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Itai Arieli† and Yehuda John Levy‡§

January 20, 2014

Abstract

We consider an infinite two-player stochastic zero-sum game with a
Borel winning set, in which the opponent’s actions are monitored via
stochastic private signals. We introduce two conditions of the signalling
structure: Stochastic Eventual Perfect Monitoring (SEPM) and Weak
Stochastic Eventual Perfect Monitoring (WSEPM). When signals are de-
terministic these two conditions coincide and by a recent result due to
[Shmaya (2011)] entail determinacy of the game. We generalize [Shmaya (2011)]’s
result and show that in the stochastic learning environment SEPM implies
determinacy while WSEPM does not.

1 Introduction

The issue of the existence of the value in zero-sum games of infinite duration has
a long and rich history. In such games, sometimes called Gale-Stewart games,
players play sequentially, one after the other, back and forth forever. Early mod-
els considered a perfect information monitoring structure. [Gale and Stewart (1953)]
began this line by showing that if the eventual winning set W - the set Player
1 strives to have the infinite play of the game belong to, while Player 2 strives
that the play not belong - is either open or closed, then one player can force
a win. [Wolfe (1956)] (also [Blackwell (1969)]) extended this result to the case
where W is Gδ (or, symmetrically, Fσ). Eventually, [Martin (1975)] demon-
strated that if W is a Borel set, then the game is determined.

A natural generalization is the case in which the monitoring structure is not
perfect. In fact, [Blackwell (1969)] already incorporated this result by allowing
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the actions to be simultaneous - equivalent to a one-round information delay
on the part of Player 2. In such cases, one cannot hope that one player or the
other can force a win. Nonetheless, we can hope that the game - in which a win
for a player is interpreted as the gain of a unit from another player - possesses
a value. This weakened concept has earned, counter-intuitively or not, the title
of determinacy as well, and has enjoyed generalization to more general payoff
functions as well; see [Martin (1998)]. An application of such games to manip-
ulability of inspections can be found in [Shmaya (2008)]; for pure mathematical
applications, see, e.g., [Kechris(1995)].

Building on these results and motivations, [Shmaya (2011)] made a signifi-
cant step forward when considering very general delays in information. [Shmaya (2011)]
required only that each player have, at each stage, a partition over his oppo-
nent’s possible histories of play, and learns to refine this partitions over time to
the extent that he can eventually differentiate between any two different plays.
This condition is termed by [Shmaya (2011)] as Eventual Perfect Monitoring
(henceforth, EPM), and it is shown that it is sufficient to guarantee determi-
nacy.

Our work focuses on a generalization of the EPM setup to games in which, as
well, information is learned at a delay, but not by deterministic methods such
as the partitions used in EPM, but rather by stochastic signalling. The first
pressing question is, then, what should be the natural generalization of EPM?
The key, it seems, is to observe the transition kernel (for each player) from
infinite sequences of plays of the game to infinite sequences of his own signals.
The natural generalization of partitions being disjoint to the non-deterministic
case is the condition of measures being mutually singular. As such, two natural
conditions on the monitoring structure have arisen:

One condition, to which we give the title of Stochastic Eventual Perfect
Monitoring (henceforth, SEPM), requires that any two profiles of strategies
which induce mutually orthogonal distributions on the space of plays of the
game should induce, for each player, mutually orthogonal distributions on the
space of sequences of that player. A weaker condition, however, which we call
Weak Stochastic Eventual Perfect Monitoring (henceforth, WSEPM), requires
only that for any two different infinite histories of play, the induced measures
on the space of signals of either player should be mutually orthogonal. These
conditions coincide in the case of the deterministic signalling of [Shmaya (2011)].

The purpose of this paper is then two-fold: Our main result is that SEPM
is sufficient to imply determinacy. Our technique generalizes the techniques of
[Shmaya (2011)], and like that work includes a reduction to a stochastic game
with Borel winning set. In this framework, we also generalize [Shmaya (2011)]
by allowing for stochastic states of Nature to be chosen at each period. Our
other main result is to show, by example - and via development of some tech-
niques that we hope are of independent interest - is to show that WSEPM is
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not sufficient to guarantee determinacy. Properties and equivalent reformula-
tions of the SEPM condition, as well as other applications, can be found in
[Arieli and Levy (In Preperation.)].

Epistemically, we note that our determinacy result is fundamentally dif-
ferent than that of [Shmaya (2011)]. The EPM condition implies that ev-
ery action played eventually becomes common knowledge among the players.
Our condition, it turns out, in addition to only implying p-belief (as coined
in [Monderer and Samet (1989)]) and not knowledge, only implies mutual be-
lief and not common belief. (See Proposition 3.1.) That is, for every order
k (and each p < 1), any action played eventually becomes mutual p-belief
up to k levels among the players: Each player p-believes it, each player p-
believes that each p-believes it, and so on up to k levels, but it need never
become common p-belief, i.e., the chain of mutual p-belief may never, at any
finite time, be continued ad infinitum. This difference is discussed further
in [Arieli and Levy (In Preperation.)]. Our determinacy result shows that the
eventual common learning - more precisely, common p-belief - is not what is
required for determinacy - but rather only mutual learning in the appropriate
sense.

2 Model and Results

2.1 Preliminary Notation

For a Borel space S, let ∆(S) denote the space of regular Borel probability mea-
sure on S, endowed with the topology of narrow convergence. For a finite set A,
we denote by |A| or #A the cardinality of A. For two sets A,B, A∆B denotes
the symmetric difference. For j ∈ N, let [j] ∈ {1, 2} be such that j = [j] mod 2.

2.2 Definition

Definition 2.1. A two-player zero-sum sequential game with signals is given
by a quadrupole Γ(W ) = ((Aj)j∈N, q,Θ, (ηj)j∈N,W ) where:

• Aj is the finite action space used at stage j, respectively.

• W is a subset of H∞ :=
∏
j∈NAj.

• Θ is a standard Borel space of signals.1

• For each n ∈ N, ηn :
∏
j<n Θ2 × Aj → ∆(Θ2) is the transition kernel2 of

1One could also allow for time-dependent signals - as we will later - by taking Θ to be a
disjoint union of all signalling spaces.

2Given Borel spaces X,Y , recall that a transition kernel is a Borel-measurable mapping
from X to ∆(Y ), where the latter is endowed with the measurable structure associated with
the topology of narrow convergence; equivalently, it is a function µ(· | ·) such that for each
x ∈ X, µ(· | x) ∈ ∆(Y ), and for each Borel B ⊆ Y , µ(B | ·) is measurable.
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signals.

Denote Hn =
∏
nAj , H∗ = ∪nHn. We will treat the transition kernel of

signals as a single function η : H∗ → ∆(Θ2).

The dynamics of the game are as follows: Player 1 (resp. 2) plays at odd
(resp. even) stages. Before stage n, a signal is revealed to each player3 - denote
the signal to Player j before stage n by θjn; the pair (θ1

n, θ
2
n) is chosen by Nature

according to the distribution η(h); we will denote the marginal on each coordi-
nate by ηj for j = 1, 2. Following this, Player [n] chooses an action in An.

Player 1 wins if the resulting infinite history h ∈ H∞ is in W (and receives
a payoff of one unit from player 2); Player 2 wins (and receives one unit from
Player 1) if h /∈W .

2.3 The Signalling Transition Kernels

We define the mappings η, on H∗ - specifically, each element of Hn defines a
distribution on (Θ2)n - by

η(a1, . . . , an−1)[θ1
1, θ

2
1, . . . , θ

1
n, θ

2
n] =

∏

i≤n
η(θ1

1, θ
2
1, a1, . . . , θ

1
i−1, θ

2
i−1, ai−1)[θ1

i , θ
2
i ]

That is, given a finite history of play, η gives the distribution induced on the
signals via Bayesian inference.

Let η1(h), η2(h) be the marginals on the signals for Player 1, 2, respectively.
We shall make the following assumption throughout:

Assumption 2.2. (Perfect Recall) Let j ∈ {1, 2}, n ∈ N, and let πj : Hn →∏
[s]=j,s≤nAs be the projection of j’s actions. Then, for any two ρ, λ ∈ ∆(Hn)

which satisfy πj∗(ρ)⊥πj∗(λ), we have ηj(ρ)⊥ηj(λ), where νj(ρ)(·) =
∫
Hn

νj(h)(·)dρ(h)
and similarly for λ.

Hence (since there are only finitely many actions), each player can almost
surely deduce his own previous actions from the signals he has received, and
hence when defining strategies below, we may assume each player makes deci-
sions depending only his signals.

As such, we have two transition kernels ηi∞, i = 1, 2, from H∞ to Θ∞;
each infinite history h ∈ H∞ induces probability distributions ηi(h) on Θ∞

for j = 1, 2 - that is, probability distributions on the sequence of each players’
signals defined for cylindrical sets by

ηj∞(h)({θ ∈ Θ∞ | θn = p}) = ηj(hn)(θn = p), ∀ p ∈ Θn

3Since Player 1 plays only at odd states and Player 2 only at even states, its actually
not necessary that each player receive a signal at each stage; it would have sufficed had they
received before they play. It is simpler for our notation, however, to assume they each receive
a signal at each stage.
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2.4 Strategies

A behavioral strategy for Player 1 is a sequence of functions σ = {σn}n=1,3,5,...,
where σn assigns to each sequence (θ1

1, . . . , θ
1
n−1, θ

1
n) ∈ Θn a mixed action in

∆(An), and similarly for Player 2 at the even stages. By the assumption we
made above, players able to choose from these families of behavioral strategies
have perfect recall.

Each pair of behavioral strategies (σ, τ) induces a probability distribution
Pσ,τ on H̃∞ := H∞×Θ∞×Θ∞, the space, of infinite plays of the game includ-
ing the sequences of signals the players receive.

2.5 Deterministic Signalling and Determinacy

The concept defined by Shmaya (2011), [Shmaya (2011)] can be found in our
context in the following manner:

Definition 2.3. The signalling structure of a game, with notation as Definition
2.1, is said to be deterministic if ηn(h) is a Dirac measure for each n ∈ N,
h ∈ Hn. In this case, let η1

∞, η2
∞ be the functions4 defined on H∞, which assign

to each infinite history the resulting infinite sequence of signals for Player 1,2,
respectively. The game is said to have eventual perfect monitoring (EPM) if
η1
∞, η2

∞ are injective.

Γ(W ) is said to be determined if it possesses a value, that is, if

sup
σ∈Σ1

inf
τ∈Σ2

Pσ,τ (W ) = inf
τ∈Σ2

sup
σ∈Σ1

Pσ,τ (W )

where Σj is the space of behavioral strategies for Player j. The result of
Shmaya(2011), [Shmaya (2011)], is:

Theorem 2.4. If a game has a Borel winning set, and deterministic signalling
which satisfies the EPM condition, then the game is determined.

2.6 SEPM & The Main Result for Sequential Games

Definition 2.5. Let πH : H̃∞ → Ht, (resp. π1, π2 : H̃∞ → Θ∞) be pro-
jections on the space of plays (resp. sequences of signals for Players 1, 2).
The game is said to possess Stochastic Eventual Perfect Monitoring (hence-
forth, SEPM) if for any pair of profile strategies (σ, τ) and (σ′, τ ′) such that
πH∗ (Pσ,τ )⊥πH∗ (Pσ′,τ ′), it holds that πj∗(Pσ,τ )⊥πj∗(Pσ′,τ ′) for j = 1, 2.

The main result for sequential games is:

4For any Borel space Y , the set of Dirac measures is a closed subspace of ∆(Y ) and the
mapping y → δy is a homeomorphism onto it; e.g., [Bertsekas and Shreve (1996), Cor. 7.21.1].
Hence, η1, η2 are Borel.
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Theorem 2.6. If a sequential game has a Borel winning set, and signalling
which satisfies the SEPM condition, then the game is determined.

The other result for sequential games of this paper is to show, by examples,
that the following condition does not guarantee determinacy:

Definition 2.7. The game is said to possess Weak Stochastic Eventual Perfect
Monitoring (henceforth, WSEPM) if for any two h, h′ ∈ H∞, ηj∞(h)⊥ηj∞(h′)
for each j ∈ {1, 2}.

Remark 2.8. These conditions coincide in the case of deterministic signalling.

Section 3 is dedicated to the proof of Theorem 2.12. We mimic the technique
of [Shmaya (2011)], where a reduction was made to a stochastic game with
standard signalling. A game satisfying WSEPM but which is not determined is
given in Section 4.

2.7 Generalization: Stochastic Games

Definition 2.9. A two-player zero-sum (sequential5) stochastic game with sig-
nals is given by a sextuple Γ(W ) = ((Sj)j∈N, (Aj)j∈N, q,Θ, (ηj)j∈N,W ) where:

• Sj , Aj are the finite state and action spaces used at stage j, respectively.

• W is a subset of H∞ :=
∏
j∈N(Sj ×Aj).

• Θ is a standard Borel space of signals.

• For each n ∈ N, ηn : H̃n → ∆(Θ2), where H̃n =
∏
j<n(Sj×Θ2×Aj)×Sn,

is the transition kernel of signals.

• For each n ∈ N, qn : Hn−1 → ∆(Sn) is the transition kernel of states,
where Hn−1 =

∏
j<n Sj ×Aj (H0 = {∅}).

We will also denote H̃∗ = ∪nH̃n, H�n = Hn−1×Sn, H�∗ = ∪nH�n, H∗ = ∪nHn.
We will treat the transition kernel of signals as a single function η : H�∗ →
∆(Θ2), and similarly we will view the state transition kernel as a single func-
tion q : H∗ → ∆(∪nSn) with supp(q(h)) ⊆ Sn for h ∈ Hn.

The dynamics of the game are as follows: The initial state z1 is chosen
by Nature according to the distribution q(∅). Suppose at some stage n, we
are in state zn ∈ Sn, the history of the game up to that point being h =
(z1, θ

1
1, θ

2
1, a1, . . . , zn−1, θ

1
n−1, θ

2
n−1, an−1, zn) ∈ H̃n. A signal is revealed to each

player - denote the signal to Player j by θjn; the pair (θ1
n, θ

2
n) is chosen by Nature

according to the distribution η(h); we will denote the marginal on each coordi-
nate by ηj for j = 1, 2. Following this, Player [n] chooses an action in An. The
next state zn+1 is chosen according to the distribution q(z1, a1, . . . , zn, an), and

5To differentiate from the standard stochastic game models in which players play simulta-
neously.
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the process repeats.

Player 1 wins if the resulting infinite history h ∈ H∞ is in W (and receives
a payoff of one unit from player 2); Player 2 wins if h /∈ W , and receives one
unit from Player 1).

The transition kernels η1, η2 (resp. η1
∞, η

2
∞) are now defined on H�∗ (resp.

H∞), and the notions of perfect recall (with H�t replacing Ht in Definition 2.2),
strategies (note that strategies still depend only on signals received, the players
do not directly observe the states), and determinacy are defined in the same
way as they were for sequential games.

Definition 2.10. q̂ = (q̂1, q̂2, . . .) with q̂n : Hn−1 → ∆(Sn) is said to be a belief
on Nature if for each n ∈ N and each h ∈ H�n, there is Sn,h ⊆ Sn such that
q(h)(Sn,h) > 0 and q̂(h)(·) = q(h)(· | Sn,h).

Just like above, given a belief on Nature q̂ and a strategy profile σ, τ , Pq̂,σ,τ
is the induced probability measure on H̃∞ when the original transition kernel q
is replaced with q̂.

Definition 2.11. Let πH : H̃∞ →
∏
n∈N St × At, (resp. π1, π2 : H̃∞ → Θ∞)

be projections on the space of plays (resp. sequences of signals for Players 1, 2).
The game is said to possess Stochastic Eventual Perfect Monitoring (hence-
forth, SEPM) if for any pair of profile strategies (σ, τ) and (σ′, τ ′) and any
pair of beliefs on Nature q̂, q̂′ such that πH∗ (Pq̂,σ,τ )⊥πH∗ (Pq̂′,σ′,τ ′), it holds that

πj∗(Pq̂,σ,τ )⊥πH∗ (Pq̂′,σ′,τ ′) for j = 1, 2.

The main theorem of this paper is:

Theorem 2.12. Theorem 2.6 holds for stochastic games with SEPM as well.

Remark 2.13. [Shmaya (2011)] works under the assumption that there are no
states; i.e., Sn is trivial for all n ∈ N. However, the proof there can be modified
easily to incorporate states. This also follows from our main Theorem 2.12
below.

Remark 2.14. If one wants to define WSEMP for stochastic games in such a
way that SEMP implies WSEMP, one should phrase Definition 2.7 as holding
for those h, h′ ∈ H∞ such that for every n ∈ N, there exists strategy profiles σ, τ ,
σ′, τ ′ for which the projections h|n, h′|n satisfy Pσ,τ (h|n) > 0, Pσ′,τ ′(h

′|n) > 0
(i.e., those histories which are assigned positive probabilities for some stratagy
profile.) If one would generalize the definition without this modification - i.e.,
requiring it to hold for all h, h′ ∈ H∞ - it is not clear if SEMP implies WSEMP.

Remark 2.15. We remark that the addition of the beliefs of Nature to the
definition of SEPM helps facilitate the learning: Otherwise, we could have a
situation where each player has trivial action spaces (only one option) and yet
non-trivial state spaces. In that case, a notion of SEPM not allowing for beliefs
on Nature would hold trivially - since there is only one action profile - and yet
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players would not necessarily learn anything about the states. However, in such
an example, determinacy would follow trivially so it is not clear to what extent
this stringency of the SEPM condition is needed for Theorem 2.12 to hold.

Remark 2.16. Like in [Shmaya (2011)], it is still unknown if determinacy con-
tinues to hold if the payoff is given not by a Borel winning set but by a more
general bounded Borel payoff function.

3 Proof of Theorem 2.12

Throughout this section, to keep the notation less cumbersome, we will use
the same Pσ,τ to denote the marginals on either coordinate. In the course of
probabalistic calculations, we will also identity freely between subsets B ⊆ H∞
and B× (Θ∞)2 ⊆ H̃∞, and similarly for subsets of (Θ∞)2, or subsets Θ∞ when
it is clear which player’s signals we are referring to.

3.1 Preliminaries

First, we make a reduction to the case in which the signal spaces are finite
(but stage-dependent). This reduction is relegated to Appendix B. Henceforth,
assume that at each n, the set of signals for each player is a finite set Θn.

Proposition 3.1. Let h ∈ H�∗ , and let (σ, τ) be a strategy profile. If SEPM
holds, then for each ε > 0, there is N ∈ N such that for j = 1, 2 and all n ≥ N
with Pσ,τ (h) > 0,

Pσ,τ (Pσ,τ (h|θj1, . . . , θjn) > 1− ε | h) > 1− ε (3.1)

When there are no states, this condition was shown to be equivalent to
SEPM, [Arieli and Levy (In Preperation.)] and was termed Eventual Learning,
but we only require one direction, and we provide in Appendix C here a proof
more direct that that in [Arieli and Levy (In Preperation.)]; in that work, other
equivalent conditions are also discussed.

The following is essentially Corollary 4.3 of [Shmaya (2011)] and we do not
repeat the proof.

Lemma 3.2. Let ε > 0, and assume the signal spaces Θ1,Θ2, . . . are finite.6

There exists a sequence of finite sets (∆ε
j)j∈N, with ∆ε

j ⊆ ∆(Aj), such that
for any pair of behavioral strategies σ, τ , there is a pair σ′, τ ′ which choose,
at each stage j, mixed actions in ∆ε

j , and such that ||Pσ,τ̂ − Pσ′,τ̂ || < ε and
||Pσ̂,τ − Pσ̂,τ ′ || < ε for any strategies σ̂, τ̂ , the norm being the total-variation
norm.

6This lemma remains correct even if the state spaces are general; but the proof is straight-
forward the case of finite signal spaces.
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For each ε > 0, fix (∆ε
j)j∈N, let Σ,Υ denote the set of behavioural strategies

for Player 1, 2, respectively, and let Σε,Υε be those strategies taking mixed
actions in (∆ε

j).

Lemma 3.3. Assume SEPM. For each h ∈ H�∗ , ε > 0, and 0 < % < 1, there
is N = N(h, ε, %), such that for all strategy profiles (σ, τ) in Σε × Υε with
Pσ,τ (h) ≥ %, each j = 1, 2, and all n ≥ N , (3.1) holds.

Proof. The space of Σ of behavioral strategies for Player 1 can be identified as∏
[n]=j(∆(An))Θn

, and similarly the space of behavioral strategies Υ of Player
2. Endow these spaces with the product topology. The strategy spaces Σε,Υε

are identified as compact subsets of these spaces. Fix 0 < % < 1, ε > 0, h ∈ H�∗ .
The collection Ω of strategy pairs (σ, τ) ∈ Σε ×Υε which satisfy Pσ,τ (h) ≥ % is
compact, since h is finitary.7

For each n, let Ξn denote the collection of strategy pairs (σ, τ) ∈ Ω which
satisfy (3.1); clearly, (3.1) is also determined by the first n coordinates so Ξn is
both open and closed, and by Proposition 3.1, each (σ, τ) ∈ Ω belongs to all but
finitely many Ξn. Hence, an appeal to Lemma 5.3 of the Appendix A completes
the proof.

Remark 3.4. We introduce several notations, based on Lemma 3.3. Fix ε > 0
and 0 < % < 1. For each k ∈ N, let

N(k, ε, %) = max
h∈H�k

N(h, ε, %)

We will also assume that for each strategy pair σ, τ , each player j, each h ∈ H�∗ ,
N(h, σ, τ, j, ε, %) is the smallest possible selection such that (3.1) holds for all
n ≥ N(h, σ, τ, j, ε, %), and denote like above,

N(k, σ, τ, j, ε, %) = max
h∈H�k

N(h, σ, τ, j, ε, %)

In particular, if j ∈ {1, 2}, k ∈ N, (σ, τ), (σ′, τ ′) are strategy profiles in Σε,Υεwhich
agree through the first N = N(k, σ, τ, j, ε, %) stages, then N(k, σ′, τ ′, j, ε, %) =
N . As such, if β1, . . . , βn are such that βk : Θk → ∆(Aj) for each 1 ≤ k ≤ N -
i.e., β1, . . . , βN dictate the first N stages of a strategy profile - and j ∈ {1, 2},
we can define N(k, β1, . . . , βn, j, ε, %) = N(k, σ, τ, j, ε, %) for any (equivalently,
some) strategy profile (σ, τ) which dictates the same rules as β1, . . . , βn through
N stages, as long as N(k, σ, τ, j, ε, %) ≤ N ; otherwise, N(k, β1, . . . , βn, j, ε, %) is
undefined.

Proposition 3.5. If W is compact, then Γ(W ) is determined.

Note that we do not make any requirements of the signalling structure for
this result. The proof is essentially the same as Lemma 3.1 of Shmaya (2011),
[Shmaya (2011)], and we sketch it for convenience:

7A set is finitary if it is determined by finitely many coordinates.
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Proof. The mapping from pure behavioral strategies - which are compact spaces
in the product topology - to expected payoff8 is upper semi-continuous in this
game. Hence, by Fan’s minimax theorem, a value exists in mixed strategies.9

Since the game has perfect recall, behavioral strategies are equivalent to mixed
strategies, by Kuhn’s theorem.

3.2 The Auxiliary Game Λ

We henceforth assume that Γ(W ) satisfies the SEPM assumption and has count-
able state space.

Fix ε > 0 with ε < 1, let (∆j) be the finite signal spaces, and let N(·, ·, ·)
be the function in Remark 3.4. Denote Θn =

∏
j≤n Θn. We define an auxiliary

stochastic game Λ of perfect information:
Let Bn = {b : Θn → ∆ε

n} be the set of actions at stage n = 1, 2, . . . in Λ. Denote
Bn =

∏
j≤nBn. Define Ξ : N→ N by Ξ(k) = N(k, ε

2k+1 ,
ε

2k+1·|H�k |
), and let

Kn = {k ∈ N | Ξ(k) = n}, T ′n =
∏

k∈Kn

Ak−1 × Sk, Tn = T ′n ∪ {∗}

where we take A0 to be trivial. Tn is the set of states of stage n in Λ. Kn can be
described as those stages ’approximately’ learned by stage n and not necessarily
earlier; T ′n is what is actually learned.

For each n ∈ N, define Mn = max{k | Ξ(k) ≤ n} - that is, the stages
necessarily learned by stage n - and define for j = 1, 2, f̃n : Bn−1 × (Θn)2 →
H�Mn

, where f̃ jn(βn−1, θn), for βn−1 ∈ Bn−1 and θn ∈ Θn, is an h ∈ H�Mn
such

that:
Pβn−1

(h|θjN∗) > 1− ε

2n
, j = 1, 2 (3.2)

where N∗ = N(Mn, βn−1, j,
ε

2k+1 ,
ε

2k+1·|H�k |
), if such h exists, in which case it is

unique.10. Otherwise, denote f̃ jn(βn−1, θ
j

n) = ∗. Then, define

f̃n(β, θn) =

{
f̃1
n(β, θ

1

n) if f̃1
n(β, θ

1

n) = f̃2
n(β, θ

2

n) 6= ∗
∗ otherwise

Lemma 3.6. For any pair of behavioral strategies σ, τ in Γε,Υε, and each
j ∈ {1, 2},

Pσ,τ
(
∃n ∈ N, j ∈ {1, 2}, f̃n(βn, θ

j

n) 6= (z1, a1, . . . , zMn
)
)
< 2ε

where βj = σj for odd j, βj = τj for even j.

8This is the only difference from the corresponding lemma in [Shmaya (2011)] - pure strat-
egy profiles here do not yield deterministic payoffs.

9That is, mixtures of pure behavioral strategies.
10Since 1− ε

2n
> 1

2
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Proof. Denote Zn = {h ∈ H�Mn
| Pσ,τ (h) ≥ ε

2n+1·|H�Mn
|}. For each j ∈ {1, 2},

Pσ,τ
(
∃n ∈ N, f̃ jn(βn, θ

j

n) 6= (z1, a1, . . . , zMn)
)

≤
∑

n∈N
Pσ,τ

(
f̃ jn(βn, θ

j

n) 6= (z1, a1, . . . , zMn)
)

=
∑

n∈N

∑

h∈H�Mn

Pσ,τ
(
f̃ jn(βn, θ

j

n) 6= h ∧ h = (z1, a1, . . . , zMn)
)

=
∑

n∈N

∑

h∈Zn

Pσ,τ (h) · Pσ,τ
(
f̃ jn(βn, θ

j

n) 6= h|h
)

+
∑

n∈N

∑

h∈H�Mn
\Zn

Pσ,τ
(
f̃ jn(βn, θ

j

n) 6= h ∧ h = (z1, a1, . . . , zMn)
)

≤
∑

n∈N

∑

h∈Zn

Pσ,τ (h)
ε

2n+1
+
∑

n∈N

∑

h∈H�Mn
\Zn

Pσ,τ (h = (z1, a1, . . . , zMn
))

≤ ε

2
+
∑

n∈N
|H�Mn

| · ε

2n+1 · |H�Mn
| ≤ ε

where we have used the definition of Ξ(·).

Let πn : H�n → T ′n be defined by projection, and let F : T1 × T2 × · · · →
H∞ ∪ {∗} be defined by

F ((πn(u|n))n∈N) = u, if u ∈ H∞

F ((tn)n∈N) = ∗, if ∃n ∈ N, tn = ∗
By Lemma (3.3), this is well-defined. By mildly abusive notation, F : T1×· · ·×
Tn → H�Mn

∪ {∗}, which is the projection of F defined above onto H�Mn
, and ∗

projects to ∗; this is well-defined, as these first Mn coordinates in the output of
F dependent only on the first n coordinates of

∏
j Tj . Let fk = πk ◦ f̃k, where

πj(∗) = ∗.

In Λ, Player 1 plays at odd stages, Player 2 plays at even stages, with perfect
monitoring. Given p = (t1, b1, . . . , tn, bn) ∈ T1×B1× · · · × Tn×Bn, we need to
define the distribution induced on the next state - i.e., the distribution on Tn -
that Nature employs. We define the transition function in Λ by

q̃(t1, b1, . . . , tn−1, bn−1)[∗] = 1, if ∃j < n, tj = ∗

and otherwise,

q̃(t1, b1, . . . , tn−1, bn−1)[t] =

P (fn(b1, . . . , bn, θ̂1, . . . , θ̂n) = t|fk(b1, . . . , bk, θ̂1, . . . , θ̂k) = tk, ∀k < n) (3.3)
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where (θ̂j)
n
j=1 is a sequence of random variables, with θ̂j ∈ Θ2

j , such that there

are sequences (ẑj)
n
j=1, (âj)

n−1
j=1 of random variables, ẑj ∈ Sj and âj ∈ Aj satis-

fying

P (ẑk | ẑ1, â1, . . . , ẑk−1, âk−1) = q(ẑ1, â1, . . . , ẑk−1, âk−1)[ẑk] (3.4)

P (âk | θ̂1, . . . , θ̂k) = bk(θ̂
[k]
1 , . . . , θ̂

[k]
k )[âk] (3.5)

and

P (θ̂k |θ̂1, . . . , θ̂k−1, ẑ1, â1, . . . , ẑk−1, âk−1, ẑk)

= η(θ̂1, . . . , θ̂k−1, ẑ1, â1, . . . , ẑk−1, âk−1, ẑk)[θ̂k] (3.6)

What we have described above is the dynamics of the game Λ. For a W ⊆
H∞, Player 1 wins in Λ(W ) if F (s1, s2, . . .) ∈ W (and receives a payoff of 1
unit from Player 2), and loses otherwise (and receives a payoff of −1). The
following is essentially Lemma 4.4 in Shmaya (2011), [Shmaya (2011)], and for
convenience we again recall the proof.

Lemma 3.7. The game Λ(W ) is determined when W is Borel, and val(Λ(W0)) ≥
val(Λ(W ))− ε for some compact set W0 ⊆W .

Proof. For V ⊆∏n∈N Tn×Bn, let Λ0(V ) denote the game with dynamics as in Λ

such that Player 1 wins if (s1, b1, s2, b2, . . .) ∈ V .11 Define G :
(∏

j∈N(Tj\{∗})×
Bj
)
→ H∞ by

G(s1, b1, s2, b2, . . .) = F (s1, s2, . . .)

G is continuous, and Λ(W ) = Λ0(G−1(W )) is a stochastic game with winning
set G−1(W ), since

F (s1, s2, . . .) ∈W ⇐⇒ G(s1, b1, s2, . . .) ∈W ⇐⇒ (s1, b1, s2, . . .) ∈ G−1(W )

Therefore, Λ(W ) has a value, see [Martin (1998)]. Furthemore, there is a
compact subset C ⊆ G−1(W ) such that val(Λ0(C)) > val(Λ0(G−1(W ))) − ε
([Maitra et al (1992)]; see also [Maitra and Sudderth (1996), Ch. 6]). But
val(Λ0(C))) ≤ val(Λ0(G−1(G(C)))) = val(Λ(G(C)). We can take W0 = G(C).
W0 is compact, satisfies the require inequality as

val(Λ(W0)) = val(Λ(G(C))) ≥ val(Λ0(C)) ≥ val(Λ0(G−1(W ))−ε = val(Λ(W ))−ε

and W0 = G(C) ⊆ G(G−1(W )) = W .

Lemma 3.8. For every Borel set W of H∞,

val(Λ(W ))− 4ε ≤ val(Γ(W ))

11This is fundamentally different than Λ(W ), which is defined via the function F .
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Lemma 3.8 is the heart of the proof. If we take this Lemma as a given,
then it is easy to complete the proof of Theorem 2.12: Let Γ(W ) with W Borel
be a game which satisfies the SEPM assumption. Let ε > 0; we have already
discussed that we may assume that only finitely many signals are possible at
each stage. Let W0 be a compact subset of W as in Lemma 3.7. Then

valΓ(W ) ≥ valΓ(W0) = valΓ(W0) ≥ valΛ(W0)− 4ε > valΛ(W )− 5ε

where the first inequality follows from W0 ⊆ W , the equality from Proposition
3.5, the second inequality from Lemma 3.8, and the third inequality from the
choice of W0.

In a symmetric fashion, valΓ(W ) < valΛ(W ) + 5ε. Therefore, valΓ(W ) <
valΓ(W ) + 10ε for any ε > 0, so valΓ(W ) ≤ valΓ(W ), as required.

3.3 Proof of Lemma 3.8

For k ≤ n, denote the mapping gn,k : Θn ×Bn−1 → H�Mk
∪ {∗} given by

gn,k(θ1, . . . , θn, b1, . . . , bn−1) = f̃k(θ1, . . . , θk, b1, . . . , bk−1)

Let y be an ε-optimal strategy for Player 2 in Γ(W ) which chooses mixed actions
in ∆ε

n at each even stage n; such exists by Lemma 3.2. Define a pure strategy
y∗ of Λ defined by

y∗(s1, b1, . . . , sn) = yn

Let x∗ be any pure strategy of Player 1 in Λ; define a behavioral strategy in Γ
given, for each n ∈ N and p ∈ Θn, by

xn(p) = x∗n(s1, b1, . . . , sn)(p)

where s1, b1, . . . , sn is the finite history of Λ defined inductively by bk = x∗k(s1, b1, . . . , sk)
for odd k and bk = yk for even k, and sk = πk(gn,k(p1, . . . , pn, β1, . . . , βn−1)).

We will join an (x, y)-random play of Γ and an (x∗, y∗)-random play of Λ
with ’almost equal’ payoffs. Let (Πk, ζk, ξk, βk, αk)k∈N be sequence of random
variables such that for all n, Πn = (Π1

n,Π
2
n) ∈ Θ2

n, ξn ∈ Sn, ζn ∈ Tn, αn ∈ An,

βn ∈ Bn, and (denote Πn = (Π1, . . . ,Πn), and similarly Π
j

n, j = 1, 2, and for
ξn, αn, βn, ζn):

P (Πn = p | ξn, αn−1,Πn−1) = η(ξn, αn−1,Πn−1)[p] (3.7)

ζn = fn(Πn, βn−1) (3.8)

βn = x∗n(ζn, βn−1) for odd n, (3.9)

βn = y∗n(ζn, βn−1)for even n, (3.10)

13



P (αn|ξn, αn−1) = βn(Π
[n]

n )[αn] (3.11)

P (ξn = s|ξn−1, αn−1) = q(ξn−1, αn−1)[s] (3.12)

where recall that fn is defined via projection to T ′n of f̃n. From (3.8) follows
then that, for all n and all k ≤ n,

(ζ1, . . . , ζk) = gn,k(Πn, βn−1) (3.13)

βn = yn for even n; that is,

yn(Π
2

n) = βn(Π
2

n) (3.14)

Then, using (3.13), (3.9), and (3.14), it follows inductively that

xn(Π
1

n) = βn(Π
1

n) (3.15)

for all odd n. Putting these last two into (3.11) gives:

P (αn|ξn, αn−1) =

{
xn(Π

1

n) if n is odd

yn(Π
2

n) if n is even
(3.16)

As such, from (3.7), (3.16), and (3.12) it is deduced that ξ1, α1, ξ2, α2, . . . is an
(x, y)-random play of Γ; that is, this sequence of random variables distributes
as the sequence of states and actions distribute under Px,y. Indeed, these three
equalities are precisely the dynamics of the stochastic process (ξn,Πn, αn) under
Px,y.

Furtheremore, by comparing (3.4),(3.5),(3.6) with (3.7),(3.11), (3.12), the

distribution of (θ̂n, ẑn, ân)∞n=1 is the same as the distribution of (Πn, ξn, αn)∞n=1,
given that the choices β1, . . . , βn are the same as b1, . . . , bn in (3.3). Therefore,
for a sequence ζ1, β1, . . . , ζn−1, βn−1 which is consistent with x∗, y∗ (i.e., for each
k 6= n− 1 odd, βk = x∗(ζ1, β1 . . . , ζk), and similarly for k even with y∗ instead -
note that both x∗ and y∗ are pure in Λ, and hence the sequence (ζn) determines
the sequence (βn)), we have by (3.3)

P (ζn = z | ζ1, β1, . . . , ζn−1, βn−1) = P (ζn = z | ζ1, . . . , ζn−1)

= P (fn(βn−1,Πn) = z | ∀k < n, fk(βk−1,Πk) = ζk)

= Px∗,y∗(fn(bn−1, θn) = z | ∀k < n, fk(bk−1, θk) = ζk) (3.17)

where b0 = ∅ and, inductively, bj = x∗(ζ1, b1, . . . , ζj) for odd j, and similarly
for even j with y∗ (again, recall that x∗, y∗ are pure); equivalently, βj = bj for
j ≤ n. Hence ζ1, β1, ζ2, β2, . . . is an (x∗, y∗)-random play of Λ.

By (3.13) and Lemma 3.6, we have

|Px,y((zn, an)∞n=1 ∈W )− Px∗,y∗(F ((sn)∞n=1) ∈W )|
= |P ((ξn, αn)∞n=1 ∈W )− P (F ((ζn)∞n=1) ∈W )|
≤ P

(
((ξn, αn)∞n=1 ∈W )∆(F ((ζn)∞n=1) ∈W )

)

≤ Px,y
(
∃n ∈ N, f̃n(βn−1, θn) 6= (z1, a1, . . . , zMn)

)
< 2ε
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where βj = xj for odd j and βj = yj for even j, which completes the proof of
Lemma 3.8.

4 Insufficiency of WSEPM

In this section, we will show that even if the game satisfies WSEMP, the value
need not exist. In fact, in the example we construct, Player 1 will be fully
informed - i.e., will possess perfect monitoring - and it’s only Player 2 whose
signals are ’blurred’.

4.1 Blurring Signals

Here, we will begin by defining what can be thought of as a decision maker
(that is, a single player) choosing at each stage n and action of Bn, resulting
in a signal in In whose conditional probability depends on all actions chosen
until now (but not on previous signals). This defines a transition kernel η from
infinite sequences of actions to infinite sequences of signals.

Let D1, D2, D3, . . . be a fixed sequence of action sets (or choice sets) for a
decision maker. For every sequence of integers m = (m1,m2, . . .) ∈ NN, make
the following definitions: For each n ∈ N, let Bn be a set of size mn, let Cn =
Dn×Bn, let Cn =

∏
k≤n Ck, Mn = |Cn| =

∏
k≤n |Dk|·mk, C∞ =

∏
k∈N Ck, and

let In+1 = {0, 1}Cn (note that I1 is a singleton). We define a transition kernel
η from C∞ to I∞ :=

∏
n∈N In. The simplest way to describe it is by specifying

the distribution ηn(· | b1, . . . , bn) on In+1 given that c1, . . . , cn have been chosen,
and this will determine the kernel η as in Section 2.3: ηn is independent of any
previous signals, and for any in+1 ∈ In+1,

ηn+1(in+1 | c1, . . . , cn) =

{
0 if in+1(c1, . . . , cn) = 0
( 1

2 )Mn−1 if in+1(c1, . . . , cn) = 1
(4.1)

In other words, for each of the Mn possible histories up through n actions,
Nature performs independent lotteries (also independent of previous lotteries):
The true history is assigned 1, while all other histories are assigned 1 or 0 with
equal probability.

Now, let νn (resp. µn) denote the uniform measure on Bn (resp. Dn), and
define a strategy for a decision maker who needs to choose a decision from Cn
at stage n: The strategy σ%, at stage n, plays mixed the action µn⊗ νn. Call a
behavioural strategy σ normal if it does not depend on the previous outcomes
in B1, B2, . . . or on previous signals - it can depend on the previous outcomes in
D1, D2, . . . - and which plays, at each stage n, a product distribution on Dn×Bn
whose marginal on Bn is the uniform νn. The proof of the following Proposition
is given in Appendix D.
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Proposition 4.1. For each ε > 0, there are functions (gk)∞k=1, gk : N → N,
such that if for all k ∈ N it holds that12 mk ≥ gk(

∏
i<kmi), then ||Pσ−P%|| < ε

for any normal strategy σ, where Pσ and P% denote the distributions induced
on I∞ as a result of using σ or σ%, respectively.

4.2 The Example

This construction could be done much more generally, but for simplicity, we
build a single example and remark below how to generalize (and it can be
generalized much further). Begin with the endurance game given in in Sec-
tion 2.3 of [Shmaya (2011)]: Starting with Player 1, at each stage, players
alternatively choose to stay (S) or leave (L), resulting a sequence of choices
h = (d1, e1, d2, e2, . . .). (There are no states.) Let n1(h) = inf{n ∈ N | dn = L},
n2(h) = inf{n ∈ N | en = L}, where the infimum of the empty set is ∞, and
define the winning set of Player 1 of this game Γ to be

W = {h | n1(h) > n2(h) or n1(h) < n2(h) =∞}

That is, Player 1 wishes to leave after Player 2, but even if Player 2 is never
going to leave, Player 1 wants to leave at some point. It is shown there that if
Player 1 has perfect monitoring and Player 2 has no monitoring, then val(Γ) = 0
and val(Γ) = 1.13

Now, let 0 < ε < 1
4 , let B1, B2, . . . be sets of sizes m1,m2, . . . corresponding

to this ε and to Dn = {S,L} for all n as in Proposition 4.1. Define another
game Γ′ in which:

• The action sets of Player 1 are A1, A2, . . . where Ak = Dn ×Bk.

• The action sets of Player 2 are also En = {S,L}.

• Player 1 has perfect monitoring.

• Player 2 has perfect recall (after he plays a move, he observes it perfectly),
and his monitoring structure of his opponent’s actions is given via the
kernel as in Section 4.1. Specifically, if η is the transition kernel from that
section,

η2(a1, θ1, e1, a2, θ2, e2, a3, . . . , an) = η(a1, . . . , an)

where we have supressed reference to Player 1’s signals and to the perfectly
informative signals Player 2 receives about his own actions.

• W ′ is the inverse image of W via the projection from A1×E1×A2×E2×· · ·
to D1 × E1 ×D2 × E2 × · · · .

Proposition 4.2. The game satisfies WSEMP.

12The empty product is 1.
13In [?], a loss for Player 1 has payoff 0; while in the current paper, it has payoff −1.
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Proof. Player 1 has perfect monitoring. As for Player 2: Let h = (a1, e1, a2, e2, . . .) 6=
h′ = (a′1, e

′
1, a
′
2, e
′
2, . . .) ∈ H∞. If they are different in some action of Player 2,

then η2(h)⊥η2(h′) since Player 2 has perfect recall. So assume they are different
in some action of Player 1. Let V be the subset of Player 2’s signal space given
by

V = {(i1, i2, . . .) | ∀n ∈ N, in+1(a1, e1, . . . , an) = 1}
i.e., which always give a signal 1 all along the history h, and define V ′ similarly
w.r.t. h′ = (a′1, e

′
1, a
′
2, e
′
2, . . .). Then clearly η2(h)(V ) = 1, η2(h)(V ′) = 0, and

the converse equalities as well, since any false history will with probability 1
eventually get a 0 at some point - see the explanation following (4.1).

Clearly, since Player 2’s strategy set is richer in Γ′ than in Γ,

val(Γ′) ≤ val(Γ) = 0

So it suffices to show that

Lemma 4.3. val(Γ′) ≥ 1− 4ε

In fact, as our proof will show, this remains true even if we remove all of
Player 1’s monitoring of Player 2’s actions.

Proof. Let σn for n = 1, 2, 3, . . . ,∞ be the strategy for Player 1 that (ignoring
Player 2 actions) plays L× νn only at time n and S × νn otherwise (σ∞ always
plays S× νn), where recall that νn is uniform on Bn. Fix a strategy τ of Player
2. Let δ > 0, and let N ∈ N be such that

Pσ∞,τ ({h | N < n2(h) <∞}) < δ (4.2)

Such N clearly exists. We contend that

PσN+1,τ (W ′) > 1− δ

Indeed, by the definition of W ′,

PσN+1,τ (W ′) = PσN+1,τ ({h | N ≥ n2(h)}) + PσN+1,τ ({h | n2(h) =∞}) (4.3)

Observe that

PσN+1,τ ({h | N ≥ n2(h)}) = Pσ∞,τ ({h | N ≥ n2(h)})

We will show that

PσN+1,τ ({h | n2(h) =∞}) ≥ Pσ∞,τ ({h | n2(h) =∞})−2ε >
(
1−Pσ∞,τ ({h | N ≥ n2(h)})−δ

)
−2ε

These last three equations complete the proof, since δ > 0 is arbitrary. The right
inequality follows by (4.2), and the left inequality follows from the following
argument: The sequence of signals of Player 2 that he receives about Player 1’s
actions - denote the space of all such sequences of signals by Θ2

∞ - is determined
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by the strategy of Player 1 only, assuming Player 1 uses strategies like σN+1, σ∞
which disregard Player 2’s actions. By our assumptions and Proposition 4.1,
the total variation distance between the induced measures on Θ2

∞ from playing
σN+1 or σ∞ is less than 2ε. τ then determines a transition kernel from Θ2

∞
to sequences of actions in {S,L}∞ of Player 2. Hence the resulting marginals
of PσN+1,τ and Pσ∞,τ on Player 2’s sequences of actions {S,L}∞ differ in total
variation by at most 2ε, and n2(·) depends only on these actions.

These construction could be generalized without too much difficulty in the
following way: Begin with any game Γ with winning set W in which Player 1
has perfect monitoring of his opponent’s actions, Player 2 has no monitoring
of his opponent’s actions, and assume that Γ(W ) does not possess a value.
(There are no states.) For convenience, denote the action spaces of Player 1
as D1, D2, D3, . . ., and the action sets of Player 2 as E1, E2, E3, . . . (that is,
Dk is used by Player 1 at stage 2k − 1, and Ek is used by Player 2 at stage
2k.) Let 0 < ε, let B1, B2, B3, . . . be of sizes m1,m2, . . . which correspond to
D1, D2, D3, . . . and to ε as in Proposition 4.1. The description of the game Γ′ -
its derivation from Γ - now follows precisely as above. We state without proof:14

Proposition 4.4. The monitoring structure of Γ′ satisfies WSEMP but, if ε > 0
is small enough, it does not possess a value.

5 Appendix A

Lemma 5.1. Let µ be a probability measure on a Borel space X, ε > 0, let B ∈
B(X) satisfy µ(B) > 1− ε. Define a measure µB on X by µB(A) = µ(A | B).
Then ||µ− µB || < 2ε.

Proof. Define µ′B = µ(B) · µB ; that is, µ′B(A) = µ(A ∩B). Then

||µ− µB || ≤ ||µ− µ′B ||+ ||µ′B − µB || < µ(B) + ||µB || · (1− µ(B)) < 2ε

Lemma 5.2. Let X1, X2, . . . be finite sets, X =
∏∞
n=1Xn. Let Bn be the

partition induced by the first n coordinates, and let µ be a complex measure on X.
For each n, let µn be the induced measure on15 Bn defined by µn({B}) = µ(B)
for all B ∈ Bn. Then ||µn|| →

n→∞
||µ||.

Proof. Clearly, (||µn||)n is a non-decreasing sequence which is bounded by above
by ||µ||. Let ε > 0. The space of measures is the dual of C(X), the space of

14In our example, in the proof of Lemma 4.3, we relied on the existence of near-optional
strategies of strategies of Player 1 (in the original game, without signalling) which ignore
Player 2’s actions - but a more cumbersome argument could have gone through without this
assumption.

15View Bn as a finite set of elements, where each element is a partition class.
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continuous functions on X with supremum norm, so there is f ∈ C(X), ||f || ≤ 1,
such that ∫

X

fdµ > ||µ|| − ε

2

The Stone-Weierstrauss theorem implies that the set of functions g for which
there exists n such that g which is constant on each atom of Bn are dense in
C(X). Let g and n be such that g is constant on each atom in Bn and

||g − f || < ε

2||µ|| , ||g|| ≤ 1

and we can view g as a function on Bn as well. Therefore,

||µn|| ≥
∫

Bn

gdµn =

∫

X

gdµ >

∫

X

fdµ− ε

2
> ||µ|| − ε

Lemma 5.3. Let X =
∏
n∈NXn with each Xn finite, let Ω ⊆ X be finitary,

and let (Ξn) be finitary subsets of Ω such that for each x ∈ Ω, x belongs to all
but finitely many of the (Ξn). Then Ω ⊆ Ξn for all but finitely many n.

Proof. On the set of vertices, G = ∪∞n=0

∏n
j=1Xj , let T = {v ∈ G | (v, w) ∈

Ω for some word w} - that is, all the vertices which are initial segments of some
element in Ω. Edges in T are naturally between an element (x1, . . . , xn) and an
element (x1, . . . , xn, xn+1). We can view each vertex v ∈ G as a subset of X
consisting of all elements which have v as an initial segment, and each Ξn as a
subset of T consisting of all the v ∈ T such that v ⊆ Ξn. We observe that if
v ∈ Ξn for some n then so are all of its descendants, and hence T ′ = T\Ξ is also
a tree, where Ξ = ∪Ξn. By assumption it has no infinite branch. By König’s
lemma, this implies that T ′ has finite depth - i.e., there is N such that all T ′

branches are of length N - and this completes the proof.

6 Appendix B: Proof of the General Theorem
2.12

In this section, we show how to prove Theorem 2.12 when the state space is a
general Borel space, assuming that it has already been proven when the state
space is finite (but stage-dependent). We begin with some auxiliary results:

Let Λ be any compact space. Let ν be any measure over Λ and let σ : Λ→
∆(A) be Borel measurable where A is finite. Let µ(ν, σ) be the measure over
Λ×A induced by ν and σ (σ can be viewed as a transition kernel from Λ to A),
and let dw be the Prokhorov metric16 over ∆(Λ×A).

Let {Fk}k be a filtration of measurable sets of Λ that induces the Borel
σ-algebra, such that Fk is finite for every k.

16Or any other metric that induces the weak* topology.
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Lemma 6.1. Let ν ∈ ∆(Λ). For every ε there exists a k′ such that for every
measurable strategy σ : Λ → ∆(A) there exists a Fk′ measurable strategy σ̃ :
Λ→ ∆(A) such that,

dw(µ(ν, σ), µ(ν, σ̃)) < ε. (6.1)

Proof. It is easy to show that for every fixed strategy σ and ε there exists a k′

and a Fk′ measurable strategy σ̃ such that,

dw(µ(ν, σ), µ(ν, σ̃)) < ε.

We shall show that this property holds uniformly for every σ.
Assume by contradiction that for some ε > 0 it holds that for every k there

exists a strategy σk such that for every Fk measurable strategy σ̃,

dw(µ(ν, σk), µ(ν, σ̃)) ≥ ε. (6.2)

By compactness of ∆(Λ × A), by taking taking subsequence, one can assume
that the sequence {µ(ν, σk)}k converges weakly to some µ. Clearly µ = µ(ν, σ)
for some strategy σ.17 By the above we can find a strategy σ that is Fk′

measurable for some k′ such that,

dw(µ(ν, σ), µ(ν, σ)) <
ε

2
.

On the other hand since {µ(ν, σk)}k converges to µ(ν, σ) there exists a k0 such
that for every k > k0,

dw(µ(ν, σ), µ(ν, σk)) <
ε

2
.

Hence by the triangle inequality we get that for every k > k′,

dw(µ(ν, σ), µ(ν, σk)) < ε.

This stands in contradiction to (6.2).

Corollary 6.2. Let V ⊂ ∆(Λ) be a finite set. For every ε > 0 there exists a
k′ such that for every measurable strategy σ : Λ → ∆(A) there exists a Fk′-
measurable strategy σ̃ : Λ → ∆(A) such that, if µA(ν, σ) denotes the marginal
of µ(ν, σ) on A, then

∀ν ∈ V, ||µA(ν, σ)− µA(ν, σ′)|| < ε

Proof. For each δ > 0 small enough, one can choose k’ and Fk′ so that

∀ν ∈ V, dw(µ(ν, σ), µ(ν, σ̃)) < δ. (6.3)

and since A is finite, it holds that for δ > 0 small enough and any two measures
µ, µ′ ∈ ∆(Λ×A),

dw(µ, µ′) < δ =⇒ ||µA − µ′A|| < ε

17Since the marginal of each µ(ν, σk) on Λ is ν, so is the marginal of µ.
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Proof of Theorem 2.6 (The General Case). Let Γ(W ) be any general game. By
the isomorphism theorem (see Theorem 15.6 in [Kechris(1995)]) the signal space
Θ is isomorphic, in a measure theoretic sense, to some compact metric space.
Hence, we can assume that the signal space is compact, since we don’t use any
topological properties of the space, just the measurable structure.

We begin with two simplifications that will make the proof much easier:

• First, we assume that players only receive signals at stages at which they
are active - i.e., Player 1 (resp. 2) receives a signal only before he comes
to play at the odd (resp. even) stages. This is no loss of generality, as one
can have a player receive two signals at once - i.e., the signal space can
be modelled as a product space - while allowing a deterministic history-
independent ’dummy’ signal (i.e., an information-less pre-determined sig-
nal) for the players at stages at which they are not active.

• We want the reduction to preserve the perfect recall requirement. To avoid
any operation that may ruin the perfect recall, enlarge the signal spaces in
the following way: At each stage, the active player receives an additional
signal (that is, in addition to the other already prescribed to him in the
game) which is deterministically and uniquely determined by his previous
actions. (I.e., Each time, before he plays, he is given a list of his previous
actions.) Each of these signals is from a discrete, finite space. Formally,
the new signal space at each stage is a product of the original signal space
Θ and the finite space of possibly past sequences of actions of the currently
active player. We will then, implicitly, throughout our construction, only
allow partitions of the state space which preserve perfect recall - i.e., no
partition element contains two signals which give different past sequences
of actions of the currently active player.

Recall that ηjn(h) for j ∈ {1, 2}, n ∈ N, and h ∈ Hn−1 denotes the distribu-
tion on Θ

n
, the space of Player j’s first n signals, and that Σ,Υ denote the spaces

of Player 1, 2’s strategies, respectively. For odd n, let Fn = ⊗k|2k+1≤nF2k+1

be the σ-algebra of Player 1’s signals up to time n, and similarly for even n for
Player 2.

Let Γ(W ) be any game with a compact set of signals Θ. Fix ε > 0. We
shall define a sequence of finite measurable partitions {Fn}n of {Θn}n and a
corresponding sequence of classes of strategies Σn,Υn such that the following
conditions hold:

• For σ, τ ∈ Σn,Υn, at each stage k ≤ n, the active player i = [k] has to
choose an Fk-measurable strategy. In stages k > n the players are not
restricted in their play.

• The partitions preserve perfect recall, in the sense described above.

21



• For every strategy σ ∈ Σ, there is σ′ ∈ Σn such that for every strategy
τ ∈ Υ,

‖Pσ,τ − Pσ′,τ‖ < (1− 1

2n
)ε.

and similarly for every τ ∈ Υ there is τ ′ ∈ Υn satisfying the similar
inequality.

We construct the partition inductively as follows.
Assume that {Fk}k<n has been defined such that the two properties hold for

every k < n. W.l.o.g., assume that n is odd so that player 1 is the active player.
Let V = {η1(h) | h ∈ H�n} ⊆ ∆(Θn) be the finite set of measures induced on
Player 1’s first n signals by the histories of length n− 1, and let

U = {λ(· | G) ∈ V | λ ∈ V,G ∈
∏

k|2k+1<n

F2k+1 s.t. λ(G) > 0}

be the conditional distributions on any element of V w.r.t. atoms of Player 1’s
knowledge in the coarsened knowledge partitions. Note that U is finite.

For every pair of strategies σ, τ and n ∈ N we let Pnσ,τ be the marginal of
Pσ,τ over Hn.

For every measure ν ∈ U and σn : Θn → An let µ(ν, σn) be the induced
measure over Θn × An. We use Corollary 6.2 to construct a partition Fn over
Θn such that for every σn : Θn → An there exists a Fn-measurable strategy σ′n
such that,

∀ν ∈ U ||µAn(ν, σn)− µAn(ν, σ′n)|| < ε

2n
. (6.4)

Since we can also refine this partition and still have the equation hold, we may
assume the choice of partition preserves perfect recall.

We claim that the strategies spaces18 Σn,Υn have the three properties listed
above. The first is just a matter of definition, and the partition was chosen such
that the second holds. To see the third let σ ∈ Σ any strategy of Player 1. By
the inductive construction one can find a strategy σ̃ ∈ Σn−1 such that for every
strategy τ ∈ Υ of Player 2

‖Pn−1
σ,τ − Pn−1

σ̃,τ ‖ < (1− 1

2n−1
)ε, (6.5)

and for every hn−1 ∈ Hn−1,

Pσ,τ (·|hn−1) = Pσ̃,τ (·|hn−1). (6.6)

Define then σ′ = (σ̃1, . . . , σ̃n−1, σ
′
n, σn+1, σn+2, . . .). Furtheremore, for each

hn−1 ∈ Hn−1, the measure η1(hn−1) is in V , and

||Pnσ′,τ (· | hn−1)− Pnσ,τ (· | hn−1)|| = ||µAn
(η1(hn−1), σn)− µAn

(η1(hn−1), σ′n)|| < ε

2n
(6.7)

18Note that in this case, where n is odd, Υn = Υn−1.
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Hence, the marginals of Pσ,τ (·|hn−1) and Pσ′,τ (·|hn−1) over An have a distance
of less than ε

2n between them. Therefore, (6.5) and (6.6) yield that,

‖Pσ,τ − Pσ′,τ‖ < (1− 1

2n
)ε.

The above inductive construction yields a sequence of finite measurable par-
titions {Fn}n of {Θn}n respectively such that for every strategy σ ∈ Σ of Player
1 there exists a strategy σ′ = (σ′1, σ

′
2, . . .) such that for every n ∈ N, σ′n is Fn

measurable for every n, and for every strategy τ of player 2 in Γ(W ),

‖Pσ,τ − Pσ′,τ‖ < ε.

Let Γ∞(W ) be the game in which players use only {Fn}n-measurable strategies.
The game Γ∞(W ) is of course equivalent to a game where at every stage n
the set of signals Θn for every player is finite. Therefore the game Γ∞(W ) is
determined, by the version of Theorem 2.12 for finite signal spaces. We claim
that

valΓ(W ) ≥ val(Γ∞(W ))− 2ε.

To see this note that by construction every strategy σ′ in Γ∞(W ) guarantees
the same payoff up to 2ε in Γ(W ).19 Similarly,

valΓ(W ) ≤ val(Γ∞(W )) + 2ε.

Hence,
valΓ(W )− valΓ(W ) ≤ 4ε.

Since ε is arbitrary the game Γ(W ) is determined.

7 Appendix C: Proof of Proposition 3.1

Lemma 7.1. Let σ, τ be any strategy profile of a game satisfying SEPM and
let k ∈ {1, 2}. There exists for each n ∈ N and for each h ∈ H�n satisfying
Pσ,τ (h) > 0 a strategy profile σh, τh and a belief of Nature q̃h such that Pσ,τh,q̃h =
Pσ,τ (· | h), and hence for h 6= h′ ∈ H�n, πk∗ (Pσ,τ (· | h))⊥πk∗ (Pσ,τ (· | h′)), where
πk denotes the projection to Player k’s signal space as in Definition 2.5.

Proof. Simply define σh, τh, q̃h to make pure choices up through the choice of
the n’s state which agree with h, and to agree with σ, τ, q thereafter; since
Pσ,τ (h) > 0, this indeed defines a belief of Nature. The second part then follows
from the definition of SEPM.

Recall that,

πk∗ (Pσ,τ (· | h)) =

∫

H∞

η(ω)(·)dπH∗ (P (ω | h))

19Recall that the payoffs are ±1.
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where πH is the projection to H∞, as in Definition 2.5. In other words,
πk∗ (Pσ,τ (· | h)) is the measure induced by η and πH∗ (Pσ,τ (· | h)). Hence, Propo-
sition 3.1 follows from the previous lemma and the following lemma (by taking
(Aj)j = (h)h∈H�n):

Lemma 7.2. Let X,Y be standard Borel spaces, let µ ∈ ∆(X) and let A1, . . . , An
be disjoint Borel sets which satisfy µ(∪Aj) = 1, µ(Aj) > 0 for all j; denote
µj = µ(·|Aj). Let η be a transition kernel from X to Y such that η(µi) :=∫
X
η(ω)dµi(ω)⊥η(µj) for i 6= j. Then for any filtration (Fn)n of Y gener-

ating the Borel σ-algebra20 and each j, Pµ(Aj | Ft) →
t→∞

1 η(µj)-a.s., where

Pµ =
∫
X
δω ⊗ η(ω)dµ(ω) is the measure induced on X × Y by µ and η.

Proof. Since (Pµ(Aj | Ft))t is a martingale, by the martingale convergence
theorem, it suffices to show that Pµ(Aj | BY ) = 1 η(µj)-a.s., where BY is the
Borel σ-algebra on Y . By assumption there are disjoint B1, . . . , Bn such that
η(µi)(Bj) = 1 if i = j and = 0 if i 6= j, and in particular that:

Pµ((Aj × Y )∆(X ×Bj)) = 0, j = 1, . . . , n (7.1)

It suffices to show that Pµ(Aj | B) = 1 η(µ)-a.s. in Bj ; by the last equation, it
suffices to show that Pµ(Bj | B) = 1 η(µ)-a.s. in Bj , which is immediate.

8 Appendix D: Proof of Lemma 4.1

Fix ε > 0; let m ∈ NN, and we will later specify how large its coordinates need to
be. It suffices to consider normal σ which makes pure choices in D1, D2, D3, . . .;
let d∞ = (d1, d2, d3, . . .) be the sequence in D1, D2, D3, . . . that σ chooses. For
each k ∈ N, let P kσ , P

k
% be the induced measures on Ik+1. It suffices to show by

Lemma 5.2 that ||P kσ − P k%|| < ε for all k in our construction of m. For each

bk = (b1, . . . , bk) ∈ Bk, define an element in Ck by:

b
d

k = (d1, b1, d2, b2, . . . , dk, bk) ∈ Ck
Denote T =

∑k
j=1 |Cj | =

∑k
j=1

∏
i≤j |Ci|. Under P k%, there are 2T possible

sequences of signal in Ik+1 that could arise - that is, |Ik+1| = 2T - each with
equal probability; hence, for any ik+1 ∈ Ik+1,

P k%(ik+1) =
1

2T

On the other hand, for each bk ∈ Bk, there are 2T−k possible ik+1 = (i1, . . . , ik+1) ∈
Ik+1 that can result if σ is played - those which have ij(b

d

k|j) = 1 for all j ≤ k,
where |j denotes the projection to

∏
i≤j Ci - all with equal probability. Hence,

for any ik+1 ∈ Ik+1,

P kσ (ik+1) =
1

|Bk|
∑

bk∈Bk

1

2T−k

k∏

j=1

1
ij(b

d
k|j)=1

20A σ-algebra F on Y implicity introduces the σ-algebra {∅, X} ×F on X × Y .
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Therefore, letting

Jdk (ik+1) = {bk ∈ Bk | ∀j ≤ k, ij(b
d

k|j) = 1}

we have, letting µ denote the uniform measure on Ik+1, and denoting Bd0 = {∅}
and Jd0 = 1, we see that

||P k% − P kσ || =
∑

ik+1∈Ik+1

|P k%(ik+1)− P kσ (ik+1)| = 1

2T

∑

ik+1∈Ik+1

∣∣∣∣1−
2k

|Bk|
Jd(ik+1)

∣∣∣∣

= Eµ

[∣∣∣∣1−
2k

|Bk|
Jdk (ik+1)

∣∣∣∣
]
≤

k∑

n=1

Eµ[| 2n−1

|Bn−1|
Jdn−1(ik+1)− 2n

|Bn|
Jdn(ik+1)|]

≤
k∑

n=1

2n−1

|Bn−1|
Jdn−1(ik+1)Eµ[|1− 2

|Bn|
Jdn(ik+1)

Jdn−1(ik+1

|] ≤
k∑

n=1

2n−1Eµ[|1− 2

|Bn|
Jdn(ik+1)

Jdn−1(ik+1)
|]

since Jdn−1(ik+1) ≤ |Bn−1|. Hence, it suffices to prove:

Lemma 8.1. For all ε > 0, there are functions (gk)∞k=1, gk : N→ N, such that
if for all k ∈ N, mk ≥ gk(

∏
i<kmi), then for all k ∈ N,

Eµ[|1− 2

|Bk|
Jdk (i∞)

Jdk−1(i∞)
|] < ε

22k
(8.1)

(Since we are looking at arbitrary duration in the lemma, we observe the
entire sequence of signals i∞.) Intuitively, we expect Jd(i∞) to be on the order

of |Bk|
2k , since about half of the possible histories - out of those histories of the

form b
d

k - are disqualified by the signals at each round.

Proof. Fix ε > 0. Define gk in the following manner: gk(M) is such that if
N ≥ gk(M), and t1, . . . , tN are i.i.d. with values in {0, 1} with equal probability,
then,

P (|
∑n
j=1 tj

N
− 1

2
| > ε

22k+2
) <

ε

22k+1M

Such gk(M) exists by the weak law of large numbers. Fix k ∈ N. By assumption,
for each bk ∈ Bk,

Pµ

(
|
∑
bk∈Bk

i∞(b
d

k−1, dk, bk)

|Bk|
− 1

2
| > ε

22k+2

)
<

ε

22k+1
∏
i<kmi

and hence since
∏
i<kmi = |Bk−1|,

Pµ(∃bk−1 ∈ Bk−1, |
2 ·∑bk∈Bk

i∞(b
d

k−1, dk, bk)

|Bk|
− 1| > ε

22k+1
) <

ε

22k+1
(8.2)
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Observe that
Jdk−1(i∞) =

∑

bk−1∈Bk−1

(∏

j<k

i∞(bj)
)

(8.3)

We calculate,

Jdk (i∞)

Jdk−1(i∞)
=

∑
bk∈Bk

(
(
∏
j<k i∞(bj)) · i∞(bk)

)

Jdk−1(i∞)

=

∑
bk−1∈Bk−1

(
(
∏
j<k i∞(bj)) ·

∑
bk∈Bk

i∞(bk−1, dk, bk)
)

Jdk−1(i∞)

=

∑
bk−1∈Bk−1

(
(
∏
j<k i∞(bj)) · |Bk|

2

)

Jdk−1(i∞)

+

∑
bk−1∈Bk−1

(
(
∏
j<k i∞(bj)) · (

∑
bk∈Bk

i∞(bk−1, dk, bk)− |Bk|
2 )
)

Jdk−1(i∞)

=
|Bk|

2
+

∑
bk−1∈Bk−1

(
(
∏
j<k i∞(bj)) · (

∑
bk∈Bk

i∞(bk−1, dk, bk)− |Bk|
2 )
)

Jdk−1(i∞)

where bj in the sum denotes the restriction of bk to j coordinates, and we have
used the representation (8.3) in the last equality. Hence, by (8.2), repeated use
of (8.3), and since

∣∣ 2

|Bk|
∑

bk∈Bk

i∞(bk−1, dk, bk)− 1
∣∣ ≤ 1

we have

Eµ[|1− 2

|Bk|
Jdn(i∞)

Jdk−1(i∞)
|] ≤ Eµ

[∑
bk−1∈Bk−1

(
(
∏
j<k i∞(bj)) ·

∣∣ 2
|Bk|

∑
bk∈Bk

i∞(bk−1, dk, bk)− 1
∣∣
)

Jdk−1(i∞)

]

≤ ε

22k+1
+

ε

22k+1
=

ε

22k
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