show that, under the same proportionality assump-
tion of the stock price process, the price function of any European contingent
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claim, not just a call option, inherits qualitative properties of the claim’s
contractual payoff function. Merton (1973) notes that although convexity is
usually assumed to be a property that holds for calls, proportionality of the
stock price process is not a necessary condition for that. He thus implicitly
conjectures that quite general but different conditions exist, that generate the
same results.

A class of stochastic processes, that traditionally have played a prominent
role in modeling the dynamics of underlying prices, are the diffusions. It is
then important to verify whether the increasing and convex call price result of
Merton (1973) and Jagannathan (1984) and the Cox and Ross (1976) general-
ization thereof are valid for that class as well. Indeed, when the underlying
process belongs to a quite general class of diffusions, we obtain the above
results and more. Specifically, we establish that whenever the underlying
asset follows a diffusion whose volatility depends only on time and the con-
current stock price, then a call price is always increasing and convex in the
stock price, decreasing with the passage of time, and increasing in the level of
interest rates. However, when volatility is stochastic, or the stock price process
is not a diffusion, but is instead either discontinuous or non-Markovian, we
show that a call price can be a decreasing, concave function of the stock price
over some range, that a call can be a “bloating”—not a “wasting” asset, and
that an increase in interest rates can lead to a decline in a call price.

Our analysis is not limited to call options. We establish properties of any
European-style contingent claims given deterministic interest rates and vari-
ous specifications of the underlying asset price process. Whenever the under-
lying asset follows a one-dimensional diffusion, properties of the stock and
bond positions in a contingent claim’s replicating portfolio are shown to be
inherited from those at maturity. Specifically, the positions are bounded by the
infimum and supremum of those positions at maturity. If the position in stock
at maturity is increasing (decreasing) in the underlying maturity-date price,
then that position—the claim’s ‘delta’—is increasing (decreasing) in the con-
current underlying price. Equivalently, if the claim’s contractural payoff func-
tion is convex (concave) in the underlying price at expiration, then the claim’s
price is convex (concave) in the concurrent underlying price. Analogous results
are established for certain restricted multi-dimensional diffusion (stochastic
volatility) settings.

Armed with these results about general properties of contingent claim
prices, we are able to extend comparative static results familiar in a Black-
Scholes (1973) setting to that of a general one-dimensional diffusion. We
consider the effects of changes in interest rates, in dividend rates, and in
volatility on the prices of call options. In doing so we derive three additional
results. Although an upward shift in the entire term structure will always
increase call prices, a twist in the term-structure that decreases the present
value of a call’s exercise price can decrease its value. We establish a new bound
on the relative values of options on otherwise equivalent dividend-paying and
nondividend-paying assets in terms of the fraction of the dividend-paying
asset’s price that is due to dividends expected beyond the call’s maturity. Our
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analysis of differing volatility functions establishes that when the underlying
asset’s volatility is bounded above (below), then whatever the functional form
of the relation between volatility, time, and the contemporaneous stock price,
the call price is bounded above (below) by its Black-Scholes value calculated at
the bounding volatility level. One can then place bounds on the stock position
necessary to hedge a given option position using only knowledge of the bounds
on the underlying asset’s volatility.

The plan of the article is as follows. Section I establishes properties of
general contingent claims that are satisfied in all one-dimensional diffusion
settings, and in certain restricted forms of a multi-dimensional diffusion set-
ting. Section II applies those properties to the pricing of call options. Section III
contains the comparative statics analyses. Section IV establishes that call
options need not posses any of their familiar properties, if either volatility is
stochastic and not restricted in the manner considered in Section I, or the
underlying process is not a diffusion, but is instead either discontinuous or
non-Markovian. Section V summarizes our results.

1. A Diffusion Process for the Underlying Asset

Consider a European contingent claim maturing at time T'. The time ¢ price of
the traded underlying asset is denoted by s,. We assume that the stochastic
process describing changes in s, admits no arbitrage opportunities and is
either a one- or multi-dimensional diffusion, as defined next.

Definition 1. The underlying asset will be said to follow a one-dimensional
diffusion when

ds, = a()dt + o(s,, t)s,dB,. (1)

The instantaneous volatility, o(-), is a function of s, and ¢ only, while the drift
parameter, af+), is not necessarily so restricted. B, denotes a standard Brown-
ian motion.

We follow the finance literature and refer to of-), rather than o(+)s, as the
volatility. Following Karlin and Taylor (1981, p. 159) we refer to the product
o(+)s as the diffusion parameter. The functions a(-) and o(-) are assumed to
satisfy whatever regularity conditions are necessary for equation (1) to be a
well-defined stochastic differential equation.! We refer to the special case
when volatility is deterministic, o(¢), as a Black-Scholes setting.

Definition 2. The underlying asset will be said to follow a two-dimensional
diffusion when

ds, = a()dt + o(s;, y., t)s,dBtl, (2a)
dyt:B(st’ yt; t)dt+ B(St’ yt’ t)dBtzy (2b)
and dB}dB? = p(s, y, t)dt. (Superscripts on dB, are indices—not powers.)

! See Chapter 6 of Arnold (1992) for a discussion of Lipschitz and growth conditions.
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The underlying asset price dynamics in (2) are usually referred to in the
finance literature as a setting with stochastic volatility, although, clearly, the
volatility in the one-dimensional case need not be deterministic. Our results
are valid for a vector y, as well, but for ease of exposition, only a one-
dimensional diffusion y, is considered, so that changes in s, are driven by a
two-dimensional diffusion.

We use the terms one-dimensional case and two-dimensional case to mean,
respectively, definitions 1 and 2. Unless otherwise noted, it is assumed that
underlying assets pay no dividends over the life of the contingent claim.
Interest rates are assumed to be deterministic; functions of time, at most.2

Let v(s, ¢) denote the time ¢ value of a contingent claim in the one-
dimensional case. (When, in particular, a call option is considered, ¢ instead of
v will be used to denote its price.) Numerical subindices denote partial deriv-
atives. Thus, for example, v,,(s, ¢) is the second partial with respect to the
first argument: the stock price. We consider only limited liability underlying
assets. (Thus zero must be an absorbing barrier for the underlying stock.)
Hence for a call option, c(0, ¢) = 0. The contractual payoff function is g(-),
meaning that at expiration time 7', when the underlying price is s, the con-
tingent claim contracts to pay g(s) dollars. Therefore, to prevent arbitrage,
v(s, T) = g(s). We assume that the value of the claim can be expressed, using
the Feynman-Kac Theorem, as the discounted expectation of its payoff under
a risk-neutral probability measure.3 In the one-dimensional case

v(s, t) = E{e 77r%g (g9}, (3)

where &‘, which will be termed the risk-neutralized process, denotes the

diffusion that at time ¢ starts at the level s, and then obeys the stochastic
differential equation (SDE)

d§, = r(né.dr+ o(é;, 7)§,dB.. (4)

In the two-dimensional case, v(s, y, T) = g(s), and by assumption, the price
of volatility risk takes the form A(s, y, t). The time ¢ value of a contingent
claim will then have the form v(s, y, ¢).

A. The Intuitive Link Between a Diffusion Process and Properties of Option
Prices

The following lemma provides the intuitive basis for the properties of con-
tingent claim prices established in this section.

2 American-type contingent claims, stochastic interest rates, and other extensions are consid-
ered in our ongoing work.

3 Rather than assuming some particular set of restrictions on the diffusion parameters in
equations (1) and (2) known to be sufficient for the applicability of the Feynman-Kac Theorem, we
prefer to implicitly consider the full set of diffusion parameters consistent with the Theorem. Note
also that our assumption that the value of the claim can be expressed as in (3) should be read as:
“can be correctly expressed.” We are not, for example, assuming that we can price (by equation (3),
or otherwise) a claim with g(s) = 1/s when the underlying asset has a positive probability of sy = 0.
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LemMA (No-Crossing): In the one-dimensional case, s' = s" implies that, with
probability 1, & = & forall T = ¢.

Proof: According to equation (4), a fixed sample path (realization) of the
Brownian motion B, determines, for each pair (s, ¢), a unique sample path for
the process £ (starting from the level s at time ¢). Consider two such sample
paths, &% and &, where s’ = s”. (For simplicity, we use the same notation
for a stochastic process and its sample paths; no confusion should arise.) The
claim in the lemma is then that the &'’ sample path that starts out at the
higher level s’ never crosses strictly below the £5°* sample path that starts out
at the lower level s”. Suppose otherwise. Then the two sample paths, which are
continuous (with probability 1) must have intersected (for the first time after
t) at some time, ¢'. But given the Markovian nature of ¢ in equation (4), the two
sample paths will have become identical from time ¢’ onward. Therefore, if one
£ sample path starts higher than another, it remains higher.4 This is true for
almost every sample path of B.. We call this the no-crossing property of
one-dimensional diffusions. Q.E.D.

The no-crossing property is illustrated in Figure 1. An immediate conse-
quence of the lemma is that, in the one-dimensional diffusion setting, a claim’s
price inherits monotonicity from the contractual payoff function. For if s’ = s”,
then by the no-crossing lemma, &* = &%, Therefore, if g(-) is nondecreasing,
then g(&%)=g(&"). This implies E{g(&5")} = E{g(&%)}, and hence, by
equation (3), v(s’, ¢t) = v(s", ¢t).

The no-crossing property in the one-dimensional case, upon which the pre-
ceding demonstration of inherited monotonicity relies, requires that &, the
risk-neutralized process for s;, be both continuous and Markovian, namely, a
diffusion (see Karlin and Taylor (1981, p. 157)). A stochastic process that is
not a diffusion need not feature the no-crossing property, and contingent
claims thereon need not exhibit inherited monotonicity. In fact, Section IV
provides a number of such examples. Also, in contrast to the one-
dimensional case, the no-crossing property need not hold in the two-
dimensional case, and Section IV shows that inherited monotonicity is not
always satisfied in that setting.

B. Sufficient Conditions for Inherited Monotonicity

Theorem 1 bounds the slope of a contingent claim’s price—in other words,
the claim’s delta — by the bounds on the slope of the claim’s contractual payoff
function.5

4 Or else it intersects with the lower sample path and both merge onward, which can happen,
for instance, at an absorbing boundary.
5 For an interesting treatment of points of nondifferentiability in g(s) see Bick (1982).
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Figure 1. Illustration of the ‘no-crossing’ property. The lowest two paths are two sample
paths of the driving Brownian motion. The solid risk-neutralized path drives the two solid sample
paths of the risk-neutralized price process. The solid risk-neutralized path starting at s’ stays
above the path starting at s” until, upon meeting at time ¢, they fuse and merge onward. Similarly
the dashed Brownian motion drives the two dashed sample paths of the risk-neutralized price
process. They also exhibit the “no-crossing” property. One Brownian motion (bottom line of the
three solid lines) and two price processes driven by that Brownian motion are portrayed with solid
lines. The price processes differ in their starting values, s’ and s”. A second Brownian motion
(bottom line of the three dashed lines) and two price processes driven by that Brownian motion are
portrayed with dashed lines.
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TuEOREM 1: Let the payoff function g be differentiable on its domain.t
(i) Suppose s, follows a one-dimensional diffusion. Then, for all s and t,

inf g,(q) = v4(s, t) = sup g1(q). (5)
q q

(i) If s, follows a two-dimensional diffusion with the property that the drift and
diffusion parameters of the risk-neutralized process for y do not depend on s,
then v,(s, y, t) is similarly bounded.

Proof: Given the condition in (i), the claim price can be expressed as in
equations (3) and (4). For s’ = s”, the random variable ¥ :=&.""— &, is
nonnegative by the no-crossing property. Furthermore, E{¥} = el(r(ndr
(s' — s"). For every sample path & g (& + %) = g (&) + Xg,(p) = g
(&) + % infg,(q), where ¢ € (&, &° + %). Therefore,

v(s', 1) = Efe M0g(¢7 + %)}

= Efe /g (g} + E{ e ~firtir infg1<q>9e}
q

=v(s", t) +inf g1(q)(s’ — s");
q
v(s', t) —v(s”", t)

Sl _ 3”

ie., =inf g,(q). (6)
q

Similarly, one can demonstrate that

v(s', t) —v(s", t)
s' —g”

= sup g.(q). (7)

q

The proof of part (ii) consists of showing that the no-crossing property is
satisfied under the assumed conditions, and then repeating the steps in part
(i). The details are in the appendix. Q.E.D.

C. Sufficient Conditions for Inherited Convexity

The work of Merton (1973), Cox and Ross (1976), and Jagannathan (1984),
has established that, when the underlying asset’s risk-neutralized price pro-
cess is proportional, convexity (concavity) of the contractual payoff function

6 Note that g must still satisfy all the regularity conditions that justify the maintained
assumption that the price of a contingent claim can be represented by the Feynman-Kac Integral.
In the Appendix, Theorem 1 is generalized to the case where the payoff function g has a left and
a right derivative everywhere on its domain, where the two need not be equal, and where one of
them may be plus infinity (as is the left derivative at a jump discontinuity upward, when the
function is continuous on the right there) or minus infinity (as with a jump discontinuity down-
ward). In particular, the generalization implies that the points, where the left and right deriva-
tives of g are not equal, do not matter. It also implies that a jump-discontinuity upwards
(downwards) yields infinity (minus infinity) as the upper (lower) bound on v,(s, ¢).
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implies convexity (concavity) of the contingent claim price.” The next theorem
states that the condition that the underlying price is a diffusion is also
sufficient for the contingent claim price to inherit convexity (concavity) from
the contractual payoff function.

THEOREM 2: Suppose that s, is either (i) a one-dimensional diffusion, or (ii) a
two-dimensional diffusion featuring the twin properties: (a) the drift and dif-
fusion parameters of the risk-neutralized process for y, do not depend on the
level of s,, and (b) the covariance between instantaneous percent changes in s,,
and changes in y, does not depend on the level of s,. Then, if a claim’s contrac-
tual payoff function is convex (concave), the claim price is convex (concave) as a
function of the concurrent underlying asset price.

Proof: See the Appendix.

The method of proof is analogous to that of Theorem 1 and proceeds by
combining the Feynman-Kac Theorem and a “no-crossing” property of the
relevant SDEs. An alternate geometric proof, based on the stochastic maxi-
mum principle, is available upon request. Condition (ii) of Theorem 2 is more
restrictive than condition (ii) of Theorem 1. To guarantee inherited convexity
we require the additional restriction, condition (ii)(b), that the instantaneous
covariance between percent changes in s and changes in y does not depend on
s. The instantaneous covariance between percent changes in s and changes in
y is given by o(s, y, t)0(s, y, t)p(s, y, t). Condition (ii)(a) already requires
that the function 6(-) not depend on s. Hence the additional restriction on the
instantaneous covariance imposed by (ii)(b) is that the product o(s, y, t)p(s, y,
t) does not depend on s. This could occur in three ways. First, and pathologi-
cally, both o(-) and p(-) may depend on s, but in such inverse ways that their
product does not. Second, p(-) may be zero for all s, y and ¢. Finally, both o()
and p(-) may not be dependent on s. In this third case, the risk-neutralized
process for s is a proportional stochastic process.8

Theorem 2 continues to apply when for all 7 € [¢, T'], the underlying asset
pays a continuous proportional dividend at the rate §%(7), and the contingent
claim pays a continuous proportional dividend at the rate §°(7).? In that case,
Theorem 1 (case (ii)) takes the form:

el1 O inf g,(q)=v,(s, y, )=e/i D= Drsup g,(q). (8)
q q

Case (i) takes the same form, but without the y.

7 A proportional one-dimensional diffusion for the risk-neutralized process implies a determin-
istic volatility function; i.e., a Black-Scholes setting.

8 In an appendix to Merton (1973), B. Goldman provides an example where the payoff function
is convex, but the call-price function is not. It then follows from Theorem 2 that the terminal stock
price distribution assumed in that example cannot be generated by either a one-dimensional
diffusion process or a two-dimensional diffusion satisfying condition (ii) of the Theorem.

9 Theorem 2 need not be applicable when dividends are nonproportional. For example, consider
a zero exercise price European call written on a stock paying a continuous version of the
nonproportional dividend discussed in footnote 16 of Chapter 4 of Cox and Rubinstein (1985).
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D. Sufficient Conditions for Inherited Bounds on the Elements of a
Replicating Portfolio

When a contingent claim can be replicated through a dynamic strategy of
trading the underlying stock and other assets, the position in stock is given by
v,(s, v, t). It follows then that the value of the nonstock position in a
replicating portfolio is v(s, y, t) —v(s, y, t)s. Noting this, Theorem 1 can be
reinterpreted as stating that the stock position prior to maturity is bounded by
the bounds on the stock position at maturity. Likewise, the next theorem
establishes sufficient conditions for the value of the nonstock position to be
similarly bounded.

THEOREM 3: Let the payoff function g be differentiable on its domain.?0
(2) If s, follows a one-dimensional diffusion, then for all s and t,

e inf [g(q) — g1(@)q] = (s, £) — vi(s, s = e [T sup[g(g) — gi(g)gl.  (9)
q

q

(22) If s, is a two-dimensional diffusion satisfying the twin properties of case (ii)
of Theorem 2, then v(s, y, t) — v4(s, ¥, t)s is similarly bounded.

Proof: See the Appendix.

II. Monotonicity, Convexity, and the Pricing and Replication
of Call Options

In Section I, conditions are established under which certain properties of a
quite general contingent claim’s price and its replicating portfolio are inherited
from the corresponding properties of the contractual payoff function. In this
section we examine the specific implications of these results for the pricing and
replication of call options. Throughout, we assume that the limited liability
underlying asset, which pays no dividends, follows a one-dimensional diffu-
sion, that interest rates are deterministic, and that a call price, c(s, ¢), is given
by the solution of the partial differential equation (p.d.e.),

r(t)ei(s, t)s — r(t)e(s, t) + cqofs, ) + Ye[ots, t)sFeii(s, t) = 0, (10)

subject to the terminal condition ¢(s, T) =max[0, s — K].

A. Relations Between a Call’s Replicating Portfolio and the Underlying Asset
Price

A call option, like any contingent claim in the current setting, is replicated
by a dynamic strategy which, at time ¢, when the stock price is s, maintains
c1(s, t) shares of the stock and c(s, t) — ¢,(s, t)s dollars in bonds. Proposi-
tions 1 and 2 establish that the replicating portfolio consists of a levered

10 Like Theorem 1, Theorem 3 can be generalized to the case where the payoff function g has a
left and a right derivative everywhere on its domain, where the two need not be equal, and where
one of them may be plus infinity or minus infinity.
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position in the stock. Propositions 1 and 2 also provide bounds on the stock and
bond positions in the replicating portfolio and, in addition, show how those
positions change with the value of the underlying stock.

ProposITION 1: If the underlying asset price follows a one-dimensional diffusion,
then (i) the stock position in a call’s replicating portfolio is always long, but
never by more than one share, and (ii) the stock position is nondecreasing in s.
For all s and t such that max [0, s — Ke ™ /i"™47] < ¢(s, ¢) < s, the stock position
is strictly increasing in s.

Proof: The bounds in Theorem 1 apply to any contingent claim. For a call
option they become 0 < c(s, ¢) = 1, which proves (i). Theorem 2 similarly
implies c,,(s, ) = 0, and the nondecreasing claim in part (ii) is established.
The appendix contains a proof of the “strictly increasing” claim in part
(ii). Q.E.D.

ProposiTION 2: If the underlying asset follows a one-dimensional diffusion, then
(i) a call’s replicating portfolio consists of a levered position in stock, with the
amount of borrowing being no greater than e 1" K: (ii) the amount of
borrowing is nondecreasing in s; and (iii) the call’s elasticity, Q(s, t), satisfies
1=Q,¢t) =1+ e ™ K/e(s, ¢).

Proof: From Theorem 3,
—e TR < (s, £) — ¢y(s, t)s = 0, (11)
which proves part (i). From Theorem 2,

a[C(S, t) - Cl(S, t)S]
as

= _Scll(s, t) = O, (12)

and, since s = 0, part (ii) is established. Rearranging the bounds on the bond
position gives the part (iii) bounds on the call’s elasticity:

s, 1)s T,
1=Q(s, t) = c;((sit))s 1+ e "MK e(s, ¢). (13)

Q.E.D.

One immediate implication of Propositions 1 and 2 is that, since in any
one-dimensional diffusion setting a call option is equivalent to a levered
position in the stock, the absolute value of the risk premium on a call always
exceeds that on the underlying stock in that setting.1!

11 Grundy (1991) shows that option prices contain information not only about the risk-neutral-
ized distribution of the underlying asset, but also about its true distribution, provided the
underlying asset follows a one-dimensional diffusion and the risk premium on the option can be
bounded. Proposition 1 has established that the particular bound examined in that paper is always
satisfied for a one-dimensional diffusion.
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B. The Relation Between a Call’s Price and the Passage of Time

A call’s convexity, coupled with its implicit leverage in any one-dimensional
diffusion setting, causes a call option to always be a wasting asset in the
one-dimensional case. This is shown next.

ProposiTioN 3: If the underlying asset follows a one-dimensional diffusion, then
for all s and t, cy(s, t) = 0. For all s and t such that either

(i) max[0, s — e /i K] < ¢(s, t) < s and o(s, t) > 0, or

(11) 0 < c(s, t) <sand r(t) > 0, a call is a strictly wasting asset, i.e., cy(s, t) < 0.

Proof: Rewriting the p.d.e. in equation (10) gives

co(s, t) = —Vel[o(s, t)s]%cu(s, t) — r(t)e(s, t)(Q(s, t) — 1). (14)

Theorem 2 implies that the first term on the RHS of equation (14) is
nonpositive for all s and ¢. Proposition 2 implies that Q(s, ¢) = 1. Since r(¢) =
0 for all ¢, the second term on the RHS of equation (14) is nonpositive for
all s and ¢. Since the RHS of equation (14) is nonpositive, so is the LHS of
equation (14).

Turning to the strong inequality claim, we have from the strict convexity
result of Proposition 1 that for all s and ¢ such that max[0, s — Ke /i"7d7] <
c(s, t) < s, the first term on the RHS of equation (14) is strictly negative
provided o(s, £) > 0. For 0 < c¢(s, t) < s, Proposition 1 implies that

c(s, t) =c¢(0, ¢t) + js ci(x, t) dx

0

fs cqilx, ) dx < fs ci(s, t) dx = c4(s, t)s. (15)

0 0

Therefore Q(s, t) = c4(s, t)s/c(s, t) > 1. Thus, when 0 < c(s, t) < s and
r(t) > 0, the second term on the RHS of equation (14) is also strictly nega-
tive. Q.E.D.

Propositions 1, 2, and 3 extend results familiar from a Black-Scholes setting
(deterministic volatility) to any one-dimensional diffusion setting.l2 While
these results are intuitive, it is important to recognize that they need not be
true when the underlying price does not follow a one-dimensional diffusion. It
is shown in Section IV that if the underlying price process is either a multi-
dimensional diffusion, or non-Markovian, or discontinuous, then it can be that
in some s range, either ¢ (s, ) < 0 holds or ¢,,(s, ) < 0 holds, or both hold.
When ¢, (s, ¢) < 0, a call’s replicating portfolio will be short stock and long

12 Tn the deterministic volatility setting of Black-Scholes, it is also well known that for all s and
t, Q(s, t) < 0 and Qy(s, ¢) > 0. These two properties do not necessarily generalize to a
one-dimensional diffusion with non-deterministic volatility. Still, the two inequalities will be
satisfied for some sufficiently large s and sufficiently large (7' — ¢).
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bonds. When ¢11(s, t) < 0, replication requires reducing the position in stock
as the underlying price rises. Section IV also shows that when ¢, (s, ¢) < 0 or
cq11(s, t) < 0, a call can be a “bloating” asset.

C. The Relation Between a Call’s Delta and Its Exercise Price

ProprosITION 4: If the underlying asset follows a one-dimensional diffusion, then
c1(s, t), or the call’s delta, does not increase with the exercise price. If c,(s, t)
is also differentiable w.r.t. the exercise price K, then 9*c/0Kds < 0.

Proof: Consider a bullish money spread; long a call with exercise price K,
and short a call with a larger exercise price K,. The minimum derivative of this
spread’s final payoff function is zero. Denote the price of the spread by M(s,
t):= c(s, t; K;) — c(s, t; K;). Then, by Theorem 1, at any time before
expiration, M,(s, t) = 0. In other words, c,(s, t; K;) — c¢.(s, t; Ky) =
0. Q.E.D.

Note that a (one-dimensional) diffusion underlying price process is only a
special sufficient condition for the result in Proposition 4. A more general
sufficient condition is that monotonicity be inherited from the contractual
payoff function. Thus, by the Cox and Ross (1976) result, the exercise price
proposition is true also for proportional underlying processes, even when those
are not diffusions.

We have considered the implications of Theorems 1, 2, and 3 for call options,
but clearly, similar implications apply to put options, as well. For example, it
is an immediate corollary of Theorem 1 that a put’s delta is bounded between
0 and —1. Similarly, by Theorem 2, a put price is always a convex function of
the underlying asset. The following call option results also apply to put options
with the appropriate modifications.

III. The Comparative Statics of Interest Rates, Dividends, and
Volatility

We continue to assume that the underlying, limited-liability asset follows a
one-dimensional diffusion, and that interest rates are deterministic.

A. The Comparative Statics of Interest Rate Changes

We wish to compare the prices of call options across two economies. In
economy o the interest rate is 7*(¢). The interest rate in an otherwise equiv-
alent economy % is r®(¢). The underlying asset pays no dividends prior to the
option’s expiration.

A.1. An Upward Shift in the Term Structure Increases Call Prices

THEOREM 4: Consider two economies, A and B, differing in their instantaneous
interest rates, r'(1) and r®(7). Suppose that for all T € [¢t, T1, r®(7) = r#(7)
and [T r®(r) dr> [T ré(r) dr. Then, for all s and ¢t, c*(s, t), the price of a call
in economy B expiring at T, is at least as large as c*(s, t), the price of an
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otherwise equivalent call in economy . For all s and t, if 0 < c¢®(s, t) <s, then
*(s, t) > (s, t).

Proof: See the Appendix.

A.2. A Decrease in e /i"™%K Can Decrease Call Prices

It is important to recognize what we have not established in Theorem 4. In
order to guarantee that c¢®(s,, t) > c¢*(s,, t), it is not enough that the term
structures differ across the two economies in such a way that the time ¢ value
of a riskless bond maturing at time T is smaller in economy %. Theorem 4
requires not only that [7 r®(r) > [T r*(7) dr, but, in addition, that r®(1) =
r(r) for all + € [¢, T1.13 Consider the following two otherwise equivalent
economies. In economy « the interest rate is given by the step-down function

R for 7€[¢t, T— YT - ¢t)];
Sg — ) b b
ri(m) {o, for re (T — (T -t), T). (16)
In economy % the interest rate is given by the step-up function
0 for r€[¢t, T - YT - ¢t)];
B — ’ ’ )
riT) {QR for 7€ (T - va(T - ¢), T). a7
Note that
T T _ t T
j ré(r) dr = 5 R =f r3(r) dr. (18)
t t
The term structures in economies & and & are depicted in Figure 2A.
Suppose that the underlying asset follows a diffusion of the form
ds,.=r(7)s,dt + o(s,, 1)s,dB,, (19)

where the volatility depends on the underlying asset price and time in the
following way: For some H > 0 and some strictly nonzero w(s, 1),

, T, if s>H d r€[t, T - (T-0/2];
o-(s,7)={m(s 7) if s and TE][ ( /2] (20)

0, otherwise.

Now suppose that s = s® = s, and that s,, H, and K are such that

s, < H <™ 92, < K. (21)

BIf fTr31) dr > ST r'(r) dr and volatility is deterministic, then ¢®(s,, t) > c¢®(s,, t). Only
the integral, J7 r(7) dr, enters the Black-Scholes formula.
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t ¢ 4 nH/s t+ L5t T

Time

Figure 2. The effect of interest rates on option prices. (A) Interest rate time profiles in
two otherwise equivalent economies # and %. One profile is a time permutation of the other
with [Tr(n)dr = (T—1)/2 R= [T r®(1) dr. Therefore, riskless bonds that promise the same
payoff at time T have the same price in both economies. (B) Sample paths of an underlying
asset’s price process in economies « and %. Both paths commence at the same level s, at time
t, and both are driven by the same Brownian motion. In economy # the price ends above K at time
T. Due to the different interest rate time-profile in economy % and the functional form of the
volatility, the price always finishes below K in economy %.
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In economy o, s will grow deterministically at the interest rate % until, at
time ¢ + In(H/s,)/%R, the underlying asset price reaches the level H. After that
time, s will follow the diffusion

B Rsdt + w(s?, Ds?dB,, for T (t+ InH/s)R, T — (T—t)/2];
ds —
"o, for (T — (T-v/2,T].

A possible sample path for s is depicted in Figure 2B. With positive proba-
bility s5* > K, and hence c¢*(s,, ¢t) > 0.

In economy B, s? will remain equal to s, until time T' — (T — t)/2. After
time T — (T — t)/2, s® will grow deterministically at the rate % until it
reaches the level s,e?T "2 at the option’s maturity. The sample path for s%
is also depicted in Figure 2(B). With certainty s7 < K, and hence c¢®(s,, t) =
0.

Thus, in this setting, which is not a Black-Scholes setting, shifts in the term
structure that leave the current price of a bond maturing at the option’s
expiration unaffected can affect the option’s price. In this example, simply
‘reordering’ the interest rate profile affects option prices.

B. The Comparative Statics of Dividend Rate Changes

The next theorem compares the price of a call on an asset that pays divi-
dends to the price of a similar call on an asset that does not.

THEOREM 5: Consider two one-dimensional-diffusion priced underlying assets
(traded in the same economy with the same deterministic interest rate dynam-
ics) such that, for all T € [t, T], asset A pays a dividend at the rate 5(1) = 0,
with [T 8(t) dr > 0, while asset B pays no dividends prior to time T. Suppose
that o*(s, t) = o®(s, t) for all s and t. Then ¢ (s, t) = e J3Md cP(g ¢), for
all s and t. This inequality becomes strict when 0 < c®(s, t) < s.

Proof: See the Appendix.

Not surprisingly, given s$* = s®, a call on the asset that pays dividends is no

more valuable than a call on the asset that does not. What is less obvious is
that one can place an upper bound on the relative prices of the two calls purely
in terms of the fraction of the dividend-paying stock’s price that is due to
dividends to be paid beyond the call’s expiration. When dividends are paid at
the continuous rate 8(7), the present value at time ¢ of the stock price at time
T is e /{3%"4s,  Equivalently, the time ¢ value of the dividend distributions
beyond time T is e ~/{5Mdrg

The bound in Theorem 5 is familiar from a Black-Scholes setting. Given
deterministic return volatility, the value of a call on asset s when s = s’ is
equal to the value of an otherwise equivalent call written on the fraction
e 134 of agset B when s = s’. In turn, such a call has the same value as an
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otherwise equivalent call written on one whole unit of asset B when s? =

e~ Ji8(mdrg 1
cM(s, t) = cB(e JdMAtg §) (23)
From the strict convexity of call prices in a Black-Scholes setting, we then have
cMs, t) < e di8DdTEH(s ), (24)

In a setting where the return volatility depends on the (contemporaneous)
stock price, the equality in equation (23) need no longer be satisfied. Still, as is
shown in Theorem 5, the inequality in equation (24) is always satisfied in any
one-dimensional diffusion setting.

C. The Comparative Statics of Volatility Changes

Jagannathan (1984) clarifies the relation between the value of a call and the
riskiness of the underlying stock. Consider two stocks & and %, but this time
s, 1) # o®(s, 1) while, for all 7, 87 = 8%(7) = 0. Given s = 52, a
sufficient condition for calls on stock % maturing at time 7 to be at least as
valuable as otherwise equivalent calls on stock «, is that the risk-neutral
probability distribution of s% is riskier than the risk-neutral probability dis-
tribution of s in the Rothschild-Stiglitz (1970) sense.l* We generalize and
extend Jagannathan’s results in the next two theorems.

THEOREM 6: Let 0®(s, t) = o*(s, t) for all s and t with strict inequality in some
region. Let v® and v®* denote the respective prices of two contingent claims (not
necessarily calls) with the same expiration date and identical, convex contrac-
tual payoff functions. Then for all s and t, v®(s, t) = v™(s, t).

Proof: See the Appendix.

As an example, if the volatility were always bounded by that of a particular
Constant Elasticity of Variance (CEV) process, the call price would be bounded
by the corresponding CEV option pricing model.

THEOREM 7: Suppose that for all s and t, a®(s, t) = o*Us, t). For s* = s2, the
risk-neutral distribution of s is riskier, in the Rothschild-Stiglitz sense, than
the risk-neutral distribution of si.

Proof: Let £*5°t and £2°! be the time 7 risk-neutralized prices of assets <
and B satisfying

dgt = r(ngddr + o*(E2, 7)E4dB, (25)

14 ¥ is riskier than X in the Rothschild-Stiglitz (1970) sense if

~ d

Y=X+5 and E{e|X}=0 forall X.
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and
dé? =r(néEldr + o™(&, 1)€2dB,, (26)

with a common initial condition, s, at time ¢.

Consider two contingent claims written, respectively, on the two assets,
featuring the same convex payoff function g(:). By the Feynman-Kac repre-
sentation, the prices of the claims are vi(s, t) = e /"M E{g(&sh)}, (i = o,
%). For this setting, Theorem 6 has established that v®(s, ¢) = v*s, ¢). It
then follows that E{g(¢25%)} = E{g(£&5°%)} for arbitrary convex g(-)’s. This
condition is equivalent to £%‘ being riskier than ¢2° in the Rothschild-
Stiglitz sense. Q.E.D.

D. Conditions under which Black-Scholes Provides Bounds on Option Prices

Interesting special cases of Theorem 6 occur when, for all s and ¢, either
d®(s, t) = a(t) = s, t), or a®(s, t) = (s, t) = a(t). Let cb9(s, ¢t)
denote the Black-Scholes value of a call on a stock with deterministic volatility
o(s, t) = o(t) for all s and ¢.

TueoreM 8: If for all s and ¢, o®(s, t) = o(t) = s, t), then c*(s, t
c® s, t). If for all s and t, 0®(s, t) = (s, t) = a(t), then c*(s, ¢
e D(s, ¢).

IV IA

)
)

Proof: Theorem 8 is a special case of Theorem 6.15 Q.E.D.

Of major practical relevance to anyone charged with hedging an option
position is that, despite a lack of knowledge of the functional form of the
relation o(s, t), knowledge of bounds on that relation over the option’s life, &
and g, provides bounds on the option’s delta for any s and ¢. These bounds are
an immediate implication of Theorem 8 and the convexity property of option
prices.

ProposrtioN 5: If for all s and t, a(t) < o(s, t) = &(t), then c5°7(s", t) =
ci(s, t) = ¢3°s’, t), where s" solves c®*'Z(s, t) = > P(s", ) + 55
(s", t)(s — s") and s’ solves c®*'D(s, t) = ¢®* (s, t) — cbs (s’ t)(s' — s).

Proof: As depicted in Figure 3, if the lower bound on delta were violated,
then, even if the option took on its minimal possible value, convexity would
imply that for values of the underlying asset less than s”, the option’s value
would violate its upper bound. Similarly, if the upper bound on delta were
violated then, even if the option took on its minimal possible value, convexity
would imply that for values of the underlying asset greater than s’, the
option’s value would violate its upper bound. Q.E.D.

15 K] Karoui and Jeanblanc-Picqué (1990) provide an alternate proof of the special case result
in Theorem 8. We thank Darrell Duffie for bringing this article to our attention. Independent
derivations of variants of Theorem 6 can be found in El Karoui, Jeanblanc-Picqué and Shreve
(1995) and Avellaneda, Levy and Paras (1995).
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Figure 3. Bounds on a call’s price and delta. The curve OAC (respectively, OBF) is the
Black-Scholes call price computed as a function of the underlying price using the upper bound, 5(t)
(lower bound, o(t)), on the true volatility. The two curves bound the true call price curve ODG. The
true hedge ratio given a stock price of s is bounded from above by the slope of BC and from below
by the slope of AB; both tangents from B to OAC. c(s, ¢) is the time ¢ value of a call option written
on an asset worth s. Given observed values of both s and ¢(s, ¢), even tighter bounds can be placed
on the true hedge ratio. c®°®’(s, t) is the time ¢ Black-Scholes value of a call option written on an
asset worth s when the asset’s volatility is the deterministic function &(¢). c®*‘?(s, ¢t) is similarly
defined.

When the option’s value is known, the bounds on its delta can be strength-
ened as follows.

ProposITION 6: If for all s and t, o(s, t) = a(t), then for any s and t such that one
knows c(s, t), ci*@(s", t) < c,(s, t) = c8*@(s’, t), where s solves c(s, t) =
e @(s" ) + 25O, t)(s — s") and s’ solves c(s, t) = c?O(s’, t) —
e @(s’, t)(s' — s).

Proof: The logic is the same as that of Proposition 5. Q.E.D.

IV. Pricing When the Underlying Asset Does Not Follow a
One-Dimensional Diffusion

Sections II and III examine the pricing of call options in a one-dimensional
diffusion setting, and establish that much of the intuition familiar with the
Black-Scholes model carries over to the case where the underlying asset’s
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volatility depends on both the contemporaneous price and time. This section
considers the many interesting settings in which call prices need not possess
any of their familiar properties. In particular, we demonstrate that if the
process describing changes in the value of the underlying asset is either
discontinuous or non-Markovian, or the underlying asset follows a multi-
dimensional diffusion, then replicating a call’s payoff can involve shorting
stock and lending, and selling additional stock as the stock price rises.
Throughout these examples the “no-crossing” property is violated.

A. Call Prices in a Discontinuous Markovian Setting

Suppose the underlying asset follows a nonproportional process, such that
below a certain level H it behaves like a mixed diffusion-jump process,® and
above H it grows at the interest rate. Formally,

r(t)s,dt, for s,= H;
5, = (27)

(r(t) = A(J — 1))s,dt + s, dq,, for 0<s,<H;

where g, is a Poisson process governing jumps in the stock price, A is the mean
number of jumps per unit time, and (J — 1) is the percentage price increase
in the stock, if the Poisson event occurs.

Possible stock price paths are depicted in Figure 4A. Consider two possible
time ¢ stock prices, s’ and s”, with 0 < s” < H < s’. For a given realization
of the random component of the process, the stock price path starting at s” can
4ump through’ the path starting at s’. Continuity precludes this in the one-
dimensional case; recall the “no-crossing” property of Section IA. Now consider
a call option on this asset with an exercise price K and s'e//""¢ < K < s"J.
When s, = s’, the option will, with certainty, finish out-of-the-money. When s,
= s”, the option has a positive probability of finishing in-the-money. Thus we
have

0=1c(0,2)<c(s",t)>c(s', t) =0; (28)

i.e., the call price is not everywhere increasing, and therefore cannot be
everywhere convex, in the underlying asset price.

Another example of a Markovian underlying process for which call prices are
nonincreasing in the underlying price is depicted in Figure 4B.17 The non-
recombining binomial tree depicted illustrates a setting where a firm’s man-
agement faces the following incentive problem. Suppose that management will
be evaluated on the basis of the stock price at date T relative to some goal, 4.
Failure to meet the benchmark level, ¢, will result in termination. Exceeding
the goal will bring forth a bonus. If at date 7' — 1 the firm has done poorly and

16 See Merton (1976) for an option pricing model applicable when the underlying follows a
proportional mixed diffusion-jump process with a diversifiable jump component.
17 For yet another example, see footnote 14 of Chapter 4 of Cox and Rubinstein (1985).
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Figure 4. Processes such that a call price can be concave in the value of the underlying.
(A) Two sample paths of a non-proportional mixed diffusion-jump process for which the
“no-crossing” property is violated. The path that starts out lower has a positive probability of
finishing above K at time T'. The path that starts out higher always finishes below K. ¢(s, t) is the
time ¢ value of a call written on an asset worth s. A call option with exercise price K and time T
maturity will be such that c(s’, ¢) = 0, yet ¢(s”, ¢) > 0. J is the jump size in dollars. (B) A
nonrecombining binomial tree for which the “no-crossing” property is violated. If the
process reaches s’, it will always finish below K and a call with an exercise price of K and a time
T maturity will be valueless. But if the process reaches s”, the process can finish above K and the
call has a positive price.



General Properties of Option Prices 1593

the stock price is low, say sp_; = s”, the firm must switch to high variance
projects in order for there to be any chance of meeting the benchmark neces-
sary for management to retain their posts. Alternatively, if the stock price is
high at date T — 1, say s;_; = s’, management can, and will, effectively lock
in their future bonuses by switching to a low risk investment strategy. The
“no-crossing” property is violated.

Now consider the date ' — 1 value of a call option with a date 7' maturity
written on the stock of this company. When ¢ = T — 1, and K is as depicted
in Figure 4b, the call price again satisfies the set of relations in (28). Interest-
ingly, if back at time T' — 2 the stock price is equal to s”, then the replicating
strategy at that time involves shorting the underlying stock and lending.
Further, an increase in the interest rate from T' — 2 to T — 1 will decrease the
call’s value. We now turn to a continuous but non-Markovian setting, which
also fails to satisfy the “no-crossing” property.18

B. Option Prices in a Continuous Non-Markovian Setting

When the underlying asset’s instantaneous volatility depends not only on
the contemporaneous price and time, but also on past prices, the process is said
to be retarded.’® While retarded processes are relatively unexplored in the
derivatives literature, they arise quite naturally when the volatility of a stock
reflects the underlying firm’s investment and financing decisions. That a
stock’s volatility is related to the contemporaneous stock price as a reflection
of the firm’s investment and financing policy is familiar from the Displaced
Diffusion Option Pricing Model of Rubinstein (1983) and the Compound Op-
tion Pricing Model of Geske (1979). In both these models the firm’s financing
and investment decisions predate the option’s issue date. But when financing
and investment decisions occur during the option’s life, and adjustment costs
are such that the optimal controls are not continuous functions of the under-
lying firm value at each instant in time but instead exhibit hysteresis, the
stock price process can be non-Markovian.20,21

The time line below depicts the setting we have in mind. The investment-
financing decision made at time ¢’ will depend on the value of the firm at ¢’ as

18 Figure 4b can be viewed as depicting a continuous, but non-Markovian process. Suppose that
between trading dates one could observe (but not trade along) the trajectory of prices. Now suppose
that at time ¢, one observed a trajectory level of §. One could not then characterize the distribution
of s given only the knowledge that s; = §. One would also need to know a past stock price as well
(e.g., whether s,_; was equal to s’ or s").

19 For a discussion of such processes, see Mohammed (1978).

20 For a formal model of optimal investment policy given the irreversibility of investment, see
Dixit and Pindyck (1994). Fischer, Heinkel, and Zechner (1989) model a firm’s optimal dynamic
capital structure choice given recapitalization costs.

21 That the firm faces adjustment costs is not inconsistent with our implicit assumption that the
securities issued by the firm, and contingent claims thereon, are traded in frictionless capital
markets.
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proxied by s,,. For simplicity, we assume that prior to time ¢’, the stock’s volatility
" is a constant &.

t ¢ T

o 0(S1,S41,T) ———

Option Capital Structure Option
Valuation Investment Choice Maturity

Date

It is true that after s,, has been realized at time t’, it will be possible to
represent the volatility of the stock at all times = € [¢’, T'] as some function
O(s,, 7). But the functional form of O(-) cannot be determined ex ante. Ex ante,
the volatility at all times 7 € [¢’, T'] takes the form o(s,, s,,, 7). Ex ante, the
process is non-Markovian.

As an analytically tractable example, consider an unlevered firm that will
pay no dividends prior to time 7 and will replace its assets at time ¢'.
Management will choose the replacement assets in a manner that reflects an
incentive problem similar to that underlying Figure 4b. The lower the value of
s,s, the higher the volatility of the replacement assets. Assume that for v €
[t” T]y

—ln(s,,/‘!ﬁ)/ﬁ -t for s, =9%; (29)

0, otherwise.

(S, S¢r, ) = 0(84) =

For s,, = %, the firm chooses replacement assets that subsequently have
constant volatility. The level of that constant volatility is a decreasing function
of s,,, reaching zero for s,, = 4. For all s,, > ¢, the firm chooses riskless
replacement assets. For a given realization of the Brownian motion driving s,
the risk-neutralized stock price path with initial condition s” at time ¢’ can
potentially cross the path with initial condition s’ > s”.

Now consider the time ¢’ value of a call option on this stock with a time T
expiration and an exercise price K such that e /*@&K = 4, Since after ¢’ the
stock will have a constant volatility, the level of that volatility being deter-
mined by s,, as in (29), we have

c(s, t') = cbslt(s, ). (30)

The function c(s, t’) is depicted in Figure 5a. The plot consists of the locus of
points where a vertical line drawn from the x-axis at, say, the point s’,
intersects the dashed convex curve which plots c¢?4(“¢")(s, ¢’). Notice how the
vertical line drawn from s” < s’ simultaneously intersects the locus and a
second dashed convex curve that lies everywhere above c¢?°““"(s, ¢’). This
higher convex curve plots ¢?*¢“"(s, ¢'). From the volatility specification in
equation (29) we have o(s”) > o(s’) since s” < s’. For alls,, > e /i"@ K the
locus of points is very easy to construct. With zero volatility in the future, the
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Figure 5. The value of a call in a non-Markovian setting. (A) The relation between c(s, ¢')
and s in a non-Markovian setting. c(s, t') is the time ¢’ value of a call written on an asset worth
s. The call price function is nonmonotonic and nonconvex. The call matures at time 7' and has an
exercise price of K. KeJirwaw g the time ¢’ present value of the exercise price. The volatility of
the underlying asset remains constant between ¢’ and T'. The.level of that constant volatility is a
decreasing function of the time ¢’ price of the underlying asset. ¢®*(°“"(s, ¢') is the time ¢’
Black-Scholes value of a call option written on an asset worth s when the asset’s volatility is
constant and equal to a(s”). c®¥““")(s, t') is similarly defined. (B) The relation between c(s, 7)
and 7 in a non-Markovian setting. c(s, 7) is the time 7 value of a call written on an asset worth

s. In some region of the underlying asset price, the call option price is greater at a later time ¢’
than at an earlier time ¢. Unlike in the Black-Scholes world, the call is not uniformly a “wasting”

asset. The volatility of the underlying asset remains constant between ¢ and ¢’.
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call is certain to finish in-the-money, and is worth s,, — e /F"®&K at time ¢'.
The humped shape of the plot is determined by two opposing forces. As s,,
increases, the underlying stock becomes more valuable (which tends to in-
crease the call price); but the underlying stock also becomes less volatile over
the option’s remaining life (which tends to decrease the call price). In a
(Markovian) one-dimensional diffusion setting, Theorem 1 states that the first
force is always the stronger. In contrast, in this non-Markovian setting the
second force can overwhelm the first, thereby creating the hump.

When, as here, a call price can be decreasing and concave in s, a call can also
have other properties quite different from those of a Black-Scholes setting. A
call price can be increasing with the passage of time, and a call price can
decrease when interest rates increase. First consider the effect of the passage
of time by comparing the call price at time ¢’ to its price at some ¢ prior to ¢'.
We assume that for all T € [¢, t'), the stock’s volatility is a constant . During
the interval from ¢ to ¢’ the call price satisfies the p.d.e.

co(s, t) = —=Y2[Gs]%cu(s, t) — r(t)e(s, t)(Q(s, t) — 1). (31)

When a call is increasing and convex in s for all s and ¢, the two terms on the
right-hand-side of equation (31) are nonpositive. Propositions 1 and 2 establish
that ¢,,(s, t) = 0 and Q(s, ¢) > 1 in a one-dimensional diffusion setting. But
when, as here, the call is strictly decreasing and concave in s over some region,
both terms are strictly positive in that region. Thus the call can be a “bloating”
asset. Figure 5b illustrates the non-wasting nature of the call over some range
of s, by depicting both c¢(s, ¢t) and c(s, ¢') whent' — ¢t = 1year,T —¢t' =1
year, & = 30% per annum, K = 4 = $3, and (1) = 10% per annum for all
T € [¢, T]. Consider the effect on the call price of an increase in interest rates.
Given the above parameter values, c(s, t) = 10.69¢ when s = $1. Suppose
that the interest rate during the period from ¢ to ¢’ increases from 10 percent
to 11 percent. This upward shift in the term structure will cause a decline in
the call price to 10.38¢.

C. Call Prices and Stochastic Volatility

Subsections A and B of IV provide illustrations of how the “no-crossing”
property can be violated when the underlying process is either discontinuous
or non-Markovian. The proof of Theorem 1 establishes that the “no-crossing”
property is never violated in a one-dimensional diffusion setting. Theorem 1
also provides sufficient restrictions on the drift and diffusion parameters of a
two-dimensional diffusion to guarantee that the “no-crossing” property re-
mains satisfied when volatility is stochastic. But when these restrictions are
not met, the “no-crossing” property can be violated in a diffusion setting, and
a call price can be decreasing in the value of the underlying.

Recall from Section I the definition of a two-dimensional diffusion. Suppose
that interest rates are zero and that the drift of the risk-neutralized process for
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y is zero. The risk-neutralized processes for s and y are then given by:
ds, = o(s;, ., t)s,dB} (32a)

and
dy, = 0(s¢, y:, t)dBt2~ (32b)

One could think of s and y as the share prices of two firms in a duopoly whose
competitive strategies and share prices reflect their market shares.

As depicted in Figure 6, if s is high and y is low, then o(s, y, ¢) =
0(s, y, t) = 0. If s is low and y is low, then o(s, ¥, ¢£) = 0 and 6(s, y, t) >
0. If y is high, then o(s, y, ¢) > 0 and 6(s, y, ¢) > 0. Note that condition (ii)
of Theorem 1 is not met in this example. In particular, whether 6(s,, y,, t) is
positive or zero depends on the value of s,.

With initial condition {s’, ¥'}, s = s'. With initial condition {s”, y'}, there
is a positive probability that s, > s’ even though s” < s’, and hence the
“no-crossing” property is violated in this example. Now consider a call option
with K > s’. For this option ¢(s’, y', t) = 0 and c¢(s”, y', t) > 0. Thus, over
a range of s values, the option price is decreasing in s, and cannot then be
everywhere convex in s.

VI. Conclusions

This article examines the general properties of prices of European contin-
gent claims. We show that when the underlying stock follows a one-dimen-
sional diffusion and interest rates are deterministic, the stock position in the
dynamic portfolio that replicates a contingent claim (equivalently, the claim’s
price slope or “delta”) is bounded by the infimum and the supremum of that
position at maturity. Similar bounds also hold for the bond position in the
claim’s replicating portfolio. If the claim’s payoff at maturity is convex (con-
cave) in the price of the underlying asset at expiration, then prior to expiration
the stock position in a replicating portfolio is increasing (decreasing) in the
underlying asset’s price. The bounds on a claim’s delta also apply in a multi-
dimensional diffusion setting, provided that the drift and diffusion parameters
of the risk-neutralized version of the process driving the stochastic changes in
volatility are independent of the underlying asset price. With appropriate
further restrictions, the inherited convexity result can also be extended to a
multi-dimensional diffusion setting. In sum, under stipulated, quite general
diffusion conditions, properties of the contractual payoff function, like mono-
tonicity and convexity, are inherited by the contingent claim price (as a
function of the underlying price) prior to expiration.

The bounds and inherited convexity results allow us to undertake compar-
ative static analyses of the effects of changes in interest rates, in dividend
rates, and in volatility on the prices of call options in a one-dimensional
diffusion setting. First, we show that it is only in a deterministic volatility
(Black-Scholes) setting that a decrease in the present value of the exercise
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Figure 6. Two sample paths of a two-dimensional diffusion for which the “no-crossing”
property is violated. Shown are two sample paths of a zero-drift two-dimensional diffusion: a
stock price process s, and the process y which drives the stochastic volatility of s.

ds,= o(s, ¥, t)s,dB} dy, = 0(s;, y:, t)dB}.

At time 0, one path starts at (s’, y') in the (light grey) region where everything is deterministic.
It must then stay constant at its starting values, and the stock price component s cannot reach a
value greater than K. The other sample path starts from (s”, y') in the (dark grey) region where
the y component is stochastic. From these starting values there is a positive probability that the
vector process will reach the (white) region, where both s and y have positive volatities. From that
region it is then possible for s to reach a value above K. Therefore, for a call with an exercise price
of K, c(s', y',0) = 0, yete(s”", y', 0) > 0. c(s, y, 0) is the time O value of the call given a time
0 stock price of s and a time O value of y for the process driving the stochastic volatility.

price necessarily implies an increase in a call price. In general, contingent
claim prices are determined by the entire term structure of instantaneous
interest rates through the claim’s maturity date, and not merely by their
integral. A twist in the term-structure that leaves the present value of a call’s
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exercise price unchanged can change the call’s value. Second, we develop a new
bound on the relative values of call options on two underlying assets; one that
pays dividends, another that does not, but which are otherwise equivalent.
Third, we show that when the underlying asset’s volatility is bounded above
(below), then, whatever the functional form of the relation between volatility,
time, and the contemporaneous stock price, the option’s price is bounded above
(below) by its Black-Scholes value calculated at the bounding volatility level.
We also show how to incorporate bounds on the underlying asset’s volatility
into the determination of bounds on an option’s delta. Finally, we undertake a
comparative statics analysis of the relation between the exercise price of a call
and its delta in a one-dimensional diffusion setting. We establish that the call’s
delta is always nondecreasing in its exercise price.

The bounds on a contingent claim’s delta established in a one-dimensional
diffusion setting, and in certain restricted stochastic volatility settings, are
shown to be a reflection of the fact that, for a given realization of the Brownian
motion driving the risk-neutralized stock price process, the realized value of
the process at the claim’s maturity date is increasing in its starting value. We
dub this the “no-crossing” property. We demonstrate that if we relax either the
continuity or Markovian properties inherent in a diffusion, or we consider an
unrestricted stochastic volatility setting, then the “no-crossing” property can
be violated. It is then shown that the price of a call option can be decreasing or
concave over some underlying price range, increasing in the passage of time,
and decreasing in the level of interest rates.

Appendix

Proof of Part (ii) of Theorem 1: (Throughout the proof, superscripts “1” and
“2” denote indices—not powers.) Using the Feynman-Kac Theorem, the value
of the contingent claim can be expressed as

v(s, y, t) = Efe 170%g (&)}, (A1)

where £1%7 and £257°* solve the system of SDEs
dé = r(ngdt + o(&, &, 1)£dB:, (A2a)
d& =&, &, 1)~ &, &, 0, &, M)dr + 0&, &, 1dB;,  (A2b)

T )

with dB1dB? = p(¢l, £2, 1)dr and initial conditions s and y at time ¢. The

T

SDEs in equation (A2) describe the “risk-neutralized” processes for s and y.
The conditions in (ii) imply that there exist functions G' and G2, such that:
and

G*(¢&%, 1) = [8(¢, &, 1] (A3b)
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In this case, expression (A2) simplifies to

dé=r(ng&dr + o(€, €, 16dB;, (A2a")
det = GY&, ndr+ G (&, T)dB2. (A2b")

Thus, for any given realization of the B2 process, condition (ii) guarantees that
the path followed by & is independent of the initial condition for &. Now
consider two paths for & differing only in their initial conditions. Given the
realization of the B2 process, we construct each path for & from innovations
dB!, with the innovations themselves constructed as dBl = p(¢&, €2, 1)dB?
+V1—-[p(&-£2,7)12dB3, where B2 is a standard Brownian motion indepen-
dent of B2. Suppose these two paths for £ meet at some time ¢'. Could they
cross over? Consider the SDE in (A2a’). By construction, both paths for &
always share a common realization of the & process and hence, must merge
from time ¢’ onward. Suppose s” < s’. Starting from {&} = s’, £ =y}, the
subsequent level of ¢é% attained at time T is always at least as great as the level
attained when the processes start from {s”, y}. The rest of the proof involves
defining ¥ := &F¥t — gF5¥f and proceeding as in the proof of part
(i). Q.ED.

Generalization of Theorem 1: Suppose that the payoff function g has a left
and a right derivative everywhere on its domain, where the two need not be
equal, and where one of them may be plus infinity (as is the left derivative at
a jump discontinuity upward, when the function is continuous on the right
there) or minus infinity (as with a jump discontunity downward). This, of
course, covers calls, puts, and digital options. Then Theorem 1 generalizes by
replacing the double inequality by the following

inf[min(g,(qg—), g1(q+))] < v1(s, t) = sup[max(g(q—), 81(g+))], (Ad)

where, for example, g,(qg+) stands for the right derivative of g at g; i.e.,

glg+4)—g(q)

lim A

AlO

Proof: Suppose s, follows a one-dimensional diffusion. The call price can
then be expressed as in equations (3) and (4). For s’ = s”, the random variable
% := &' — &' is nonnegative by the no-crossing property. Furthermore,
E{X} = e/l (5" —g"). For every & sample path, g(&5* + %) = g(&) + %
min (g,(y—), g,(¥+)) = g(&") + ¥ inf, [min(g,(¢—), g.(g+))], where y €
(&%, &t + %). Here, we used the generalization of the Intermediate Value
Theorem of differential calculus to the case where only the left and the right
derivatives are guaranteed to exist. The rest of the proof follows the same steps
as in the main text. Q.E.D.
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The Cauchy Problem and the Proof of Theorem 2: The Theorem 2 condition
that the claim’s payoff function is convex (concave) implies that the payoff
function is continuous.

First consider the Cauchy Problem: For given T" > 0, we wish to find f €
C%' (RN x [0, T)) solving

Dfx, t) — R(x, t)f(x, ) + hix,t) =0, (x,t) € RV X[0,T), (Ab)
with the terminal condition

flx, T) =g(x), almost everywhere on R”, (A6)

and

N
Df(x, t) = faea(x, 8) + 2 filx, p'(x, ¢)

i=1

1

N
+5 2 2 Y@, )Yk, O, Ofyx, 1), (A7)

1=

I M=

-

12

and where f . (x, t) denotes the partial of f with respect to ¢, and, fori = 1,
..., N, fi(x, t) denotes the partial of f with respect to the i’th element of the
vector x, R: RY X [0, T1 — [0, =), h: RY X [0, T] — R, g: RY — R, the
functions R, h and g are continuous, and u(x, t) isan N X 1 vector whose i’th
element u(x, t) is such that u’: RY X [0, Tl — R, and the superscripts on
Yi(x, t)¥(x, t)nY(x, t) do not denote powers but are instead indices. y(x, t) is
an N X 1 vector whose ’th element y(x, t): RY X [0, T] -= R, fori =1, ..., N.
Each function v/(x, t) = n(x, £): RY X [0, T] = R, for alli,j =1, ..., N.

The Feynman-Kac solution to equations (A5)—(A7), when it exists, is given
by

T
flx,¢) =E J’ @i (&, 1) AT + @ rg(€7) |, (A8)
t
where ¢, , = e JiB& 1w The elements, £, of the N X 1 vector £ solve
the system of SDEs
dé. = p'(§, 1d7 + ¥(§, dB, (A9)
with initial condition x at time ¢. In addition, dB:dB’. = nY(¢,, 7)dT.

As an example suppose the underlying asset follows the two dimensional
diffusion given in equation (2), interest rates are deterministic, and the price
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of volatility risk is given by A(s, ¥, t). The value of a contingent claim is given
by the solution of the p.d.e.,

vs(s, ¥, t) + vi(s, ¥, Or(t)s + va(s, ¥, H)(B(s, y, t) — As, y, 1)0(s, y, t))
+ Yo vy, (s, y, O)o(s, y, s + Ya vas(s, y, D[ 6(s, y, O
+ v15(s, ¥, Do(s, y, £)s6(s, y, t)p(s, ¥, t) — r@)v(s,y,t) =0, (A10)

subject to the terminal condition v(s, y, T') = g(s). Let the superscripts on the
functions Y?, . .., Y* denote indices, not powers, and define the functions as:

Y'(s, 5, 8) = B(s,y,8) = A(s, 5, )0(s, ¥, 1) Y(s,y,8) =[0(s, 5, )]
Yis, y,t) =[o(s,y, t)s]*  Yis,y,t)=0(s,y, t)s6(s, y, t)p(s, y, t).
We can then rewrite equation (A10) as
vs(s, t) + vi(s, y, t)r(t)s + va(s, v, )Y (s, y, t)
+ Voup(s,y, )Y%(s, y, t) + Ve vyl(s, y, )Y3(s, v, t)
+v(s, y, )Y%s, y, t) —r(t)v(s,y, t) = 0. (All)
Taking the partial of equation (A11) with respect to s gives
vis(s, y, t) +vuls, y, O)r(t)s + vi(s, y, t)r(t) + via(s, v, )Y (s, y, t)
+vo(s, y, )Y(s, y, t) + Y2 viy1(s, y, £)Y2(s, y, t)
+ Yo unu(s, y, )Y%(s, y, t) + Yo via(s, y, 1)Y3(s, v, t)
+ Vo vge(s, y, t)Y3(s, vy, t) + v11a(s, ¥, t)Y(s, y, t)
+ v1a(s, y, OYi(s, y, t) — r@t)vi(s,y,£) = 0. (Al2)
Let f be the value of the first partial of a contingent claim’s value with

respect to the value of the underlying asset. The p.d.e. in equation (A12) can
then be rewritten as

f3(s; Y, t) +f1($,y, t)[r(t)s + Vz Y%(S7 Y, t)] +f2(s7 Y, t)[Yl(S’ Y t) + Y‘]%(S, Y, t)]
+ Y2 fll(s’ Y, t)Y2(S, Y t) + 1/2 f22(s’ ) t)YS(S, Y, t) + f12(37 Y t)Y4(S3 Y, t)

+ U2(37 Y t)Yi(‘% Y, t) + Y2 1)22(8, Y, t)Y?(S,y, t) =0. (A13)
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Expression (A13) is in the same form as (A5) with

h(x’ t) = U2(37 y, t)Y%(S, y, t) + ]/2 Uzz(sy y’ t)Y?(S, y7 t)'
@, 5= [ JOs + VY 5,0) )
N=2. PED =AY s, y,8) + Yis, 9, 0)

s 2
s-b) o= ()
R(s,t) = 0. 1)

ps,y,0), if T #

1, otherwise.

(e, t) = {

Thus the Feynman-Kac solution for v,(s, y, t), when it exists, is given by

T
vils, y, 8) = E[ j (va(&, B, YI(E™, &5 1)

t

+ V2 vgg(E0, BBV, D)YES, E, 7)) AT+ gi(E57) |, (Al4)

where £'%7°t and £2°'* solve the system of SDEs
A& = (r(DE + %YAE, &, D)dr + V&, &, ndB!, (Al5a)
d2='&, 8,7 +Y&, &, )+ \/ig(%’i, £, ndB2, (A15b)

with initial condition {s, y} at time ¢. In addition, dBXdB? = p(&!, &2, r)dr.
Note that these are not the SDEs describing the risk-neutralized processes for
s and y given in equation (A2).

Condition (i) of Theorem 2 implies that there exists a function Z such that

Z(s, t) =o(s,y, t)s. (Al6)

When the underlying asset follows a one-dimensional diffusion and condition
(i) is satisfied, the Feynman-Kac solution for the first partial of the value of the
contingent claim with respect to the value of the underlying asset then sim-
plifies to

vils, t) = E{g.(&)}, (A17)
where & solves the SDE
d&, = (r(né + Zy(&, 7)dr + Z(¢, )dB,, (A18)

with initial condition s at time ¢.
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Suppose s’ > s”. Then by the “no-crossing” lemma &5t = &' with proba-
bility 1. If for all s, g;; = O then g, is nondecreasing in s, and hence

vi(s’, t) = E{lg1(&)} = E{g.(&)} = vi(s”, ). (A19)

Similarly, if for all s, g;; = 0, v(s’, t) = v.(s", ¢).

Now consider the two-dimensional case. Condition (ii) of Theorem 2 implies
that there exist functions G, G2, and G® where superscripts denote indices,
not powers, such that Gl(y, t) = Y(s, y, t), G%(y, t) = Y3, y, t) and
G3(y, t)s = Y*(s, y, t). The Feynman-Kac solution for the value of the first
partial of the contingent claim with respect to the underlying asset then
simplifies to

vi(s, ¥, t) = E{g (&5}, (A20)

where &%t and 2°7¢ solve the system of SDEs

d& = (r(n& + v2YUE&, &, n)dr + YX(&, &, 1)dB;, (A2la)

and

d& = (G'&, 7 + G*(&, n)dr + \G*(&, n)dB, (A21D)

with initial condition {s, y} at time ¢. In addition, dB1dB2 = p(%i, Af, 7).

Suppose s’ > s”. Again &5t = &%t with probability 1. If for all s, g, =
0, then g, is nondecreasing in s. Hence g,(&%"?"*) = g(&+"»"*) with proba-
bility 1 and

vi(s', ¥, t) = E{g (&)} = E{g.(§7°7)} = vi(s”, ¥, t). (A22)
Similarly, if for all s, g;; = 0, then g, is nonincreasing in s. Hence v,(s’, y,
t) = v,", y,t). QE.D.

Proof of Theorem 3: Combining equations (A10) and (A1l), the quantity
[v(s, y, t) — v.(s, y, t)s] can be shown to satisfy a p.d.e. of the form in (A5)
subject to the terminal condition

0(87 Y, T) - Ul(S, Y, T)S :g(s) _gl(s)s' (A23)

If y is the price of a traded asset, the quantity [v(s, y, ) — v,(s, ¥, t)s] can
be interpreted as the value of the nonstock position in a replicating portfolio.
Under the conditions of Theorem 3, the terms R(x, ¢) and h(x, ¢) of (A5)
simplify to R(x, t) = r(¢) and A(x, ¢) = 0. Thus

u(s, y,8) — vy(s, y, £)s = eV T Blg(eh) — gy (ER7NEY,  (A24)

where &% and £ solve a system of correlated SDEs with initial conditions {s, y}
at time t. Q.E.D.
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Proof of Theorem 4: The proof will be made more transparent by measuring
the prices of time T' maturity contingent claims and of the underlying asset
relative to the price of a pure discount bond maturing at time T'; i.e., using the
bond as numeraire. Using upper (lower) case notation to denote relative
(absolute) price levels, the normalized prices take the form:

S, = elt rdrg, (A25)
C(S,, t) = el "M (s, t) = eli i (pll —r(drg ). (A26)

The normalized call price has the following partial derivatives:

Cl(S7 t) = Cl(S, t); (A27)
Cii(S, t) = cyy(s, t)e Vi 7, (A28)

Note that convexity of C(S, ¢) in S for all S and ¢ implies the convexity of
c(s, t) in s for all s and ¢, and vice-versa. Using the normalized pricing system,
the option’s value satisfies the following p.d.e.,

Cy(S, t) + Vo[2(S, t)S]*C1i(S, t) = 0,
where 3(S, t) := o(e i"S ¢) = g(s, t). (A29)

The transformation from o(+) to 2.(*) is nontrivial. Other than in a deterministic
volatility (Black-Scholes) world, the transformation requires knowledge of (1)
for all + € [¢t, T].

It is tempting to view equation (A29) as implying that one can determine the
forward price of a contingent claim provided one knows the forward price of the
underlying asset and ¢ without having to know anything about interest rates.
But when the volatility of returns on the underlying asset depends on the spot
price of the asset, then the 2,(S, ¢) function masks, but does not remove, the
relation between interest rates and the claim’s forward price.2? Consider the
following transformed price systems:

S, = s,eli e (A30)
CHS,, t) = cH(S,e I rdr t)elirindr (A31)
CH(S,, t) = c™(S,e I rmir, g)eli i (A32)

22 If the volatility of percent changes in the forward price for delivery of the underlying asset at
time T depends on the level of the forward price for delivery at time T (and not on the spot price),
then the forward price of a call option with a time 7 maturity will not depend on the term structure
of interest rates. However, the forward prices of the set of call options maturing at dates other than
T will depend on the term structure of interest rates.
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One can think of the transformation as setting the interest rate to zero in
economy 4 and to A(7) = r®(7) — r*(7) in economy B. C**(S, ¢) solves the
p.d.e.

C(S, t) + Vo[3(S, £)STCL(S, ¢) = 0 (A33)

subject to C4(S, T) = max[0, S — K], where 3(S, ¢) = ole ™™ S, ) = ofs, ).
C%(S, t) solves the p.d.e.

C2(S, t) + Y[2(S, )STCL(S, t) = —A@)(CYE(S, t)S — C*(S, ¢)) (A34)

subject to C*(S, T) = max[0, S — K]. Let X(S,, t) : = C*(8,,t) — C*US,, t)
denote the difference between the transformed values of the calls across the
two economies. Note that X(S,, ¢) > 0 implies c%(st, t) > c(s,, t).

From equations (A33) and (A34) we have

Xo(S, ) + VA[3(S, )STX11(S, t) + AR)(CH(S, t)S — C*(S, ¢)) = 0.  (A35)

For a given value of S at maturity, the time T prices of the two calls coincide:

X(Sy, T) = C*8Sr, T) — CXSr, T)
= max[0, Sy — K] — max[0, S; — K] = 0. (A36)

Thus X(S, ¢) is given by the solution to the p.d.e. in equation (A35) subject to
the terminal condition X(S, T') = 0. From the Feynman-Kac Theorem we have

T
X(S,t)=E J' A(T)(CP(E, 1) & — CHEM, 1) dry,  (A3T)

where &7 solves the SDE: d¢, = 3(¢,, 7)¢,dB,, with initial condition S at
time ¢.

For ¢®(s,, t) = s,, the weak inequality is satisfied immediately since c*(s,, ¢)
= s, For ¢*s,, t) = 0, it follows that for all = € [¢t, T], C®¢&, 7 =
0, and the integrand, A(t) (C%(¢,, )&t — CP(&,, 1)), is zero for all T €
[¢, T1. The weak inequality is then satisfied. Finally for 0 < ¢®(s,, t) < s,, it
follows from Theorem 2 that for all r € [¢, T] and all ¢, > 0, 0 = C%(g,, T)
< ¢,.. For C®(&¢,, 1) = 0 the integrand is zero. For 0 < C%(¢,, 1) < &,
Proposition 1 implies that CP(¢., 7)é, — C®(&, 7) > 0, and hence
A(TNCP(E,, 1€, — CP(£,, 7)) is nonnegative, and strictly positive for A(7) >
0. Thus for 0 < ¢®(s,, t) < s,, since JT A(r)dr > 0,

t

T
X(S,t) = EU A(D(CHE:, D&t — CH(EH, 1) dr} > 0. (A38)

QED.
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Rather than apply the Feynman-Kac Theorem, the task of demonstrating
that X(S, ¢t) > 0 can be transformed into a familiar, and intuitively positive,
valuation problem. Suppose first that in the normalized (zero interest rate)
economy 4, we wish to value a contingent claim, V(S,, ¢), with the following
contractual terms: The party long the contract will at all times 7 € [¢, T
receive a continuous income stream from the short equal to A((CE(S,, 1S, —
C%*(S,, 1), and nothing thereafter. Given the assumptions of Theorem 4 such an
income stream is always nonnegative. Further, when 0 < ¢*(s, ¢) < s, the strict
convexity result of Proposition 1 implies that the income stream will, with positive
probability, be strictly positive over some time interval. Thus at time ¢ this income
stream contract has a strictly positive value to the long; i.e., V(S,, £) > 0. At its
maturity, the income stream contract is valueless, and V(S, T) = 0. The p.d.e. and
terminal condition for this income stream contingent claim are identical to the
p.d.e. in equation (A35) and the terminal condition whose solution determines
X(S, ¢t). It follows immediately that X(S, ¢) = V(S, ¢t) = 0. Further, provided 0 <
c*s, t) <s,X(S, t) > 0.

Proof of Theorem 5: Suppose that changes in the value of a third underlying
asset, AU, are also described by a one-dimensional diffusion, with o"(s, t) =
o(s, t) = c®(s, t) = o(s, t). Suppose further that asset U pays a continuous
proportional dividend at the rate 8"() for all 7 € [¢, T']. The superscript “U” is
a mnemonic for underlying. Consider a call option written on asset U, ¢(s, ¢),
with the usual payoff at maturity of max[0, s» — KI, and the additional
contractual feature that at all times 7 € [¢, T'], the short pays the long a
continuous dividend, proportional to the value of the call, at the rate 8°(t). The
superscript “0” is a mnemonic for option. We introduce the following notation
to describe this call: c(s, ¢, 8", 8°). Using this notation we have c¢"(s, ¢) =
c(s, t, 8%, 89), c¢(s, t) = c(s, t, 8%, 0), and c¢®(s, ¢) = ¢(s, t, 0, 0). To
preclude arbitrage it must be that

Vs, t) = el ¥ (s, ¢, 8%, 0). (A39)
‘The value ¢"(s, t) is given by the solution of the following p.d.e.
cz(s, t) + Velo(s, t)s)eli(s, t) + r(t)c™(s, )(Q%s, t) — 1)

+ 8% ¢t)cV(s, t) — cius, t)8M(t)s = 0, (A40)
subject to the terminal condition ¢%(s, T) = max[0, s — K]. Now suppose
further that for all 7, 8%(r) = %) = &%7). Substituting into the p.d.e. in
equation (A40) gives
cz(s, t) + Ve[o(s, t)s)ecli(s, t) + r(t)c™(s, )(Q™%s, t) — 1)

+ 8%(t)cMs, t) — (s, t)8(t)s = c3(s, t) + Ve[o(s, t)s]%cii(s, t)

+ (r(t) — 8%(¢))c (s, t)(QY(s, t) — 1) = 0. (A41)
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“Thus, the p.d.e. in equation (A41), whose solution determines the value of ¢ (s,
t), is identical to the p.d.e. that would determine the value of ¢%(s, ¢) in an
otherwise equivalent economy in which, at all times T € [t, T, the interest rate
was lower than r(t) by the amount (7). It then follows from Theorem 4 that,
for all s and ¢,

cP(s, t) =cs, t) (A42a)
and, for all s and ¢ such that 0 < ¢%(s, t) < s,
c®(s, t) >cWYs, t). (A42b)
Further, substituting 8"(7) = 8%(1) = 6*(7) into expression (A39) gives
cWs, t) = el ¥ (g ¢ &% Q) = el BMdrgel (g ¢). (A43)
Combining equations (A42) and (A43) gives, for all s and ¢,
cU(s, t) = eI ML B(g ¢) (A44)
and, for all s and ¢ such that 0 < ¢%(s, t) < s,
(s, t) < e S ¥AEA(s ¢), (A45)

Q.ED.

Proof of Theorem 6: Let S and S denote the time ¢ normalized prices of
the two assets.

dS# = a®(-)d1 + 34(S¥, 1)S¢dB,. (Ad6a)
dS® = a®(-)d1 + 3*(S?, 1)S*dB.,. (A46b)

T

For all S and 7, 3%(S, 7 = 3°S, 7), and, for S and 7 in some region, 3*(S, 7) >
S48, 7). Let X(S, t) : = VE(S, t) — VS, t) denote the difference in values
of the normalized contingent claim prices. V*(S, t) solves

Vi(S, t) + Vo[2i(S, t)ST?Viy(S, t) =0, (A47)
subject to Vi(S, T) = g(8), i = o, B. X(S, t) solves

X,(S, t) + Y2[24(S, t)ST2X (S, ¢)
+ Vo[[3%(S, ¢)]2 — [24(S, ¢)]?]S?VY(S, t) = 0, (A48)

subject to X(S, T) = 0.
From Theorem 2 the term

Ve[[2%(S, H)]* — [£4(S, t)]PIS*VIi(S, t) (A49)
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in the p.d.e. in (A48) is nonnegative. The remainder of the proof parallels that
of Theorem 4. Q.E.D.

Proof of the Strict Convexity Claim of Proposition 1: Let S and C be the
normalized prices of the underlying asset and the call as defined in the
introductory paragraph of the Proof of Theorem 4. Suppose that at time ¢’ the
strict convexity claim is violated for prices in some region. Let a(¢’) and
b(t') = a(t') denote the normalized prices marking the end points of that
region; i.e., for all S € (a(¢'), b(¢')], max[0, S — K] < C(S, t') < S yet
C,.(S, t’) = 0. Suppose a(t’) > 0. Since C(a(t’), t') > max[0, a(t') — K],
yet C(a(t’), T) = max[0, a(¢') — K], there must exist a set of times 7 €
(¢', T] at which Cy(a(¢’), 7) < 0. Let us then consider the particular value of
t' such that not only is max[0, a(z’) — K] < C(a(t’), t') < a(t') and
Cii(a(t’), t') = 0, but for some " > ¢’ we have that for all T € (¢/, ¢t"),
Cyla(t’), 1) < 0. Given the p.d.e. in equation (A29) we see immediately that
for all 7 € (¢, "), C11(a(t’), 7) > 0 and 2(a(¢’), 7) > 0. Assume that
S(a(t’), t') > 0.2% Since Cy(a(t’), t') = 0 and 3(a(t'), ¢t') > 0, there then
exists an arbitrarily small positive & such that for all ¢ € (0, &), not only is
Cii(a(t’) — e,t') > 0 and Z(a(t’) — &, ') > 0, but C,5(a(t’) — &, ') >
0. Further, since Cy(a(t'), t') = 0 and for all S, C4(S, ¢') = 0, it follows that
Cio(a(t’), t') = 0. Strict convexity for all T € (¢, ¢’) requires that for time ¢'*,
lim, o [(Cy(a®), ¢") — Ci(at’) — &, t'))Ve] > 0. But since Cy5a(t’), ') = 0,
lim, [(Cyla®), t'") — Cy(at’) — &, t'")Vel = lim,_o[(Cy(at), t') — Cyat’) — &,
t'"))/el, which, since Cyy(a(t’) — &, ') > 0, is not greater than lim__[(C;(a(t'), t')
— Cylat') — &, t")e] = Ci1(a(?'), ') = 0, and we have a contradiction. Analogous
arguments rule out a finite value for 6(¢'). Finally, the possibility that a(z’) = 0 and
b(t') is infinite is equivalent to the internally contradictory claim that for all S >
0, max[0, S — K] < C(S, t') < S, yet C11(S, ) = 0. Q.E.D.
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