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TWO-PARTY AGREEMENTS AS CIRCULAR SETS 

 

Barry O’Neill* 

 

Abstract:  In making an agreement with someone, I conditionally promise to perform a 

certain action, conditioning my obligation on their both making a corresponding promise 

and performing their action.  What promise should I require?   That they simply commit 

to perform is not enough.  I should demand the kind of promise I am making myself, and 

they should demand the same of me.  This makes our promises indirectly self-referential.  

Assuming the performance actions are specified, my promise can be characterized as a set 

of available promises, all those the other could make to activate my obligation.  We have 

an agreement if each one’s promise is a member of the other’s promise.  Assume that the 

set P of available promises satisfies (1) Aczel’s axiom for circular sets; (2) transitivity: if 

the obligation of pP is activated by p’, then p’P; and (3) superset closure: if pP is 

activated by p’, p is activated by any promise that implies (is a superset of) p’.  The focus 

is on bargaining procedures that treat the parties symmetrically (e.g., no specified offerer 

or accepter.)   Each party chooses an agreement promise p* such that (4) if both make p* 

and one performs, the other is obligated to perform; (5) if one makes p* and the other does 

not, the former is not unilaterally obligated.  It is shown that among available promise sets 

of a given size, exactly one contains an agreement promise and contains exactly one of 

them. 
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1. INTRODUCTION 

Why do we have a duty to keep our agreements?  Rough intuition might say that 

agreements are based on suitably connected promises so the question is really: Why do we have 

a duty to keep our promises?  Equating an agreement to mutual promises is attractive since a 

great deal has been written about when and why promises are binding, and it could be applied 

to agreements.   

Several philosophers have argued the contrary, that agreements are not made up of 

promises.  Gilbert (1993) considers some promise-based definitions and concludes that none 

of them work.  She sees a difficulty in specifying the time when the offerer’s obligation arises.  

Surely an obligation appears when the offer is made, but how can the offerer be obligated when 

the other has not yet accepted and might never accept?  She views an agreement as a jointly 

adopted decision, a multi-person speech act, which is a separate linguistic category from 

promising.  It is more than each individual promising in the same way that two people taking 

a walk together is more than their walking along next to each other.  Other philosophers have 

proposed other bases for agreements; according to Mintoff (2004) they are “exchanges” of 

intentions. 

These interpretations have their own difficulties.  Defining agreements as exchanges begs 

the question.  Sometimes people exchange insults.  If two people find each other’s pens on the 

street they are said to “exchange” them.   People exchange views, glances, gifts or insults, but 

the exchanges that happen in agreements have a necessary element that these other cases do 

not: the parties are agreeing to it (O’Neill, 2018), and this brings us back to the meaning of 

agreeing.  Also, if agreements are intentions or joint decisions, why are they obligatory?  When 

I tell you that I intend to go to a movie tonight, I am making no moral commitment.  Treating 

agreements as promises, as is done here, immediately identifies the source of the obligation. 

The analysis here fits a negotiation procedure that gives neither party a special role.  It 

idealizes the symmetry by having them choose from the same set of possible promises and 

make their promises simultaneously.  A separate paper (O’Neill, 2018) treats the case of one 

party offering and the other accepting, and addresses Gilbert’s objection about when their 

obligations arise. 

 

Possible applications 

An understanding of the foundations of agreements might clarify current debates over 

contractarian theories of society, the economic theory of contracts, or strategic game models 

of bargaining.  Studies of the latter have focused on the rules of procedure and parties’ beliefs 

about each other’s beliefs and goals, but a more detailed notion of the agreement itself might 

suggest new modeling assumptions. 

The analysis might be relevant to tort law.  In finding a breach of contract, should the court 

have the defendant restore the plaintiff’s welfare to where it would have been if the contract 

had been kept, or should it penalize the defendant for doing wrong?  The former position fits 

the view that agreements are mainly matters of efficient planning, to be broken if one party 

finds it is worth the price.  The latter position sees them as moral commitments.  In support of 

the moral viewpoint, Shiffrin (2012) argues that the expediency view of contracts does wide 

social harm by undermining the general norm supporting promise-keeping.  The analysis here 

bolsters her view by showing that contracts can be seen as promises. 

Another application might be to international treaties.  These differ from contracts in that 

they generally cannot be enforced.  Traditionally, they have been called “treaties”, 

“conventions”, or “agreements”, but more recently the United States in particular has avoided 

words that could be seen as limiting its freedom in security matters, and has tended to use 

“regimes,” “frameworks” or “memoranda of understanding”.  The 2015 Iranian nuclear 

agreement was a “Joint Comprehensive Plan of Action.”  How does a mere plan have binding 

force?  The text stated that each party “envisions” itself taking a certain action, that the action 

“will” be taken, and that the parties will take such and such “voluntary measures.”  Given that 
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an agent is free to change an expectation or intention, is this a treaty at all?  A reasonable 

answer would be yes, and the terms it uses are accurate.  An international agreement typically 

works by resetting a poor equilibrium to a mutually beneficial one.  It is in the interest of states 

to follow it, given they believe the other is following it.  It typically includes a verification 

system to justify their beliefs.  Its language should not pretend that it is based on morality, since 

a country that wants to violate it will come up with some justification anyway.  By revealing 

the components of agreements the present analysis might show how far countries can avoid the 

traditional language and still generate the necessary expectations among their treaty partners.  

One current dispute turns on whether the parties made an agreement at all.  Russia has 

insisted that in 1990 Premier Gorbachev accepted the reunification of Germany only if NATO 

would not expand its membership up to Russia's borders.  NATO went on to do that, however, 

and Russian officials have cited a broken agreement to justify some contentious policies, 

including intervention in the Ukraine.  The NATO states deny that there was any agreement, 

even an informal one.  Records of the 1990 high-level meeting suggest that the elements were 

expressed as somewhere between expectations and intentions.  Shifrinson (2016, 17) writes,  

“. . . even Russian leaders claiming a broken promise do not argue that the Soviet Union 

received a formal deal.  Instead the question of a non-expansion pledge involves whether 

various informal, even implicit, statements of US policy in 1990 can be viewed as promises or 

assurances . . ."  The analysis here is relevant to when statements of intentions become promises 

and when promises link to produce agreements.  

 

Outline  

Section 2 shows why it is necessary to condition one’s obligation not only on the other’s 

performance but on the other’s promise.  There are many ways to do this, and, following the 

general method of Gilbert, the section shows why simple proposals do not work.  

To define the idea of a promise within an agreement context, I take as given the actions 

that each party is to perform, and take as understood that each one’s obligation is conditional 

on the other’s performance.  All that is left to define a promise is the set of promises from the 

other that would activate its obligation.  The present framework is that the parties have a 

common set P of available promises, and they simultaneously choose a promise from it.  They 

have an agreement if and only if their promises are members of each other.  The circularity in 

the definition is treated by Aczel’s non-standard set theory (1988), and Section 3 outlines its 

distinctive element, the Anti-Foundation Axiom (AFA).  Its essential content is that a set is 

defined by the membership relationships among its subsets, so that two sets with the same 

membership structure are identical.    

Section 4 puts requirements on the set P of available promises and on the particular 

promise p* that both parties choose from it.  It states the main result, that given the size of P, 

p* is unique.  One requirement is that a promise in P conditions its obligation only on promises 

that are in P, i.e., that the other can make.  In set terms, P is transitive.  Also P satisfies superset 

closure: if an obligation is activated by a certain promise, it is activated by any stronger 

promise.  One promise is stronger than another if the former implies the latter.  If you commit 

to paying me $10 if I promise to mow your lawn by Wednesday, and I promise to do it by 

Tuesday, you cannot object that I am promising too much.  Since the actions our fixed, the 

focus is on another way a promise is stronger, when it is conditioned on less.   

According to the theorem, if the number of available promises is fixed, each party knows 

what to say since among all systems there is exactly one such promise.  It has the same form 

for any size, roughly, “I hereby obligate myself to perform conditional on your performing, 

and on your making either the promise to me that I am now making to you, or any promise that 

would produce an agreement if we both made it.”  Of course it would be easier to say, “I agree 

to the deal,” but the goal is not to replace the normal language of agreeing, but to show its 

basis. 
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The theory idealizes the negotiation as the parties making their promises simultaneously.  

The word is meant in the informational rather than temporal sense, where each promises 

without knowing what the other is saying.  One can think of them holding cards, each one 

named by a number and with a list of numbers underneath.  They talk, then each chooses a card 

from the pack and places it face down on the table.  Together they turn their cards over, and 

they have an agreement if each card’s name is on the other’s list.  Section 5 argues that this is 

a reasonable representation of bargaining where neither player has a special role.  It is 

consistent with the assumptions that they have the same set P of available promises and that 

they choose the same promise p*.  The latter is in fact a corollary of the main theorem. 

Section 6 suggests that P’s size is a social convention in the sense of Lewis (1969), where 

each has an incentive to choose use that size set because it expects the other to do so.  

Section 7 discusses why the AFA is not a purely technical assumption in the agreement 

model.  The AFA suggests that an agreement is based on mental events, the parties holding 

intentions to commit themselves and communicating those intentions.  It is not a matter of 

physical gestures or words, like shaking hands or saying “I agree.”  The final section discusses 

further research, in particular the possibility of weakening the AFA. 

 

 

2. PROBLEMS IN DEFINING AGREEMENTS AS PROMISES 

 

Some simple definitions do not work.  Suppose Alice wants her lawn mowed and Bob is 

ready to do it for $10.  Following the premise that the negotiation procedure is symmetrical, 

they are to make their promises simultaneously.  An important point is that each must condition 

his or her obligation to act not just on the other performing, but on their making a certain 

promise.  Failing to require that puts them at risk.  Consider Version 1 as a candidate for 

defining an agreement.  (The details of their performances, e.g., when and how the actions are 

to be done, are taken as understood, so that “B mows” means B does such and such a job within 

such and such a time frame.  For clarity the parties refer to themselves in the third person, and 

they use “hereby” to distinguish their performative act of promising from an assertion that 

someone is promising.) 

 

Version 1. Alice: “A hereby promises to pay if (B mows.)”                     

                    Bob:   “B hereby promises to mow if (A pays.)” 

 

These are the promises they are supposed to make, but suppose Bob stays silent.  Then 

Alice is conditionally obliged to perform.  Bob can decide later whether to mow, and if he does, 

she must pay him, but otherwise she should have recruited someone else.  Alice has a right to 

complain since she wants to get his commitment now and make plans around it.  Bob, of course, 

has the corresponding worry that Alice might stay silent.  Agreements should not be liable to 

this kind of trick. 

Version 2 tries to fix this by augmenting each condition by the underlined parts.  The other 

must perform and must also promise to perform.  Each requires the other to say what they were 

supposed to say in Version 1. 

 

Version 2. Alice: “A hereby promises to pay if (B mows and B promises to mow if A pays.)”     

                  Bob:    “B hereby promises to mow if (A pays and A promises to pay if B mows.)” 

 

Version 2’s problem is that each person is delivering a weaker promise than the other 

requires.  Bob is putting more conditions on his obligation to perform than Alice told him to.  

She wants him to promise that he will mow on condition simply that she pay, but his promise 

also requires her to make a certain promise.  Since neither promise satisfies the other’s 

condition, they have not made an agreement.  A third version might try to patch this by 
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augmenting each condition with the promise the other was supposed to make in Version 2.  

Then they would have an agreement but be back to the difficulty of Version 1, that one party 

could say less than prescribed and leave the other unilaterally committed (O’Neill, 2018). 

Whatever the right promise is, the symmetry of the situation suggests it should be the same 

for both of them, and indeed the result of Section 4 will lead to this.  (“Same” is abstracted 

from their identities and from the deeds they are supposed to perform.  The promises in Version 

2, for example, are the same in this sense: “I promise to perform if you both perform and 

promise to perform if I do.”)  This section’s argument suggests that each should say, “I hereby 

promise to perform if you perform, and you make this same promise to me.”  This almost works 

but not quite because it violates the persuasive condition of superset closure, described in 

Section 4. 

 

 

3. NON-WELL-FOUNDED SETS 

 

If my promise is conditional on yours and vice versa, we are in a circle so that analyzing 

the situation in English will be confusing.  The concept of a promise will be formalized.  It can 

be characterized as a set: Alice’s set contains those promises any of which from Bob would 

activate her obligation, and vice versa. 

The circularity suggests the use of non-well-founded (NWF) set theory.  After Bertrand 

Russell came upon his paradox, most axiomatic set theories have prohibited sets that are 

circular, either directly, like p p, or indirectly, like p  q  p.  However, the regular axioms 

can be altered to allow self-membership.  Aczel’s approach (1988) has been the most studied, 

probably because it is simple to explain and, in a definable sense, adds the fewest new sets to 

the standard universe.  His system is consistent if and only if the standard one is consistent 

(Aczel, 1988).  Full statements and proofs appear in Devlin (1993), Barwise and Etchemendy 

(1987), Barwise and Moss (1996), Moschovakis (2006, Ch. 11 and App. B), and Aczel’s 

original book (1988).   

The standard way to avoid Russell’s Paradox is restrict the universe of sets by means of 

the foundation axiom (FA).  It forbids any p that allows an infinite sequence 

 

. . .  p3 p2 p1 p.                  (1) 

 

If we rotate (1) vertically with p on top, the FA is saying that starting with p and proceeding 

downwards, we must eventually reach “foundations.”  In a metaphor of boxes (Barwise and 

Moss, 1988), someone gives me a present of p, and I open it to find other boxes, including p1, 

which I open to find p2, and so on.  The FA says that I will not open boxes forever, that I will 

eventually come to ones with either memberless objects or nothing at all.  The FA blocks the 

derivation of Russell’s Paradox since it involves a set that belongs to itself: 

 

                           . . .  p p p p.                        (2) 

 

The FA also excludes the present concept of an agreement by which Alice’s and Bob’s 

promises satisfy pA  pB and pB  pA.  Each opens their box to find one that contains the original 

box: 

 

           . . .  pA pB pA pB.                          (3) 

 

The central issue for an NWF system is: When do different descriptions represent the same 

set?  In the regular theory, p = {r, s} and q = {r, s} are identical because their memberships are 

identical.  This principle holds in NWF theory but is harder to apply.  Are p = {p} and q = {q} 

identical?  To go by their memberships would beg the question: p and q are the same if and 
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only if p = q.  The AFA regards two sets as identical whenever it can take them as such without 

contradiction.  It will turn out that p = {p} and q = {q} are indeed the same, the set uniquely 

defined by the equation   = { }.  Other equations and systems of equations define sets.  For 

example, there is exactly one * such that * = {, *}. 

Aczel’s sets can be stated either as equations or as directed graphs, and we start with the 

graph approach.  Let the standard Zermelo-Frankel universe of sets be U and let Azcel’s 

universe be V.  In this paper these will include only pure sets in the sense that the only 

memberless entity in U or V is the empty set  .  Sets in either universe are designated p, q, r 

. . . .  Define a directed graph as a pair <G, →> where G is a finite set of nodes and →  G × G 

is a set of directed edges.  Our application can drop finiteness without much change.  

Sometimes “G” is used for the graph itself.  Nodes are designated a, b, c, . . ., and instead of 

“(a, b)  →”, we write “a → b”.  If a → b, then b is called a child of a and a is parent of b.  

Node 3 is a parent of all the nodes in Figure 1.  Thus it is a parent and child of itself.  (The 

subscripts of the sets indicate their sizes: |pi| = i.  This convention will be followed when 

possible, i.e., when the sizes are different.)   

An accessible pointed graph (apg), <G, →, a*>, is a directed graph with a distinguished 

node a* such that there is a directed path from a* to every other node.  The distinguished node 

is called the  point.  In Figure 1 the point is taken to be node 3, although the same non-pointed 

graph would yield an apg whose point is 1.  Node 0 could not be a point because it fails the 

accessibility requirement. 

 

 

 

 

 

 
 

Figure 1. An apg with nodes 3, 1, and 0, and point 3.  The point is typically drawn as 

the highest node.  Sets p0, p1 and p3 constitute a decoration. 

    

 

The Anti-Foundation Axiom 

A decoration d of a graph is a mapping from its nodes to sets, d: G → V, such that for a ∈ 

G, d(a) = {d(b) : a → b}.  That is, a node is decorated by the set comprising the sets decorating 

its children.  An apg pictures a set p if and only if p = d(a*) for some decoration d.  It can be 

checked that the assignment in Figure 1 is a decoration.  By substitution we can express all 

unknowns in p3 and conclude that Figure 1 pictures any set satisfying p = {p, {p},  }.  So far 

nothing has been said about whether this equation has no solution in V, or one, or many. 

The apg’s in Figure 2 have no cycles, so they picture well-founded sets.  A finite cycle-

free graph has a unique decoration since we can assign   to the childless nodes, then work 

from children to parents, finishing in a finite number of steps.   

 

         0 

p0 =  

1 
p1 = {p3}  

Figure 2. Graphs decorated by well-founded sets. 

a*, 3            

 p3 = {p3, p1, p0} 
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The apg’s of Figure 3, in contrast, have cycles, and this fact raises the issues of existence 

and uniqueness of the sets they picture.  If sets pictured by Figure 3(i) and (ii) existed, they 

would satisfy Ω = {Ω}, just as any sets pictured by (iii) and (iv) would satisfy * = {, *}.   

The Anti-Foundation Axiom asserts: 

 

Every decorated apg pictures exactly one set. 

 

It is claiming existence and uniqueness of the pictured sets, or, more accurately, declaring them.  

Accordingly, exactly one set contains only itself (Figure 3(i)), and exactly one set contains only 

the empty set and itself (Figure 3(ii)).   

Since an apg can be constructed to picture any well-founded set, Aczel’s universe V 

contains the standard universe U, and since NWF sets exist (Figures 1 and 3), U is a proper 

subclass of V.  The system comprising the regular Zermelo-Frankel axioms for sets with the 

axiom of choice is labeled ZFC, and the system produced by substituting AFA for FA is labeled 

ZFA. 

 

 

The AFA can also be formulated in terms of systems of set equations, according to what 

is called the solution lemma.  Consider n set-valued variables connected by n equations whose 

left hand side involves a single variable and where each variable appears there exactly once, 

and where a subset of the variables appears on each right hand side.  Exactly one p satisfies the 

system p = {p, q, }, q = {p}, and  = {}, which corresponds to Figure 3.  According to the 

solution lemma, the AFA implies that the n equations have a unique solution (Devlin, 1994).  

The rough way to see this is to construct a graph with n nodes labeled by the n variables and 

with the edges leading into a node determined by the corresponding equation. 

 

Set identity and the maximum bisimulation 

A given apg pictures exactly one set according to the AFA, but a given set is typically 

pictured by many apg’s, which may not be isomorphic (Figure 3).  To develop a graphical 

criterion for set equivalence, Aczel uses the concept of the maximum bisimulation.  He defines 

equivalence in a circular way:  two nodes are the same if and only if they have identical 

relationships to other nodes that are the same.   

 

Definition: Let (G,→) be a graph and R a relation on G × G.  Then R is a bisimulation 

on G if and only if for all a, b G, 

     (B1) if aRb and a → a′, then b’ such that a’ R b’ and b → b′, and   

      (B2) if aRb and b → b′, then a’ such that a’ R b’ and a → a′. 

 

A graph may have many bisimulations - the identity relation I = {(a,a), (b,b), . . . } is 

always one – but set equivalence is determined by the maximum bisimulation, the one 

containing every relation that appears in any bisimulation.  There is exactly one maximum 

 
Figure 3. Apg's (i) and (ii) picture Ω = {Ω}; (ii) and (iv) picture Ω* = {Ø, Ω*}. 
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bisimulation and it induces an equivalence relation on the nodes (Moss, 2008).  The maximum 

bisimulation of Figure 4(i) is the relation {(a,b), (b,a), (c,d), (d,c)}   I.  To show this we note 

that it must include (a,b): a has a child c, and since b is in a’s equivalence block, by B1 b must 

have a child in c’s block.  Indeed it has d.  Another child of a is a itself and it is in a’s block, 

so b must have a child in a’s block, and it has a.  The same check must be carried out for b’s 

children as well as for c and d.  Given that the maximum bisimulation is an equivalence, 

checking B2 is redundant, but we must verify that the partition is maximum, e.g., that {a,c} 

etc., are not in it.  Dovier et al. (2004) give an algorithm.   

To extend the definition to equivalence across two apg’s, define the disjoint union of two 

graphs with disjoint node sets as the graph whose node set is the union of the individual node 

sets and whose edge set is the union of their edge sets.  The NWF criterion for set identity is: 

if the points of two apg’s are equivalent in their union’s maximum bisimulation, the apg’s 

picture the same set.  We can apply the definition to show that Figures 4(ii) and (iii) picture the 

same set.  Their union has eight nodes, and it can be checked that the maximal bisimulation 

puts three of them in one block decorated by p, three in a block decorated by r, and the final 

two in a block decorated by  .  Both apg (ii) and apg (iii) picture p = {p, {p, }}. 

 

The canonical picture of a set 

Figure 3(ii) pictures the set   but does it inefficiently.  It has three nodes when a single 

one will do (Figure 3(i)).  Also, (ii) is an incomplete picture since it omits some membership 

relations.  Since every node’s decoration is a subset of every other’s, the full representation 

would have all possible edges, including loops. 

Every set p has a unique canonical picture, an apg that pictures it fully with the fewest 

nodes.  It is constructed by assigning exactly one node to p and to every p’ such that  

p’ . . . p.  (The rule of one node per set presumes a notion of set identity, which is, of course, 

the maximum bisimulation.)   The edge a → b is included if and only if the set decorating node 

b is a member of the set decorating node a.  Since the assignment of sets and nodes is 1-1, the 

apg has no redundant nodes.  Each p has a unique canonical picture since the definition tells us 

how to construct it.  For example, Figures 4(i) and (ii) are not canonical, but (iii) canonically 

pictures p = {p, {p, }}. 

 

 

 

We can now say more about how moving from the FA to the AFA increases the standard 

universe.  Table 1 shows the count of sets for each size of canonical picture.  The WF and NWF 

values are, respectively, from Peddicord (1962) and Miloto and Zhang (1998).  For n = 1 the 

only WF set is .  Allowing NWF sets adds .  For n = 2 the WF group has only { }, and 

the NWF case adds * = (, Ω*}.  After that the NWF numbers grow quickly.  The superset 

Figure 4.  Equivalence within a graph: a and b in (i) are decoratable by p, as (ii) shows, 

and c and d are decoratable by r.  Between graphs: the maximum bisimulation on (ii) 

and (iii) shows that both picture set p.  



9 

 

closure axiom of Section 4 will limit the NWF sets that are possible promises: for n = 1 to 6 

the numbers are 2, 1, 4, 6, 8,10, . . .  and will limit the sets that are possible promises systems 

to 2, 2, 2, 2, 2. . . (Figure 5). 

 

n   1 2 3 4 5 6  

WF 1 1 2 9 88 1,802   

WF & NWF  2 2 16 504 52,944 17,294,923   

 

Table 1. Numbers of sets with an n-node canonical picture. 

 

 

4. PROMISE SYSTEMS AND THE AGREEMENT PROMISE 

 

Example 1: Suppose each of two parties chooses from: 

 

p3 – “I promise to perform.” 

p1 – “I promise to perform if you make promise p3.” 

p0 – “I promise nothing.” 

 

Given the earlier assumption that every promise obligation is implicitly conditional on the 

other’s performing, the explicit version of p3 would be “I promise to perform if you perform.” 

As sets these are 

p3 = {p3, p1,  }, 

p1 = {p3},  

p0 = . 

 

The set of the three available promises is designated P3, which is identical to p3.  Figure 1 is 

P3’s canonical picture. 

A promise system is a triple <P, ,  >, where P   V is interpreted as the set of available 

promises, where these satisfy ZFA, where is the membership relation on P × P, and where  

is an equivalence relationship on P x P representing set identity following the AFA.  We will 

often refer to a promise system simply as P, and |P| will be designated n.  We require  

 

 (Transitivity)  for all p P,  p   P; 

 (Superset Closure)   for all p, q, q’ P, if q   q’ and q p, then q’ p. 

Transitivity means that a promise in P can require from the other party only promises that 

are available.  Superset closure means that if p is activated by the other party making q, and if 

q’ is a stronger promise than q, then p is activated by q’.  Here promise q’ is stronger than q if 

and only if its condition is weaker, i.e., if q  q’.  The promises of Version 1 in Section 2, for 

example, are stronger than those of Version 2.  Example 1 satisfies superset closure, but it 

would violate it if p3 were changed to p3’ = {p3’,  }, since if     p1 and p3’ accepted , 

then p3’ should accept p1, which it does not.  Superset closure does not seem to have been used 

in NWF applications but it is convincing in this context. 

Turning to their choice of an appropriate promise, define p* P to be an agreement 

promise for P if and only if 

 

 (Self-effectiveness)  p* p*, and 

 (Invulnerability)   for all p P, if p p* then p* p. 
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Self-effectiveness means that if each party makes p*, they have an agreement.  

Invulnerability can be understood by its violation: if one party is expected to make a vulnerable 

p*, the other can choose another p that leaves the first party unilaterally obligated.  An 

invulnerable pair of promises is analogous to a Nash equilibrium pair of strategies in a game.  

These requirements represent the two arguments we used against the unsuccessful approaches 

in Section 2.  

 

The two families of promise systems 

Two families of promise systems are now constructed and it is shown that for all n ≥ 1, 

each contains exactly one system of size n.  They are designated Nn and An to suggest “no 

agreement promise” and “agreement promise”, since, according to the theorem, Nn has none 

and An has exactly one.  Let P designate the promise set of An or Nn.  Given the convention 

i = |pi|, with n + 1 possible sizes and n promises, one subscript will be missing, and it is 

designated j*.   

For Nn and An, define P as {p0, p1, . . . pj*-1, pj*+1, . . . pn}, where each pi comprises P’s final 

i promises: 

                             pi =                                               for i = 0, 

              = {pn-i+1, . . . pn}              for i = 1 to j*- 1, 

       = {pn-i, . . . pj*-1, pj*+1, . . . pn}      for i =  j*+1 to n .  

The missing index is 

 

j* = n/2         for Nn, n even;  

           = n/2 + 1/2   for Nn, n odd;  

                      = n/2 + 1   for An, n even;  

                                        = n/2 – 1/2   for An, n odd.   

 

The sets in Nn or An are totally ordered by set inclusion, and accordingly by strength of 

promise.  The stronger promises, those with higher subscripts, accept a certain weak promise 

and everything higher in the order, including themselves.  The weaker ones accept a strong 

promise and everything higher. 

 

Theorem. Exactly two promise systems of size n exist, Nn and An.  System Nn has no 

agreement promise and An has exactly one, its weakest self-effective promise. 

 

The Appendix gives the proof.  A computer routine checked its validity up to n = 8.  Figure 

5 shows Nn and An up to n = 6.  Except for A2, each graph can be used to generate the canonical 

pictures of its sets, except for , by changing its point.  The agreement promise in An is pn/2 for 

n even and pn/2+1/2 for n odd.  The promises of larger systems can be generated in sequence by 

conditioning promises on the simplest promises (the unconditional one and the null one), then 

on promises conditioned on promises, etc., just as Version 1 led to Version 2.   

 

5. ARE REAL AGREEMENTS FORMED SYMMETRICALLY? 

The assumption that the parties choose from the same set of promises and choose the same 

one was justified by the similarity of their bargaining roles. Some procedures violate this by 

allowing one negotiator to make a credible take-it-or-leave-it offer.  Other procedures build in 

symmetry.  In filtered mediation a mediator asks each party separately for an offer and reveals 

what they said only if the offers are compatible (Jarque, et al., 2003; O’Neill 2003).  Ultimatum 

bargaining and filtered mediation are asymmetrical or symmetrical because of their rules, but 

most negotiations are free-form, and in these cases the symmetry assumption is plausible.  

Negotiation is like a relationship where the couple’s commitment cannot be seen as happening 

at any identifiable time.  Little by little they come to a common belief about what it is.  In the  
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Figure 5. Promise systems for n = 1 to 6.  Each graph generates an apg 

for each node except p0.  Thick lines show membership in both 

directions, and square nodes are agreement promises. 
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same way at the end of negotiation one might say, “so we understand each other that . . . “, but 

that is not the formation of the agreement.  They already share an understanding and now are 

putting it on the record.  Many negotiations have a final stage where one party and then the 

other sign a document, but, again, they are ratifying what they have already agreed on.  If after 

the negotiation one of them balked at signing, that could be objected to as bad faith.  Sometimes 

a party will try to introduce asymmetry by declaring their offer “final”, but announcing that is 

short of announcing it credibly.  Usually the other can respond with their own “final” offer.  

Symmetry fits the procedure of many negotiations in that they have no procedure.   

In fact the first symmetry claim, that they have the same choices available, implies the 

second, that they choose the same one.  Call p and p’ mutually effective if and only if p  p’ 

and p’  p.  

 

Corollary.  No promise system contains two promises that are invulnerable and 

mutually effective. 

 

To show the corollary for Nn, n even, for example: if pi, i < j*, is mutually effective with pk, 

then k > j*, and all such pk are vulnerable.  

 

 

6. DETERMINING THE SIZE OF THE AVAILABLE SET 

 

To choose their agreement promise the parties need a shared understanding of the size of 

the promise system, but there seems to be no persuasive way to determine that.  The agreement 

promise in a size-n system is the unique one that accepts itself and all self-effective promises, 

so a tempting move might be to define the “universal” agreement promise, call it p+, as the one 

that accepts itself and self-effective promises in systems of any size.  However, this would 

violate closure: for A2 (Figure 5) the agreement promise is Ω defined as {Ω}, and if p+ included 

Ω, by closure Ω would include p+, contradicting Ω’s definition.  Also, The rule for moving 

from one An to the next larger one makes the agreement promises formally similar to the ordinal 

numbers, and with no maximum size on the systems, p+ would correspond to “the largest 

ordinal”, which is a contradiction as Burali-Forti showed (Copi, 1952). 

It seems better to choose some reasonable finite n and take the choice as a social 

convention in the sense of Lewis (1969).  A social convention is a rule telling members of a 

group what to do in a certain kind of situation; it is arbitrary in that other rules might do but it 

motivates members to follow it given each one’s belief that the others will do the same.  In this 

application, the incentive condition holds, since for n ≠ n’ no promise in An contains any in An’, 

and if a party chose a promise from a system of an non-conventional size, there would be no 

agreement. 

 

 

7. THE FACTUAL CONTENT OF THE ANTI-FOUNDATION AXIOM 

Does the AFA say anything substantial about agreements, and if so, is it correct?  Some 

formal systems include assumptions with no factual content.  Length, mass, time, et al., are 

taken as real rather than rational numbers, but for technical convenience, and no empirical test 

could confirm or disconfirm the assumption.  The AFA, however, suggests that a certain 

empirical situation holds and it seems consistent with a reasonable conception of promising 

and agreeing.  As shown below, it fits with the idea that promises are mental acts rather than 

physical words or gestures.  If parties communicate their intentions to make an agreement, they 

have one.  The AFA can deal with situations outside this assumption but only in an awkward 

and artificial way.  

Suppose that two parties can form an agreement by either both raising their hands (pr) or 

crossing their hearts (pc).  They make their gestures simultaneously and if they fail to choose 
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the same one, they have no agreement.  We give them two further options, making an 

unconditional promise (p4) by making both gestures at the same time, or making no promise 

(p0) by doing nothing. 

p4 = {p4, pc, pr, p0}; 

pr = {pr, p4}; 

pc = {pc, p4}; 

p0 = . 

 

This set of available promises, labeled Prc, satisfies transitivity and superset closure.  

Figure 6(i) pictures it and shows that exactly two promises satisfy self-effectiveness and 

invulnerability: raising one’s hand and crossing one’s heart.  

   

 

The system differs from those discussed above since it allows two different agreement 

promises, so that parties might want a deal but fail to coordinate. The AFA, however, regards 

the two promises as identical.  Both can be decorated by p = {p4, p}, with p4 = {p4, p, } and 

p0 = .  (Their bisimilarity is not surprising since the graph has an automorphism mapping the 

two nodes into each other.)  The canonical picture of p4, Figure 6(ii), has only three nodes, and 

it is A3 of Figure 5.   

In declaring the heart and hand moves as the same, the AFA is claiming that the parties 

are making an agreement even when their gestures do not match.  I believe this is reasonable 

given an appropriate conception of agreeing, that it is a mental event involving the 

communication of beliefs and intentions.  It does not depend on uttering certain words like “I 

agree” or “I promise”, or taking visible actions like signing a document or shaking hands.  Even 

when their gestures do not match, the parties are telling each other that they hold the right 

intention, so by the mental conception  of an agreement they are making one.  (Scanlon, 1990, 

discusses this idea in the context of individual promises, concluding that one individual can 

make a promise to another even without a shared language or mutually understood gestures.) 

A counterargument might be that one can imagine a real social custom that requires 

matching outward gestures as Prc does.  The present model can handle this by allowing 

conditionality in the performances.  The model would interpret raising one’s hand as, “I 

promise to (mow your lawn if you raise your hand during your promise), on condition that you 

pay me, etc.”  (The approach up to now has had conditionality only in the obligations.)  

Agreement promises with conditionality in their performances happen - we use them when we 

make a bet – but this way of formulating an generic agreement is unnecessarily complicated.  

One can often maintain an odd theory by inventing complicated rules for connecting it to 

observables, but under the AFA the purely mental conception is the most straightforward.  

  

 

Figure 6. (i) To make an agreement, both raise their hands (pc) or both cross 

their hearts (pr).  Apg (ii) with p as its point is the canonical picture of (i) and 

identifies pc and pr. 
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8.  CONCLUSION 

Non-well-founded sets have been used in logic, philosophy, computer science, and to a 

lesser extent in the theory of common knowledge (Lismont, 1994; Heifetz, 1996).  The present 

application seems to be their furthest entry into the social sciences, but its purpose is not just 

to add a new method.  Treating the problem in regular set theory would be cumbersome, and 

many of the results proven for NWF sets would not be available.   

Non-well-founded sets tend to prompt suspicion among mathematicians, but that may be 

because they go against familiar ways of thinking.  According to Azcel (1988, xvii) we are 

used that we “construct” sets, starting at the bottom, but this is just a metaphor to make an 

abstract object seem tangible.  The issue is not whether an entity seems usual and can be treated 

as a physical object, but whether it leads to interesting results and applications, and NWF sets 

seem to fit many human phenomena.  If NWF sets like   = {Ω} seem mysterious, they is no 

more so than {} or {, {} of the regular theory.  At its beginnings, formal set theory was 

open to them and adopted the Foundation Axiom mainly to avoid inconsistency.   

The analysis shows that, contrary to some philosophers, agreements are reducible to 

promises.  “I agree to the deal” means something like, “I hereby obligate myself to perform 

conditional on you performing and on you making either the promise to me that I am now 

making to you, or any promise that would produce an agreement if we both made it.”  The fact 

that such an explication is possible clarifies the debates about the contracts and the role of 

implied intentions in international treaties.  By showing the mental approach is coherent, the 

analysis reduces the force of objections that the NATO states were not bound because they 

avoided being explicit, or that the Iranian deal was not a deal because it avoided certain words. 

An interesting abstract result is that adding superset closure to the AFA drastically reduces 

the possible sets.  A further project would add the superset closure axiom to an NWF system 

other than Aczel’s.  Some systems would preserve some of the consequences presented here; 

for example, Finsler’s NWF system (1926; Aczel, 1988) also treats the hand and heart moves 

(Figure 6) as identical and fits the mental approach.  Since the other systems have larger 

universes, more promise sets and more agreement promises might appear.  The results might 

suggest further requirements for an appropriate promise. 
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APPENDIX  

 

Theorem. Exactly two size-n promise systems exist, Nn and An as defined in Section 4.  System 

Nn has no agreement promise and An has exactly one, its weakest self-effective promise. 

Proof: The first part of the proof will establish that Nn and An are promise systems and have n 

different members.  The second part will show the converse, that any n-size promise system is 

one of these or the other.  It will follow that the promise systems of size n are exactly these 

two.   

A set’s property of having n different members will be called distinctness where the value 

of n will be clear from the context.  The following schema for superset closure will be used 

repeatedly:  

if x  y and x  z, then y z. 

 

The first part of the proof will be stated only for Nn with n even, since the changes for the 

other cases are obvious.  To show that Nn is a promise system: A promise system requires 

transitivity, superset closure, and the AFA.  The definition of Nn implies transitivity.  Superset 

closure means that (i) pi  pk and (ii) pi pj imply (iii) pk pj.  The definitions of pi imply both 

that condition (i) holds if and only if i < k, and that i < k and (ii) together imply (iii).  Therefore 

Nn satisfies superset closure. 

Regarding the third criterion: Given the construction of Nn, the only implication of the 

AFA needing proof is that the n members are distinct.  Construct a graph G with n nodes labeled  

a0, . . .  an/2-1, an/2+1, . . . an, (note that the missing index is n/2) and with edges such that ai → aj 

for nodes ai, aj  G if and only if pj  pi for sets pi, pj  Nn . Clearly d(ai) = pi is a decoration 

of G.  Let E(ai) be the set of nodes equivalent to ai  by the maximum bisimulation.  The goal is 

to show that E(ai) = {ai} for every ai, i.e., that the maximum bisimulation is identity.  The 

induction argument will be applied for a fixed n and proceed from the extreme values of the 

indices towards the central ones.  For the base cases a0 and an: all nodes other than a0 have 

children in some equivalence block but a0 has no child in any block, so by the bisimulation 

condition B1, E(a0) = {a0}.  Also by B1, E(an) = {an} since only an has a child in {a0}. 

To show the induction steps: For a given i [0,  n/2 – 2] assume that each of a0, . . . ai and  

an-i, . . . an is a singleton in its block.  The first claim to be proved, that E(ai+1) = {ai+1}, requires 

us to show that ai+1 is not in a block with any of ai+2, . . . an/2-1, an/2+1, . . . an-i-1.  This follows 

from B1, since by the definition of Nn, ai+1 has no child in E(an-i-1) while the others have an-i-1.   

To show the second claim, that E(an-i-1) = {an-i-1}: By B1 an-i-1 is not equivalent to any of  

ai+2, . . . an/2-1, an/2+1, . . . an-i-2 because it has a child in {ai+1} and the others do not.  Therefore 

the n sets in Nn are distinct by the AFA, and the first part of the theorem is proved. 
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The second part, the converse, is that an n-size promise system must be An or Nn.  It will 

be assumed from now on that n is odd; proving the even case is parallel.  As before, the 

induction proceeds within a promise system, moving from the extreme members to the middle 

ones.  In contrast to what one might expect in an induction proof, each step does not define a 

further set in An or Nn since in the NWF framework none of these except  are defined until 

all are defined.  Instead we introduce n set-valued variables and each step produces an equation 

relating them.    

It is convenient to treat n = 1 separately.  There are two NWF sets of size 1, p0 =  which 

yields promise system N1, and p1 = {p1} = Ω which yields A1 (Figure 5).  It will be assumed 

henceforth that n ≥ 3. 

An equation assigns variable p  Pn within Pn when p appears alone on the left side and a 

subset of Pn appears on the right.  Let Pn = {p0, . . . pn/2-3/2, p, pn/2+3/2, . . . pn} comprise n 

variables that take values in V.  Define n - 1 equations: 

E0 :  p0 = , 

Ei :  pi = {pn-i+1, . . . pn}             for i = 1 to n/2 – 3/2 ;                                                                               

                                              pi  = Pn – {p0, . . . pn-i-1}      for i = n/2 + 3/2 to n – 1; 

                        En : pn = Pn.   

 

After these equations are derived, an n’th one will assign p and the solution lemma will be 

applied.   

The induction steps go from i = 0 to i = n/2 – 3/2.  Sets Wi and Si include those variables 

that have been assigned by the start of step i.  The notation is meant to suggest “weak” and 

“strong”, the latter sets having members that are more numerous that contain themselves.  The 

Ui are the variables still unassigned by the start of step i.  With W0 =  , S0 = , define, for 

i = 1 to n/2 – 3/2, 

 

Wi = {p0, . . . pi-1}; 

Si  = {pn-i+1, . . . pn}; 

Ui = Pn – Wi – Si.   

 

Each induction step, i = 0 to n/2 – 3/2, involves four propositions.  The first two specify the 

children of the two new variables, and the second two specify their parents.   

Ai : there exists a unique pi  Ui such that u  pi for all u  Ui ; 

Bi : there exists a unique pn-i  Ui such that u pn-i for all u  Ui ; 

Ci : pn-i  u for all u  Ui – {pi, pn-i}; 

Di : pi  u for all u  Ui – {pi, pn-i}. 

 

To establish the base cases: A0 states that   Pn.  If it were otherwise, Ω would decorate 

all the members in violation of distinctness.  Uniqueness is immediate, and defining p0 as   

gives E0. 

Base case B0 states that Pn  Pn.  Some set in Pn must include p0, otherwise either some 

member of Pn – {p0} is , or more than one member is Ω, either possibility violating 

distinctness.  By closure any set containing p0 contains all members of Pn.  (In the closure 

schema take x as p0, y as any set in Pn, and z as any set containing p0.)  The set containing p0 is 

therefore unique, and designating it pn gives En. 

Next C0 states that p0  u for all u   Pn – {p0, pn}.  As shown for B0, such a set containing 

 would duplicate pn.   

Finally D0  states that pn  u for all u  Pn – {p0, pn}.  Every u  Pn – {p0, pn} is non-empty 

as none should duplicate p0, and by closure this fact implies pn  u.  (Take x as any member of 

u, y as pn, and z as u.) 
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For the induction steps, i = 1 to n/2 – 3/2:  First we assume that propositions Aj, Bj, Cj, and 

Dj hold for j = 0 to i – 1 and deduce Ai, i.e., the existence of a unique pi  Ui such that u  pi 

for all u  Ui, and also deduce Ei.  Suppose the contrary, that for every u  Ui, there exists 

u’ Ui such that u’ u.  By Ci-1 and Di-1 all members of Ui could be decorated either by  

p = {pn-i, . . . pn} or by p’ = {p’, pn-i, . . . pn}, violating distinctness.  Propositions Ai, Cj and Dj 

for j = 0 to i – 1 show that the membership of pi is uniquely determined and follows Ei. 

Next, assume Aj holds for j = 0 to i, and that Bj, Cj, Dj hold or j = 0 to i – 1.  Then we 

deduce Bi, that there is a unique pn-i  Ui such that u pn-i for all u  Ui, and we also deduce 

En-i.  Note that pi  u for some u  Ui, since otherwise all sets in Ui – {pi} could be decorated 

by either p = {pn-i, . . . pn} or p’ = {p’, pn-i, . . . pn}, violating distinctness.  By closure (Si  Ui) 

  u, and by D0 to Di-1, Wi-1  u = .  This specifies pn-i‘s membership, and it follows En-i. 

Next, assume Aj and Bj hold for j = 0 to i, and Cj and Dj hold for j = 0 to i – 1 and deduce 

Ci, i.e., that pn-i  u for all u  Ui – {pi, pn-i}.   For all u  Ui, either pn-i  u or there exist  

u1, . . . uk  U0, with k ≥ 1, such that pn  u1  u2  . . . uk  u, otherwise the system would 

violate distinctness since every u  Ui would be either u = {pn-i, . . . pn} or u = {u, pn-i, . . . pn}.  

Applying closure to pn-i, u1 and u2 yields pn-i  u2.  (In the schema take x as u1, y as pn-i, and z 

as u2).  Repeating the argument a finite number of times gives pn-i  u. 

Finally assume that Aj, Bj, and Cj hold for j = 0 to i and Dj holds for j = 0 to i – 1, in order 

to deduce Di, that pi  u for all u  Ui – {pi, pn-1}.  Suppose that pi  u for some  

u  Ui – {pi, pn-1}.  As shown previously, closure implies that u must include all sets in Ui, so 

it would duplicate pn-i contrary to distinctness.  

For i higher than n/2 – 3/2 the distinctness arguments used above fail because they require 

at least two and sometimes three unassigned variables.  That leaves one variable p unassigned.  

We know from the Cj and Dj propositions that p is disjoint with {p0, . . . pn/2-3/2} and a superset 

of {pn/2+3/2, . . . pn} so the only question is whether it contains itself.  If it does not, the n 

equations reproduce the definition of Nn, and otherwise they give An.   

The theorem’s claim that Nn has no agreement promise and An has the one described 

follow immediately from the two systems’ definitions. □ 
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