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Abstract

Motivated by recent auctions of licenses for the radio-frequency spec-
trum, we consider situations where multiple objects are auctioned simulta-
neously by means of a second-price, sealed-bid auction. For some buyers,
called global bidders, the value of multiple objects exceeds the sum of the
objects’ valuesseparately. Others, called local bidders, areinterested in only
one object. In a simple independent private values setting, we (a) charac-
terize an equilibrium that is symmetric among the global bidders; (b) show
that the addition of bidders often leads to less aggressive bidding; and (c)
compare the revenues obtai ned from the simultaneous auction to those from
its sequentia counterpart.
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1 Introduction

In July 1994 the United States Federal Communi cations Commission (FCC) began
aseries of sales of PCSlicenses.! Prior to this, the FCC had granted licenses for
use of the radio frequency spectrum either by “comparative hearings’ or by means
of lotteries. A novel format was adopted for the new series of sales following
consultations with prominent auction theorists, among others: licences would
be sold in batches, and in each batch by means of open ascending bid auctions
that would be conducted simultaneoudly (McMillan (1994) and Cramton (1994)).
Thus bidders interested in more than one license in a batch would have to bid
simultaneously in more than one auction.

The design problem the FCC faced was extremely complicated, and one of the
most important factors cited in both the theorists advice and the FCC's decision
wasthe explicit recognition that there are increasing returns (alternatively referred
to in the literature as synergies, or superadditive values) of two kinds associated
with owning multiple licenses. economies of scale in the amount of spectrum
covering a particular geographic area; and economic advantages of various types
associated with owning licenses that collectively cover large and/or contiguous
geographic areas. There are, however, no equilibrium models in the auction liter-
ature of simultaneous auctions of objects having such synergies? so the theorists
advice was based on insights gained from models of a different character3

The synergies are most significant for biddersintending to establish large PCS
networks. Other bidders, uninterested in such networks, might still be willing to
outbid the network providers, however, even without the external benefit, if they
possessed local cost advantages. This means that bidder asymmetries, a source
of severe complications in the auction literature,* may be rather important in the
context of PCS auctions.

In this paper we explore a ssimple model that seeks to capture interactions of

Personal Communications Services (PCS) is the name given to a new generation of wireless
telephones, faxes, and paging services.

2See, however, Gale (1990).

3There are model s contai ning decreasing returns (for instance, Engel brecht-Wiggansand Weber
(1979) and Lang and Rosenthal (1991)); and, to be sure, there were some decreasing returns
imposed by the rules of the PCS auctions since there were limits to the number of licenses any
one bidder was permitted to win, with penaltiesif abidder exceeded his alotment. But the design
problems stemmed mostly from increasing returns, and the model sin theliteraturewith decreasing
returns are unhelpful for the analysis of positive synergies.

4See Maskin and Riley (1994), for example.



the following three elements:

1. the smultaneous sale of multiple items at auction;

2. the presence of two kinds of bidders, whom we call local and global; and

3. increasing returnsfor the global bidders.

Thusweattempt to deal with the main complicating factorsof the PCSauctions.
To retain tractability, we shall have to abstract away from other specia features of
these auctions, however, and we discuss these issues in more detail later. Below,
we outline asimple model and characterizeits equilibria. These characterizations
are part of the contribution of this paper; but we are also able to draw some
interesting conclusions about these equilibria that are suggestive of unexpected
genera qualitative features of simultaneous auctions. We show, for instance, that
having more competitors often produces less aggressive bidding. Furthermore,
some examplesthat we examine suggest that whether asimultaneousformat raises
more revenue than a sequential format depends on how strong the increasing
returnsare: in our examples the simultaneousformat rai ses greater revenues when
the increasing returns are strong.®

Our general model hasthe following constituent el ements. There are mobjects
to be auctioned simultaneously through a second-price, sealed-bid format.? There
aretwo kinds of bidders, called local and global. Each local bidder isinterested in
only one of the objects, while the global bidders areinterested in multiple objects.
For each of them objectstherearen interested local bidders. Each local bidder has
aprivately-knownvaluation for the object in question. These nmprivatevaluations
are assumed to be independently distributed on [0, 1] according to the cumulative
distribution function F.. Each of k global bidders also observes a signal that is
distributed on [0, 1] according to the distribution function Fg, independently of all
other valuations and signals. This signal is his valuation for a single object, but
if he wins more than one object, the total value received is more than the sum of
hisindividual valuations. For instance (and for most of the paper), if therearetwo
objectsand if the signal aglobal bidder receivesisx, then the value from winning
either single object is exactly x but the total value from winning both objects is

SHausch (1986) compares the two formats in a common val ue setting without synergies.

6As usual, the second-price, sealed-bid format is intended to be a proxy for an ascending
first-price (or English) auction. When multiple objects are auctioned simultaneoudly, however,
whether combinations of bids on multiple objects are permitted and how the auction should close
are delicate matters. After much debate, the FCC chose for the PCS auctions a multiple-round
simultaneous bid format in which no combinatorial bidsare alowed but in which bidding remains
open on al licenses as long as thereis activity on any onelicense.



2x+ a, where « isafixed, publicly-known, positive number and isthe samefor all
global bidders. Of course, thelocal biddersall have (weakly) dominant strategies:
to bid their valuations. We therefore assume they do this and concentrate on the
game thisinduces among the global bidders.

We begin in Section 2 with the case where there is a single global bidder
(k = 1). For expository ease we also assume that there are only two objects
(m = 2). The equilibrium is then smply the solution to an optimization problem
for the global bidder, but as we shall see, it isgenerally not a concave problem. Its
solution contains afew surprises and serves as a benchmark for the analysiswhen
there are multiple global bidders, the case we take up in Section 3. For that case,
we characterize an equilibrium in which all global bidders behave symmetrically.
Comparative statics for the two-object model are then studied in Section 4. Not
surprisingly, we find that increases in o always lead to more aggressive bidding.
More surprising is the finding that increases in k, the number of global bidders,
awaysleadsto less aggressive bidding. For increases in n, the situation is mixed.
Extensionsto morethan two objects are then carried out in Section 5. We consider
two models. In one, al global bidders are interested in all the objects. In the
second, global bidders are interested in different, but overlapping, subsets of the
objects. In Section 6, we first characterize the equilibrium of an auction in which
the objects are auctioned sequentially rather an simultaneously. We then compare
the expected revenue raised from the ssmultaneous auction with that from the
sequential auction. Since a general analysis appears to be difficult, we study
examples having the uniform distribution and small numbers of bidders. We use
Monte Carlo methods to calculate the expected revenues accruing from the two
formats. Our simulations suggest that whether the ssmultaneous or sequential
auction is superior depends on the extent of the synergies. We find that when the
synergies are weak, the sequential auction results in greater revenue. When the
synergies are strong, the simultaneous auction is superior. Section 7 concludes.

2 Single Global Bidder, Two Objects

We begin by considering the case where there is a single global bidder and two
objectsfor sale. Thiswill serve as a useful benchmark for the analysisin the next
section.

Assume that the distribution function of the local bidders' values, F, admits
a density, f., that is drictly postive on [0,1]. Let L denote the distribution
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function of the maximum of the n local valuations, so L(v) = (F.(v))", and let |
= L/, the corresponding density. Recall that the local bidders bid their respective
values, so the global bidder’s expected profit (or payoff) from making the bid pair
(b1 by) € [0,1] x [0, 1] in the two auctions when his signal isx is’

M(by, ba;x) = L(by) L) (2x+a —E(p|by) —E(p| b))
+L (1) (1 — L (b)) (x—E(p | by)) (1
+L (2) (1 — L (1)) (x—E(p | b))

whereE (p | b) denotesthe expected pricethat the global bidder pays for an object
when hewinsit with abid of b € (0, 1]; that is,

E(p[b) = 15, PIOIP.

The first term on the right-hand side of (1) is the expected payoff from winning
both objects, and the second and third terms are the respective expected payoffs
from winning either of the objects separately. Simplifying, (1) becomes

M(by, b2; ) = al (by) L(bz) + L(by) (X —E(p | by)) +L(b2) (Xx—E(p|b)).
Suppose b; > b, and M(by, by; X) > M(b,, by; X). Then, since
(L(by))? — L(by)L(b2) > L(by)L(b2) — (L(b2))?,

it follows that M(by, by; X) > M(by, by; X). Consequently, we may restrict attention
to equal-bid pairs and rewrite the payoff function as

b
M(b,) = (L(B)%a +2L (B)x— 2 | pl(p)d,
whereb € [0, 1] isthe same bid in both auctions.

The first-order condition for amaximum of I(-, X) is

an(b; x)
db

2L (b) 1 (b) a + 21 (b) x — 20l (b)
= 0.
7Of course, in this setting, bidding above oneis equivalent to bidding one.




It is convenient to define
w(X,b) = 2aL (b) — 2b + 2x.

so that interior local extremaof T1(-; X), if there are any, occur where ¢(x, b) = 0.

Figure 1 is a schematic depiction of the locus of solutions to this equation for
a Situation where o < 1 and L is a convex function on [0, 1]. In the region to
the left of the curve, p(x,b) < 0, and to itsright, (X, b) > 0. It follows that for x
<1 — «, the point b~ (x) on the curve is the unique global maximizer of I (-; X);
and for x > X the global maximizer is 1. Between 1 — o and X, the smaller of the
two pointson the curve, b~ (x), isalocal maximizer while the other isnot; but 1 is
also alocal maximizer. Define

= max {x: M(1;%) — N(b~(x);x) < 0} . )

Since

d d
d—x[l'l(l; X) — (b~ (x); X)] 2—-2L(b"(x) — 2d—XI(X)9o(x, b~ (X))
> 0
it followsthat if M(1; %) — M(b~(X);X) = 0, then for all X < x <X,
M%) — N~ (x);x) >0

and it is better to bid 1. Note that all this goes through more generally; the only
special features used in the argument are that the function

x(b) = b — aL(b)

(whichsolves = Ofor xintermsof b) isnondecreasingon [0, b] and nonincreasing
on[b, 1]; which holdsif x (b) isquasi-concave. Assuming that x (b) isindeed quasi-
concave the following result isimmediate.

Theorem 1 Suppose k = 1. The following constitutes an equilibrium of the si-
multaneous auction. (i) All local bidders bid their respective values; and (ii) the
global bidder follows the strategy:

cn_ | bT(X iIf 0<x<X
b(x)‘{ 1 if x<x<1

where b~ (X) isthe smaller of two roots of  (x,b) = 0 and X is determined by (2).
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Note that if x(b) isincreasing on [0, 1] (asin the uniform case withn = 1 and
a < 1), X =1 and thereis no discontinuity in the optimal bid function. If x(b) is
quasi-concave, n = 1, and f_(0) < £, then x'(0) < 0. In this case, X = 0 and the
optimal bidis 1 for al values of x.

Quasi-concavity of x(-) is not easy to characterize usefully in terms of the
primitivesof themodel, but the stronger hypothesisthat x(-) isconcaveisobviousy
equivalent to convexity of (F_(:))". When n = 1, thisisthe rather strong condition
that f_ is nondecreasing; but for n > 1 it is a consderably weaker hypothess.
In fact, it is easy to see that if (F_(-))" is convex then so is (F.(-))"?'; and thus
the restriction becomes progressively weaker as more local bidders are added to
the model. If x(-) is not quasi-concave, the situation becomes more complicated
and not worth pursuing here, since quasi-concavity of x(-) will be needed for the
analysis of the next section when there are multiple global bidders.

3 Multiple Global Bidders, Two Objects

Fork > 2,if a > 2, thenfor al x > 0, the average or per-unit value of an object
to a global bidder exceeds 1. In this case, the local bidders will be completely
shut-out of the auction and the analysis is straightforward (mimicking the case
X > X, below). So suppose that « < 2, and consider a global bidder who receives
asigna of x, = (1— %) . Such a bidder bids exactly 1. This removes the local
biddersfrom the picture; and so when at least one global bidder has asignal of x,,
or greater, a standard second-price auction prevails among the global bidders for
thetwo object “bundle.” In such situations, it isabest response for aglobal bidder
to bid x + 5, that is, half his total value for the “bundle,” and this will be part of
our equilibrium construction.

To analyze bidding behavior for x € (0,x,] assume that the density corre-
sponding to Fg, fg, is strictly positive on [0, 1]. Adopting notation parallel to that
for the local bidders, let G denote the distribution function of the maximum of
k — 1 signals of the global bidders, that is, G(y) = (Fs (y))**; andletg = G be
the corresponding density function. We retain the assumption made in Section 2
that the distribution function of the maximum of the values of the n local bidders,
L, isconvex, or more generaly, that b — oL (b) isquasi-concave on [0, 1].

Suppose that k — 1 global bidders follow the same partial strategy /3, which
assigns the same bid 5(xX) € [0, 1] in both auctions upon receipt of the signal



x € (0,x,].8 For now, suppose that /3 isincreasing (this will be verified later),
though not necessarily continuous. The expected payoff to aglobal bidder, say 1,
who receivesasignal of x € [0, 1] and bidsan amount b is

N = (L1B)G (b)) (2x+a—2E(p| b))
+2L(0) (1 - L(0) G (57 (b)) (x—E(p| b)) 3

where 371 (b) = sup{x: 3(X) < b} and E (p | b) is the expected price paid by
global bidder 1 when he wins with abid of b and will be calculated presently. As
before, the first term is the expected payoff from winning both objects, and the
second term is the expected payoff from winning one of the objects.

Let H denote the distribution function of the highest bid among n local bidders
and k — 1 global bidders when the locals bid their values and global bidders use
the strategy 3. Then

H(P) =L G (37 (), (4)
and the corresponding density (for p € [0,1]) is
1
— -1 -1
hE) =1 G (A E) +LE g (5 ®) T (5)
assuming that 3’ exists.
Thus,
b
E(Ib) = o [ P
= tmeim) b NP ©

Substituting from (6) into (3) we obtain

b
M(0; %) = a(L (0)’G (37 (b)) +2xL (b) G (5~ (b)) — 2 /0 ph(p)dp.  (7)

Maximizing with respect to b yields the first-order condition:

My = 24 -1 o 2 ca-lgmy L
o5 X = 2aLO)IO)G(E™ (B) + o (L (0)"9(37" (b)) 7 ()

81f other global biddersfollow astrategy that assigns equal bidsin thetwo auctions, it isoptimal
for aglobal bidder to do the same. The argument the same asin Section 2.
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1
-1 -1

+2x (b) G(37 (b)) + 2xL (b) 9(3 (b))iﬂ, =0) (8)

—2bh(b)

= 0

Using (5) and the fact that in equilibrium b = 3(x) and rearranging (8) yields
the following differential equation:

y= LI ( aL (8) - 2ﬂ+ZX)
() G(X) \2aL(B) — 25 +2x

for bids 5 in [0,1]. Thus, the lower part of the equilibrium strategy will be
characterized by the differential equation (9) together with the boundary condition:

B (%) =1 (10)

However, the differential equation (9) together with the boundary condition
(20) need not have a continuous solution on (0, X, ] sSince it may be that 2aL (3) —
23 +2x=0for somex € (0,x,]. Thus, we proceed as follows: First, we construct
a particular, monotonically increasing and piecewise-continuous function /3 that
satisfies (9) and (10) on (0, X, ]. Wethen show that the function 3 so obtained indeed
completes the construction of an equilibrium strategy for the global bidders.

(9)

Construction of Lower Part of the Equilibrium Strategy It isuseful to define
thefunctions« (x,b) = oL (b) — 2b+2xand (asin Section 2) » (x,b) = 2aL (b) —
2b + 2x so that (9) can be rewritten as
5= L)X (w(x,m)
1(B)G() \p(x5)

Next observethat for b > 0, o(x, b) > 1»(X, b), and thusif

(11)

S={(x.b) € R:¢(x.b) < 0and ¢(x,b) > 0},

then whenever (x, 3 (X)) € S ¥(x, 5(X)) and ¢ (X, 5(X)) have opposite signs and
thus 3’(x) > 0. The set S consists of the set of points lying between the curves
w(X,b) =0and v (x,b) = 0. (See Figure 2 for an illustration.)

Now observethat since3(x,) = 1wehavethat ¢’ (X, , (X)) = 0and ¢ (X,, 3(X,)) =
«a > 0.Hence 3’ (X,) = 0. Sothereexistsan ¢ > Osuchthat forall x € (x, — ¢,X.],
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(X, (X)) € S Thus (11) has a continuous monotonic solution in the interval
(X, — 6,%,]. By increasing ¢, extend the local solution 5 as much as possible;
say, to theinterval (x, x.] . Notice that the curve (X, 3 (X)) can leave the set Sonly
by crossing the boundary defined by ¢(x,b) = 0, since the boundary «> (x,b) = 0
repelsthe curve back into S

Now define the point X as the maximized value of the quasi-concave function
x(b) =b— aL(b). If x>0, we must have that © (X, 3 (X)) = O, or equivalently,
X =3 — oL (8(x)), andthusx > x. If x = 0, then ¢ (x,0) = 0 and thus again
X > X. Now if X = x we obtain a continuous and monotonic solution to (11) and
(10) on (0, x,]. So suppose X > x. For al x € [x,X], define b* (X) = 3 (X) as the
solution to (11) and (10) and b~ (X) = min{b : © (x,b) = 0}. (See Figure 3 which
depicts a situation where x > 0. Note that the curve /3 hits the curve ¢ (x,b) = 0
where it bends backwards.)

Next consider the function K on the interval [x, X] defined by

b*(¥)
KX = / ¢ (X, b) 1 (b) db. (12)
b—(x)
Lemma 1 K isanincreasing function on [x,X].
Proof. Differentiating (12) we obtain:
K'() = /b b(()) g_i (x.b) 1 (b) db
+p (%" (9) 1 (6" () b” (09 — ¢ (xb™ (9) I (b™ () b~ (%)

But by definition, ¢ (x,b™ (X)) = 0and b* (X) = 3 (X) , thesolution to (11) and (10).

Furthermore, 22 (x, b) = 2. Thus, we have

K'(¥)

2L (" (%) — 2L (b™ (%)) + (%, 3 ()1 (3 () 5’ (%)

= 2L (b"(¥) — 2L (b_ (X)) — A X) %()))()Q(X)
> 0

using (11) and recalling that when x € [x,X] , ¥ (X, 3 (X)) < O.

Now observe that if x > 0, then K (x) < 0 since in that case ¢ (x,b) < 0 for all
b e (b™ (x),b" (x)). Thediscontinuity in the solution to the differential equation,
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when there is one, occurs at the point X, defined by
o ) max{x<x,: KX <0} if KX)<0
=1 x it K(9>0 &)

(Notice that if K(x) < 0, then X is well defined since K is continuous and by
Lemmalif K(X) =0, then for al x € [X,X], K(X) > 0.) Now, at X terminate the
upper leg of 3 and restart the differential equation at (X,b™ (X)) . So for x € (0,X]
let 5 be the solution to the differential equation (11) together with the boundary
condition:

P =b" (X (14)

The complete construction is summarized as follows.

Theorem 2 Thefollowing constitutes an equilibrium of the simultaneous auction.
(i) All local bidders bid their respective values; and (ii) all global bidders follow
the strategy:
cipy =) B if 0<x<X,
b (X)_{ x+5 if x, <x<1

where 3(x) isthe solution to (11) and (14) on theinterval (0, X] and isthe solution
to (11) and (10) on theinterval (X, X,].

Proof.  Clearly, it is a (weakly) dominant strategy for the local bidders to bid
their values.

Suppose k — 1 global bidders are following the strategy b*. As in (7) the
expected payoff of aglobal bidder with asignal of x who bidsbis

b
M(b;x) = a (L (b))* G(b™* (b)) + 2xL (b) G(b™* (b)) — 2 /0 ph(p)dp  (15)

whereb*~1(b) = sup {x: b* (X) < b}.

Before checking that no deviations are profitable, we will first compute the
dope of the payoff function (15). Since b* is not necessarily differentiable (or
even continuous) we need to consider four regions separately.

Region 1: b € (0,b™ (X)].
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Inthiscase, b1 (b) = 3~ (b) and thus the derivative of M(b; X) isthe same as
in (8). Using the definition of h(b) from (5) and collecting terms we can write:
%—E (B:X) = 1(0)G(37" (b)) [2aL (b) — 20+ 2537 (b)]

+L () g(32 (B)) [l (b) — 20+ 257 ()] ———— (16)

B (5-*(b))
+2h(b) (x— A~ (b))

From (11) the first two terms in (16) vanish and it follows that for b €
(0,b™ (%], o
. — -1
o 0¥ =2h(0) (x — 8 (b)) . (17)

Region 2: b e (b~ (X),b" (X)] .
Since other global bidders do not bid in this range, G(b*~* (b)) = G(X) and
h(b) = G(X)I (b) . So we obtain from (15) that for b € (b~ (X),b* (X)],
aa—lg (b;x) = 2aL(b)l(b) G(X) + 2xl (b) G(X) — 2G (X) bl (b)
G(X)¢ (X, b) I (b) . (18)

Region 3: b € (b" (X), 1].
The calculations here are the same as in Region 1 and thus again we obtain
that for b € (b* (X), 1],

on, . )

—p (0:%) = 2n(b) (x— 871 (0)) . (19)
Region4: b (1,1+3].
Inthiscase, L (b) =1 anditiseasy to seethat for b > 1,

M e =2(b-5) (x—b+3). (20

We are now ready to verify that there are no profitable deviations from b* (x) .
The arguments for thethreecases (A) X < X, (B) X <x < x,;and (C) x, <x <1
are dightly different and in each case are broken down according to the four
possible regions of deviations identified above.

CASE A: x < %, so that b* (x) € (0, b~ (X)].

12



Al b e (0, b 3)].

From (17), 21 5p > 0fordl b < 3(x) =b*(x) and it followsthat it does not pay
to deviate and bid b < b* (). Similarly, (17) implies that it does not pay to bid b
satisfying b* (X) <b < b~ (X).

A2.be (b~ (X),b"(¥).

From (18),

(6" (®.x) — M (b” (%),X) =G /b tfg) » (x,b) 1 (b) db;

and

o o o e
"0 N (b7 (9.%) = 6K [ b)) do

< 0
by construction. Since ¢ (X, b) isincreasing in x, thisimpliesthat if x < X, then

M(b" (%), <N (b™ (%)) . (21)

From (18), 28 has the same sign as ¢ (x, b) . By definition, ¢ (x,b™ (X)) = 0
and hence 25 (x,b™ (x)) = Oalso Now sincex < X, b~ (X) < b-(X) and asb

mcreasesfrom b~ (X) to b* (X), 21 Sp (X, b) isfirst negative and then positive. Thus,
foralb e (b~ (X),b* (X)),

MNb;x) < max{l'l(b‘()?),x),I'I(b*(f(),x)}
I'I(b‘(f(),x)
< Mo (x);x)

using (21) and Al

A3. b e (b*(X),1].

From (19), foral b € (b*(X),1], N(b;x) < M((b"(X);x) < N (b~ (X);x) <
M (X);Xx).

Ad. bec (1,1+3].

From (20),foral b > 1, M (b;x) < N (b" (X);x) < M (b*(X);X).

CASE B: X<Xx < X,, sothat b* (x) € (b* (X),1].
B3.be (b"(X),1].

13



From (19), |nth|sreg|on ispositivefor b < b* (x) and negativefor b > b* (X)
and I (b; x)|scont|nuousmb Thus forallb e (b" (X),1], M (b* (X);x) > M (b; X).
By continuity, we also have that I (b* (x) ; X) > M (b* (X); X) .

B4. bec(L,1+3].

From (20), |nth|sreg|on isnegativefor b > b* (x) and I (b; X) is continuous
at 1. Thus, again thereare no profltabledevlatlonsm thisregion.

B2.be (b (%), b+ (x))

Again, from (18) has the same sign as«,o(x b) . Now since x > X, b~ (X)
>pb~(X)andasb mcreasesfrom b~ (X) to b* (x), 2 Sp (X, b) isfirst positive, is 0 at
b~ (x) and then negative. Thus, for al b € (b~ (X),b" (X)) ,

I'I(b‘(x);x)zrl(b;x).

We now show that b™ (X) is not a profitable deviation. Sincex > X, b~ (X) >
b~ () and thus for al b € (b~ (x),b" (X)), 28 is given by (18). Similarly,
b* (X) > b* (X) and thusfor al b € (b* (X),b* (X)), 21 Sp isgiven by (19). Thus, we

can writefor x > X,
M (b"(x);x) —N (b‘ (x);x)
b'(x) b*(x)
/b_(x) G(X)¢ (%, b) I (b) db+/+0 23'(371 (b))h (b) (x 5 l(b))

A(X)

Differentiating A we obtain:

b*(%) de (X, b)

NX = G o Ox 227 (b) db — G(X)¢ (xb (x)) (—(x)) b~ (x)

b 1
#2 [ o F(H O (o) db
+28' (57 (6" (%)) h (6" (%) (x— ﬂ‘l (b" (%))

b
® 2 (X b)I (b) db + 2/ (67 (b))h (b) db
b= (x)
since by definition, ¢ (x, b~ (X)) = 0and b* (X) = b* (X) = 3 (x) . Since 2£%2) and
(' are both pogitive, A’ (x) > 0. But, since X < x, impliesthat K (X) = 0, we have
that A(X) = G(X)K(X) = 0, and so for all x> X, A(x) > 0.

Hence,

G(X)

M (x);x >N (b‘(x);x).
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B1. bec (0,b™ (X)].
From (17),22 > Ointhisregion and thusfor all b < (0,b™ (X)], M (b~ () ;x) >
M (b; X). But we have already shown that b~ (X) is not a profitable deviation.

CASEC: X, <x<1,sothatb*(x) € (1,1+3].

C4. bec(L1+3]

From (20), |nth|sreg|on ispositivefor b > b* (x) and negativefor b > b* (X) .
Thus, thereareno profltabledevlatlonsmthlsreglon Inparticular, M (b* (X) ; X) >
M x).

C3.be (b"(x),1].

From (19), in this reglon is positive for b < b* (x) and thus for al b €
(b*(X), 1], N(b;x) < N(1; x) Smce 1 is not a profitable deviation, there are no
profitable deviationsin thisregion.

C2.be (b™(X),b"(X).

If X <X, theargument isthe same asin Case B2.

If x > X%, thenforal b e (b~ (X),b* (X)), »(x,b) > 0and thus from (18), N
isnon-decreasing. Thisimpliesthat M (b; x) < M (b* (X); X). Since b* (X) isnot a
profitable deviation, neither isany b in thisregion.

Cl be (0,b™ (X)].

From (17), in this region % is positive and thus for all b < (0,b~ (X)],
M (b= (X);x) > N (b; x). But we know that b~ (X) is not a profitable deviation.

We have verified that no deviations are profitable at any x € [0, 1].
Finally, note that the equilibrium payoff of a global bidder who receives a
signal of xis

(b (%) = / )an(bx)db>0

Thus each bidder wants to participate in the auction. This completes the proof.

Structureof theEquilibrium Strategy  Some observationsabout the symmetric
equilibrium strategy of the global biddersarein order.

First, observe that while the strategy is monotonically increasing, it may be
discontinuous. In that case, the quasi-concavity of x(b) = b — «aL (b) ensures that
thereisasingle discontinuity at X and:

limb* (X) = b~ (%) < b* (%) = limb* (X).
X,/ X XN X
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By construction, aglobal bidder with signal X isindifferent between bidding b~ (X)
and b* (X) , although we have chosen b* (X) = b~ (X).

Second, consider the behavior of b* (X) whenxiscloseto x,,. Thetwo conditions
b*(x.) = A(%,) = 1and #'(x,) = Otogether imply that thereisaninterval (x — ¢, X,,)
such that for all x € (X — ¢,X,), b*(x) > x+ §. Thus when the signal is close to
X4, the global bidders bid more than half the value of the two-object bundle. To
interpret such “overbidding,” think of x+« asthemarginal value of asecond object
to a global bidder who has already won one object. A win with a bid just under
1isvery likely to be accompanied by a win in the other auction (since the other
global bidders are surely beaten), and so the expected margina value is close to
X+ «, though bidding that much in both auctions would not be agood idea, as the
two expected marginal values sum to much more than 2x + «.°

Third, if « < 1 and n > 1, both the curves ¢ = 0 and > = 0 are positively
doped at the origin; indeed both have a dope of 1. Since b* (X) lies between the
curves ¢ = 0and ¢ = 0when xiscloseto 0, it isaso the case that b* (0) = 0 and
b*(0) = 1. Thusfor x close to 0, b* (x) < x+ 5. To interpret this “underbidding”
observe that when x is close to O, there is little chance that a winning bid in one
auction will be accompanied by awin in the other (even though the other global
bidders will surely be beaten), so with high probability, the marginal value of the
object isonly x.

Fourth, when« > 1, itispossiblethat lim,_.o b* (X) > 0. Thisisbecause now the
¢ = 0curvehitsthe vertical axis at aheight less than 1 and thus the solution to the
differential equation (9) and (10) may hit the vertical axis unhindered. Intuitively,
even for bidders with signals close to O, the remote, but attractive possibility of
winning both objects, leads to high bids.

Finaly, as an example, suppose that all signals and values are uniformly
distributed. For thecasek =2,n =1and « = 1, aclosed-form solution for b* is
available:

2 jf 0<x<1i
() = { 1+ =A>3
b"(¥) {x+X% if 2<x<1

and isdepicted in Figure 4. Of course, the fact that b* is concave over the interval
[0, x,] (or even that it is continuous) does not generalize.

9Robert Wilson pointed out to us that with synergies, a second price simultaneous auction
has some of the flavor of awar of attrition in that ex post losses are area possibility. Bids that
exceed the value occur with positive probability in equilibriaof the war of attrition (see Krishna
and Morgan (1994)).
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4 Comparative Statics

In this section, we consider the effects of changesin the three parametersa, k, and
n separately on the equilibriafrom Sections 2 and 3.

Varying the Synergy Parameter When k = 1, increasing « decreases x(b) =
b — aL (b), hence increases the smallest positive root of ¢(x,-), b~ (x), which
is the bid before any jump. Now the jump to 1, if there is one, occurs where
M(1,x) = N(b=(x), X); but, from the Envel ope Theorem,

d%[ﬂ(l,?) —N(b~(®),%] =1~ (L(b™(X)*> 0.

So the jump comes at a smaller value of X when « islarger, and the optimal bid is
therefore nondecreasing in « for every x.
For k > 2, asimilar conclusion is obtained:

Proposition 1 Assume k > 2 and a3 > ap. Let bj(-) and b3(-) be the respective
symmetric equilibrium strategies of the ssmultaneous auction. Then for all x,

1(¥) = b3(x).

Proof. The conclusion is clearly true for x > (1 — %), and bj(1 — %) >
5(1 — 5). Therefore, if there exists an x such that bj(X) < b3(x), either thereis a
largest value of x, say x*, whereb; (x*) = bj(x*) andfor all x € [x*, 1], b} (X) > b5(X),
or b; jumpsover b; and stays aboveit. To ruleout thefirst possibility, observe that
in the last factor of (11) the numerator is negative and the denominator positive;
hence changing from «; to a, increasesthe absol ute val ue of that factor, and hence
increases /3'(x*). But thisisinconsistent with the definition of x*, a contradiction.
To rule out the second possibility, we arguefirst that if by jumpsat, say, X;, then if
5 jumpsat all, thisjump isto the right of X;. To seethis, observe that

d%[l'l(b{(il),il) — N(by (%), %)] = [(L(b1(%0))* — (L(b; (X1))*1G(%) > O

from the Envel ope Theorem; but then the monotonicity of K(x) (Lemmal) implies
that decreasing « pushes any jump in b to the right. So, for al x € (X, 1],
b3 (x) > b3(x). Now, since the locus satisfying ¢, = 0 for a4 lies to the left of the
corresponding locusfor a, it followsthat for al x € [0, 1], bj(X) > b5 (X) aswell.

Soincreasesin o unambiguoudly increase bids (weakly) for all global bidders.
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Varying theNumber of Global Bidders Next consider changesink, wherethe
result is perhaps not so intuitive.

Proposition 2 Let bi(-) and by, ,(-) be the symmetric equilibrium strategies of the
simultaneous auction when the number of global biddersisk and k+1, respectively.
Then for all x,

k1 (%) < B (%).

Proof. First, consder changesfromktok + 1, wherek > 2. On[1 — 5 1], the
two equilibrium strategies, by and b;,,, coincide. If neither equilibrium strategy
hasajumpat 1 — 3, thenfor x < 1 — 3 but sufficiently close to it, differencesin
(' for equal values of x are determinative. Substituting for G and gin (11) reveals
that k enters only through the factor (k — 1) in the numerator. So a change fromk
tok+ 1increases 3’ and hence reduces 3 (sincethe two 3—curvesmeet at 1 — 3).
So, as above, if b, ,(X) > bi(X), either thereis alargest value of X, say x*, where

k1 (X7) = b (x7) and b, 1 (X) < bg(x) for dl x € (x,1 — %), or by jumps over by,
and stays above it until 1 — 5. The first possibility is ruled out, since at x* the
higher derivativeis associated with by,;. To rule out the second possibility, note,
again from the monotonicity of K(x), that the jump in b;, say at X, must occur to
the left of any jump in b;,,. But, since the ¢,(-,-) = O locus is the same for al
k, this means that bg,,(x) < bi(x) for al x € (0,X) aswell. So b} cannot jump
over by,,. (Notethat if either strategy jumpsat 1 — 3, the argument is essentially
unchanged.)

Now consider changes from k = 1 to 2. It is straightforward to check that in
all cases b; hits 1 before b does. (And for still larger signals, we may take the
global’s bid when k = 1 to be as large as we like.) Beforeits jump, bj(x) follows
b~ (x), the curve that definesthe upper boundary of Sfor k = 2; so the single global
bidder isagain more aggressive.

Varying the Number of Local Bidders For changesinn, it appears difficult to
say anythingingeneral. We confineoursel veshereto reporting asinglecomparison
which illustrates that the equilibrium bid functionsb* may cross. Suppose that all
values and signals are uniformly distributed. When o = 1 and k = 2,

forn=1, b*(.24) = .78 and b*(.30) =~ .88;

forn=2,b*(.24) = .75 and b*(.30) =~ .91.
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5 MoreThan Two Objects

In this section we consider situations where the number of objects, m, is greater
than two. There is more than one way in which the model of Section 3 can be
generalized to the case of many objects. Here we study only two of the possible
extensions.

The first is a straightforward extension of the two object case: there arem
objects and each global bidder isinterested in al the objects. We refer to this as
a model with “common interests” In the second model, there are m objects and
km global bidders with “overlapping interests,” as follows. k global bidders are
interested in objects 1 and 2; k are interested in objects 2 and 3; k are interested
in objects 3 and 4; and so on, ending with k bidders interested in objects mand 1.
Thus each global bidder isinterested in only two objects and there are exactly 2k
global bidderswho bid on any single object.

51 Common Interests

In the model with common interests each of k global bidders is interested in
obtaining as many of the m objects as possible. Of course, we assume that the
values associated with multiple objects are subject to increasing returns, model led
asfollows. Consider the marginal value of an object to aglobal bidder. The first
object has a marginal value of x and, as in Section 3, the margina value of the
second object is x + «. To continue in the ssimplest way, now suppose that the
marginal value of the third object isx + 2«, the marginal value of the fourth object
isx+ 3a, and so on. Ingeneral, the marginal value of thetth objectisx+ (t — 1) «,
fort = 1,2,...,m, and thus the total value from obtaining t objectsis tx + @a.
Notice that the marginal value of additional objectsisincreasing in the number of
objects obtained, and the increasing returnsimplicit in this formulation are rather
strong.

Of course, if « > —Z: then the average or per-unit value associated with m
objectsis greater than 1 for all x > 0, and so the local bidderswill be shut-out. To
rule out thistrivial case, assume that o < 2.

If k — 1 global bidders follow the strategy 5 and a global bidder with signal x
bids b, his expected payoff is

m

MN;x) = Z(T)L‘(l—L)m‘tG t(x—E(p|b))

t=1

+t(t2—1)a

(22)
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= :_2Lm(m— 1)al’G+m(x—E(p| b)) LG (23)

b
= :—Lm(m—l)aLzG+meG—m/ ph(p) dp
2 0

where we have economized on notation by writing L (b) asL and G (6—1 (b)) as
G and where E (p | b) isdefined as usual by (6). Thetth termin (22) isthe payoff
to aglobal bidder from obtaining exactly t of the m objects. The simplification to
(23) results from recalling the formulae for the first two moments of the binomial
distribution with parametersmand L:

m

3 (rtn) L' — L)™'t = mL,

t=1

m
3 (rtn) L'(1— L)™' = mL (1 — L) + L2,
t=1
The first-order condition for the lower part of the equilibrium yields the differ-
ential equation

y=—LO)IK (%m(m—l)ozL(ﬁ)—mﬂ+mX) (24
1(B)G() \ m(m—1)aLl(3) -m3+mx )’
which generalizes (9). The relevant boundary condition is now
ﬂ(l— mgla) -1 (25)
Asin Section 3, define
Ym(X,b) = :—2Lm(m— 1) oL (b) — mb + mx
em(Xb) = m(m-—1)al (b) — mb+ mx
so that (24) may be rewritten as
,_ —L(B) ) [ ¥m(x 5)
= Teem (o) 29

aformanalogousto (11).

20



Observethat for b > 0, om(X, b) > ¥m(x, b) andif L isconvex, then the function
x(b) = b— (m— 1) aL (b) which solves ¢n(x,b) = 0, is concave. Now, asin
Section 3, the differential equation (26) together with the boundary condition (25)
may be used to construct the lower part of the equilibrium strategy for the global
bidders. The upper part is aso analogous and the verification that an equilibrium
resultsis the same asin the proof of Theorem 2.

In the formulation above, the increasing returns have been specified in a par-
ticular way: the marginal valuesare x, X + o, X + 2«, X + 3, €tc. It can be shown
that, if the increasing returns are at least as strong as this, an equilibrium can be
constructed along the lines outlined above. If they are weaker, however, there are
other complications and the exact nature of the equilibrium strategy is unknown.

5.2 Overlapping Interests

In the model with overlapping interests different globa bidders are interested in
different pairs of objects. Suppose that there are m types of global bidders and k
bidders of each type. Fort = 1,2,...,m, aglobal bidder of typet isinterested in
objects#t and #t + 1 (wherem+ 1 = 1). Thus aglobal bidder of typet competes
with the k — 1 other global bidders of typet and k global bidders of typet — 1
for object #t. Similarly, he competes with the k — 1 global bidders of typet and
k global bidders of typet + 1 for object #t + 1. As aways there are also n local
bidderswho areinterested in each object. Asin Section 3, for aglobal bidder with
signal x, the value of asingle object is x and the value of two objectsis 2x + a.
Suppose al global bidders follow the same strategy 5. If a global bidder of
typet bids b on both object #t and #t + 1 after recelving asignal of x, his expected

payoff is

M) = LO?Fe(371) " (2x+a—2E(p| b)

|
2L (B)Fs (3740)" " (1-LOFs (570)") (x—E(p | b)
oL (b Fe (571 (b)) ™"
+2L (B)Fs (571(0)" (x—E(p|b)

where the first term in the expression for M (b; X) is the payoff from winning both
objects # and #t + 1 and the second term is the payoff from winning one of the
objects. Once again, E (p | b) is the expected price paid by a global bidder who
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wins with abid of b; but the distribution function H of the price paid by a global
bidder isdifferent from that in Section 3. We now have that

H (p) = L (p) Fo (57 (0)) "

Whenb < 1, thefirst-order conditionfor an equilibriumresultsin thefollowing
differential equation

ye= (2k — 1)L () fs (X) ((%j) al () Fe (K — 23 + 2x)

27
1(3) Fe (X) 2aL (B)Fe ()" — 28 + 2x @0

When b > 1 and hence L (b) = 1, the first-order condition for an equilibrium
resultsin

b*(x)=x+:—L

<3k—1
2

ok — 1) oFo (0"
provided that x > x,, where

1/3k—1 .
"3 (ag) oFetar =2

The relevant boundary condition associated with (27) is now
B (%) =1, (28)

so that we have 3’ (x,) = 0.
Define
k-1

d(x,b) = 2aL(b)Fg (XX — 2b+2x

) oL (b) Fe (X)X — 2b +2x

so that (27) can be rewritten as

,_ @k D)L(A)f() (‘P(x,ﬂ))

& (29)

1(5) Fe (¥) @ (x, )

aformanalogousto (11).

First, notice that for b > 0, d(x,b) > W(x,b). Second, even though the
eguation ® (x, b) = 0 cannot be solved explicitly for x in terms of b, it is still the
case that for all x, the set

SX) = {b: ®(x,b) <0}
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is convex whenever L is a convex function; so that an argument similar to that in
the proof of Theorem 2 goes through.

This allows the construction of the lower part of the equilibrium strategy b*
exactly as in Section 3 and the verification that this constitutes an equilibrium is
the same asin Theorem 2.

6 Sequential versus Simultaneous Auctions

In this section we examine the sequential format, that is, when the objects are
auctioned off sequentially. Our goal isto compare the revenues raised from the
sequential auction to those raised from the simultaneous auction. We assume that
there are two objects for sdle.

Once again it is convenient to begin with the case of a single global bidder.

6.1 Single Global Bidder

To find the equilibrium in the sequential auction, we work backwards and begin
by examining the auction for the second object. Asusual, in both auctionsitisa
dominant strategy for the local biddersto bid their respective values.

6.1.1 Auction #2

Suppose the global bidder received a signal of x. If he won the first auction, the
value of the second object isx + o and it is adominant strategy to bid x + « inthe
second auction. If he did not win the first auction, the value of the second object
isxand it isadominant strategy to bid x in the second auction.

6.1.2 Auction#1

Let 71(X) denote the expected payoff in the second auction of the global bidder
with asignal of x conditional on having won thefirst auction. Having won thefirst
auction, the probability that he will win the second auction with abid of x + o is
L (x + «). Hisexpected payoff can thus be written as

L(x+a) [x+a —E(p| x+a)

1 X+or
X+a — L(Xm)/o pl(p)dp]

71(X)

L(x+a)
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(x+a)Lx+a)— [ pl(p)dp
[ L
0

Let mo(X) denote the expected payoff in the second auction of the global bidder
with asignal of x conditional on having lost the first auction. Having lost the first
auction, the probability that he will win the second auction with abid of xisL (X).
The expected payoff can thus be written as

L (9 [x—E(p )
| Lp)dp.

In the first auction it is a dominant strategy for the global bidder to bid ~(x)
where

7o(X)

X+ 71(X) — 7o(X)

x+ [ Lo [ Lp)dp

= x+ [ Lpp (30)

7(X)

The global bidder bids the value of the object, x, plus a premium that represents
the differencein the values attached to winning and losing.
We thus obtain:

Theorem 3 Suppose k = 1. The following constitutes an equilibrium of the se-
guential auction. (i) All local bidders bid their respective values, and (ii) the
global bidder with signal x bids as follows:

inauction#1: ~(x)
i auction #2 - X+« if hewon auction #1
' X if he lost auction #1

where ~(X) is given by (30).

6.2 Multiple Global Bidders
We now deal with the case where there are at least two global bidders.
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6.2.1 Auction #2

Consider a global bidder, say 1, who has received a signal of x. As before, if this
bidder won the first auction, the value of the second object isx+ o and itisa
dominant strategy to bid X+ « in the second auction. If thisbidder did not win the
first auction, the value of the second object isx and it isadominant strategy to bid
X in the second auction.

6.2.2 Auction #1

Let 71(X) denote the expected payoff in the second auction of aglobal bidder, say
1, with asignal of x conditional on having won the first auction. Having won the
first auction global bidder 1 must have outbid the other global bidders and is thus
sure to outbid them in the second auction also. Thus the probability of winning
the second auction with abid of X+« conditional on having wonthefirst is exactly
L(x+a). Let M(p) = L(p)G(p) and m = M’. The expected payoff can thus be
written as

L(x+a) [ x+a—E(p]|x+a)]

1 X+or
X+a — Mx+a) /0 pm(p)dp]

= Lecra)(ra) — ooy [, PIO)P

71(X)

= L(x+a)

= oo lLxrasKray )~ [ iy
1

= Soamh MEYR (3D)

Let 7o(X) denote the expected payoff in the second auction of aglobal bidder,
say 1, with a signal of x conditional on having lost the first auction. Suppose
all globa bidders follow the strategy ~ in the first auction. Having lost the first
auction, the payoff from the second auction is positive only if 1 nevertheless
outbid all the other global biddersin thefirst auction. The probability of this event
conditional on having lost the first auctionis

[1-LGENIGK
1-GML(H ()
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The expected payoff in the second auction is thus

[1-L{GNIGK)
1-G(X)L(y()
1-L(v() x
1-GMWL(H M) [M(X)X - /0 pm(p)dp]
1-L(v(¥)  x
1-G(X)L(y(x) /o
(Noticeit followsfrom (31) and (32) that 71 (X) > 70 (X) .)
A global bidder with signal x should bid v(x), where

LX) [x—E(p|x]

To(X) =

M(p)dp. (32)

7(X) X+ 71(X) — m0(X)

Xto

1
X+ m /0 M(p)dp

LG
1-GL( () Jo NP (33)

The equilibrium strategy is then the solution to a fixed point problem. We now

show that such afixed point always exists. Define the function
1—L(b) X

1-GX)L(b)Jo

1

X B) =Xt S

[ M@ap - M(p)dp,

so that the equilibrium bid is one that satisfies y (x,b) = b. Now notice that since
Y (%, X) > xand y (X,x+ 71 (X)) < x+71(X), thereexistsab € [X, X + 71 (X)] such
that v (x,b) = b.

Theorem 4 Suppose k > 2. The following constitutes an equilibrium of the se-
guential auction. (i) All local biddersbid their respective values; and (ii) a global
bidder with signal x bids as follows:

inauction#1: ~(x)

. : . X+« if hewon auction #1
in auction #2 : «

if he lost auction #1

where ~ (X) isa solution to (33).
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6.3 Revenue Comparisons

A general comparison of the revenues from the sequential and simultaneous auc-
tions appears to be rather difficult. This is because the equilibrium strategies for
the global bidders are quite complicated, especially in the simultaneous auction.
We now report some numerical results on two examples. Suppose that all values
and signalsare uniformly distributed and that thereisonly onelocal bidder at each
location, that is, n = 1. We ask how the expected revenues from the two auctions
vary with the parameter «.

6.3.1 SingleGlobal Bidder

If there is a single global bidder, the revenues from the two auctions can be
explicitly computed. Figure5 depictsthe difference between the revenue from the
smultaneous auction, Rgm, and the revenue from the sequential auction, Reeg, as
afunction of «. When « issmall the sequential auction resultsin higher revenues.
For large «, the ssimultaneous auction is superior.

6.3.2 Two Global Bidders

When therearetwo global bidders, the revenuesfrom the two auction formscannot
be calculated explicitly and so we report the results of Monte Carlo simulations.
For each of twenty different values of «, 1000 (pairs of) auctions were ssmulated
and the resulting expected revenues are depicted in Figure 6.

Again, we find that the sequential auction is revenue superior for low values
of o and the ssimultaneous auction is superior when « is high.

7 Concluding Remarks

We motivated this study by referring to some of the significant aspects of the
PCS spectrum auctions. There are other aspects of those auctions for which our
model doesnot provideagood fit, however; and these suggest directionsfor future
research. First, our model sassumeindependent (and within-typeidentical), private
valuationg/signals and deterministic, commonly-known synergy terms. Although
a decomposition involving an additively separable synergy term is probably not
a bad approximation, much more redlistic, but also much harder, would be if the
signals, valuations, and synergy terms were correlated and, say, affiliated.
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Second, the strategic problems that arise in the presence of synergies are very
subtle; most likely they are affected by the fine details of the auction rules (for
example, in an open-auction format, whether al auctions remain open until there
areno active bidderson any, or whether they closeindividually). Thecrude, sealed-
bid, second-price s multaneousauctionsin our model cannot hope to provide more
than arough cut at the strategic problem. By combining the hypothesis of a class
of bidders who are unaffected by the synergies with a second-pricerule, however,
we have been able to accommodate asymmetric bidders with a fairly standard
approach. Until more progressis made on single-auction theory with asymmetric
bidders, one cannot hope to do too much better.

Third, we have assumed that each global bidder treats the objects as identical
ex post. More interesting and realistic would be, say, the assumption that each
global bidder sees a separate signal for each object. It would then be possible to
ask whether arealized signal that islower relativeto itsmarginal distribution than
a companion signal will be more “over-" or “underbid.” Based on the discussion
at theend of Section 3 about “over-" and “underbidding,” we conjecture that when
abidder sees an extremely low signal paired with an extremely high signal in such
a setting, in equilibrium he should bid aggressively (relative to the signal) on the
object with the low signal and relatively passively on the companion object.

Fourth, since the bidders in the FCC auction are mostly firms that compete in
thefinal market for services, the value of alicense depends also on the distribution
of licenses to other bidders. Thus the auctions involve endogenous values in the
sense studied by K. Krishna (1993) and Gale and Stegeman (1993). In particular,
those papers ook at sequential auctions when increasing returns are present in a
complete information setting. How the presence of incomplete information and
simultaneous sales affects their results remains to be seen.

Seemingly less obnoxious are the assumptions of compact supports for the
private valuations, identical [0, 1] —supports, and strictly positive densities. These
assumptionsaremadefor standard technical reasons. The quasi-concavity assump-
tion on x(b) is needed to insure that no more than one jJump occursin equilibrium.
We suspect that weakening it will admit the possibility of multiplejumps, but there
appear to be additional problemsin attempting a straightforward extension of the
constructions used in this paper.

Of our results, we call attention once again to three. First, that increasing
the number of global bidders always (and increasing the number of local bidders,
sometimes) results in less aggressive bidding by the global bidders. The intuition
for thisis apparently that the more competitorsthere are, the higher islikely to be
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the second-highest bid.1® When “overbidding,” thisis obviously important. Even
when “underbidding,” however, this “ price-effect” can hurt, for low bids are aso
too high ex post if only one object iswon. Evidently this price effect overwhelms
the more familiar competitive effect of increasing the number of competitors. Of
specia interest would be if the decline in aggressiveness were so severe that it
could cause a decline in expected revenues from the auctions. (We have not done
enough simulationsto know whether thisis even worth being called a conjecture.)
It could also be, however, that the anomal ous price effect would be less significant
in, say, afirst-price auction setting.

Second, our admittedly few smulations suggest that whether simultaneous
auctions raise more or less revenues than sequential auctions depends on the
strength of the synergies present. When the synergies are strong, the simultaneous
auction seems to be revenue superior. The FCC was (by law) not primarily
concerned with maximizing revenue in its auction-design decision, but it would
likely be important to sellersin other contexts. If more synergy tends to favor the
simultaneous design more generally, that would be worth knowing.

Third, in the models of Engelbrecht-Wiggansand Weber (1979) and Lang and
Rosenthal (1991), the synergies are negative rather than positive. Those models
have two objects and simultaneous sealed-bid auctions, and, in the equilibria, a
singleplayer’sbidsarestrongly negatively correlated with each other. Theintuition
is that one wants to win one object but not both, and severe negative correlation
turns out to increase the chances of this when the opponents behave similarly. By
contrast here, a global bidder wants to win both but not one (assuming that on
averagethepricewill behigh). By generating strong positive correlations between
his own bids, a global bidder increases the chances of avoiding the bad outcome
when all other global bidders behave similarly. Thisis most obviously seen when
the bidding gets high enough so that the local bidders are shut-out of the auction.
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