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Abstract

A new Secretary Problem is considered, where for fixed k and m one wins if

at some time i = m(j − 1) + 1 up to jm one selects one of the j best items

among the first jm items, j = 1, . . . , k . Selection is based on relative ranks

only. Interest lies in small k values, such as k = 2 or 3. This is compared with

the classical rule, where one wins if one of the k best among the n = km items

is chosen. We prove that the win probability in the new formulation is always

larger than in the classical one. We also show, for k = 2 and 3 that one stops

sooner in the new formulation. Numerical comparisons are included.

Keywords: Secretary Problem; Optimal Stopping Rule; Time Dependent Win

Probability; Relative Rank
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1. Introduction

In the classical secretary problem there are n candidates for a job, and the goal is to

maximize the probability of picking the best one, based only on sequentially observing

the relative ranks of the candidates. It is assumed that the candidates are exchangeable

and rankable without ties, and that a candidate that is passed by is no longer available.

As observed by [3] and [2], this goal is rather ambitious. Under the same assumptions

they suggest, for a fixed k ≥ 1, that the goal be generalized to that of maximizing the

probability of choosing one of the k best. They discuss in detail the case of k = 2. We

∗ Postal address: 3730 Walnut Street, Philadelphia, PA, 19104
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hereafter refer to this case as the classical problem. The classical problem is considered

in detail in [1].

Now consider the following question: There are altogether 200 candidates. You are

given the choice between playing the game in the classical problem for k = 2 or playing

the following game, henceforth referred to as the new problem: You win if you either

stop within the first 100 candidates and you picked the best from among the first 100,

or you choose not to stop until after observing the 100 candidates and then you win if

you pick one of the two best from among all 200 candidates. Which of the two games

would you rather play, i.e., which has a higher probability of winning?

The answer is not obvious. It can be argued easily that picking one of the two overall

best must have a higher probability. Note that there are situations where you win in

the classical problem and not in the new one, and vice versa. For example, you might

have stopped within the first 100 observations with relative rank of 1, which turned

out to be the second best in the first 100 and in all 200. Stopping at this observation

is a win in the classical formulation, but not in the new formulation. On the other

hand, you might have stopped with an observation that is best among the first 100,

but is not one of the two best among the 200. This outcome provides a win in the new

setting, but not in the classical setting.

Clearly, 100 and 200 can be replaced by m and 2m, respectively, m ≥ 2. Being the

best among m should be approximately equivalent to being one of the two best among

2m, but in the optimal solution for the new problem, one might be motivated to stop

sooner. Like in the classical formulation, k = 2 can be replaced by general k > 1.

When comparing the classical and new formulations we consider that the number

of candidates is n = km. The new ”Generalized Secretary Problem” can thus be

described as follows: For a given m ≥ 2 and k ≥ 1, find the optimal rule and payoff

(probability of winning) in a situation where if you stop at a time between (j−1)m+1

and jm and the item you select is among the j best in the first jm items, j ≤ k, then

that constitutes a win.

The method of finding the optimal rules is, as always, by backward induction

(i.e., dynamic programming). We denote the respective probability of winning for

the classical and new formulations by W (k, n) and W ∗(k,m). The aim of the paper is

to make statements about the probability of winning and characteristics of the optimal
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rules in these two formulations.

The paper is organized as follows. Some notation and basic results appear in Section

2. Section 3 is devoted to the case where k is any fixed number. The main result is

W (k, n) < W ∗(k,m), where n = mk. An interesting conjecture which appears to

be true by computation is that one stops no later in the new formulation than in the

classical one for all k. Although we have not shown this in general, we are able to prove

this in Section 4 and Section 5 when k = 2 and k = 3 respectively. These sections also

include results about the rules and the probability of winning when m → ∞. Section

6 provides some computational results and insights into the behavior of the rules and

probability of winning for the two formulations.

2. Preliminaries

In this section, we develop the two formulations that we consider throughout the

paper, providing the notation and some key relations that are useful in the ensuing

sections. We consider first the classical formulation. The assumptions are:

1. There is a known horizon of n items.

2. A win occurs if one of the top k items out of all n items is chosen.

3. When item i is observed, its relative rank among the first i items is given.

4. All n! permutations of the ranks of the n items are equally likely.

5. Once an item is passed it is no longer available.

We let P (r, i, k, n) denote the probability that the item with relative rank r at

observation (time) i is among the best k at the end of the horizon n. Consider the

random variable, Xi, which is the number of items of the top k among the n items that

are in the first i items. It follows that an item with relative rank r ≤ k at position i is

a winner if Xi ≥ r. Since Xi has a hypergeometric distribution this yields

P (r, i, k, n) =

k∑

j=r

(
i

j

)(
n− i
k − j

)

(
n

k

) . (1)
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This implies the obvious fact that P (r, i, k, n) decreases in r.

Since E(Xi) = ik/n and E(Xi) =
∑k

j=1 P (Xi ≥ j), it follows that

k∑

r=1

P (r, i, k, n) =
ik

n
. (2)

It is straightforward to obtain the solution to the problem by dynamic programming.

We begin with P (r, n, k, n) = 1 if r ≤ k and 0 otherwise. Note that it is only necessary

to keep track of these values for r ≤ k. Since the item with rank r at i is either rank

r or r + 1 at i+ 1 it follows that

P (r, i, k, n) =
r

i+ 1
P (r + 1, i+ 1, k, n) +

i+ 1− r
i+ 1

P (r, i+ 1, k, n). (3)

We let the probability of winning given that we did not stop before item i be denoted

by W (i, k, n). The ultimate probability of winning is W (k, n) ≡W (1, k, n). The values

of W are also available by backward induction. First note that W (n, k, n) = k
n . The

optimal solution is obtained by considering when relative rank r satisfies P (r, i, k, n) >

W (i+ 1, k, n). Let

j(i) = arg max
r

{P (r, i, k, n) > W (i+ 1, k, n)}.

If P (r, i, k, n) < W (i + 1, k, n) for all r then j(i) = 0. The j(i) provide the rule that

we stop at time i only when the relative rank does not exceed j(i). Since the j(i) are

non-decreasing because P (r, i, k, n) increases in i and W (i, k, n) is non-increasing in i,

the rule can alternatively be described by thresholds r(j, k, n); 1 ≤ j ≤ k, where we

stop with relative rank j at time i if and only if i ≥ r(j, k, n).

Since we only stop at item i if its relative rank r does not exceed j(i) and all relative

ranks at i are equally likely, this yields

W (i, k, n) =
1

i




j(i)∑

r=1

P (r, i, k, n) + (i− j(i))W (i+ 1, k, n)


 . (4)

We now turn to the new version of the problem. The formulation is the same as in

the classical one, except that the horizon of interest depends on when one stops. To

this end, assume that n = mk and divide the items in blocks:

Sj = {i | (j − 1)m+ 1 ≤ i ≤ jm}, j = 1, . . . , k.
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If one stops in block j, that is a time in Sj , then one wins if the item is among the

best j in the more limited horizon of jm.

We have the analogous definitions to (1) and (2) of

P ∗(r, i, k,m) =

j∑

s=r

(
i

s

)(
mj − i
j − s

)

(
mj

j

) if i ∈ Sj . (5)

Note that i determines Sj and hence the horizon of jm, therefore, P ∗(r, i, k,m) =

P (r, i, j, jm) and so it follows that

j∑

r=1

P ∗(r, i, k,m) =
i

m
. (6)

Similarly,

P ∗(r, i, k,m) =
r

i+ 1
P ∗(r + 1, i+ 1, k,m) +

i+ 1− r
i+ 1

P ∗(r, i+ 1, k,m) (7)

if (j− 1)m+ 1 ≤ i < jm as in (3), and P ∗(r, jm, k,m) = 1 if r ≤ j and 0 otherwise for

j = 1, . . . , k. We also have a similar recursion for the probability of winning. If we let

the probability of winning if we have not stopped before i be denoted by W ∗(i, k,m)

then defining

j∗(i) = arg max
r

{P ∗(r, i, k,m) > W ∗(i+ 1, k,m)},

we obtain

W ∗(i, k,m) =
1

i



j∗(i)∑

r=1

P ∗(r, i, k,m) + (i− j∗(i))W ∗(i+ 1, k,m)


 . (8)

Note that if P ∗(r, i, k, n) < W ∗(i + 1, k,m) for all r then j∗(i) = 0. The stopping

rule can be described alternatively with thresholds within each block similar to the

discussion above.

We study the behavior of W and W ∗ as well as j(i) and j∗(i) in the results that

follow. We first consider results for general k in the next section. We then focus on the

two most practical cases of k = 2 and k = 3 in the sections that follow. There are two

primary results that we consider among others. We first show that the probability of

winning in the new version exceeds the probability of winning in the classical version,
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that is, W ∗(k,m) > W (k, n) where n = mk. We also conjecture that j(i) ≤ j∗(i).

This is tantamount to saying that in the optimal solution one always stops at least

as early in the new formulation as in the classical formulation. Although the second

conjecture appears to be true in general from the many examples we computed, the

proof for the general case is elusive. We prove this result for the cases of most interest

where k = 2 and k = 3.

3. General Results

In this section we first turn to the way in which the probability of winning changes

with problem size. If we fix k and let the number of observations grow it is intuitive

that

Lemma 1. W (k, n) < W (k, n− 1).

Proof. Consider the n-observation problem where the optimal choice is already

made. We now describe a rule for the n − 1 problem that is suboptimal. Delete

one observation at random to create an n− 1 problem. With probability (n− 1)/n the

item eliminated was not the item chosen by the n-rule. In this case the item chosen

has a probability that exceeds W (k, n) to be among the k best among the remaining

n − 1 items. The strict inequality follows since the item chosen by the n-rule might

not have been one of the k best among the n , but may have been one of the best k

among the n − 1 items, after we eliminated one item. If the item deleted at random

was the item chosen by the n-rule (and this has probability 1/n) use the optimal rule

to solve the n− 1 problem. We thus get

W (k, n− 1) >
n− 1

n
W (k, n) +

1

n
W (k, n− 1)

which implies that W (k, n− 1) > W (k, n).

A similar argument implies that W ∗(k,m) < W ∗(k,m− 1).

It is immediate that W (k, n) increases in k for fixed n. It might seem obvious that

the same is true for the new formulation, that is, W ∗(k,m) increases in k , but it is not

as immediate, as n also grows with k for fixed m. But a suboptimal rule for the k + 1

problem is to proceed according to rule for the k problem for the first k blocks and if
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we did not stop we have the added opportunity of stopping in the last (i.e., k+1) block

hence the result follows. We now turn to showing the main theorem in this section,

namely

Theorem 1. W ∗(k,m) > W (k, n) where n = mk.

Proof. We will show by backward induction that conditions 1. and 2. below hold:

1. W (i, k, n) ≤ W ∗(i, k,m). We shall show that there is equality for i ∈ Sk and

otherwise the inequality is strict.

2. There exists an r∗(i) such that P (r, i, k, n) ≤ P ∗(r, i, k,m) for 1 ≤ r ≤ r∗(i) and

P (r, i, k, n) ≥ P ∗(r, i, k,m) for r∗(i) < r ≤ k.

All we need to show is that W (k, n) ≡ W (1, k, n) < W ∗(k,m) ≡ W ∗(1, k,m) to

prove the Theorem, but by showing condition 1. we are showing more.

We consider the optimal decision rule for the solution to the classical problem which

stops at time i if the relative rank at i does not exceed j(i).

The probability of winning at time point i in the classical solution is given recursively

in (3) where j(i) denotes the optimum relative rank at which one should stop in this

formulation. But for the new formulation,

W ∗(i, k,m) ≥ 1

i




j(i)∑

r=1

P ∗(r, i, k,m) + (i− j(i))W ∗(i+ 1, k,m)


 . (9)

as j(i) might not be the optimal relative rank at which to stop at time i in the new

formulation.

We now proceed to prove conditions 1. and 2. by backward induction. The proof

relies on the observation that relative rank r at i− 1 becomes either relative rank r or

r+1 at time i with respective probabilities i−r
i and r

i . It also relies on the observation

that if condition 1. holds at time point i and condition 2. holds at time point i−1, then

condition 1. holds at time point i−1 from W (i−1, k, n) in (4) and W ∗(i−1, k,m) in (9).

This follows from
∑ji−1

r=1 P
∗(r, i− 1, k,m) ≥∑ji−1

r=1 P (r, i− 1, k, n) because condition 2.

holds at i − 1 and the fact that the sums of these terms in the two formulations over

all values from 1 to k are equal.

First consider i ∈ Sk. Conditions 1. and 2. hold because the two formulations are

identical problems for all time points in Sk. Now consider, i = (k− 1)m. Condition 2.
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holds because P (r, (k− 1)m, k,m) = 1 if r ≤ k− 1 and otherwise it is zero. Condition

1. follows from condition 2. as described above.

We now assume that conditions 1. and 2. hold for i ∈ Sk−1 with i > (k − 2)m+ 1.

We now consider time point i − 1. Consider proving condition 2. for i − 1 (from

which condition 1. follows). For any r ≤ r∗(i) − 1, since P (r, i, k, n) ≤ P ∗(r, i, k,m)

and similarly for r + 1 then P (r, i − 1, k, n) ≤ P ∗(r, i − 1, k,m). Similarly for any

r ≥ r∗(i) + 1, it follows that P (r, i, k, n) ≥ P ∗(r, i, k,m) and similarly for r + 1. The

only ambiguous case as to which is larger is at r = r∗(i). But if the probability is

larger in the new formulation then r∗(i − 1) = r∗(i) and condition 2 holds and if it

is larger in the classical formulation then r∗(i − 1) = r∗(i) − 1 and condition 2 holds.

Since at i = (k − 1)m, P (r, i, k, n) < P ∗(r, i, k,m) = 1, for r ≤ k − 1 this implies

that W (i, k, n) < W ∗(i, k,m), and so, for i ∈ Sk−1, the inequalities are strict. Proceed

through the remaining blocks of time points Sk−2 and so on in a like fashion.

We showed that the probability of winning is greater in the new formulation than in

the classical formulation for any k and m. There is a second conjecture that relates

these two formulations:

Conjecture j∗(i) ≥ j(i) for all i for any k and m

This implies that we stop with at least as high a relative rank in the new method

as we do in the classical method. This conjecture is non-intuitive. The largest relative

rank for which we stop at item i is the largest relative rank for which the probability

that this item is a winner exceeds the probability of winning if we follow the optimal

strategy from item i+1 and thereafter. But the probability of winning with low relative

rank at i is higher for the new method than the classical, but the probability of winning

if one continues is also higher.

Since obviously one does not stop in the new method at i ∈ Sj , if the relative rank

exceeds j, a necessary condition is to show that

Lemma 2. If i ∈ Sj, then j(i) ≤ j.

Proof. Since j(i) is non-decreasing in i it is sufficient to show that

P (j, (j − 1)m, k, n) < W ((j − 1)m+ 1, k, n). (10)

The proof relies on considering the random variable Rj which is the relative rank at
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jm of an item that has relative rank j at (j − 1)m.

P (Rj = s) =

(
s− 1

j − 1

)(
jm− s

(j − 1)m− j

)

(
jm

(j − 1)m

) =

(
s− 1

s− j

)(
jm− s
m+ j − s

)

(
jm

m

) .

It is easy to show that P (Rj = j) ≤ [(m − 1)/m]m which increases from 1
4 to e−1 as

m goes from 2 to ∞. It is also easy to show that P (Rj = j + 1) > P (Rj = j).

We will prove the lemma by induction beginning with j = k and going backwards

to j = 2. If j = k, it has already been shown elsewhere that W ((k− 1)m+ 1, k, n) > 1
2

when k = 2 and hence for all k as W ((k − 1)m + 1, k, n) is clearly increasing in k.

Furthermore, P (k, (k − 1)m, k, n) = P (Rk = k) < e−1 < 1
2 .

Assume (10) holds for j. Consider j−1. The result is trivially true if P (j, jm, k, n) ≤
W (jm+ 1, k, n) because an item with relative rank of j at (j− 1)m must have relative

rank of at least j at jm. So assume that P (j, jm, k, n) > W (jm+ 1, k, n). But

P (j, (j − 1)m, k, n) =

min(j+m,k)∑

s=j

P (Rj = s)P (s, jm, k, n)

= P (Rj = j)P (j, jm, k, n) + P (Rj = j + 1)P (j + 1, jm, k, n)

+

min(j+m,k)∑

s=j+2

P (Rj = s)P (s, jm, k, n). (11)

To obtain a lower bound for W ((j − 1)m+ 1, k, n) consider the suboptimal rule where

we stop at the first i ∈ [(j − 1)m + 1, jm] at which the observation is superior to the

item with relative rank j at i = (j − 1)m. Hence if we stop and Rj = s , since the

relative rank of the item at i is s , the relative rank of the observation we stopped

at must be s − 1 or smaller. If on the other hand , Rj = j so we do not stop, we

continue with the optimal rule to obtain a probability of winning of W (jm + 1, k, n).

If Rj = j + 1 then we do stop and the probability of winning exceeds P (j, jm, k, n).

Therefore,

W ((j − 1)m+ 1, k, n) ≥ P (Rj = j)W (jm+ 1, k, n) + P (Rj = j + 1)P (j, jm, k, n)

+

(min(j+m,k)∑

s=j+2

P (Rj = s)P (s− 1, jm, k, n). (12)

Since P (s − 1, jm, k, n) ≥ P (s, jm, k, n) we only need to consider the first two terms

in (11) and (12) to show that P (j, (j − 1)m, k, n) < W ((j − 1)m+ 1, k,m).
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The first two terms in (11) can be written as

P (Rj = j)A+ P (Rj = j + 1)B

where A = P (j, jm, k, n) and B = P (j + 1, jm, k, n).

The first two terms in (12) can be written as

P (Rj = j)C + P (Rj = j + 1)A

where C = W (jm + 1, k, n). But P (Rj = j + 1) > P (Rj = j), C > B by induction

and A > C by assumption. Hence the induction step follows.

4. k=2

In this section, we consider the case where an item must ultimately be one of the

two best for a win to occur in the classical formulation. Hence in the new formulation,

if we stop at observation m or before the item we choose must be the best among the

first m and if we stop after the mth item, it must be one of the two best among all of the

n = 2m items. Since k = 2 throughout this section, we denote the ultimate probability

of winning in the new and classical settings as W ∗(m) and W (m) respectively. There

is a literature on this problem in the classical setting. Most notably, in [2] it is shown

that limm→∞W (m) = .5736. It is also shown in that paper that as m goes to infinity

the optimal rule is to stop with relative rank of 1 when i/2m reaches ≈ .347 and to

stop when the relative rank is 1 or 2 when i/2m reaches 2/3.

We provide two results in this section. The first result finds the optimal cutoffs

and value of limm→∞W ∗(m) for the new formulation. Of course, the cutoff at which

we stop with relative rank of 2 (and hence 1 as well) is the same as in the classical

formulation. We show that the optimal rule is to stop with relative rank of 1 when

i/2m reaches ≈ .3149 as m→∞. This supports the assertion that one stops no later

in the new formulation than in the classical formulation. The second result is to show

that j∗(i) ≤ j(i) for all i and m. In the process of proving the first result we show

that limm→∞W ∗(m) = 0.6298 > limm→∞W (m) = 0.5736. Of course, we showed this

inequality holds in general (in terms of k and m) in Section 3.

The aim is to find the cutoffs when m is large. To this end, we begin with some

preliminaries. Let Q(j, i, t, n) be the probability that relative rank j at i has rank t at n.
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It follows from Section 2 that Q(1, i, 1, n) = i
n → y as n→∞; Q(1, i, 2, n) = i

n
n−i
n−1 →

y(1− y); Q(2, i, 2, n) = i
n

i−1
n−1 → y2; Q(1, i, 1, n) +Q(1, i, 2, n) +Q(2, i, 2, n)→ 2y.

The dynamic programming approach yields j(i) = 2, that is stop with relative rank

1 or 2, as long as y > x, where x solves

∫ 1

y=x

2y
x2

y3
dy = x2, (13)

the solution of which is x = 2/3. Hence we stop with relative rank 1 or 2 in both

formulations if i = 4
3m when m is large.

To see that (13) holds note that x2 is the approximate probability of winning at

i = bxnc if the relative rank is 2. The probability that the item with relative rank of

1 or 2 occurs first at item j > i is

2

j

j−1∏

s=i

s− 2

s
=

2(i− 2)(i− 1)

j(j − 2)(j − 1)
≈ 2x2

ny3
.

Since we changed variable of integration to go from x to 1, the 1
n is absorbed. Further,

we must divide by 2 as we have equal probability that we stop with relative ranks of

1 and 2. Thus x is the ”break even value” for accepting or rejecting relative rank 2,

where i = 2mx.

To check whether we should accept relative rank of 1 all the way down to i = m+1 we

must check the cumulative probability if we do, with the win probability if observation

m + 1 has relative rank of 1, which is 3
4 . As we saw, the win probability for the part

where we pick an item if its relative rank is 2 is x2, with x = 2
3 , i.e. 4

9 . This is provided

that we did not stop earlier. Thus we must see whether

∫ 2/3

y=1/2

(2y − y2)
1/2

y2
dy +

(
1− 1

2

∫ 2/3

1/2

1

y2
dy

)
4

9
<

3

4
. (14)

The derivation of the first term in (14) is similar to that on the l.h.s. of (13). The

numerical value in the bracket is the probability of not stopping before (4/3)m, in which

case the win probability is (2/3)2. So the value of the l.h.s. of (14) is 1
4 +log(4/3) which

is smaller than 3/4. Thus one should stop with relative rank 1 in either formulation

for m < i ≤ 2m, and also for relative rank of 2 for i > (4/3)m. It is easily seen from

[2] that the probability of winning if one has not stopped at m and we stop for the
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first time with relative rank of 2 at T2 is

W (m+ 1, 2m) =

T2∑

i=m+1

1

i− 1
− T2 − (m+ 1)

4m− 2
+ (T2 − 2)

[
1

T2 − 1
− 1

2m− 1

]

and asymptotically, as m→∞ (with T2 = 4m/3)

W (m+ 1, 2m) = log(4/3)− 1

12
+ 1− 2

3
≈ .5377.

Now, to find the smallest i for which one should stop with relative rank of 1 in the

new formulation to be denoted by i∗, the probability we do not stop with relative rank

of 1 is the probability that the best of the first m is before i∗. Hence the probability

we do stop is 1− i∗−1
m . The win probability if we stop with relative rank 1 for the first

time at or after i∗ but no later than time m is denoted by

V (i∗) = (i∗ − 1)

m∑

i=i∗

1

i(i− 1)

i

m
=
i∗ − 1

m

m∑

i=i∗

1

i− 1
.

If we let i∗

m → γ as m→∞, the above yields that the probability of stopping is 1− γ
and the win probability is −γ log(γ). To find the optimal γ one must solve for γ that

maximizes

f(γ) = −γ log γ + γ[log(4/3) + 1/4].

Taking derivatives and solving for γ yields

γ∗ = e−(1+[log(4/3)+1/4]) =
4

3
e−3/4 = 0.6298.

The total win probability also turns out to be γ∗ = 0.6298.

It is evident by comparing the results we obtained for the cutoffs when m goes

to infinity for the new formulation with the corresponding results for the classical

formulation, that we stop with relative rank 1 sooner in the new formulation. In the

lemma below we show that this result is true in general. Specifically,

Lemma 3. j∗(i) ≥ j(i) for all i and m when k = 2.

Proof. It is sufficient to show that the smallest i for which we stop with relative

rank 1 is no larger in the new formulation than in the classical formulation. Assume

the lemma is not true. Then there exists an i, 1 < i < m, for which it is best to stop

with relative rank 1 in the classical formulation but not in the new formulation. Let j
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be the largest such i for which it is true. This implies that we stop with relative rank

of 1 in both formulations at j + 1. Furthermore, note that j is strictly less than m as

it always the case that we stop with relative rank of 1 at m in the new formulation.

The proof relies on certain observations:

1. If we do not stop before j, the probability we stop at t where j ≤ t ≤ m is

j/[t(t− 1)]. This applies to both formulations as we are waiting for relative rank

of 1.

2. If we do not stop at j, the probability we do not stop at m or before is j/m.

3. If we stop at j, the probability of winning is P ∗(1, j, 1,m) = j/m for the new

formulation and P (1, j, 2, 2m) = j
2m + j

2m
2m−j
2m−1 = j

m −
j(j−1)

2m(2m−1) for the classical

formulation.

4. We have shown that the probability of winning if we have not stopped at m is

W (m+ 1, 2m) > .5

Since it is assumed that it is better to stop with relative rank of 1 in the classical

formulation,

j

m
− j(j − 1)

2m(2m− 1)
≥

m∑

t=j+1

j

t(t− 1))

(
t

m
− t(t− 1)

2m(2m− 1)

)
+

j

m
W (m+ 1, 2m). (15)

Since it is better not to stop at j with relative rank of 1 in the new formulation.

j

m
≤

m∑

t=j+1

j

t(t− 1)

t

m
+

j

m
W (m+ 1, 2m). (16)

After trivial algebra and realizing that the r.h.s. of (15) includes the same terms as

the r.h.s. of (16), these two equations imply that m − j ≥ j − 1 , that is j ≤ m+1
2 .

Since the probability of winning if we do not stop before m , W (m + 1, 2m) = .5333,

as m→∞, and W (m+ 1, 2m) decreases in m if

j

m
− j(j − 1)

2m(2m− 1)
< .5333, for j ≤ m+ 1

2
, (17)

we have a contradiction. We assumed that it is best to stop with relative rank 1 at j.

The left-hand side of (17) increases in j so we need to consider j =< m+1
2 >. If m is

even, j = m
2 and (17) is immediate. If m is odd, j = m+1

2 and therefore the left-hand
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side of (17) is

g(m) =
m+ 1

2
− (m+ 1)(m− 1)

8m(2m− 1)
=

1

2
+

8m−m2 − 3

8m(2m− 1)
.

It follows that g(m) < 1
2 when m ≥ 9. Therefore, we only need to consider m = 3, 5, 7.

But g(3) = .6 and W (4, 6) = 19
30 > .6; g(5) = 8

15 and W (6, 10) = 53
90 >

8
15 ; g(7) = 46

91 <

.5333.

5. k=3

In this section, we prove the results that parallel the discussion in the previous

section where k = 2. We first find the solutions when m → ∞. The development of

these results is similar to those of the previous section. It relies on the preliminary

remarks from the previous section and the following additional observations:

1. Q(2, i, 3, n) = 2i(i−1)(n−i)
n(n−1)(n−2) → 2y2(1− y) where lim

n→∞
i

n
= y.

2. Q(3, i, 3, n) = i(i−1)(i−2)
n(n−1)(n−2) → y3.

3. Q(1, i, 1, n)+Q(1, i, 2, n)+Q(1, i, 3, n)+Q(2, i, 2, n)+Q(2, i, 3, n)+Q(3, i, 3, n)→
3y.

We find the item above which one stops with relative rank of 3. The probability that

we first stop at j > i is

3

j

j−1∏

s=i

s− 3

s
≈ 3

n

x3

y4

where x = i
n and y = j

n . The win probability if we stop with relative rank of 3 at

i = xn is x3. Thus one must solve

x3
∫ 1

y=x

3y

y4
dy = x3

which yields, 3
2 (x−2 − 1) = 1. Hence x =

√
3/5 = .7746. So the cutoff point where we

stop with relative rank 2 is 3m
√

3/5.

We first show that we stop with relative rank of 2 for all i > 2m. Since Q(2, i, 2, n)+

Q(2, i, 3, n) → ( 2
3 )2 + 2( 2

3 )2(1 − 2
3 ) = 20

27 , the probability of winning if we stop with

relative rank of 2 at i = 2m is approximately 20
27 . If we do not stop with relative rank of

2 at i = 2m, the win probability, V, is composed of two terms: probability of winning
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before time 3m
√

3/5 with relative rank of 1 or 2 and probability of not stopping by

time 3m
√

3/5 and winning with relative rank of 3 or less. The first probability is

∫ √3/5

2/3

3y − y3
2

(2/3)22

y3
dy = .230705.

Since the probability of not stopping is (2/3)2√
3/5

2 = 20
27 , the second term is 20

27 ( 3
5 )3/2 =

.344265. But V = .230705 + .344265 = .574970 < 20/27 which implies that we stop

with relative rank of 2 or less for all i > 2m. To see how far down we need to go and

still stop with relative rank of 2 we must solve

∫ 1

y=x

2y
x2

y3
dy +

(
1−

∫ 1

y=x

2x2

y3

)
V = x2.

This yields 2x − 2x2 + x2V = x2 or x = 2
3−V = C = .824732. Thus one should stop

with relative rank of 2 from 1.64946m to 2m. To see how far down we should pick

relative rank of 1 we must solve for x and see if x ≥ .5 in the equation

x

C
C2 + x

∫ C

y=x

(2y − y2)
1

y2
dy = 2x− x2.

The above equation yields

C +

∫ C

y=x

(
2

y
− 1

)
dy = 2− x.

In solving for x one obtains x = .50045. Thus one should pick a relative rank of 1

not all the way down to m but rather beginning slightly above at i = 1.0009m. The

expected value when stopping is 2x − x2 = .75045. Thus from 1 to m one should

stop (asymptotically) with relative rank of 1 when i ≥ e.75045−1m = .7792m with win

probability of the same amount of .7792.

We consider the probability of winning if we do not stop before Sk, in the limit,

that is limm→∞W ((k − 1)m + 1, km). We observed earlier that for fixed k, W ((k −
1)m+ 1, km) decreases in m. To this end, one stops with relative rank k when

xk
∫ 1

y=x

ky

yk+1
dy = xk.

The solution is x = B =
(

k
2k−1

)1/(k−1)
. Hence one stops with relative rank of k at all

i > kmB and the win probability if one does not stop earlier is Bk =
(

k
2k−1

)k/(k−1)
→

1/2 as k →∞.
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We already showed that we do not stop with relative rank k at (k − 1)m. Hence to

find limm→∞W ((k − 1)m+ 1, km), let A = k−1
k .

So the probability we win because we stop with relative rank k − 1 between A and

B and win is

Ak−1
∫ B

y=A

ky − yk
yk

dy =
k

k − 2

[
A−Ak−1B−(k−2)

]
−Ak−1B +Ak.

The probability we win because we do not stop at B is
(

A
B

)k−1
Bk = Ak−1B.

Thus the total probability of winning becomes

k − 1

k − 2
− k − 1

k − 2

(k − 1

k

)k−1(2k − 1

k

) k−2
k−1

+
(k − 1

k

)k k→∞−→ 1− e−1.

Note that the left-hand side of the above expression when k = 3 is V = .5749.

Assertion: For k = 3 one stops at least as early in the new formulation as compared

to the classical formulation.

Proof. We want to show that one stops earlier with relative rank of 2 in the new

formulation than in the classical formulation. We consider the difference in the prob-

ability of winning in these two formulations if we stop with relative rank of 2, which

we denote by DS(i,m) and the difference in probability of winning if we do not stop

at i which is denoted by DC(i,m). It is sufficient to show that DS(i,m) ≥ DC(i,m).

The difference of interest, which depends only on i and m is then,

DS(i,m) =

(
i

2

)

(
2m

2

) −

(
i

2

)
(3m− i) +

(
i

3

)

(
3m

3

) =

(
i

2

)

3m

{
8mi− 9m2 −m− 4i+ 2

(2m− 1)(3m− 1)(3m− 2)

}
.

.

We now consider the difference if we continue, DC(i,m). Since we are going to take

the difference between the new and classical formulation we can ignore the amount

that is obtained if we do not stop by i = 2m. Since we are considering the effect from

i+ 1 to 2m, the rule to stop in both cases is whether the relative rank is 1 or 2. Since

the probability of stopping at j > i can be found to be 2i(i−1)
j(j−1)(j−2) , that implies that

DC(i,m) =
2m∑

j=i+1

2i(i− 1)

j(j − 1)(j − 2)

j

2m
−

2m∑

j=i+1

2i(i− 1)

j(j − 1)(j − 2)

j

m
−
(
j
3

)
(
3m
3

)

2
.
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This makes use of the fact that the sum of the probabilities that relative rank 1 or 2

in the new setting produces a win is j/m and the sum of the probabilities that relative

ranks 1, 2 and 3 in the classical setting produces a win is j/m. The above expression

reduces to

DC(i,m) =
2m∑

j=i+1

2i(i− 1)

j(j − 1)(j − 2)

(
j
3

)

2
(
3m
3

) = 2

(
i
2

)
(2m− i)

3m(3m− 1)(3m− 2)
.

The values of i for which DS(i,m) > DC(i,m) are necessarily values of i for which

we stop no later for the new formulation. If we ignore like terms in DS(i,m) and

DC(i,m) this is equiavent to considering when

8mi− 9m2 −m− 4i+ 2

2m− 1
> 2(2m− i).

The above inequality reduces to the values of i such that

i >
17m2 − 3m− 2

12m− 6
= γ(n) =

17n2 − 9n− 18

36n− 54
.

What remains to show is that if i does not exceed the right hand side then we do

not stop with relative rank of 2 in the classical formulation. But, from [4] we only stop

at time i with relative rank of 2 in the classical formulation, if

c(i) =
6(i− 1)(n− i) + 5(i− 1)(i3 − 3)

(n− 1)(n− 2)
+

3(i− 1)

i3 − 2
≥ 6

where i3 is the smallest integer for which the optimal rule in the classical problem is

to stop with relative rank of 3 or less. What we need to show is that if i ≤ γ(n), then

c(i) < 6.

The first term in c(i), 6(i−1)(n−i)
(n−1)(n−2) < 2 when n ≥ 6 as the numerator is maximized

when i = (n + 1)/2. Hence we only need to show that (i − 1)
{

5(x−1)
(n−1)(n−2) + 3

x

}
< 4

when i ≤ γ(n) where x ≡ i3 − 2. Let the term in brackets be denoted by φ(x). It is

straightforward to verify that φ′′(x) is positive and that φ(.6n−1.2) = φ(n−1) = 8
n−1 .

But it was shown by [4] that .77n ≤ i3 ≤ n so x must be in the range of .6n − 1.2 to

n− 1.

It suffices to show that (γ(n)− 1) 8
n−1 < 4. The above inequality holds for n ≥ 4.

We now turn to showing that the first time we stop with relative rank of 1 in the

new formulation occurs no later than the first time we stop with relative rank of 1
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in the classical formulation. Let i = bγmc. We only need to consider i ∈ S2. It is

clear that P (1, i, 3, 3m)−W (i+1, 3, 3m) increases in i and similarly for P ∗(1, i, 3,m)−
W ∗(i+1, 3,m) as the probability of winning with relative rank 1 increases in i and the

probability of winning if we continue past i decreases in i.

We showed that there is a γ1 (γ1 ≈ 1.01) such that limm→∞ P (1, bγ1mc , 3, 3m) −
W (bγ1mc+ 1, 3, 3m) = 0. We also showed that there is a γ∗1 < γ1 (γ∗1 ≈ 1.0009) such

that limm→∞ P ∗(1, bγ∗1mc , 3,m)−W ∗(bγ∗1mc+ 1, 3,m) = 0.

Consider γ0 such that γ∗1 < γ0 < γ1 (e.g., γ0 = 1.005m). There exists an m0 such

that for all m > m0

P (1, bγ0mc , 3, 3m) < W (bγ0mc+ 1, 3, 3m)

and

P ∗(1, bγ0mc , 3,m) > W ∗(bγ0mc+ 1, 3,m),

as i = bγ0mc > bγ∗1mc and i = bγ0mc < bγ1mc. This implies that for all m > m0,

the optimal rule in the new formulation is to stop with relative rank of 1 as early as

i = γ0m while in the classical formulation the optimal rule is to stop with relative rank

of 1 for the first time at an i > γ0m.

Ifm = 200, 1.005m = 200. But P ∗(1, 201, 3, 200) = .7531 > W ∗(202, 3, 200) = .7518

and P (1, 201, 3, 600) = .7066 < W (202, 3, 600) = .7095. Hence the optimal rule is to

stop at time 201 in the new formulation, but not in the classical formulation.

It is easy to check that for m < 200 one stops with relative rank 1 at m+ 1 in the

new formulation and we already showed that one does not stop with relative rank 1

at m in the classical version. In fact the smallest m for which we do not stop with

relative rank 1 at m + 1 in the new formulation is when m = 788. Hence, m = 788

is the first smallest m for which there is a ”hole” in the new formulation in that one

stops with relative rank 1 at m and then at an m+ a, a ≥ 2, but not at m+ 1.

Remark We already showed in the classical formulation that the optimal rule at

i = jm is to stop with relative rank that is j or less. Consider k = 3 at i = m.

Could it be that we stop with relative rank of 1 at time m in the classical formulation?

The answer is no. We showed that W (3m) decreases as a function of m to .708. But

P (1,m, 3, 3m), the probability that rank 1 at m wins, is 1−
(
2m
3

)
/
(
3m
3

)
which decreases
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to 19/27 = .7037. It is easy to verify that for all m ≥ 40, P (1,m, 3, 3m) < .708 which

implies one does not stop with relative rank of 1 at time m in the classical formulation

for all m ≥ 40. But one can verify by computer that the optimal solution in the

classical problem is to not stop with relative rank 1 at time m for all m < 40.

6. Computer Results

In this section, we illustrate the results from previous sections. In Table 1, we

provide the optimal rule and win probabilities for both formulations for k = 2 for

selected values of m.

Classical Formulation New Formulation

m r(1) r(2) W r∗(1) r∗(2) W ∗

5 4 8 .6367 4 8 .7033

10 8 14 .6042 7 14 .6656

25 18 34 .5858 17 34 .6436

50 35 67 .5796 32 67 .6367

100 70 134 .5766 64 134 .6333

1000 695 1334 .5739 631 1334 .6302

Limit .6940m 4m/3 .5736 .6298m 4m/3 .6298

Table 1: Optimal rules and win probabilities for k = 2

The table indicates that the optimal rule and win probability for finite m which was

obtained by computation, converges rapidly to the asymptotically optimal rule found

in the paper. The two main results: 1. That the win probability is greater in the new

formulation and 2. that one stops at least as early in the optimal rule in the new versus

classical formulation is evident from the table.

We now consider k = 3 in Table 2. If m is not that large, m < 788, we always

stop with relative rank 1 in block 2 and hence there is no cutoff, that is r∗2(1). But if

m = 1000 in the new formulation the optimal rule in block 2 is to stop with relative

rank 1 at i = 1002. In block 1 we also stop with relative rank 1 from i = 780 to 1000.

Hence there is a hole; we stop with relative rank 1 at i = 1000 and at i = 1002 but not

at i = 1001.
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Classical Formulation New Formulation

m r(1) r(2) r(3) W r∗1(1) r∗2(1) r∗(2) r∗(3) W ∗

5 6 10 12 .7620 5 9 12 .8456

10 11 18 24 .7349 9 17 24 .8133

25 26 45 49 .7188 20 42 59 .7921

50 51 89 118 .7134 40 83 118 .7856

100 102 177 233 .7108 79 166 233 .7824

1000 1011 1761 2325 .7085 780 1002* 1650 2325 .7795

Limit 1.01m 1.76m 2.32m .708 .779m 1.001m 1.65m 2.32m .779

Table 2: Optimal rules and win probabilities for k = 3

The conclusions are otherwise the same in k = 3 as described for k = 2. We see

that W ∗ −W tends to be bigger when k = 3 as compared to k = 2 even if the sample

sizes are calibrated to be the same.

To see what happens for larger k we consider k = 5 and m = 100 in Table 3. We

computed the optimal rules and winning probabilities for other k and m and found

them to be substantively the same.

The rule for the classical problem is to stop with relative rank j for all times i ≥ r(j)
where: r(1) = 163, r(2) = 256, r(3) = 325, r(4) = 381 and r(5) = 433 with win

probability W = .8621.

The rule for the new problem is more complicated as cutoffs need to be specified

within each of the five blocks (See Table 3).

Block r∗(1) r∗(2) r∗(3) r∗(4) r∗(5) W ∗

5 401 433

4 301 315 367

3 201 235 284

2 143 191

1 93

.9220

Table 3: Optimal rule and win probability for the new formulation for k = 3 and m = 100

As is apparent from Table 3, the rule for the new formulation is more complicated
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as each block of 100 observations needs to be considered separately. The rule in block

5, (i.e., time points 401 to 500) is to stop with relative ranks 1 to 4 from time 401 to

432 and stop with relative ranks of 1 to 5 thereafter. The result in block 4 says that we

stop with relative rank of 1 or 2 throughout the time period 301 to 400. in addition,

we stop with relative rank 3 from time 315, and relative rank 4 from time 367 until

400. If we put the results of block 4 and block 5 together it implies that we stop with

relative rank 4 from time 367 until the end of the time horizon. If we consider block

3 we see that there is a hole for relative rank 3. We stop with relative rank 3 for the

time period from 284 to 300 from block 3 and then again from 315 to the end of the

time horizon from blocks 4 and 5. We do not stop with relative rank 3, however, from

time 301 to 314.

The main result that the win probability is always greater (by about .05 in this

example) in the new formulation holds in this case. The conjecture that we stop no

later in the new formulation than in the classical formulation, which we proved for the

cases k = 2 and k = 3, also holds in this case with k = 5. We stop with relative rank

5 at the same time point in both formulations. We stop with relative rank 4 at time

381 in the classical formulation and time 367 in the new formulation. We stop with

relative rank 3 from time 325 in the classical formulation and from 315 in the new

formulation (as well as for earlier time periods). We stop with relative rank 2 from

time 256 in the classical formulation and from time 235 in the new formulation (as well

as for earlier time periods). Finally, we stop with relative rank 1 from time 163 in the

classical formulation and from time 143 in the new formulation (as well as the earlier

time points 93 to 100).

Finally, we showed in the course of proving Theorem 1 (see equation (9)) that if

the optimal rule for the classical formulation is used in both the classical formulation

and the new formulation, the probability of winning is higher in the new formulation.

This is illustrated in Table 4. It is also apparent from the cases we ran that using the

optimal rule from the classical problem on the new problem produces win probabilities

that are closer to the optimal rule for the new problem than the optimal rule on the

classical problem.
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k m pwin opt new pwin subopt new pwin opt classical

2 10 0.6656 0.6599 0.6046

2 25 0.6436 0.6413 0.5858

2 50 0.6367 0.6345 0.5796

2 100 0.6333 0.6303 0.5766

2 1000 0.6302 0.6270 0.5739

3 10 0.8113 0.7996 0.7349

3 25 0.7921 0.7685 0.7188

3 50 0.7856 0.7585 0.7134

3 100 0.7824 0.7534 0.7108

3 1000 0.7795 0.7488 0.7085

5 10 0.9401 0.9344 0.8781

5 25 0.9279 0.9176 0.8674

5 50 0.9240 0.9113 0.8639

5 100 0.9220 0.9085 0.8621

5 1000 0.9202 0.9054 0.8605

Table 4: Win probabilities for the optimal rules for the new and classical formulation
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