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Abstract

We quantified the effect of first experience ondéhbr in operant learning and studied
its underlying computational principles. To thaagave analyzed more than 200,000 choices in
a repeated-choice experiment. We found that theoowe of the first experience has a
substantial and lasting effect on participants’saguent behavior, which we term outcome
primacy. We found that this outcome primacy catoaat for much of the underweighting of
rare events, where participants apparently underatg small probabilities. We modeled
behavior in this task using a standard, model+feggorcement learning algorithm. In this
model, the values of the different actions arerledrover time and are used to determine the
next action according to apredefined action-sedeatule. We used a novel non-parametric
method to characterize this action-selection rakk showed that the substantial effect of first
experinece on behavior is consistent with the cearhent learning model if we assume that the
outcome of first experience resets the values@tttperienced actions, but not if we assume
arbitrary initial conditions. Moreover, the predvet power of our resetting model outperforms
previouly published models regarding the aggregatéce behavior. These findings suggest
that first experience has a disproportionatelydagtiect on subsequent actions, similar to
primacy effects in other fields of cognitive psytdgy. The mechanism of resetting of the initial

conditions which underlies outcome primacy may thlse account for other forms of primacy.

Keywords: reinforcement learning, operant conditi@) underweighting of rare events,

risk aversion, primacy
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The Role of First Impression in Operant Learning
“First impressions, you know, often go a long wad last a long time” (Dickens, 1844).
Operant Learning

According to thdaw of effecformulated by Thorndike over a century ago, aditivat
are closely followed by satisfaction are more Wki recur whereas actions followed by
discomfort are less likely to reoccur in that sitoia (Lattal, 1998; Thorndike, 1910perant
learning, in which behavior is a function of the consequsnaf past behavior, is based on this
principle. The computational principles underlymgerant learning are a subject of debate.
Some neurophysiological evidence supports the tatvoperant learning is achieved through
the synergy of two processeBirst, thevaluesof the different actions (or more generally, state
actions) are learned from past actions and théseguent rewards. Second, these learned
values are used to choose among different actiaets that actions associated with a higher
value are more likely to be chosen (Doya, 2007m@Glier, 2009). By contrat, there are
alternative views on operant learning that arebased on a valuation system (Dayan & Niv,
2008; Erev & Barron, 2005; Gallistel, Mark, King,l&atham, 2001; Law & Gold, 2009; Sugrue,
2004; Loewenstein & Seung, 2006; Loewenstein, 2010)

Reinforcement Learning (RL)

Operant learning is typically modeled quantitayvesingreinforcement learningRL)
algorithms (Sutton & Barto, 1998), which descrilmsvbehavior should adapt to rewards and
punishments (Dayan & Niv, 2008).In this framewdHeQ-learningalgorithm (Watkins, 1989;
Watkins & Dayan, 1992)is particularly noteworthg,iahas been widely used to model
sequential decision making behavior in humans andals (Barto, Sutton, & Watkins, 1989;

Daw, 2011; Neiman & Loewenstein, 2011; Pessigli@&@emour, Flandin, Dolan, & Frith,
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2006). Here we usedQ-learning to quantitativelyeldnuman behavior inr@peated choice
experimentin which in every triat, the participant chooses an act@ifrom a finite set of

actions and receives a rewayd Q-learning describes how the expected averagarde(action

value), of each actioa in trial t, denoted bQ(a), changes in response to that trial’s action

and the resultant reward. The value of the chastion Q (g )is updated by

Q.(a)=Q(a)+n(r-Q(a)) (1)
where @#<1 is thelearning rate which determines the relative contribution of thestrecent

reward to the expected average reward. The sntafleanagnitude of, the smaller is the

contribution of the most recent reward to the valfithe action. If7=1 the value of actioa;

following the value update is simpty The value of the non-chosen actidgs{a:t q) remains

unchanged. If the rewanis larger than the estimated action valge-Q, (g ) > 0),the action

value increases, which in turn increases the hkeld that this action will be chosen again in the
future. The reverse occurs if the reward is sméflan the action value.

Equation 1 describes how the action values adagttoals but does not specify how
these action values are used to select actionger&action selection rulesvhich determine the
mapping between action values and the policy, haes previously proposed. Two of these,
greedyandsoftmaxare noteworthy, as they are commonly used for himogibehavior (Sutton &
Barto, 1998). According to the-greedy action-selection rule,the alternative aissed with the
highest estimated action-value is chosen with goihal —£(0 <e<1). The other alternatives
are chosen randomly with a probabiityThe value of the parametdetermines the balance
betweerexplorationandexploitation(Cohen, McClure, & Angela, 2007). The larger tladue

of ¢is, the more likely that actions associated witbvaaction value will be chosen
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(exploration). By contrast, the smaller the vadfie is, the more likely that the action with the
highest estimated value will be chosen (exploitgtio

An alternative action selection rule is the softxmale. According to this rule, the
probability of choosing an actioa is proportional t@m(a), where parametef controls the
exploration-exploitation tradeoff. The lower th@lwe of Sis, the more likely that an action

associated with a relatively low actionvalue wil $elected. In contrast to thegreedy action-
selection rule, the soft-max action selection hds a graded sensitivity to the values of actions.
Typically, the empirical tradeoff between explooatiand exploitation (controlled kyprp) is
estimated by fitting one of these actionselectideg to the empirical data (Daw, 2011).

However, to the best of our knowledge, the shaghetction selection rule has never
been estimated non-parametrically. In the Reseltsion we describe a novel method for
estimating the action selection rule.
Initial Conditionsin RL

A model of value adaptation and action selectiamoisfully determined without
specifying the initial conditions of the value ation rule, Equation 1. This is because the
value adaptation rule in Equation 1 idiference equatiann which the current value depends
on the value of the previous trial. Therefore,\thkies of the actions before the first trial need
to be specified. The common practice when modedimgirical behavioral data using RL

models is to initialize all action values to thengavalueQ,, (Daw, 2011). The value @, is

determined either arbitrarily (e.@, =0) or by fitting to the empirical data (Sutton & Bar

1998; Daw, 2011). Theoretical studies have shdwahunder general conditions, the choice of

initial conditions has no effect on the asymptég@rning behavior. In other words, the behavior
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of the model after a sufficiently large numberradls is independent 63, because the
contribution ofQ, to the value of actiora diminishes exponentially with the number of trigis

which actiorais chosen (Sutton & Barto, 1998). Following théssoretical considerations,
little attention has been directed to determinirglioe initial values of Equation 1 are specified.

While the asymptotic behavior may be independethi@initial conditions, it is not clear
to what extent this asymptotic behavior descritasi@pants’ behavior in standard experiments
composed of a finite number of trials. There are teasons why the initial conditions may play
an important role in explaining the non-asymptetiperimentally-observed behavior. First, the
learning rate may be low, leading to a slow adamednd a prolonged contribution of the initial
conditions to behavior. Second, the action-sedeatille dictates that actions that are associated
with a relatively low value would be less ofteneséd than those associated with a relatively
high value. Thisampling biass also known aadaptive samplingr thehot stove effect
(Denrell & March, 2001; Denrell, 2005; Denrell, 200 As a result, more trials would be needed
to update the values of actions that are assocwtadhe lower estimated value, potentially
prolonging the effect of initial conditions on befa.
Reset of Initial Conditions Hypothesis

This article explores how the initial conditionsaaftion values are determined and to
what extent these initial conditions shape behawvitumans in the first hundred trials of
repeated choice experiments. We hypothesizehkanitial conditions are not arbitrarily set.
Rather, we posit that the initial condition of eadtion value is “optimistic”, formall@, = o
for all action values. Moreover, we posit thatstaénitial values are reset to the value of the
reward in the first trial in which that action walsosen. As a result, the outcome of the first

action is expected to have a disproportionatelydaaffect on subsequent actions, similar to
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primacy effectsn other fields of cognitive psychology (HogarthE8nhorn, 1992; Mantonakis,
Rodero, Lesschaeve, & Hastie, 2009). The ideag#tting of the initial conditions can apply to
other forms of learning that are not associatet aitions or rewards. We posit that the
resetting of initial conditions may also help explthe primacy effect in belief updating (Asch,
1946; Hogarth & Einhorn, 1992).
Predicting Aggregate Behavior

If the initial action values are indeed reset by dlutcome of the first choice, a model that
incorporateseset of initial conditiongRIC) is expected to predict participants’ behavietter
than a model that assumes amlitrary initial condition (AIC). We test this prediction by
comparing the predictive power of several previgysbposed models and the one proposed
here. Finally, we show that much of tinederweighting of rare event® which participants
tend to be more risk aversive when the probatititya successful risky attempt is low (Barron
& Erev, 2003; Hertwig, Barron, Weber, & Erev, 200dan be attributed to RIC.
The Experiment

To address our questions and test our hypotheskgradictions, we analyzed the results
of an experiment by Erev et al. (2010). In thiperxment, participants repeatedly chose
between two unmarked alternatives in sessions ceetpof 100 trials. One alternative, denoted
asrisky yielded either a high or low monatary reward vétfixed probability. The other
alternative, denoted aafe yielded a deterministic reward that was approxiyrequal to the
mean reward of the risky alternative. The firstergnce is expected to be most pronounced if
expected rewards are approximately equal for tloeaiternatives, as is explained in the

Discussion section.
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Methods

The full details of the experimental procedures arethods have been described
elsewhere (Erev, Ert, & Roth, 2008; Erev I. , et2010). A relevant summary of these methods
is described here.

Participants and Instructions

Two hundred students (Technion, Israel) participatethe experiment; half in the
“estimation” session and the other half in the “patition” session. Participants were paid 40
Israeli Shekels (ILS) ($11.40) for showing up, @odld earn more money or lose part of the
show-up fee during the experiment. The procedastetl about 40 minutes on average per
participant.

Participants were told that the experiment woutdude several independent blocks, and
that in each they would be asked to repeatedlgtete of two unmarked buttons that appeared
on a computer screen for an unspecified numbertatét Each selection was followed by a
presentation of its outcome (in ILS currency). Plagoff from the unselected button (the
forgone payoff) was not presented. At the endefexperiment, one choice was randomly
selected and the participant’s payoff for this clkeavas added to the show-up fee to determine
the final payoff. The instructions (translatednfrélebrew) were as follows:

This experiment includes several games. Each gacheles several trials. You will

receive a message before the beginning of each.ghmeach trial you will be asked to

select one of two buttons. Each press will reisudt payoff that will be presented on the
selected button. At the end of the experimentadrtbe trials will be randomly drawn

(all the trials are equally likely to be drawn).ot payoff for the experiment will be the

outcome (in Sheqels) of this trial. Good luck!€Ed. , et al., 2010)
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Experiment Design

In each trial, pressing the risky button resultethie delivery of a high monetary payoff
(H) with probabilityPy, or a low payoff ) with probability :Py. Pressing the safe button
resulted in a medium payoffA). There were 100 choice trials in each blockifddent blocks
differed in reward schedule parameters, narkklly, M andPy. The location of the buttons
changed between sections randomly, so there wassuaziation between button type and
location.

There were two experimental sessions: an “estimatiession, and a “competition”
session. The two sessions used the same methd@samined similar (but not identical)
decision problems as will be described below. Bmtbsions consisted of different collections of
60 problem sets and the exact problem sets weeendigied by a random selection of the
parameters (rewards and probabilitiesM, H, andPyaccording to a predefined algorithm (Erev
I., etal., 2010). In each session, participargse randomly assigned to one of five different
sub-groups. Each sub-group contained 20 partitspaho were presented with the same 12
problem sets. The distribution Bf; across problems is depicted in Figure 1A. In apipnately
1/3 of the problem$y was relatively smallPy<.15 (denoted as Lo®Ry problems; black in
Figure 1A), in approximately 1/3 it was relativéliygh, P4>.85 (denoted as Highy problems;
white in Figure 1A) and in approximately 1/3 it haadl intermediate value (gray in Figure 1A).

As shown in Figure 1B, the medium priewas chosen from a narrow distribution whose mean

was equal to the expected value of the risky adtire(r) =P, -H +(1- P, )- L.

Results

Outcome Primacy
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The RIC hypothesis predicts that the outcome ofiteetrial should have a
disproportionately large effect on subsequent ehbehavior. To study this prediction, we
guantified the extent to which the outcome of ting fisky choicel or H, affects subsequent
choices. We separated the blocks of each probdé¢mte two groups, according to the outcome
of the first risky choicel. orH. We focused our attention on behavior in 73%hefgroblem
sets (88/120), in which there was at least onekdssociated with each of the two groups. For
each group in these problem sets, we computedehadncy of choosing the risky choice in all
trials subsequent to the first risky choice. Thesefrequencies are an estimate of the
probabilities of choosing the risky action, corafited on the outcome of the first risky choice for
the corresponding problem set.

Averaging over the problem sets, we found thaptiodability of choosing the risky
choice, provided that the outcome of the firstyiskoice wag., is A. = 31+3% (Figure 2A top,
red). This number is substantially smaller thaat firobability, provided that the outcome of the
first risky choice was#l, Ay = 47+3% (Figure 2A top, blueg(174) = 4.96p=2-10°, CI [9.7%,
22.5%],0=0.84). This result shows that the outcome offitiserisky trial has a substantial
effect on subsequent choice behavior. NoteAhanhdA, are based on choices made
throughout a session of 100 trials.

To further quantify the time scale associated whtheffect of the first trial on behavior,
we computed, for each of the problems in the 8®lpra subset (see above), the probabilities of
choosing the risky choice in all trigisconditioned on the outcome of the first risky ickean
that block. These conditional probabilities, agem over the different problem sets, are
depicted in Figure 2A (bottom), where the blue eettllines indicate the probability of choosing

the risky choice given that the first risk outcoma&sH andL, respectively. In 92.3% of the
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blocks, the first risky choice was either on thetfor the second trial. Thus, the trial number is
approximately equal to the number of trials elagfsewh the first risky choice. Therefore, the
difference between the blue and red curves is auneaf the effect of the outcome of the first
risky choice on behavior in subsequent trials.

We found that even in the last trigd100, there was a statistically significant diffece
between the two curve§206) = 3.397p=810", CI [5.7%, 21.5%)]). Similarly, a statistically
significant difference between the two curves waseoved for each of the trials in Figure 2A,
bottom <.05). This result is a demonstration that theoute of the first risky choice affects
behavior for at least 100 trials. This long-lagteffect of the first experience is reminiscent of
the primacy effect in other fields of psychologywhich the first stimulus is particularly salient
(Hogarth & Einhorn, 1992; Mantonakis, Rodero, Léssve, & Hastie, 2009). Therefore, we
denote the effect of the first risky reward on fthgent behavior asutcome primacy In the
Discussion section we elaborate on the similarlietsveen outcome primacy and other forms of
primacy.

M odeling Outcome Primacy

Arbitrary initial conditions.The outcome of the first risky choice has a sigaifit and
long-lasting effect on choice behavior (figure 28p and bottom). However, this outcome
primacy does not necessarily indicate a reseteoirtitial conditions (the RIC hypothesis). As
mentioned in the introduction, a low learning ratel adaptive sampling, which naturally
emerges in standard RL algorithms, might give tasa long time scale (Denrell, 2007; Denrell,
2005; Denrell & March, 2001). In order to test wier the RL framework can account for
outcome primacy, we considered a standard AIC @ileg algorithm with the following action

selection rule, which is motivated by the experitakdata (see below):
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efQ(a
Prla]=(1- Zg)w+€
3 )
We term the action selection rule in Equation£8pftmaxbecause it is a hybrid of tlze
-greedy and softmax action selection rulese=D then thes-softmax is simply the softmax
action selection rule. Thesoftmax becomes-greedy iff=c. Note that the-softmax action
selection rule has a graded sensitivity to acti@oes like the softmax action selection rules, and
like the e-greedy, it maintains exploration even when theiaf one of the actions is much
larger than that of the other action.

The AIC Q-learning model with thesoftmax action selection rule is characterized by

four parameters: (1) the initial conditioRg, (2) the learning ratg(see Equation 1) and two

parameters of the action selection rule,&(8hd (4)5. We found the set of parameters that best
fit the sequences of actions of each participattiénexperiment by maximizing the likelihood of
the sequence. We then used these parametersuiat@rthe behavior of the AIC Q-learning
model such that each simulated participant wasdest the same problem sets as the
corresponding human participant.

The results of these simulations are depictedgaréi 2B, which shows that in the AIC
Q-learning model, the probability of choosing tieky choice, provided that the outcome of the

first risky choice was is AN = 40+2%, which is not statistically different froimat number,
provided that the outcome of the first risky choiasH, A/' =40+2% ((170) =0.12p=0.91,

Cl [-4.2%,4.7%],g=0.25). Thus, the AIC Q-learning model with thegraeters extracted from

the behavior of the participants in the experimeimconsistent with the finding that the
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outcome of the first risky choice has a substasefi@ct on the aggregate probability of choosing
the risky alternative (Figure 2B, top).

Moreover, considering the conditional probabilittéschoosing the risky alternative over
trials (Figure 2B, bottom), we found that in theCAQ-learning model, these conditional
probabilities became statistically indistinguiskeafybm trial 13 onwardg(@02) = 0.64p=.52,

CI [-5.1%, 10.0%]g=0.09 for trial 13). These results indicate tinat AIC Q-learning cannot
account for the outcome primacy effect observetiénbehavior of the participants (compare
Figure 2A to Figure 2B).

Reset of initial condition. The failure of the AIC Q-learning model to accotortthe
observed outcome primacy prompted us to test fleetesf incorporating a reset of the initial
conditions into the Q-learning model. In this mipdee initial values of the two alternatives are
“optimistic”: Qp = « for all action values (Sutton & Barto, 1998). Mover, these initial values
are reset to the value of the immediate reward #ftefirst experience of each alternative (see
RIC hypothesis in the Introduction). In subsequgats, these values are updated according to
Equation 1. Similar to the analysis of the AIC &ining model, we used the method of
maximum likelihood to estimate the parameters efRIC Q-learning model with thesoftmax
action selection rule that best fit the behaviothef participants. Note that the number of
parameters that characterize the RIC Q-learningamedmaller than that of the AIC Q-learning
model because the initial values are not a frearpater. We then used these parameters to
simulate the behavior of the RIC Q-learning modehsthat each simulated participant was
tested on the same problem sets as the corresgomainan participant.

The results of these simulations are depictedgaré 2C, which shows thatthe

probability of choosing the risky alternative iretRIC model, provided that the outcome of the
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first risky choice wag, is A?'® = 32+2%, i.e., significantly lower than that probiy, provided
that the outcome of the first risky choice WhsA~' = 47+2% ((164)=6.02p=1-10%, CI [9.7%,

19.2%],9=1.12). Moreover, the predictions of the RIC maale statistically indistinguishable

from the experimentally measured aggregate dagepairs A, A*'¢) and @y, A7) are not

statistically differentt(204) =0.42p=.67,CI [-3.7%, 5.7%]),g=0.06 and (203) =0.06p=.94,
Cl [-5.3%, 5.1%]g=0.01), respectively (Figure 2C, top).

Similarly, when considering the probabilities obdsing the risky alternative over trials
conditioned on the outcome of the first risky cleofEigure 2C, bottom), we found that the
dynamics of the RIC model were qualitative simitathat of the empirical data (Figure 2A,
bottom). Moreover, in the RIC simulation, as ie #mpirical data, even in the last trisd100,
there was a statistically significant differencévieen the two conditional probabilitie$201) =
4.34,p=2-10°, CI [8.7%, 23.2%]g=0.61).

Short-Term Consequences of the RIC Hypothesis

The RIC hypothesis was also supported by the shori-effect of the outcome of the
first risky choice on subsequent behavior: theahiate of alternations, regardless of action or
outcome and the phasic (step like) change in chmeference according to the outcome of the
first risky action.

Initial rate of alternations. In 84% of the blocks (2006 blocks out of 2408% first choice was
different from the second, indicating that the @oiity of alternation in the second trial was
significantly larger than chance (binomip1-102%’, CI [82.0%-85.0%]). Moreover, the
probability of alternation to the safe alternativghe second trial after a risky choice in thstfir
trial was higher than chance either if the outcartie first risky choice wald or L as depicted

in the second trial in Figure 2A, bottom(516 blocks of 645, binomialp=1-10°2, CI [76.6% -
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83.0%)] in case that the first risky choice viand 492 blocks out of 569, binomipt1-10°,

Cl = [83.4%-89.2%] in case that the first risky cleowasL). In the framework of AIC Q-
learning, such alternation can results froptimistic initial conditionsi.e., initial values higher
than typical values of reward on the task (SuttoBato, 1998). However, optimistic initial
conditions are expected to result, in generalgiresal trials of a high probability of alternation
between the choices, depending on the magnitutteedéarning rate. This is because
independent of the action outcome, its action vaueduced. By contrast, the probability of
alternation in the empirical data already dropsWethance in the'3transition (1017 blocks out
of 2400, binomialp=4-10* CI = [40.0%-44.4%]). In contrast to the AIC Q-learpimodel, the
RIC Q-learning model predicts a high rate of aléiion in the second trial and a lower-than-
chance rate of alternation after both alternatareschosen, as observed in the behavioral data.
Specifically the alternation rateduring the finsbttrial in the RIC Q-learning model was 83%
which is not significantly different form the emigial alternation raté&(4798) = -0.89p=.37,Cl
=[-0.03, 0.01]g=0.026).

Phasic changein choice preference. The dynamics of the probability of choosing the
risky alternative conditioned on the outcome offilst risky choice (Figure 2A, bottom) is
characterized by a large phasicresponse, followeal dlow decay of the difference between the
two conditional probabilities. The co-occurrenééhe two phenomena, namely a large phasic
response and a slow decay is difficult to accoantrf the framework of AIC. The reason is that
a tradeoff between the two phenomena is expectieav Bearning rate would enable a slow
decay but the phasic response would be small. oBfr&st, a high learning rate that can account
for the considerable phasic difference betweenvioeconditional probabilities would result, in

general, in fast decay. The latter was observeldrsimulation of the AIC model based on
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subjects' estimated parameters (Figure 2B, Bottdy)contrast, in the RIC model, these two
phenomena are decoupled: the reset of initial itiong results in a large phasic response,
independent of the value of the learning rate patam Indeed both a large phasic response and
a slow decay are observed in the simulation oRlt& model (Figure 2C, Bottom).

Predicting Aggregate Behavior

In the previous subsections we showed that therfd@el can account for the outcome
primacy effect as well as the alternation ratéhm second trials and the phasic response. In
order to further test the predictive power of tHE Rhodel, we compared it to alternative models
of operant learning. As described in the Methazttisn, the behavioral data analyzed in this
paper were used in a competition (Erev I. , e810), in which models were compared
according to their ability to predict the probatyilof choosing the risky alternative, averaged
over all trials and participants, given the pararebf the problem sel, H, L andPy see
Methods).

The competition consisted of two sessions, an esitom session and a competition
session, each containing 100 participants and Glolgrm sets (see Methods). The estimation
session was used to optimize the parameters aftididate models, and their performance was
tested by comparing their predictions with humdmediavior in the competition session. The

aggregate probability of choosing the risky altéueg was predicted by each modé,(,,.,) for

each problem set, and was compared with the erafyrimeasured probability, averaged over

all participants for that problem se®( ..)-

The predictive power of the different models wasleated using three measures: (1) the

and P

fraction of problems, in which bot  mpiric WETE €ither above or below 50%dred; (2)

redict

and P

redict empiric ?

the Pearson’s normalized correlatiph ljetweerp, (3) the mean square
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andpP

difference (MSD) betweer,  mpiric» @veraged over all problem sets (Table 1). An

redict
additional measure was the Equivalent Number ofe@fagion (Erev, Roth, Slonim, & Barron,
2007).However, because this measure is a mondiamition of the MSD it was not used here.
In order to evaluate the RIC Q-learning model, stneatedthe three parameters of the
RIC Q-learning modelk, S ande, that best fit the trial-by-trial behavior of eaghthe
participants in the estimation session (similaFigure 2C).The 100 triplets of parameters, one
triplet for every participant, wereregarded as egpntatives of the distribution of parameters
across the population of participants.Then, forgyeoblem set in the competition session, we

estimated the expected aggregate probability obsing the risky alternative, ..., by

simulating the RIC Q-learning separately for eaghidt of parameters and averaging the
aggregate probability of choosing the risky ovésehulations. As can be seen in Table 1, this
heterogeneous RIC Q-learning motieht takes into account the population
heterogeneityoutperformed all previously-proposediats with respect to MSD arfigeeand
was performing as well as the best baseline mdtigllorative sampler with recency) with
respect to correlation measurement

To studythe contribution of the population heterwgty to the predictive power of the
RIC Q-learning model, we considereti@mogenousRIC Q-learning mogetich is
characterized by the same triplet of parameteralf@mulated participants.The single triplet of
parameters was found by simulating the model andsihg the triplet that minimized the MSD

and P

empiric ?

betweenP

predict

averaged over all problem sets in the estimatissisn, using the

Nelder-Mead simplex (direct search) method (Lagafeeds, Wright, & Wright,
1998).Simulating the model with the resultant &tgdf parameters over the problems in the

competition session we found that the predictivegroof the homogenous RIC Q-learning
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model is comparable to the heterogeneous RIC Qileamodel (Table 1).However, in contrast
to the heterogeneous RIC Q-learning model, the lgemeous RIC Q-learning modelpredicts
outcome primacy which is substantially smaller t@mexperimentally observed outcome
primacy(not shown).

Repeating the same analysis for the AIC Q-learmiogel, we found that the predictive
power of homogeneous AICQ-learning magdbwer than that of the RIC Q-learning model,
further strengthening the RIC hypothesis. Note tiha better descriptive power is despite the
fact that the number of parameters that charaet¢hie AIC Q-learning model is larger than that
of the RIC Q-learning model (4 and 3, respectivélgnetheless, it should be noted that the AIC
Q-learning model outperforms previously proposedmiidels (compare witBasic RL,
Normalized RlandNormalized RL with inertian Table 1). The primary difference between
those models and the AIC Q-learning model is th®aaselection function used (softmax ¥¢s.
softmax) which demonstrates the importance of cingasn accurate action-selection function
when modeling choice behavior.

The Action Selection Rule

In order to model learning behavior in the framewoi Q-learning, as was described in
the previous sections, the action-selection funcsioould be specified. Previous studies have
typically assumed a particular functional form loé taction-selection function and estimated its
parameters from the data (Daw, 2011). Howevahedest of our knowledge the action-
selection rule has not been estimated non-parazal§ti The reason is that there is no direct
access to the arguments of the action-selectioctium the action values, and to the output, the

probability of choice.
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By contrast,here we develop a novel procedure doadterize the shape of the action
selection function non-parametrically. This metl®btased on the behavior of the participants
in the third trial of the blocks, in which both thafe and the risky alternatives had been selected
in the first two trials (2006 blocks out of 240@btks). These trials were selected for analysis
because they provide an opportunity to estimatshlape of the action selection function non-
parametrically. To see this, consider the AIC @4heng model in blocks in which both the safe
and the risky alternatives were selected in the fiwo trials. According to Equationl, the values

of the risky actiorQs(risky) and the safe actid@s(safe) in the third trial of these blocks are

given byQ;(a) =(1-7) Q +nt , wheret, ={1,2 is the trial number in which actiaowas
selected. The difference between the values dfitbealternativeaQ, = Q,(risky)— Q(safg

is independent of the initial conditio®, and is linear in the reward difference=r,_ -

tsafe '
The resulting linear relationQ, = nAr enables a direct estimation of the average action
selection rule with a scale factpr Similarly, in the framework of the RIC Q-leargimodel, the
above derivation will result in the relatia, = Ar .

Figure 3 depicts the probability of choosing trekyialternative in the'3trial as a
function of the difference in the rewarts Note that in contrast to tlze-greedy action
selection, the probability of choice is graded with value ofAr even whemr ~ 0. Moreover,
in contrast to the softmax action selection ruie, probability of choice does not converge to a
deterministic policy even when the absolute valuards large. Thus, we chose to model the
action selection rule of the participants with theoftmax rule (Equation 2) which manifests

graded sensitivity tar while maintaining exploration even when the abotlifference
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between the action values is large. Tasoftmax rule was used during all the simulation
conducted in this paper.
Underweighting of Rare Events

When learning from experience, participants areemisk aversive the smaller the
probability of the high outcomy, a phenomenon that has been termmederweighting of rare
eventgBarron & Erev, 2003; Hertwig, Barron, Weber, &k 2004) because the participants
behave as if they underestimate the probabilityheflow-probability outcome. In order to
guantify the magnitude of the underweighting otravents in the experiment, we considered
the aggregate probability of choosing the riskyichdn the low Py<.15) and highRy>.85) Py
problems (see Methods) separately. We found kieavalue oPy had a substantial effect on
participants' choices: in the hity blocks, participants chose the risky alternative0+3% of
the trials (white in Figure 4A, Top). By contragérticipants made a risky choice only in 27+3%
of the trials in the lowPy blocks (black in Figure 4A, Top). The significatitference in the two
probabilities of choice, 23+4% is a measure ofrttagnitude of the underweighting of rare
events effectt(89) = 9.1p=2-10" CI = [18.4% 28.6%]g=1.91). Note that this substantial
difference in behavior occurred despite the faat th both cases, the return of the risky
alternative was approximately equal to that ofdhfe alternative (Figure 1B).

The probability of a high rewardHj in the first risky trial (as in any risky trialy Py.
Therefore, on average, there will be mbreutcomes for the first risky choice in high blocks
than in lowPy blocks. Therefore, outcome primacy predicts thitexcess off outcomes in
the highPy blocks should bias choice in favor of the riskigalative in those blocks, compared
to behavior in the lowy blocks. Therefore, outcome primacy predicts uweeghting of rare

events. In order to quantify the contribution at@me primacy to the underweighting of rare
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events, we constructed a generative model thaiqtsetie effect oPy on aggregate choice
based on the two conditional probabilitssandAywhich measure the effect of the first risky
choice outcome on aggregate behavior (see Figuréoph This generative model posits that
the probability of a choosing the risky alternatine block is determined solely by the binary
outcome of the first risky choicel or L. If that outcome i#1, the model predicts that the
participants would choose the risky alternativéirof the trials (see “Outcome Primacy”
above). IfitisL, the risky alternative would be choserdinof the trials. Consequently,
according to this generative model, the probabditghoosing the risky alternative in a trial in a
problem characterized By is

Prla="risky;R]= A - R+ A(1- P) (3)

In order to relate Equation 3, which predicts bebafor a given problem set to average
behavior in the low and highy blocks (Fig. 4A, Top), we averaged Equation 3 dker
different problems, separately for the low and Heglproblem sets. The predictions of the
generative model for the low and hiBh problems are depicted in Figure 4A (bottom) irckla
and white, respectively. The generative model iptedhat the magnitude of the underweighting
of rare events should be 14+3%, approximately 6@¢bf the magnitude of the empirically
measured underweighting of rare events (23+4%)s f@sult indicates that outcome primacy
contributes substantially to the experimentallyastsed underweighting of rare events.

While outcome primacy implies underweighting oferavents, the opposite case, namely
that underweighting of rare events implies primagyot true. To see this, we analyzed the
results of the simulations of the AIC Q-learningdaband found significant underweighting of
rare events: in the highy blocks, the simulated participants chose the radtgrnative in

52+2% of the trials (white in Figure 4B, top). dontrast, the simulated participants chose
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‘risky’ only in 30+2% of the trials in the lowy blocks (black in Figure 4B, top)(89) = 13.8,
p=9-10%* ClI = [18.5%-24.8%]g=2.89). The underweighting of rare events in thé Q-

learning model is in line with previous studieswing that the underweighting of rare events
naturally emerges from RL models (see Discussidtevertheless, there is no outcome primacy

in the AIC Q-learning model4;'© ~ A*“) and therefore the generative model cannot not

explain the underweighting of rare events predittethe AIC Q-learning model (0£3% out of
22+3%, Figure 4B, bottom).

Similar to the behavioral data and to the AIC Q4irag model, there was a significant
underweighting of rare events in the simulationthefRIC Q-learning model: simulated-
participants chose the risky alternative in 51+2%he trials in the highPy blocks (white in
Figure 4C, Top) and in 29+2% of the trials in tbesPy blocks (black in Figure 4C, Top}(89)
=11.8,p=7-10%°, Cl =[18.6%-26.1%)]g=2.47). This underweighting of rare events in the
simulations is not statistically different from thgperimentally observed effe¢(§4) = 0.86,
p=0.39,ClI = [-7.0%-2.7%],g =0.18 and(84) = 0.46p=0.65,CI = [-5.2%-3.2%],9=0.09 for the
low and highPy respectively). Similar to the behavioral data andontrast to the AIC Q-
learning model, outcome primacy accounts for 56:18%e magnitude of underweighting of
rare events in the simulation of the RIC Q-learmmagel (12+2% out of 22+3%, Figure 4C,
bottom).

Another way of demonstrating the contribution ofaame primacy to the
underweighting of rare events is to compare thesmesaggregate choice in the low and Hrgh

blocks, conditioned on the outcome of the firskyishoice. We denote these averagesA@y

wherer, € {L, H } is the outcome of the first risky choice angIe{T, J«} are thePy block type

(low or high, respectively). If participants’ aggiate choice behavior is dominated by the
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primacy effect, it is expected that thigy block type will have a negligible effect on belwav
once conditioned on the first risky outcome, forimal; ~ A\ andA" ~ A’ . In contrast, if

participants’ sensitivity to the value Bf; is not mediated by the outcome of the first risky

choice, it is expected that withinPg block type, this outcome will have only a negligileffect
on behavior, A’ ~ A" andA’ ~ A'.
Figure 5A depicts the values A,fH , Where blue and red hues denidtandL, and dark

and light brightness denote low and hRjhblock type, respectively. We found that the
contribution of block type to aggregate behavioswmaller than the contribution of the
outcome of the first risky choice. To quantifyshesult, we used a two-way analysis of variance
that showed that the outcome of the first rewafelctfvas statistically significanE(1,149)
=36.13,MSE=1.56,0=0.46,p=1.410%). By contrast, the contribution of tiRgblock type and its
interaction with the outcome of the first risky at®were not statistically significant
(F(1,149)=2.08MSE=0.09,p=0.2,p=.15 andF(1,149)=1.28MSE=0.05,p=.26 respectively).
These results indicate that the outcome of therisky choice is the major contributor to the
underweighting of rare events and further suppgathypothesis that the outcome primacy effect
plays an important role in aggregate choice bemavio

Repeating the same analysis for the AIC Q-learmiodel (Figure 5B) revealed that in
this model, thé>y block type dominates choice behavib(1,147)= 136.74AMSE=1.67,p=0.71,
p=1-10%%) and not the outcome of the first risky choiE€1(147)=0.2 MSE=2.410°, p=0.2,
p=0.66). By contrast, in the RIC Q-learning mod&ag(re 5C), similar to the behavior of the
participants, the outcome of the first risky choatcted choice behavior more strongly than the
Py block type F(1,144)= 45.56MSE=0.99,p=0.54,p=310" andF(1,144)=9.31MSE=0.202,

p=0.34,p=3-10" respectively).
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Discussion

The primary objective of this study was to test bypothesis that first experience resets
the initial conditions in operant learning. We wfed that indeed, the outcome of the first risky
choice has a long-lasting effect on subsequentehmhavior, a phenomenon we termed
outcome primacy (Figure 2A). To the best of ounwtedge, the question of primacy in operant
learning has never been addressed. To test oothegis, we estimated the action-selection
function non-parametrically, modeled it using-softmax function and implemented it in a Q-
learning model (Figure 3). In line with our hypefis, this standard RL model is consistent
with the effect of the outcome of the first choaebehavior if we assume that the outcome of
the first choice resets the value of the actiogFeé 2C) but not if we assume arbitrary initial
conditions (Figure 2B). Our hypothesis is furtkapported by the fact that our model predicts
aggregate probability of choice in operant learmimaye accurately than other previously
proposed models (see Table 1). Finally, our resotticate that outcome primacy substantially
contributes to the underweighting of rare eveniguifes 4 and 5). These results strongly
suggest that outcome primacy plays an importastiroshaping behavior in operant learning
tasks.
The RIC Hypothesis and the Underweighting of Rare Events

Previous studies have suggested that the undertivedghf rare events can result from
estimation biaswhich is enhanced by adaptive sampling(Denré072 Denrell, 2005), also
known as the hot stove effect(Denrell & March, 200The idea behind estimation bias is that if
Py is sufficiently small, the empirical average oé thast outcomes of the risky choices is
typically lower than the true (ensemble) avera@ke opposite effect is expected in problem sets

in which Py is sufficiently large. This effect is particukagpronounced if participants rely on a
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relatively small sample, either due to limited meynor overweighting of recent samples
(Barron & Erev, 2003; Erev, Ert, & Yechiam, 2008nvig, Barron, Weber, & Erev, 2004). It
has been hypothesized that the finite number opssmnn the experiment is sufficient to
account for the estimation bias and the underweigldf rare events (Fox & Hadar, 2006).
However, this hypothesis has been contested binfisdhat rare events are underweighted even
when the sample is representative (Hau, PleskafeKi& Hertwig, 2008; Hertwig & Erev,

2009; Ungemach, Chater, & Stewart, 2009). It sthdndl noted thatecency in which more

recent samples are more influential than other ssngHogarth & Einhorn, 1992) would result
in a biased estimation even in representative elesn(Hertwig, Barron, Weber, & Erev, 2004).
Such recency naturally emerges in Q-learning (Bd@and RIC) because of the adaptation rule
(Equation 1). Similarly, the resetting of init@dnditions results in more weight being given to a
single experience, the first experience, whichdged similarestimation bias.

Adaptive sampling enhances the estimation biasiéydllowing asymmetry: if the
decision-maker temporarily underestimates the vafuke risky alternative, she will tend to
avoid it. By contrast, an overestimation of thaueaof the risky alternative will motivate
additional choices of the risky alternative anddeereduce the bias. Adaptive sampling affects
choice behavior in two ways. First, it biasesipgrants against the risky alternative, resulting i
risk aversion behavior. Second, it amplifies thdemveighting of rare events caused by the
estimation bias (Denrell, 2007; Denrell, 2005) tifGation bias and hot stove effects are
implicitly incorporated in the AIC and RIC Q-leang models. The value adaptation results in
estimated action values based primarily on the mexsint trials. Adaptive sampling is a natural

consequence of the action selection rule. In fadistantial underweighting of rare events was
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observed in our simulations of the AIC Q-learningdal (Figure 4B, top) consistent with
previous studies (Denrell, 2007; Denrell, 2005).

Our analysis focused on the contribution of thet faxperience, through the outcome
primacy, to the underweighting of rare events. &halysis of the empirical data showed that
outcome primacy accounts for a substantial pathi@iinderweighting of rate events (Figures 4A
and 5A), which is consistent with the RIC Q-leaghmodel (Figures 4C and 5C). According to
the RIC Q-learning model, the outcome of the fifsbices makes a disproportionately large
contribution to the action values. This overweiigdtof the first experience effectively
decreases the sample used for estimating the actlaes and thus enhances the estimation bias
and consequently, the underweighting of rare events

The underweighting of rare events depicted in Fegur and 5 is quantified as an average
over the entire block of 100 trials. Because thetigbution of the outcome of the first risky
choice to behavior decreases with trial numberlmwhuse outcome primacy contributes
substantially to the underweighting of rare evetits,magnitude of the underweighting of rare
events is expected to decrease with trial numberedls To test this, we computed the
magnitude of the underweighting of rare eventsefmh trial individually, by computing the
difference in the probabilities of choosing the&yiglternative in the high and loRy blocks.

As depicted in Figure 6 (magenta), the magnitudd@funderweighting of rare events
increases within several trials and decreases ghigdhroughout the block. The phasic increase
can be attributed to the resetting of the init@hditions, whereas the decrease can be attributed
to an effective increase in the number of sampidke action value estimation, which in turn
decreases the sampling bias. This dynamics airiderweighting of rare events is consistent

with the simulations of the RIC Q-learning modeig(ke 6, black, first 100 trials).
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The simulations of the RIC Q-learning model cam &ls used to predict the magnitude
of underweighting of rare events in a longer expent. As depicted in Figure 6, black, the
magnitude of the underweighting of rare eventxgeeted to plateau at a positive value in
longer experiments. This residual underweightihgaee events in the steady-state is
independent of the reset of initial conditions.

Predicting Outcome Primacy in Different Experimental Paradigms

The participants in the experiment exhibited outegrimacy, whosemagnitude can be

guantified as the difference between the probasliof choosing the risky choice when the

outcome of the first risky choice ki and that probability when the outcome of the fiisiky
choice isL(AA™@= A, — A =16+ 4%).In this section we consider the contributionsved

main characteristics of the experimental schedutbe outcome primacy: (1) the fact that in
each trial, only the payoff of the chosen alten&tvas known to the participant, also known as
obtained payoféind (2) the fact that the expected returns fromtwo alternatives were
approximately equal.

In order to estimate the contribution of the oledipayoff paradigm to outcome
primacy, we simulated the RIC Q-learning model for@gone payofparadigm in which both
the obtained outcome from the chosen alternatidetiag foregone outcome from the non-chosen
alternative are known to the participant after eaieth. Averaging over the problem sets, we

found that the magnitude of outcome primacy indineulation of the foregone payoff paradigm
is A" =5+ 3%, which is significantly smaller thanA™(t(175) = 3.3p=1-103, CI [4.6%,
18.2%],9=0.50). Thus, the contribution of adaptive sangplim outcome primacy is substantial

and we predict that the magnitude of the outconmagmy in a foregone payoff paradigm would

be substantially lower than in an obtained payaffdigm.
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To test for the contribution of equal expected nelsdo outcome primacy, we repeated
the simulations of the RIC Q-learning model forlea€the participants, while varying the value
of the safe alternativ@/, according ttM '=M + q| M| . The parameteay is a measure of the
deviation of the reward schedule from equal retditms original reward schedule of
approximately equal returnscorrespondg+d), whereas a positive (negative) valuegof
indicates that the value of the safe alternativariger (smaller) than the expected average
reward of the risky alternative.

The top panel in Figure 7 depicts the probabilitglmoosing the risky choice given that
the outcome of the first trial was higH,(blue) or low [, red) as a function @. The lower
panel depicts the difference between these twoesurhe filled circles in both plots denote the
empirical valuesA, (red in top) Ay (blue in top) andAA®*#(black in bottom). The results of
these simulations predict that the magnitude of@ue primacy should be maximal when the
two alternatives have approximately the same retblevertheless, substantial outcome primacy
is expected in all the values of g that we studi¢eq<1).

RIC Model as Non-Stationary Learning

The magnitude of the learning rate determines pleed-accuracy tradeoff in learning.
Therefore, the time dependent learning rate, irclvihe rate is initially high and later low, is
common in machine learning in general and reinioea learning in particular (Sutton &

Barto, 1998) . In line with this framework, the@Rinodel is mathematically equivalent to an
AIC model, in which the learning rate changes adicwy to the following ruleyyl(a) =1 and
n, =n fort>1, wherep is a constant anpl(a)is the learning rate aftéichoices of alternativa.

Consistent with this idea, the resetting of initahditions ensures that after a single trial, the

estimated actions values are in the ballpark otrilne values, enabling fast convergence to the
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true values. By contrast, an arbitrary initial \@lnay be far from the true value, resulting in a
slow convergence of the algorithm. We postula& this might be the rationale behind this
cognitive strategy. Furthermore, for a determiaiattion-outcome relation, resetting would be
the optimal policy for estimating the action-valg@rectly and quickly.

To further test the validity of the RIC Q-learningpdel, we tested whether other models

incorporating a time-dependent learning rate cewfolain the behavioral data better. In
particular, we focused on power-law learning offiven 7, =1/t because it guarantees

convergence of the estimated action value tous walue under general conditiona f o < 2
(Sutton & Barto, 1998). We found that the likelifubof the power-law model is lower than that
of the RIC Q-learning model and qualitatively, tesulting behavior does not capture the
primacy effect (not shown).

Nevertheless, it is likely that the RIC Q-learnimgdel is at best a coarse approximation
of the true learning strategy. Therefore, moraieste models should take into account time
dependent changes in the adaptation rule, as well the action selection rule. However, an
accurate description of the dynamics of these riglédficult because of the heterogeneity in
learning between different participants, becausenaly access to the subjective values is via
their binary choices and because these rules dmutdsk dependent.

Beyond the RIC Q-L earning Model

One limitation of RIC Q-learning is that it implity assumes that consecutive blocks are
independent and that prior expectations play n@irothe model. However, this is only an
approximation of the behavior. To see this, we potad the probabilities of choosing the risky
alternative in the second trial following a riskyoice in the first trial, conditioned on the

outcome of the first trial{ orL). According to the RIC model, these probabilites



THE ROLE OF FIRST IMPRESSION IN OPERANT LEARNING 30

determined by the parametan the action selection rule and are independetti@butcome of
the first trial. We found that these probabiliteee statistically different: 21+4% and of 14+4%,
afterH andL, respectivelyt(186) = 2.03p=.043,CI =[0%-12.6%],9=0.30). This result might
indicate that prior expectations of the particigaaiso influence their choice behavior in a way
that is not predicted by the RIC Q-learning model.
Outcome Primacy and other Forms of Primacy

The long-lasting effect of the first outcome, whigh denoted as outcome primacy is
reminiscent of other forms of primacy in psycholdiantonakis, Rodero, Lesschaeve, &
Hastie, 2009), where“earlier data have more impadtiehavior] than later data’(Peterson &
DuCharme, 1967).For example, in memory recall taslesprobability of recalling the first item
in a list is higher than the probability of recaflisubsequent items (Murdock Jr, 1962).
Similarly, in multiple-choice tasks, in which opami is based on one-shot experience per option,
such as in wine tasting, the first option is makely to be chosen (Mantonakis, Rodero,
Lesschaeve, & Hastie, 2009). While the relationvieen the above examplesof primacy and
outcome primacy isunclear, we hypothesize thataya&primacy andprimacy ioelief updating
tasks such as jurors’ decision after a sequence ofraeguiative speeches or the stating a
personality impression after a sequence of wordsrd®ng personality traits(Asch, 1946;
Cromwell, 1950; Lund, 1925; Peterson & DuCharm& 7t %tone, 1969) can be explained using
a similar theoretical framework.

Belief updating tasks resemble repeated-choicestiasthe fact that participants respond
after being provided with a sequence of evidenceg¥er in contrast tothe quantitative nature
of the sequence of rewards in repeated choice,ttigkgvidence in belief updating tasks can be

gualitative and not easily comparable. Order eff@cthe belief updating tasks have been
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previously modeledusing theelief-adjustment modah which evidence, despite its qualitative
nature, is converted to a numerical reinforcemadtia used to update the value associated with
the evidence’s source, in a manner very simil@earning(Hogarth & Einhorn, 1992). An
important difference between the belief-adjustnmeatiel and the RIC Q-learning model is that
in the former model, the representation of the Bsperience is non-decaying whereas in the
latter model, first experience resets the init@iditions. This difference in the models
manifests in a different prediction: primacy in thelief adjustment model is predicted to be
everlasting whereas primacy in the RIC Q-learnirgglet is predicted to be a transient, albeit
possibly long-lasting, phenomenon. We are unawhstudies of primacy in long belief
updating tasks (we demonstrated outcome primaaytask, in which the two sequences of
evidence are composed of tens of trials). Howavarmemory recall task, the magnitude of
primacy has been shown to decrease with the lesfgtie list(Murdock Jr, 1962).

It has also been suggested primacy emerges begauggpants pay less attention to
successive items of evidence (Anderson, 1981jhdriramework of the Q-learning model, this
attention decrement can be modeled as a decre#ise lgarning rate. As discussed above, the
RIC hypothesis is a simple example of a time-depehbkarning rate, in which the learning rate
is initially high and is lower in successive trials
Conclusion

Learning from experience is one of the most conmekspects of human cognition.
Reinforcement learning provides a computationah&aork for studying learning from
experience by usingpast actions and their outcoesimate action values which in turn are
used to direct future actions. Nevertheless, wlaming starts, neither previous actions nor

outcome are available and thus initial conditiomsudd be defined. In this article, we described
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the long-lasting contribution of the first expererto behavior, a phenomenon we termed
outcome primacy. The long time scale associatélal this effect indicates that behavior does
not converge to a steady state within a hundratstand thus the aggregate behavior reported in
experiments may not reflect the asymptotic expebtddhvior. Outcome primacy can be
understood in the framework of RL if we assume thiéial conditions are reset by the outcome
of first experience. We suggest that the resetiirtge initial condition is a general trait of
human and animal operant learning, which may keedIto other forms of primacy and should

not be overlooked when modeling and predictingrieay from experience.
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Figure 1The experimental reward schedule. A: The distidsufNdenotes counts) ¢, in the
problem sets. B: The expected returns from tekyrialternatives (&) as a function of the safe
payoff, M. Black, gray and white correspond to problem setghich the value oPy was

relatively low Pu<.15), intermediate (.13%,<.85) and relatively highRy>.85), respectively.
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Simulation of the resetting of initial conditionRIC) Q-learning model. Bars (Top) and shaded

area (Bottom) represent the SEM.
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Figure 3The action selection rule. The probability of chiog the risky alternative in the third
trial as a function of the difference in the rewsabdtween the risky and safe alternative in the
first two trials averaged over 2,006 blocks in whimth alternatives were sampled in the first
two trials. The different blocks were grouped adaag to the value oAr into 25 bins of

approximately equal size. For each bin, the foactf trials in which the risky alternative was

chosen is plotted as a function of the averageevatiar. Error bars correspond to SEM.
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Figure 4The underweighting of rare events and the generatiodel. Top: The probability of
choosing the risky alternative averaged over tiaeRg blocks (black) and the higpPy blocks
(white). Bottom: The probability of choosing thsky alternative as predicted by the generative
model based on the outcome of the first risky olgkigure 2, Top). A: The empirical data. B:
Simulation of the arbitrary initial conditions (A)J@-learning model. C: Simulation of the

resetting of initial conditions (RIC) Q-learning del. Error bars correspond to SEM.
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C. RIC Q-learning

The probability of choosing the risky alternative the lowPy (dark) and highPy (bright)

blocks, conditioned on the outcome of the firsticed_ (red) andH (blue). A: The empirical

data. B: Simulation of the arbitrary initial cotidns (AIC) Q-learning model. C: Simulation of

the resetting of initial conditions (RIC) Q-leargimodel. Error bars correspond to SEM.
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for the empirical data set (magenta) and for tisettang of initial conditions (RIC)Q-learning
simulation with parameters estimated for each gipent (same method as in Figure 2).

Shadowed margins correspond to SEM.The dottedca¢tine marks the 100th trial in the block.
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Figure 7. The predicted dependency of the outcome prineffegt on reward schedule
according to the simulation of the resetting ofiahiconditions (RIC) Q-learning model with
parameters of each participant estimated as inr&igu Top panel depicts the probability of
choosing the riskyalternative given that the outeahthe first risky choice was either high, (

blue) or low (, red), as a function of the value of the paramgtehich controls the value of the
safe alternative according td '=M + q| M| whereM is the original value in the empirical data
andM’ is the safe value used in the simulation. Botp@mel depicts the difference between the
two curves in the top panel. The filled circlemoi the empiricalvalues éf, Ay(red and blue

in top panel) andAA™?(black in bottom panel).Simulation was conductedr®0 repetitions of

the original experiment (200 participants, 12 bkelach) with the parametgwarying between
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-1 and 1 in steps of 0.05 (total 41 values). Tinerdars corresponds to the simulation and data

SEM.
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Tablel

Performance comparison between models in the agtgetsk aversion prediction competition.

Model Name Number Estimation Competition
of Pagee p  MSD10° Pyee p MSD10O
Parameters

Basic RL 2 56% 0.67 22.4 66% 0.51 26.3
Normalized RL 2 76% 0.83 9.2 84% 0.84 8.7
Normalized RL with inertia 4 75% 0.86 8.0 86% 0.85 8.4
Two stage sampler 7 80% 0.90 6.5 83% 0.87 8.4
ACT-R 2 77% 0.88 9.4 87% 0.89 7.5
Homogenous AlCQ-learning® 4 80% 0.92 7.2 87% 0.90 7.0
Explorative sampler with recency 4 82% 0.88 7.5 86% 0.89 6.6
Heterogeneous RIC Q-Learning™ 300 78% 0.93 5.2 88% 0.89 6.4
Homogenous RIC Q-learning™™ 3 77% 0.91 5.8 88% 0.90 6.4

" Taken from the competition results (Erev I. , bt 2010) and ordered by competition session MSDRig®
proposed in this manuscript are marked by bold)font

*p=52,6=0.2,4=0.4, Q=1 were chosen by gradient descent optimizatich@MSD on the estimation set.

** The heterogeneous population values were chosemalgimizing the likelihood per participant and are
summarized here by their mean, STD and the mediaraickets respectively? = (370, 470, 223=(0.16, 0.1,
0.17),7=(0.5, 0.5, 0.5).

** p=52,¢=0.2,7=0.4 were chosen by gradient descent optimizatiatheoMSD on the estimation set.

RL stands for Reinforcement Learning, AIC for amdniy initial conditions and RIC for resetting oftial

conditions.



