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THE BIG MATCH WITH A CLOCK AND A BIT OF

MEMORY

KRISTOFFER ARNSFELT HANSEN, RASMUS IBSEN-JENSEN,
AND ABRAHAM NEYMAN

Abstract. The Big Match is a multi-stage two-player game. In each
stage Player 1 hides one or two pebbles in his hand, and his opponent
has to guess that number; Player 1 loses a point if Player 2 is correct,
and otherwise he wins a point. As soon as Player 1 hides one pebble,
the players cannot change their choices in any future stage.

Blackwell and Ferguson (1968) give an ε-optimal strategy for Player 1
that hides, in each stage, one pebble with a probability that depends
on the entire past history. Any strategy that depends just on the clock
or on a finite memory is worthless. The long-standing natural open
problem has been whether every strategy that depends just on the clock
and a finite memory is worthless.

The present paper proves that there is such a strategy that is ε-
optimal. In fact, we show that just two states of memory are sufficient.

Date: December 15, 2017.
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1. Introduction

The game of Odd and Even (Latin: Par Impar Ludere, Greek: ἀρτιασμός)
has been popular since ancient Greek and Roman times. It is played by two
players, Player 1 and Player 2. Player 1 hides (e.g., in his hands) a number
of pebbles or other items (e.g., beans, nuts, almonds, astragali, or coins),
and his opponent, Player 2, has to guess whether the number of hidden
items is odd or even. Player 1 then reveals the number. If Player 2 is right,
Player 1 loses a point; otherwise, Player 1 wins a point (from Player 2).

Player 1 can guarantee that he gets (at least) zero points on average by
hiding an odd or even number of items with equal probability. Player 2 can
guarantee that Player 1 gets (at most) zero points on average by guessing
odd or even with equal probability.

The repeated Odd and Even game is the same game repeated many times.
The players can still guarantee getting zero points on average (per stage and
hence also in total) by playing, independently in each stage as before.

The Big Match is also a multi-stage game. It is a variant of the repeated
Odd and Even game. In each stage Player 1 hides one or two pebbles. In
each stage, Player 1 wins or loses a point. As long as Player 1 hides two
pebbles, Player 1 wins a point iff Player 2 guesses odd in that stage. The
first stage in which Player 1 hides one pebble is called the stopping stage.
In the stopping stage Player 1 wins a point iff Player 2 guesses even. In each
subsequent stage, he wins a point iff he won a point in the stopping stage.

The Big Match was introduced by Gillette [3] and has been much studied,
in part due to its arguably being the most basic game model that illustrates
the difficulty of balancing the trade-off between short- and long-term strate-
gic considerations.

In the Big Match, Player 2 can still guarantee that Player 1 gets zero
points on average, independently of the number of stages, by guessing odd or
even with equal probability and independently in each stage. Executing such
a strategy does not require that Player 2 know past history, the number of
stages, or the stage number. However, the situation of Player 1 is completely
different! Henceforth, unless otherwise mentioned, a strategy refers to a
strategy of Player 1.

If Player 1 knows the number of stages, n, in advance, he can guarantee
that he gets (at least) zero points on average. To guarantee this, he must hide
one pebble with probability 1

k+1 when k stages remain. Thus, for example,
in the last stage he hides one or two pebbles with equal probability, and in
the first stage he hides one pebble with probability 1

n+1 . Executing such a
strategy requires that Player 1 know the stage number and the number of
stages, but it does not require that Player 1 know past history.

It follows from the above that if Player 1 does not know the number of
stages n in advance, then he has no way of guaranteeing (at least) zero
points (per stage) on average. This has led researchers to look for strategies
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that guarantee close to zero per stage on average in all sufficiently long Big
Match games.

Any strategy in the Big Match has to decide on the stopping stage. A
natural possibility is just to specify in advance the probability of each stage
being the stopping stage. Such a strategy is called a Markov strategy. It
has long been known, and it is easy to verify, that any Markov strategy in
the Big Match is worthless; i.e., for any ε > 0 it does not guarantee more
than −1 + ε points (per stage) on average in any sufficiently long Big Match
game.

The principle of sunk cost seems to imply that optimizing from any point
onwards should be independent of the past, and hence any optimization of
the long-run average of the rewards can be achieved by a Markov strategy.
Since any Markov strategy is worthless, one may erroneously conclude that
any strategy is worthless.

However, this is not the case! Blackwell and Ferguson [2] introduced
worthy (i.e., not worthless) strategies that prescribe the choice in each stage
as a function of past history. Moreover, [2] introduced, for every ε > 0,
a strategy that is ε-optimal; namely, it guarantees at least −ε points (per
stage) on average in all sufficiently long games.1

The question that arises is how much dependence on past history is needed
for an ε-optimal strategy, or even a worthy one. This dependence is formal-
ized using the following concept.

A memory-based strategy in the Big Match is a strategy in which the
conditional probability of hiding one pebble depends on the current memory
state and the clock (i.e, the stage number). The memory state is updated
as a stochastic function of the current memory and of the guess of Player 2
in the previous stage, as well as of the clock.

The ε-optimal strategies in [2, Theorem 2] are memory-based, and those
in [2, Theorem 1] are memory-based and clock-independent; i.e., the hiding
and memory updating do not depend on the clock. The memory state is
simply the difference between the number of odd and even guesses; hence,
up to stage n it takes integer values in the interval [−n, n].

The ε-optimal strategy in [4] is memory-based and clock-independent.
The memory state can be encoded so that, with high probability, up to
stage n it takes integer values in [0, lnc n], for some constant c (and n > 3).

On the other hand, all memory-based strategies that have a finite set of
memory states and either are clock-independent (see, e.g., [7]) or have a
deterministic memory update function [4] are worthless in the Big Match.

It has been a long-standing natural open problem whether there exists a
worthy memory-based strategy that has a finite set of memory states.

1Recall that Player 2 has a strategy that ensures 0 per stage on average.
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The present paper answers this question positively. We show that, for
every ε > 0, there is such a strategy that is ε-optimal. Moreover, it is a
two-memory strategy; namely, it has a two-element memory set.

Our positive result applies to the infinite game as well. In the infinite
game, the average win per stage need not be well defined, as the average
number of wins over the first n stages need not converge. Nonetheless, our
result is as strong as possible given that the strategy’s ε-optimality in the
infinite game is for the limit inferior.

2. The model and related results

2.1. Stochastic games. A finite two-person zero-sum stochastic game Γ,
henceforth, a stochastic game, is defined by a tuple (Z, I, J, r, p), where Z
is a finite state space, I and J are the finite actions sets of Players 1 and 2
respectively, r : Z×I×J → R is a payoff function, and p : Z×I×J → ∆(Z)
is a transition function.

A state z ∈ Z is called an absorbing state if p(z, ·, ·) = δz, where δz is the
Dirac measure on z. An absorbing game is a stochastic games with only one
nonabsorbing state.

A play of the stochastic game is an infinite sequence z1, . . . , zt, it, jt, . . .,
where (zt, it, jt) ∈ Z × I × J . The set of all plays is denoted by H∞. A
play up to stage t is the finite sequence ht = (z1, i1, j1, . . . , zt). The payoff
rt in stage t is r(zt, it, jt) and the average of the payoffs in the first n stages,
1
n

∑n
t=1 rt, is denoted by r̄n.

The initial state of the multi-stage game is z1 ∈ Z. In the t-th stage
players simultaneously choose actions it ∈ I and jt ∈ J .

A behavioral strategy of Player 1, respectively Player 2, is a function
σ, respectively τ , from the disjoint union ∪̇∞t=1(Z × I × J)t−1 × Z to ∆(I),
respectively to ∆(J). The restriction of σ, respectively τ , to (Z×I×J)t−1×Z
is denoted by σt, respectively τt. In what follows, σ denotes a strategy of
Player 1 and τ denotes a strategy of Player 2.

A strategy pair (σ, τ) defines a probability distribution Pσ,τ on the space
of plays as follows. The conditional probability of (it = i, jt = j) given the
play ht up to stage t is the product of σ(ht)[i] and τ(ht)[j]. The conditional
distribution of zt+1 given ht, it, jt is p(zt, it, jt). The expectation w.r.t. Pσ,τ
is denoted by Eσ,τ

A stochastic game has a value v = (v(z))z∈Z if, for every ε > 0, there are
strategies σε and τε such that for some positive integer nε

(1) ε+ Eσε,τ r̄n ≥ v(z1) ≥ Eσ,τε r̄n − ε ∀σ, τ, n ≥ nε,

and

(2) ε+ Eσε,τ lim inf
n→∞

r̄n ≥ v(z1) ≥ Eσ,τε lim sup
n→∞

r̄n − ε ∀σ, τ.
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It is known that all absorbing games [5] and, more generally, all stochastic
games [6] have a value.

A strategy σε that satisfies the left-hand inequality (1) is called uniform
ε-optimal. A strategy σε that satisfies the left-hand inequality (2) is called
limiting-average ε-optimal.

A strategy σε that satisfies both left-hand inequalities (1) and (2) is called
ε-optimal.

2.2. Memory-based strategies. A memory-based strategy σ generates a
random sequence of memory states m1, . . . ,mt,mt+1, . . ., where the memory
is updated stochastically in each stage, and selects its action it according
to a distribution that depends on just the current time t, its current mem-
ory mt, and the current state zt. Explicitly, the conditional distribution
of it, given hmt := (z1,m1, i1, j1, . . . , zt,mt), is a function σα of (t, zt,mt)
and the conditional distribution of mt+1, given (hmt , it, jt, zt+1), is a func-
tion σm of (t, zt,mt, it, jt) (i.e., it depends on just the time t and the tuple
(zt,mt, it, jt)).

A memory-based strategy σ is clock-independent if the functions σα and
σm are independent of t.

A k-memory strategy is a memory-based strategy in which the memory
states mt take values in a set with (at most) k elements. Note that a strategy
is a Markov strategy if and only if it is a one-memory strategy, and a strategy
is a stationary strategy if and only if it is a one-memory clock-independent
strategy. A strategy uses finite memory if it is a k-memory strategy where
k is finite. A strategy that uses finite memory is called a finite-memory
strategy. The set of all k-memory strategies is denoted by Mk.

The long-standing natural open problem that motivates the present paper
is whether for every stochastic game, or even just the Big Match, there are
ε-optimal strategies that use finite memory.

Another natural problem is the existence of memory-based strategies with
infinite memory but where the number of distinct memory states used in
the first n stages grows slowly with high probability. For this question
we assume, w.l.o.g., that the memories take values in the set N of natural
numbers. Let f : N→ R+ be a nondecreasing function and γ ≥ 0.

An (f, γ)-memory strategy is a memory-based strategy in which, with
probability at least 1− γ, N 3 mt ≤ f(t) for all t and every strategy of the
other player.

2.3. The Big Match. The Big Match, introduced in [3], is a highly inspir-
ing stochastic game. The state space Z is {−1, 0, 1}.

Each state x ∈ {−1, 1} is absorbing and the payoff function (to Player 1)
in an absorbing state x is r(x, ·, ·) = x.

The action sets I and J are {0, 1}, and the payoff function in the nonab-
sorbing state 0 is
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r(0, i, j) =

{
1 if j 6= i,

−1 if j = i.

The transition distributions from the nonabsorbing state 0 are given by

p(0, i, j) =


δ 0 if i = 0

δ-1 if i = j = 1

δ 1 if i = 1 6= j.

[2] shows that the value of the Big Match is 0 by introducing, for every
ε > 0, an ε-optimal strategy (which is, in addition, a clock-independent
(f, 0)-memory strategy where f(n) = 2n− 1).

[4] introduces, for the Big Match (and also for any absorbing game), a

clock-independent (f, γ)-memory strategy, where f(n) = (log n)O(1) and any
γ > 0, that is ε-optimal.

Fix ε < 1. It is known that there is neither a limiting-average nor a
uniform ε-optimal strategy that is a finite-memory strategy that uses a de-
terministic memory updating function σm; see [4] for the limiting-average
case. Moreover, there is no ε-optimal mixed strategy that is a mixture of
finitely many finite-memory strategies that each use a deterministic memory
updating function σm.

It is also known that there is neither a limiting-average nor a uniform
ε-optimal strategy that is a clock-independent finite-memory strategy; see,
e.g., [7] for the limiting-average case. Moreover, there is no mixed strategy
that is a mixture of clock-independent finite-memory strategies that is ε-
optimal [1].

3. The result

The main result of the present paper is that, in the Big Match, there is a
finite-memory strategy that is ε-optimal and moreover that is a two-memory
strategy.

Theorem 1. For every ε > 0 there is a 2-memory strategy σ of Player 1
and nε such that for every strategy τ of Player 2,

(3) Eσ,τ lim inf
n→∞

r̄n ≥ −ε,

and

(4) Eσ,τ r̄n ≥ −ε ∀n ≥ nε.



THE BIG MATCH WITH A CLOCK AND A BIT OF MEMORY 7

4. The proof

The set of stages t = 1, 2, . . . of the infinite game is partitioned into
consecutive epochs, indexed by i = 1, 2, . . ., where the number of stages of
the i-th epoch is si.

The number of stages in the first n epochs equals
∑n

i=1 si and is denoted
by Sn. The payoff to Player 1 in the j-th round of epoch i is denoted by rij .

Note that the j-th round of epoch i is the (Si−1 + j)-th stage of the game.

Therefore,
∑Sn

t=1 rt =
∑n

i=1

∑si
j=1 r

i
j .

If sn/Sn goes to 0 as n goes to infinity, then in order to prove the theorem
we have to define a strategy σ ∈M2 of Player 1 and nε such that for every
pure strategy x of Player 2 and n ≥ nε, we have

(5) Eσ,x lim inf
n→∞

1

Sn

n∑
i=1

si∑
j=1

rij ≥ −5ε

and

(6) Eσ,x
1

Sn

n∑
i=1

si∑
j=1

rij ≥ −5ε.

The strategy σ consists of patching together strategies σsi,ρ, which will
be defined later, where σsi,ρ is a strategy in the i-th epoch. The strategy
σsi,ρ in the i-th epoch depends on the number of stages si in the epoch and
a fixed positive number ρ. If s = 1 then σs,ρ plays the nonabsorbing action.
We proceed with the definition of the strategy σs,ρ for s > 1.

Let δ > 0 be a sufficiently small number and let s > 1 be an integer.

We define a strategy σs,δ of Player 1 in the auxiliary game in three equiva-
lent descriptions. The first description illustrates that σs,δ is inM2, namely,
that it is a two-memory strategy.

The two states of memory of the strategy σs,δ are Ĉ (for continuing

throughout) and Â (for possible future absorption).

The initial state of memory, m1, is Â. On mt = A and xt = 1 (i.e., in the
case that mt = A and xt = 1), the conditional probability that mt+1 = C is
1− e−2δ, and in all other cases, mt+1 = mt.

The strategy plays the action C if it is in memory state Ĉ. When it

is in memory state Â it plays the absorbing action A with a conditional
probability that depends on the round, and this conditional probability is
given by qi/(1−

∑
k<j qk), where

qj := (eδ − 1)e−δseδ(j−1).

The second description, which is easily seen to be equivalent to the first
one, is as follows. Select a positive integer `, where for each 1 ≤ j ≤ s, the
probability that the selected ` equals j is qj . Sample the action of Player 2 in

each round k with probability 1− e−2δ and let the sampling of the different
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rounds be independent. Play the absorbing action in round j iff j = ` ≤ s
and the payoff in each of the previously sampled rounds is −1.

The third description is useful in the proof, and in addition it is short.
The strategy σs,δ of Player 1 plays the absorbing action in stage 1 ≤ j ≤ s
with (unconditional) probability

pj := (eδ − 1)e−δse−δ
∑

k<j xk ,

where xk is the payoff of Player 1 at stage k.

Obviously, one has to show that the third description indeed defines a
strategy. This will follow from the sequel where we show that this descrip-
tion is equivalent to the previous ones, which clearly define a strategy. For
completeness, we show that the third description defines a strategy without
relying on the equivalence of the descriptions.

Note that pj is a function of the stream of past actions and thus well
defined. In addition, pj ≥ 0 and

s∑
j=1

pj =
s∑
j=1

(eδ − 1)e−δse−δ
∑

k<j xk ≤
s∑
j=1

(eδ − 1)e−δseδ(j−1)

= 1− e−δs,
and therefore the third description defines a strategy.

Now we show that the third description is equivalent to the previous
ones. The (unconditional) probability (of the second described strategy) of
playing the absorbing action at stage j equals qj times the probability of
no sampling in an earlier round where Player 2 played the action 1. As
the number of rounds before j where Player 2 played the action 1 equals∑

k<j
xk+1
2 and the conditional probability of not sampling a round is e−2δ,

the above-mentioned product equals

qje
−2δ

∑
k<j

xk+1

2 = (eδ − 1)e−δseδ(j−1)e−δ(j−1)−δ
∑

k<j xk = pj .

Consider the auxiliary games with s+1 stages, where dynamics and stage
payoffs follow the rules of the Big Match and the players are active only in
the first s stages j, j = 1, . . . , s.

Let σ = σs,δ. We study the distribution of the state in the last period,
s + 1, as a function of the strategy σ of Player 1 and a pure strategy τ of
Player 2.

Let τ be a pure strategy of Player 2. Labeling the left-column action
of Player 2 by -1 and the right-column action of Player 2 by 1, the pure
strategy τ of Player 2 is identified with the sequence of actions x = x(τ) =
(x1, . . . , xs).

Define a function v on plays of the auxiliary (s+1)-stage game as follows.
If the play is absorbed in the winning state for Player 1, then v = 1. If
the play is absorbed in the losing state for Player 1, then v = −e−δ, and
otherwise v = 0.
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Lemma 1. Let α(x) = −
∑s

j=1 xj/s. Then

Eσ,xv = e(α(x)−1)sδ − e−sδ(7)

≥ e(ε−1)sδ1{α(x)≥ε} − e−sδ ∀ε > 0.(8)

Proof. For every integer c let J+
c be the set of all indices 1 ≤ j ≤ s such that

c = −
∑

k<j xk and xj = −1, and let J−c be the set of all indices 1 ≤ j ≤ s

such that c+ 1 = −
∑

k<j xk and xj = 1. Obviously, for each integer c, the

sets of indices J+
c and J−c are disjoint, and the set of integers is the disjoint

union ∪c(J+
c ∪ J−c ).

Obviously, if j ∈ J+
c and j′ ∈ J−c then e−δ(c+1) = e−δe−δ

∑
k<j xk =

e−δ
∑

k<j′ xk . Therefore, using the third description of the strategy, we have

Eσ,xv =
s∑
j=1

1{xj=−1}pj −
s∑
j=1

1{xj=1}pje
−δ

=
∑
c

∑
j∈J+

c

(eδ − 1)e−δsecδ −
∑
c

∑
j∈J−c

(eδ − 1)e−δsecδ.

Note that

|J+
c | =



|J−c | if α > 0 and c /∈ {0, 1, . . . , αs−1}
|J−c |+ 1 if α > 0 and c ∈ {0, 1, . . . , αs−1}
|J−c | if α = 0

|J−c | if α < 0 and −c /∈ {1, 2, . . . ,−αs}
|J−c | − 1 if α < 0 and −c ∈ {1, 2, . . . ,−αs}.

Therefore,

(9) Eσ,xv =


∑αs−1

j=0 (eδ − 1)e−δsejδ = e(α−1)sδ − e−sδ if α > 0,

∑−αs
j=1 (eδ − 1)e−δse−jδ = e(α−1)sδ − e−sδ if α ≤ 0.

This completes the proof of equality (7).

The function α 7→ e(α−1)sδ is nonnegative and monotonic increasing in α,
and e(α−1)sδ ≥ e(ε−1)sδ1{α≥ε}. Therefore, equality (7) implies inequality (8),
which completes the proof of the lemma. �

Let ε > 0 be sufficiently small and let iε be a sufficiently large positive
integer so that

(10)

∞∑
i=iε+1

e

i(1+ε)
< min(ε, 1− e−δ).

Let δ > 0 be sufficiently small so that 1− e−δ < ε. Let si be the largest
integer such that esiδ ≤ i1+ε if i > iε, and si = 1 if i ≤ iε. Note that for
i > iε we have esiδ ≤ i1+ε ≤ esiδeδ.
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Let vi be the above-defined function v at the end of the i-th epoch; equiv-
alently, at the start of the (i+ 1)-th epoch.

We proceed with the definition of the strategy σ of Player 1. The strategy
σ plays in the i-th epoch the strategy σsi,δ.

Let τ be a pure strategy of Player 2 and let xi = (xi1, . . . , x
i
si) be the

sequence of actions of Player 2 in epoch i assuming no absorption, and set

(11) αi =

{
−
∑si

j=1 x
i
j/si if vi−1 = 0 and i > iε,

0 otherwise.

Inequality (8) along with the definition of αi implies that for i ≥ iε,

Eσ,x(vi − vi−1 | Hi) ≥ e(ε−1)siδ1{αi≥ε} − e
−siδ

≥ iε
2−11{αi≥ε} −

e

i1+ε
,(12)

where Hi is the history of play up to the start of the i-th epoch, and the
definition of σ implies that for 1 ≤ i < iε, we have vi = vi−1.

Define

Yi = vi −
∞∑

k>max(i,iε)

e

k(1+ε)
.

Then, by the definition of vi and (10), |Yi| < 1, and, as Yi−Yi−1 = vi− vi−1
for i < iε and Yi − Yi−1 = vi − vi−1 + e

i1+ε for i ≥ iε, inequality (12) implies
that

(13) Eσ,x(Yi − Yi−1 | Hi) ≥ iε
2−11{αi≥ε}.

Therefore, (Yi)i>iε is a bounded submartingale and therefore converges
a.e. (namely, with probability 1) to a limit Y∞. As vi − Yi →i→∞ 0, vi
converges to Y∞ as i goes to infinity.

Note that

(14)

si∑
j=1

(rij−vi−1) ≥


−εsi ≥ −εsi − si1{αi≥ε} if vi−1 = −e−δ

0 ≥ −εsi − si1{αi≥ε} if vi−1 = 1

−αisi ≥ −εsi − si1{αi≥ε} if vi = vi−1 = 0

−si = −si1{vi 6=vi−1} if vi 6= vi−1 = 0.

Therefore,

si∑
j=1

(rij − vi−1) ≥ −εsi − si1{αi≥ε} − si1{vi−1 6=vi}.(15)

Summing these inequalities over 1 ≤ i ≤ n we deduce that

(16)
n∑
i=1

si∑
j=1

rij ≥
n∑
i=1

si(vi−1 − ε)−
n∑
i=1

si1{αi≥ε} −
n∑
i=1

si1{vi−1 6=vi}.
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Note that −1 < Yi < 1. Therefore Yi − Yj < 2. Taking the expecta-

tions in inequality (13), we deduce that Eσ,x(Yi− Yi−1) ≥ Eσ,x iε
1−11{αi≥ε}.

Summing these inequalities over all i such that 1 ≤ i ≤ n, we deduce that

(17) 2 > Eσ,x(Yn − Y0) ≥ Eσ,x
n∑
i=1

iε
2−11{αi≥ε}.

Thus, 2 ≥ Eσ,x
∑∞

i=1 i
ε2−11{αi≥ε}. Hence,

∑∞
i=1 i

ε2−11{αi≥ε} is finite a.e.

Note that Sn ≥ n
2 lnn for all sufficiently large n and, as eδsi ≤ i1+ε,

si ≤ 1+ε
δ ln i ≤ 1+ε

δ lnn for i ≤ n. Therefore, as
∑n

i=1 1{vi 6=vi−1} ≤ 1,

(18)
1

Sn

n∑
i=1

si1{vi 6=vi−1} ≤
sn
Sn
→n→∞ 0,

and for all sufficiently large n and i ≤ n, we have si
Sn
≤ 2(1+ε)

δ n−ε
2
nε

2−1 ≤
2(1+ε)
δ n−ε

2
iε

2−1. Hence,

(19)
1

Sn

n∑
i=1

si1{αi≥ε} ≤
1 + ε

δ
n−ε

2
n∑
i=1

iε
2−11{αi≥ε} →n→∞ 0 a.e.

As vi−ε→i→∞ Y∞−ε, si
Sn
→n→∞ 0 (for each fixed i), and Sn =

∑n
i=1 si,

we have

(20)
1

Sn

n∑
i=1

si(vi−1 − ε)→n→∞ Y∞ − ε a.e.

Therefore, using (16), (18), (19), and (20), we deduce that

(21) lim inf
n→∞

1

Sn

n∑
i=1

si∑
j=1

rij ≥ Y∞ − ε a.e.

As Eσ,xY∞ ≥ Y0 ≥ v0 − ε we conclude that (5) holds, i.e.,

(22) Eσ,x lim inf
n→∞

1

Sn

n∑
i=1

si∑
j=1

rij ≥ v0 − 2ε.

We proceed to prove (6). Let nε be a sufficiently large integer so that
2(1+ε)
δ n−ε

2

ε < ε
2 . Hence, si

Sn
≤ iε

2−1ε/2 for every n ≥ nε and i ≤ n. Then,

using inequality (17), we have

(23) Eσ,x
1

Sn

n∑
i=1

si1{αi≥ε} ≤ Eσ,x
n∑
i=1

iε
2−11{αi≥ε}ε/2 ≤ ε ∀n ≥ nε.

As vi ≥ Yi and Eσ,xYi ≥ Y0 ≥ v0 − ε,

(24) Eσ,x
1

Sn

n∑
i=1

sivi−1 ≥ v0 − ε.
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As vi = vi−1 whenever vi−1 equals either 1 or −e−δ,
∑n

i=1 1{vi 6=vi−1} ≤ 1.

Hence, 1
Sn

∑n
i=1 si1{vi 6=vi−1} ≤ sn/Sn ≤ ε for every n ≥ nε and, in particular,

(25) Eσ,x
1

Sn

n∑
i=1

si1{vi 6=vi−1} ≤ ε ∀n ≥ nε.

Taking expectation in inequality (16), and using inequalities (25), (24),
and (23), we deduce that for n ≥ nε we have

Eσ,x
1

Sn

n∑
i=1

si∑
j=1

rij ≥ v0 − ε− ε− ε− ε ≥ v0 − 4ε,

which completes the proof of (6).

5. Open problems

The main open problem is whether or not in any stochastic game each
player has a finite-memory strategy that is ε-optimal.

In the remainder of this section we introduce several additional open
problems. These open problems are of independent interest and a few of
them may turn out to be building blocks toward the solution of the main
open problem.

5.1. Private versus public memory states. The ε-optimal two-memory
strategy in our proof uses private memory states (i.e., states that are not
observable by Player 2).

We say that the memory states mt are public if they are observed by all
players. For example, the memory states of the Blackwell and Ferguson [2]
strategy in the Big Match, which are the possible differences between the
number of odd and even guesses of Player 2, are public. So are the memory
states of the Mertens and Neyman [6] ε-optimal strategies in a stochastic
game, and so are the memory states of any memory-based strategy in which
the memory update functions are deterministic. The memory states of the
ε-optimal strategies that are introduced in [4] are private.

All the above-mentioned ε-optimal strategies are memory-based strategies
with an infinite set of memory states. A generalization of the proof of [4,
Theorem 6] shows that in the Big Match any finite-memory strategy whose
memory states are public is worthless.

A natural question that arises is what is the minimal size of a public
memory (as a function of t) that is needed for an ε-optimal strategy in
a stochastic game. In order to state this problem formally, we introduce
the concept of a public (f, γ)-memory strategy, where f : N → N is a
nondecreasing function and γ > 0.

A public (f, γ)-memory strategy is a memory-based strategy σ whose
memory states are public and such that for every strategy τ of Player 2,
with probability Pσ,τ at least 1− γ, N 3 mt ≤ f(t) for all t.
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Note that we distinguish between a public finite-memory strategy and a
mixed strategy that is a mixture of such strategies. In fact, a general mixing
principle implies that in any stochastic game, any k-memory strategy (even
if all memory states are private) is equivalent to a mixed strategy that is a
mixture of (uncountably many) public k-memory strategies.

This principle follows from the following construction of a mixture of
public k-memory strategies. Let σ be a k-memory strategy with memory
states mt, action function σα, and memory updating function σm. For any
sequence of permutations of [k] := {1, . . . , k}, π = (πt)

∞
t=1, we define the

public k-memory πσ strategy that follows the strategy σ and that makes
public the memory states renamed according to π.

Formally, the memory states mt of πσ are functions of the the memory
states of σ: mt = πt(mt) ∈ [k]); its action function (πσ)α is given by
(πσ)α(t, zt,mt) = σα((t, zt,mt); and its memory updating function (πσ)m is
given by (πσ)m(t, zt,mt, it, jt) = σm(t, zt,mt, it, jt).

The mixture of πσ, where the sequence of random permutations πt, t =
1, 2 . . ., is a sequence of i.i.d. permutations of [k] and each πt is uniformly
distributed over all k! permutations, is equivalent to the k-memory strategy
σ.

5.2. Recall-based strategies. The definitions in this section apply to a
general stochastic game. A few of the open problems in this section concern
some specific stochastic game.

A recall-based strategy is a memory-based strategy in which the memory
states mt is simply zt−kt , it−kt , jt−kt , . . . , zt−1, it−1, jt−1, zt, where kt < t. As
it is a memory-based strategy it follows that kt+1 ≤ kt+1. A k-recall strategy
is a recall-based strategy where the recall size kt equals k. A finite-recall
strategy is a k-recall strategy for some fixed finite k.

In a recall-based strategy the memory states are public and the memory
update function is deterministic. Therefore, it follows from [4, Theorem 6]
that in the Big Match, Player 1 has no worthy strategy that is a finite-recall
strategy.

A natural question that arises is what is the minimal recall (as a function
of t) that is needed for an ε-optimal strategy in a stochastic game. In
order to state this problem formally, we introduce the concept of f -recall
strategies, where f : N → N is a nondecreasing function with f(t) < t and
f(t+ 1) ≤ f(t) + 1.

An f -recall strategy is a memory-based strategy in which the memory
state mt is zt−f(t), it−f(t), jt−f(t), . . . , zt−1, it−1, jt−1, zt.

The question that arises is what are the functions f for which there is
an f -recall strategy that is ε-optimal. The question applies to a general
stochastic game as well as to the special case of the Big Match.
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It is worthwhile to note that the ε-optimal strategy in the Big Match that
is introduced in the present paper is an f -recall strategy with f(t) ≤ K log t

ε
for some positive constant K.
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ments on an earlier draft.
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