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Abstract

We show that feasible elimination procedures (Peleg, 1978) can be used to
select k from m alternatives. An important advantage of this method is
the core property: no coalition can guarantee an outcome that is preferred
by all its members. We also provide an axiomatic characterization for
the case k = 1, using the conditions of anonymity, Maskin monotonicity,
and independent blocking. Finally, we show for any k that outcomes
of feasible elimination procedures can be computed in polynomial time,
by showing that the problem is computationally equivalent to finding a
maximal matching in a bipartite graph.

Journal of Economic Literature Classification Nos. C70, D71

Keywords Feasible elimination procedure, choosing k from m, axiomatization,
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1 Introduction

The Gibbard-Satterthwaite Theorem (Gibbard, 1973, and Satterthwaite, 1975)
says that for every non-dictatorial social choice function whose range contains
at least three alternatives, sincere voting is not a dominant strategy. Closely re-
lated to this, we obtain that for every non-dictatorial social choice function there
exists a situation where either there exists no Nash equilibrium or the sincere
outcome is not the unique Nash equilibrium outcome (see Theorem 2.1).Thus,
one of the problems that a designer of voting schemes faces is strategic distortion
of the outcome. This has led one of the authors (Peleg, 1978) to introduce the
class of so-called exactly and strongly consistent social choice functions, which
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resist distortion to a large extent. Indeed, for an exactly and strongly consis-
tent social choice function the sincere outcome is always an outcome of a strong
Nash equilibrium of the associated voting game. Of course, the sincere outcome
may not be the unique outcome of a strong Nash equilibrium; however, it will
always belong to the core of the relevant voting game. The foregoing paper has
been followed by several investigations of the set of exactly and strongly con-
sistent social choice functions: Dutta and Pattanaik (1978), Polishchuk (1978),
Ishikawa and Nakamura (1980), Oren (1981), Kim and Roush (1981), Holzman
(1986), and Peleg and Peters (2006). Also the books of Peleg (1984), Abdou and
Keiding (1991), and Peleg and Peters (2010) have chapters devoted to consistent
voting.

The central tool, introduced in Peleg (1978), to obtain exactly and strongly
consistent social choice functions is the concept of a feasible elimination proce-
dure. In such a procedure, applied to a profile of preferences, alternatives are
eliminated one by one, until a final alternative remains: this is called a maximal
alternative. In this paper we use this procedure to select not just one, but also
k > 1 alternatives, simply by taking the last k instead of only the last alterna-
tive. We show that for at least two extensions of voters’ preferences over the
alternatives to (ordered) k-tuples of alternatives, this method has the core prop-
erty: no coalition can guarantee an outcome (k-tuple) that is preferred by all
its members. Formally, this core is defined as the core of the effectivity function
induced by this method. We show, by an example, that some well-known exist-
ing methods (single transferable vote, plurality, plurality with run-off) violate
the core property.

We also provide an axiomatic characterization of the social choice corre-
spondence which assigns the maximal alternatives to each profile, using the
conditions of anonymity, Maskin monotonicity, and independent blocking.

Finally, we show that the problem of determining whether a specific k-tuple
can result from a feasible elimination procedure is computationally equivalent
to the problem of finding a maximal matching in a bipartite graph. The latter
problem can be solved in polynomial time (Hopkroft and Karp, 1973).

Section 2 presents basic definitions and preliminary results, and Section 3 the
axiomatic characterization of the social choice correspondence assigning maxi-
mal alternatives. In Section 4 we consider the extension to choosing k from m,
and in Section 5 we show that this method is polynomial. Section 6 concludes.

Notations The following basic notations are used throughout. For a set D, |D|
denotes the cardinality of D, P (D) the power set, i.e., the set of all subsets of
D, and P0(D) the set of all nonempty subsets of D.

2 Preliminaries

Let A be a set of m alternatives, m ≥ 2, and let N = {1, . . . , n}, n ≥ 2, be
a set of voters. Denote by L the set of all linear orderings1 of A. A social

1I.e., complete, antisymmetric and transitive binary relations.
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choice function (SCF) is a function F : LN → A. If RN ∈ LN is a profile
of preferences of the voters and F is an SCF, then the pair (F,RN ) defines
an ordinal n-person game in strategic form, in which each player (voter) has
strategy set L, F determines the outcome (alternative), and this outcome is
evaluated by Ri for each player i ∈ N . As usual, the profile QN ∈ LN is a
Nash equilibrium (NE) of the game (F,RN ) if F (QN )RiF (P i, QN\{i}) for all
i ∈ N and P i ∈ L. An SCF F is nonmanipulable (or strategy-proof) if for all
RN ∈ LN , RN itself is a Nash equilibrium of the game (F,RN ). An SCF F is
dictatorial if there exists a voter d ∈ N , a dictator, such that F (RN )Rdx for
all RN ∈ LN and all x in the range of F . The Gibbard-Satterthwaite Theorem
(Gibbard, 1973; Satterthwaite, 1975) states that if an SCF is nonmanipulable
and its range contains at least three alternatives, then it is dictatorial. Thus, if
an SCF F is non-dictatorial and surjective and m ≥ 3, then F is manipulable;
that is, there exists a preference profile RN that is not an NE of the game
(F,RN ).

A social choice correspondence (SCC) is a function H : LN → P0(A). We
do not distinguish between the SCF F and the SCC HF , where HF (R

N ) =
{F (RN )} for all RN ∈ LN . An SCC H is Maskin monotonic (Maskin, 1999) if
it satisfies the following. Let RN , QN ∈ LN and let x ∈ H(QN ). If xQiy implies
xRiy for all y ∈ A and i ∈ N , then x ∈ H(RN ).

Let F be an SCF. For RN ∈ LN denote

NE(RN ) = {QN ∈ LN : QN is an NE of (F,RN )}.

We say that F is distorted if for some RN ∈ LN , {F (RN )} 6= F (NE(RN )). Re-
quiring that F is not distorted seems a weakening of nonmanipulability. How-
ever, we have:

Theorem 2.1. If an SCF F is not distorted and its range contains at least
three alternatives, then it is dictatorial.

Proof. Suppose F is not distorted. Then it implements itself by Nash equilibria.
Hence it is Maskin monotonic (see, e.g., Peleg, 1984, Lemma 6.5.1). Thus, by
Muller and Satterthwaite (1977) F is dictatorial. ¤

An SCC H is Paretian if for all x, y ∈ A and RN ∈ LN , if x 6= y and yRix
for all i ∈ N , then x /∈ H(RN ). A family of SCFs that are non-dictatorial and
Paretian and ‘not easily distorted’ was suggested in Peleg (1978). First we need
a few definitions.

Definition 2.2. Let F be an SCF and let RN ∈ LN . A preference profile QN is
a strong Nash equilibrium (SNE) of (F,RN ) if for every non-empty subset S of
N and for every PS ∈ LS there exists i ∈ S such that F (QN )RiF (QN\S , PS). ‖

Definition 2.3. A surjective SCF F is exactly and strongly consistent (ESC)
if for every RN ∈ LN there exists an SNE QN of (F,RN ) such that F (QN ) =
F (RN ). ‖
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An SCC H is anonymous if for all RN ∈ LN and for all permutations π of
N , H(R1, . . . , Rn) = H(Rπ(1), . . . , Rπ(n)). Peleg (1978) proposed the following
method, leading to an important class of anonymous ESC SCFs.

Definition 2.4. Assume that n+1 ≥ m and let β : A → N satisfy
∑

x∈A β(x) =
n + 1. Let RN ∈ LN . A feasible elimination procedure (f.e.p.) for RN is a
sequence (x1, C1; . . . ;xm−1, Cm−1;xm) such that

1) C1, . . . , Cm−1 are pairwise disjoint subsets of N and |Cj | = β(xj) for
j = 1, . . . ,m− 1,

2) A = {x1, . . . , xm},
3) xkR

ixj for k = j + 1, . . . ,m, all i ∈ Cj , and j = 1, . . . ,m− 1. ‖
It is not difficult to see that there exists always at least one f.e.p. under the

assumptions in the definition. Henceforth in this paper we assume n+1 ≥ m. An
alternative y isRN -maximal if there exists an f.e.p. (x1, C1; . . . ;xm−1, Cm−1; y).
We denote

M(RN ) = {x ∈ A : x is RN -maximal}.
M is an anonymous and Paretian social choice correspondence.2 It may also be
shown that it is Maskin monotonic (see, e.g., Peleg and Peters, 2010, Theorem
9.3.6; or Lemma 5.2 below). Hence, it admits an anonymous, Paretian, and
monotonic selection. (An SCF F is monotonic if it satisfies the following condi-
tion: if RN ∈ LN , x = F (QN ), and RN is obtained from QN by improving the
position of x and leaving the relative positions of all other alternatives intact,
then x = F (RN ).) For instance, one may select from M(RN ) according to a
given fixed ordering in L. This is important in view of the following result (see,
e.g., Peleg and Peters, 2010, Theorem 9.2.6).

Theorem 2.5. Every selection from M is ESC.

In order to formulate the converse to Theorem 2.5 we need the following
definition.

Definition 2.6. A function E : P (N) → P (P0(A)) is an effectivity function
(EF) if: i) E(N) = P0(A), ii) A ∈ E(S) for every S ∈ P0(N), and iii) E(∅) = ∅. ‖

With a map β as in Definition 2.4 we associate the EF Eβ by defining

B ∈ Eβ(S) :⇔ |S| ≥
∑

x∈A\B
β(x) for all B ∈ P0(A) and S ∈ P0(N).

An EF is anonymous if E(S) depends only on |S| for all S. Clearly, Eβ

is anonymous. An EF may be considered as the coalition function a la von
Neumann and Morgenstern of some game form. In particular, if F is a surjective
SCF then its EF EF is defined by

B ∈ EF (S) :⇔ ∃RS ∈ LS [F (RS , QN\S) ∈ B for all QN\S ∈ LN\S ].

2Clearly, M depends on β, but this is suppressed from notation if no confusion is likely.
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We now have the following converse of Theorem 2.5 (see Corollary 9.3.4 and
Theorem 9.3.5 in Peleg and Peters, 2010).

Theorem 2.7. An SCF F is a selection from M iff F is ESC and EF = Eβ .

A voter i is a (weak) vetoer with respect to an EF E if E(i) 6= {A}. It can
be shown (see Example 10.5.4 in Peleg and Peters, 2010) that if an SCF F is
ESC and has an anonymous EF EF without vetoers, then there is a β (with
β(x) ≥ 2 for all x ∈ A) such that EF = Eβ . Thus, by varying β with this
additional property, all ESC SCF’s with anonymous EF and without vetoers
are obtained in Theorem 2.7. In other words, if there are no vetoers, then every
ESC social choice function is based on feasible elimination procedures.

3 An axiomatic characterization of M

We shall give in this section an axiomatic characterization of the SCC M . First,
we need some new concepts. Let H : LN → P0(A) be an SCC. Then H is not
imposed if for every x ∈ A there exists RN ∈ LN such that H(RN ) = {x}. If H
is not imposed then the effectivity function of H, EH , is defined as follows. Let
S ∈ P0(N) and let B ∈ P0(A). Then B ∈ EH(S) if there exists an S-profile RS

such that H(RS , QN\S) ⊆ B for all N \ S-profiles QN\S . Further, EH(∅) = ∅.
We also need the following definition. Let E : P (N) → P (P0(A)) be an EF,

let RN ∈ LN , let S ∈ P0(N), let B ∈ E(S), and let x ∈ A \B. We say that x is
dominated by B via S at RN if yRix for all y ∈ B and i ∈ S; x is dominated at
RN if there exist B and S as above such that B dominates x via S at RN . The
core of E at RN , C(E,RN ), is the set of all alternatives that are not dominated
at RN .

For an SCC H we define the function EH
∗ : P (N) → P (P0(A)) as follows.

Let S ∈ P0(N) and B ∈ P0(A). Then B ∈ EH
∗ (S) if for all RN ∈ LN it holds

that xRiy for all x ∈ B, y ∈ A\B and i ∈ S implies H(RN ) ⊆ B. Furthermore,
EH

∗ (∅) = ∅.3 Now let B ∈ P0(A), B 6= A. The blocking coefficient of B is
defined as follows. If there exists an S ∈ P0(N) with A \B ∈ EH

∗ (S), then

b(B) = min{|S| : A \B ∈ EH
∗ (S)}.

Otherwise, we define b(B) = n+ 1. We also define b(∅) = 0. Note that b(A) =
n + 1. Clearly, these blocking coefficients are well-defined for any SSC H; a
blocking coefficient b(B) is the minimum size of a coalition that can make sure
that the outcomes underH are in the complement A\B by reporting preferences
where B is the bottom part.

We call H independently blocking if b(·) is additive; that is, if B1 and B2 are
disjoint subsets of A and B is the union of B1 and B2, then b(B) = b(B1)+b(B2).
Note that, if H is independently blocking, then b(B) = n+ 1 ⇔ B = A.

We can now state our characterization result.

3The function EH
∗ is called the first effectivity function of H (Peleg, 1984). Note that EH

∗
is indeed an effectivity function if i) of Definition 2.6, is satisfied. This is for instance the case
if H is Paretian.
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Theorem 3.1. Let H : LN → P0(A) be an SCC. The following two statements
are equivalent.

1) H is anonymous, Maskin monotonic, and independently blocking with
blocking coefficients β(x), x ∈ A.

2) H coincides with the SCC M , determined by feasible elimination proce-
dures with respect to the blocking coefficients β(x), x ∈ A.

Proof. For the implication 2) ⇒ 1), let M be determined by blocking coefficients
β(x), x ∈ A. We have already mentioned that M is anonymous and Maskin
monotonic. Let b(B), B ∈ P (A), be the blocking coefficients associated with
EM

∗ . To show that M is independently blocking it is sufficient to show that
b(B) = β(B) for all B ∈ P0(A), B 6= A.4

First, let B ∈ P0(A) with B 6= A and let S ∈ P (N) with |S| = β(B). Let
RN ∈ LN with (A \ B)RSB, and suppose x ∈ M(RN ) ∩ B. Let (x1, C1; . . . ;
xm−1, Cm−1;x) be an f.e.p. resulting in x. Since x ∈ B and therefore S∩Ck = ∅
for all xk ∈ A\B, we have Ck ⊆ N\S for all xk ∈ A\B, so that |N\S| ≥ β(A\B).
Thus, n = |N \S|+ |S| ≥ β(A \B) + β(B) = n+1, a contradiction. Therefore,
M(RN ) ⊆ A \B, and hence A \B ∈ EM

∗ (S), so that b(B) ≤ |S| = β(B).
Suppose, next, that |S| = b(B) < β(B) for some S ∈ P (N) and B ∈ P0(A),

B 6= A. By anonymity, this implies that M(RN ) ⊆ A \B for all RN ∈ LN with
(A \ B)RSB. Since, however, we now have |N \ S| = n − |S| > n − β(B) =
β(A \ B) − 1, hence |N \ S| ≥ β(A \ B), it is easy to find a profile RN\S for
N \ S for which there is an f.e.p. eliminating all alternatives of A \ B. This
contradicts the fact that A \B ∈ EM

∗ (S). From this contradiction we conclude
that b(B) ≥ β(B).

Thus, b(B) = β(B) for all B ∈ P0(A), and the proof of the implication
2) ⇒ 1) is complete.

We now prove the implication 1) ⇒ 2). So let H be anonymous, Maskin
monotonic, and independently blocking with coefficients β(x), x ∈ A. Then for
these blocking coefficients β(x), M is well defined.

Let RN ∈ LN . We first prove that M(RN ) ⊆ H(RN ). Let x ∈ M(RN ).
Then there exists an f.e.p. (x1, C1; . . . ;xm−1, Cm−1;x) with respect to RN . Let
now QN be the profile that is obtained from RN by lowering xj to the bottom of
Ri for all i ∈ Cj and for j = 1, . . . ,m−1, and leaving everything else intact. By
the definition of blocking coefficients, H(QN ) ⊆ A\{xj} for all j = 1, . . . ,m−1,
so that H(QN ) = {x}. Finally, since xRixj for all i ∈ Cj and j = 1, . . . ,m− 1,
and since H is Maskin monotonic, x ∈ H(RN ).

For the reverse inclusion, let x ∈ H(RN ). It is sufficient to prove that
x ∈ C(Eβ , R

N ), since M(RN ) = C(Eβ , R
N ) by Theorem 9.3.6 in Peleg and

Peters (2010). Suppose there is an S ∈ P (N) and B ∈ Eβ(S) with x /∈ B, such
that yRix for all i ∈ S and y ∈ B. For each i ∈ S let Qi ∈ L be a preference
with yQiz ⇔ yRiz for all y, z ∈ A\B and with yQiz for all y ∈ B and z ∈ A\B.
By definition of EH

∗ , x /∈ H(QS , RN\S). On the other hand, x ∈ H(RN ) and

4Here and in the sequel, β(B) :=
∑

x∈B β(x).
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Maskin monotonicity of H imply x ∈ H(QS , RN\S), a contradiction. Hence,
x ∈ C(Eβ , R

N ). ¤
We now show that the three properties in Theorem 3.1 are logically inde-

pendent. It is not difficult to see that there exist anonymous selections from M :
e.g., take Q ∈ L and let F (RN ) be the alternative of M(RN ) that is maximal
according to Q. Such selections will be independently blocking by Theorem 2.7.
However, they cannot be Maskin monotonic (if m ≥ 3) because of Muller and
Satterthwaite (1977) – see the proof of Theorem 2.1. Also, the Pareto corre-
spondence is anonymous and Maskin monotonic, but it is not independently
blocking: b(B) = n for every B ∈ P0(A), B 6= A. For the independence of
anonymity we consider the following example.

Example 3.2. Let A = {x, y} and let N = {1, 2, 3, 4}. Define an EF E by
the following rules. Let E(∅) = ∅; E(S) = {{y}, A} if S = {2, 3, 4}; E(S) =
{{x}, A} if S ∈ {{1, 2}, {1, 2, 3}, {1, 2, 4}}; E(N) = P0(A); and E(S) = {A}
otherwise. Let further H(RN ) = C(E,RN ) for all RN ∈ LN . Then H is
Maskin monotonic, and independently blocking: b(x)+b(y) = 3+2 = 5 = b(A).
However, H is not anonymous. ‖

4 Choosing k from m

In this section we show how the concept of a feasible elimination procedure can
be used to select not just one alternative, but an ordered k-tuple of alternatives
– where 1 ≤ k ≤ m − 1. We show, in particular, that the resulting method
has the core property: there is no subset of voters that can vote strategically
in order to guarantee a better outcome for all its members. This is in contrast
to some well-known existing methods that can be used for choosing k from m –
see Example 4.4.

Formally, let k ∈ {1, . . . ,m} and denote by Āk the set

{(x1, . . . , xk) ∈ Ak : |{x1, . . . , xk}| = k}.

As before, assume that n+1 ≥ m and let β : A → N satisfy
∑

x∈A β(x) = n+1.

For these weights, we define Mk : LN → P0(Ā
k) by: (y1, . . . , yk) ∈ Mk(RN ) if

there is an f.e.p. (x1, C1; . . . ;xm−1, Cm−1;xm) such that (y1, . . . , yk) = (xm−k+1,
. . . , xm). In words, Mk assigns to a preference profile all tuples of k last alter-
natives in any f.e.p. for that profile. Clearly, M1 = M . Define the function

EMk

: P (N) → P (P0(Ā
k)) by EMk

(∅) = ∅ and, for S 6= ∅ and Bk ∈ Āk:

Bk ∈ EMk

(S) :⇔ ∃RS ∈ LS [∀RN\S ∈ LN\S : Mk(RS , RN\S) ⊆ Bk].

Since, in particular, {(x1, . . . , xk)} ∈ EMk

(N) for each (x1, . . . , xk) ∈ Āk (for

each i ∈ N let Ri satisfy xkR
ixk−1 . . . x2R

ix1R
i . . .), we have that EMk

is an
effectivity function: it is the effectivity function associated with Mk.

In this paper we consider two kinds of preferences of the voters for k-tuples.
Both kinds of preferences extend the original preferences in L to linear orderings
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on Āk. In the first extension we respect the order of a k-tuple and lexicograph-
ically compare alternatives, starting from the last one. Formally we have:

(P1) Let R ∈ L. Then for x̄ = (x1, . . . , xk) ∈ Āk and ȳ = (y1, . . . , yk) ∈ Āk we
define x̄R̄ȳ if x`Ry`, where ` = max{j ∈ {1, . . . , k} : xj 6= yj}.

In the second extension we ignore the order of a k-tuple and lexicographically
compare alternatives, starting from the worst one. Formally we have:

(P2) Let R ∈ L. For x̄ = (x1, . . . , xk) ∈ Āk and ȳ = (y1, . . . , yk) ∈ Āk reorder
the alternatives so that xi1R . . . Rxik and yj1R . . . Ryjk . Then we define
x̄R̄ȳ if xi`Ryj` , where ` = max{h ∈ {1, . . . , k} : xih 6= yjh}.

Preference extension P1 could apply, for instance, if a president and a vice-
president of a society have to be chosen (k = 2). Then we first compare the
candidates for president and, in case these are equal, we compare the candidates
for vice-president. Extension P2 could apply when the members of a board to
be chosen are on equal foot. Then we first compare the worst candidates. If
these are the same, then we compare second worst candidates, etc.5

Let Ek : P (N) → P (P0(Ā
k)) be an effectivity function and let R̄N be a

profile of linear orderings on Āk. Then the core C(Ek, R̄N ) is defined in the
usual way. We will now show that Mk selects only core alternatives under
both preference extension (P1) and preference extension (P2), starting with the
latter.

Theorem 4.1. Let RN ∈ LN , and let R̄N be the profile of extended preferences

according to (P2). Then Mk(RN ) ⊆ C(EMk

, R̄N ).

Proof. Consider an f.e.p. f∗ = (x1, C1; . . . ;xm−1, Cm−1;xm) for RN , resulting
in (xm−k+1, . . . , xm) ∈ Mk(RN ). Suppose there is an S ⊆ N and a set Bk ⊆ Āk

such that Bk ∈ EMk

(S), (xm−k+1, . . . , xm) /∈ Bk, and ȳR̄i(xm−k+1, . . . , xm) for
all i ∈ S and ȳ ∈ Bk. We derive a contradiction, which completes the proof of
the theorem.

Let K = {xm−k+1, . . . , xm} and let

B = {x ∈ A : x ∈ {y1, . . . , yk} for some (y1, . . . , yk) ∈ Bk}.

Note that B \ K 6= ∅, otherwise we would have B = K, which is not possi-
ble in view of the preferences of the voters in S. Consider any xj ∈ B \ K,
and ȳ = (y1, . . . , yk) ∈ Bk with y` = xj for some ` ∈ {1, . . . , k}. Since
ȳR̄i(xm−k+1, . . . , xm) for all i ∈ S, by (P2) there is for each i ∈ S an xh ∈ K
with xjR

ixh. Since xj is eliminated according to f∗ prior to the alternatives of
K, this implies that Cj ∩S = ∅. Hence, the alternatives of B \K are eliminated
according to f∗ via only voters in N \S. Therefore we have |N \S| ≥ β(B \K).

Let QS ∈ LS be a profile resulting in Bk, i.e., Mk(QS , V N\S) ⊆ Bk for all
V N\S ∈ LN\S . Consider, in particular, a profile V N\S ∈ LN\S such that each
xj ∈ B \ K is a bottom alternative for at least β(xj) voters in N \ S (this is

5For yet another extension, see Section 6.
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possible since |N \ S| ≥ β(B \K)). Then, for this specific profile (QS , V N\S),
there is an f.e.p. in which all alternatives of B \ K are eliminated first. This
implies that the resulting k-tuple, say ȳ, of Bk can only contain alternatives of
K, contradicting ȳR̄i(xm−k+1, . . . , xm) for all i ∈ S. ¤

Theorem 4.2. Let RN ∈ LN , and let R̄N be the profile of extended preferences

according to (P1). Then Mk(RN ) ⊆ C(EMk

, R̄N ).

Proof. Let f∗, S, Bk, and QS be as in the proof of Theorem 4.1. The proof
proceeds in several steps.

Step 1 Let

B(m) = {xj ∈ A : j ∈ {1, . . . ,m− 1} and

xj = yk for some (y1, . . . , yk) ∈ Bk}.

By (P1), we have xjR
ixm for all xj ∈ B(m) and i ∈ S. Hence, Cj ⊆ N \ S

for all j with xj ∈ B(m), so that |N \ S| ≥ β(B(m)). Consider a profile
V N\S(m) ∈ LN\S where all xj ∈ B(m) are ranked at bottom positions for
at least β(xj) voters in N \ S. Let Bk(m) be the subset of Bk, consisting of
all k-tuples which are obtained by f.e.p.’s for the profile (QS , V N\S(m)) such
that the alternatives of B(m) are eliminated first, with xj before x` whenever
xj , x` ∈ B(m) and j < `; clearly, all these f.e.p.’s result in xm, so that yk = xm

for all (y1, . . . , yk) ∈ Bk(m).

Step 2 Let

B(m− 1) = {xj : j ∈ {1, . . . ,m− 2} and

xj = yk−1 for some (y1, . . . , yk−1, xm) ∈ Bk(m)}.

By (P1), we have xjR
ixm−1 for all xj ∈ B(m−1) and i ∈ S. Hence, Cj ⊆ N \S

for all j with xj ∈ B(m− 1), so that |N \ S| ≥ β(B(m) ∪B(m− 1)). Consider
a profile V N\S(m − 1) ∈ LN\S where all xj ∈ B(m) ∪ B(m − 1) are ranked at
bottom positions for at least β(xj) voters in N \S. Let Bk(m−1) be the subset
of Bk(m), consisting of all k-tuples which are obtained by f.e.p.’s for the profile
(QS , V N\S(m−1)) such that the alternatives of B(m)∪B(m−1) are eliminated
first, with xj before x` whenever xj , x` ∈ B(m) ∪ B(m − 1) and j < `; clearly,
all these f.e.p.’s have (xm−1, xm) as last pair, so that yk−1 = xm−1 and yk = xm

for all (y1, . . . , yk) ∈ Bk(m− 1).

...

Step k Let

B(m− k + 1) = {xj : j ∈ {1, . . . ,m− k} and

xj = y1 for some (y1, xm−k+2, . . . , xm) ∈ Bk(m− k + 2)}.

By (P1), we have xjR
ixm−k+1 for all xj ∈ B(m − k + 1) and i ∈ S. Hence,

Cj ⊆ N \ S for all j with xj ∈ B(m − k + 1), so that |N \ S| ≥ β(B(m) ∪
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. . . ∪ B(m − k + 1)). Consider a profile V N\S(m − k + 1) ∈ LN\S where all
xj ∈ B(m)∪ . . .∪B(m−k+1) are ranked at bottom positions for at least β(xj)
voters in N \S. Let Bk(m−k+1) be the subset of Bk(m−k+2), consisting of
all k-tuples which are obtained by f.e.p.’s for the profile (QS , V N\S(m− k+1))
such that the alternatives of B(m)∪ . . .∪B(m−k+1) are eliminated first, with
xj before x` whenever xj , x` ∈ B(m) ∪ . . . ∪ B(m − k + 1) and j < `; clearly,
all these f.e.p.’s have (xm−k+1, . . . , xm) as last k-tuple. This, however, implies
that (xm−k+1, . . . , xm) ∈ Bk, which is a contradiction. ¤

The following example shows that the converses of Theorems 4.1 and 4.2
do not hold for k > 1. (For k = 1 we do have M(RN ) = C(EM , RN ) for all
RN ∈ LN by Lemma 9.3.2 and Theorem 9.3.6 in Peleg and Peters, 2010.)

Example 4.3. Let A = {x, y, z}, N = {1, . . . , 4}, β(x) = 1, and β(y) = β(z) =
2. Consider the profile RN given in the following table:

R1 R2 R3 R4

y y x x
z z z y
x x y z

Then M2(RN ) = {(z, y)}. We claim that the pair (x, y) is in C(EM2

, R̄N )
according to preference assumption (P2). First, (x, y) is top-ranked for voter 4.
Voter 3 only prefers (x, z) or (z, x) to (x, y) but this is not the case for voters
1 and 2. However, voter 3 alone is not effective for {(x, z), (z, x)}. Finally,
voters 1 and 2 only prefer (y, z) and (z, y) to (x, y), but {1, 2} is not effective

for {(y, z), (z, y)}. We conclude that (x, y) is in C(EM2

, R̄N ) under assumption
(P2).

Now consider preference assumption (P1). We claim that (x, y) is still in

C(EM2

, R̄N ). Voter 4 finds (z, x) and (y, x) better than (x, y); also voter 3
finds (z, x) and (y, x) better than (x, y), but voters 1 and 2 prefer (x, y) over
(z, x) and (y, x), and {3, 4} is not effective for {(z, x), (y, x)}: e.g., {1, 2} can put
x at bottom so that x can be eliminated first. Voter 3 prefers every alternative
in the set {(y, x), (z, x), (y, z), (x, z)} to (x, y), but 1 and 2 prefer only (z, y)
over (x, y), and {3} is not effective for {(y, x), (z, x), (y, z), (x, z)}: {1, 2, 4} can
put x and z at bottom so that y ends up last. Finally, {1, 2} is not effective for
{(z, y)}: e.g., {3, 4} can put z at bottom so that z can be eliminated first. We

conclude that (x, y) is in C(EM2

, R̄N ) also under assumption (P1). ‖

The fact that Mk satisfies the core property as in Theorems 4.1 and 4.2
means that there is never a coalition of voters which can guarantee an outcome
(k-tuple) that is better for all its members in case Mk is used, i.e., if a feasible
elimination procedure is used. This fact is certainly not shared by well-known
existing methods. The following example illustrates this.
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Example 4.4. Let A = {a, b, c, d}, N = {1, 2, 3}, and β(x) = 1 for all x ∈ A.
Consider the profile RN given in the following table:

R1 R2 R3

a b c
b c a
c a b
d d d

Suppose we have to select two candidates. In this case, M2 is quite inconclusive:
M2(RN ) = {(x, y) ∈ Ā2 : x 6= d, y 6= d}. Still, by Theorems 4.1 and 4.2, no
coalition of voters can improve on any of the pairs inM2(RN ). Now consider the
method of single transferable vote (STV – see for instance Brams and Fishburn,
2002). According to STV, first d is eliminated, but thereafter either a or b
or c is eliminated. For instance, if a is eliminated, then next b is chosen and
finally c, so that in our notation the pair (c, b) results. This way, we obtain
STV (RN ) = {(c, b), (b, a), (a, c)}. Now take, for instance, the pair (b, a). Both
voters 2 and 3 prefer the pair (b, c) over (b, a) – under both (P1) and (P2) – and,
moreover, under STV the coalition {2, 3} is effective for {(b, c)} by the strategy
profile

Q2 Q3

c c
b b
a a
d d

In fact, under STV the core for the profile in this example (which is a slightly
modified version of the Condorcet paradox) is empty. It is easy to see that
the same example applies to methods like plurality voting or run-off elections,
assuming that in case of ties we can choose arbitrarily between tied alternatives,
as in STV or feasible elimination procedures. ‖

5 A method for computing Mk in polynomial
time

The following lemma was proved in Peleg (1984, Lemma 5.3.5) for the case
k = 1.

Lemma 5.1. Let RN ∈ LN . Then (xm−k+1, . . . , xm) ∈ Mk(RN ) if and only if
there exist pairwise disjoint subsets S(y), y ∈ A \ {xm}, of N such that

(1) xjR
ix` for all ` = m− k + 1, . . . ,m− 1, j > `, and i ∈ S(x`),
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(2) xjR
iy for all y ∈ A \ {xm−k+1, . . . , xm}, j = m − k + 1, . . . ,m, and

i ∈ S(y),

(3) |S(y)| = β(y) for all y ∈ A \ {xm}.

In the proof of this lemma we will use the fact that Mk is Maskin monotonic.
In general, a function H : LN → P0(Ā

k) is Maskin monotonic if it satisfies the
following. Let RN and QN be in LN and let (x1, . . . , xk) ∈ H(QN ). If xjQ

iy
implies xjR

iy for all j ∈ {1, . . . , k}, y ∈ A and i ∈ N , then (x1, . . . , xk) ∈
H(RN ). For k = 1, this definition coincides with the definition of Maskin
monotonicity in Section 2.6

Lemma 5.2. Mk is Maskin monotonic.

Proof. Let QN and RN as in the definition of Maskin monotonicity. Without
loss of generality we assume that there is a voter v such that QN\{v} = RN\{v}.
Let f∗ = (x1, C1; . . . ;xm−1, Cm−1;xm) be an f.e.p. forQN . If v /∈ C1∪. . .∪Cm−k

then it is easy to see that f∗ is still an f.e.p. for RN , so that (xm−k+1, . . . , xm) ∈
Mk(RN ). Now assume v ∈ C1 ∪ . . .∪Cm−k. If v ∈ Cj with j > 1, then we may
eliminate x1, . . . , xj−1 and all voters in C1 ∪ . . . ∪Cj−1 first, and next continue
the argument with the remaining profile, where now all voters in Cj have xj

bottom ranked according to Q. So, without loss of generality, let v ∈ C1.
The rest of the proof is based on a three step algorithm.
Step 1 If the bottom alternative of Rv is equal to x1, then f∗ is still an f.e.p.

for RN and we are done. Otherwise, go to Step 2.
Step 2 Let the bottom alternative of Rv be x` 6= x1, so ` ∈ {2, . . . ,m−k}. If

all voters in C` have x` as bottom alternative in RN , then we can first eliminate
x` via C` and go back to Step 1 for the reduced profile. Otherwise, go to Step
3.

Step 3 Take v̂ ∈ C` with x` not as bottom alternative and note that the bot-

tom alternative of Rv̂ = Qv̂ is some xj with j < ` (since xj must be eliminated

before x` in f∗). Then modify C` to Ĉ` = (C` ∪ {v}) \ {v̂} and modify C1 to
Ĉ1 = (C1 ∪ {v̂}) \ {v}. (In words, we switch v and v̂.) Go back to Step 1.

Repeat this procedure until the final substitute of v in the modified C1 has
x1 at bottom. Then we can apply an f.e.p. resulting in (xm−k+1, . . . , xm), so
that (xm−k+1, . . . , xm) ∈ Mk(RN ). ¤
Proof of Lemma 5.1. The only-if direction follows immediately from the defi-
nition of an f.e.p. For the if-direction, let (xm−k+1, . . . , xm) ∈ Āk and assume
that there exist subsets S(y) of N , satisfying (1), (2), and (3). List the al-
ternatives of A \ {xm−k+1, . . . , xm} as {x1, . . . , xm−k}. Consider the following
profile QN ∈ LN . For j = 1, . . . ,m − k and i ∈ S(xj) shift xj to the bottom
of Ri, leaving everything else intact. For all other voters i, let Qi = Ri. Then
(x1, S(x1); . . . ;xm−1, S(xm−1);xm) is an f.e.p. forQN , so that (xm−k+1, . . . , xm)

6Also note that this extended definition of Maskin monotonicity would be implied by
Maskin monotonicity in terms of extended preferences according to (P1) or (P2) or any other
sensible preference extension.

12



∈ Mk(QN ). By Maskin monotonicity ofMk (see Lemma 5.2), (xm−k+1, . . . , xm)
∈ Mk(RN ). ¤

Lemma 5.1 can be used to determine if an alternative (xm−k+1, . . . , xm) of
Āk is in Mk(RN ), as follows. We define a bipartite graph with the voters of N as
vertices on one side, and for every y ∈ A\{xm} we take β(y) vertices on the other
side. For every vertex corresponding to an alternative y ∈ A\{xm−k+1, . . . , xm},
we let there be an edge between this vertex and the vertex corresponding to a
voter i if and only if xjR

iy for every j = m − k + 1, . . . ,m. For every vertex
corresponding to an alternative x` for some ` ∈ {m−k+1, . . . ,m}, we let there
be an edge between this vertex and the vertex corresponding to a voter i if and
only if xjR

ix` for all j > `. Then, by Lemma 5.1, (xm−k+1, . . . , xm) ∈ Mk(RN )
if and only if there is a matching for this graph with the property that all
vertices corresponding to alternatives in A \ {xm} are matched. (Note that this
matching is perfect if and only if

∑
y∈A\{xm} β(y) = n, in which case also all

voter vertices are matched.) Clearly, such a matching must be maximal and the
problem of finding a maximal matching is polynomial (see Hopcroft and Karp,
1973). Repeating the foregoing procedure m(m− 1) · · · (m− k+1) times is still
polynomial (in m and n).7

6 Concluding remarks

We have shown in this paper that the method for choosing k out of m, based
on feasible elimination procedures, has the core property for two intuitive pref-
erences extensions (Theorems 4.1 and 4.2). Unfortunately, as the following
example shows, this result does not extend to all reasonable preference exten-
sions.

Example 6.1. Let A = {w, x, y, z}, N = {1, . . . , 5}, β(w) = β(x) = 1, and
β(y) = β(z) = 2. Consider the profile RN given in the following table:

R1 R2 R3 R4 R5

y y z z x
w w w w y
x x x x z
z z y y w

Then (w, x) ∈ M2(RN ) by the f.e.p. (z, {1, 2}; y, {3, 4};w, {5};x). We show that

(w, x) 6= C(EM2

, R̄N ) where, for each i ∈ N , R̄i is the lexicographic preference
extension obtained by first comparing best alternatives and then second best
alternatives. Consider the following profile for the coalition {1, . . . , 4}:

7We thank Ilan Nehama of the Center for the Study of Rationality, Jerusalem, for helpful
comments on this subject.
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Q1 Q2 Q3 Q4

y y y y
z z z z
x x x x
w w w w

Then M2(Q{1,...,4}, R̃5) = {(z, y)} for all R̃5 ∈ L, which implies that {(z, y)} ∈
EM2

({1, . . . , 4}). Since (z, y)R̄i(w, x) for all i ∈ {1, . . . , 4}, we conclude that

(w, x) /∈ C(EM2

, R̄N ). ‖

We conclude with a few thoughts on neutrality. An SCC is neutral if it is
covariant under permutations of the alternatives. To obtain neutrality of M
or, more generally, Mk one needs that all weights β(x) are equal, but this is
not always possible, due to the restrictions on β(·). Of course, one can always
choose the weights such that the difference between any two weights is at most
one. Also, if the number of voters is large relative to the number of alternatives,
then one practically obtains neutrality: e.g., if m = 10 and n = 1000 then one
can choose nine of the weights equal to 100 and one weight equal to 101.

Alternatively, write Mk
β if the weight function is β : A → N . Then one could

enlarge Mk
β to M̃k

β by defining

M̃k
β (R

N ) =
⋃

π∈Π(A)

Mk
β◦π(R

N )

for all RN ∈ LN , where Π(A) is the set of permutations of A. It is not clear,
however, whether this enlarged neutral SCC still has the core property.
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