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Abstract 

We quantified the effect of first experience on behavior in operant learning and studied 

its underlying computational principles. To that goal, we analyzed more than 200,000 choices in 

a repeated-choice experiment.  We found that the outcome of the first experience has a 

substantial and lasting effect on participants’ subsequent behavior, which we term outcome 

primacy.  We found that this outcome primacy can account for much of the underweighting of 

rare events, where participants apparently underestimate small probabilities. We modeled 

behavior in this task using a standard, model-free reinforcement learning algorithm.  In this 

model, the values of the different actions are learned over time and are used to determine the 

next action according to apredefined action-selection rule.  We used a novel non-parametric 

method to characterize this action-selection rule and showed that the substantial effect of first 

experinece on behavior is consistent with the reinforcment learning model if we assume that the 

outcome of first experience resets the values of the experienced actions, but not if we assume 

arbitrary initial conditions. Moreover, the predictive power of our resetting model outperforms 

previouly  published models regarding the aggregate choice behavior.  These findings suggest 

that first experience has a disproportionately large effect on subsequent actions, similar to 

primacy effects in other fields of cognitive psychology.  The mechanism of resetting of the initial 

conditions which underlies outcome primacy may thus also account for other forms of primacy.  

 

Keywords: reinforcement learning, operant conditioning, underweighting of rare events, 

risk aversion, primacy   
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The Role of First Impression in Operant Learning 

“First impressions, you know, often go a long way, and last a long time” (Dickens, 1844). 

Operant Learning 

According to the law of effect formulated by Thorndike over a century ago, actions that 

are closely followed by satisfaction are more likely to recur whereas actions followed by 

discomfort are less likely to reoccur in that situation (Lattal, 1998; Thorndike, 1911).Operant 

learning, in which behavior is a function of the consequences of past behavior, is based on this 

principle.  The computational principles underlying operant learning are a subject of debate.  

Some neurophysiological evidence supports the view that operant learning is achieved through 

the synergy of two processes.  First, the values of the different actions (or more generally, state-

actions) are learned from past actions and their subsequent rewards.  Second, these learned 

values are used to choose among different actions such that actions associated with a higher 

value are more likely to be chosen (Doya, 2007; Glimcher, 2009).  By contrat, there are 

alternative views on operant learning that are not based on a valuation system  (Dayan & Niv, 

2008; Erev & Barron, 2005; Gallistel, Mark, King, & Latham, 2001; Law & Gold, 2009; Sugrue, 

2004; Loewenstein & Seung, 2006; Loewenstein, 2010). 

Reinforcement Learning (RL) 

Operant learning is typically modeled quantitatively using reinforcement learning (RL) 

algorithms (Sutton & Barto, 1998), which describe howbehavior should adapt to rewards and 

punishments (Dayan & Niv, 2008).In this framework, theQ-learning algorithm (Watkins, 1989; 

Watkins & Dayan, 1992)is particularly noteworthy, as it has been widely used to model 

sequential decision making behavior in humans and animals (Barto, Sutton, & Watkins, 1989; 

Daw, 2011; Neiman & Loewenstein, 2011; Pessiglione, Seymour, Flandin, Dolan, & Frith, 



THE ROLE OF FIRST IMPRESSION IN OPERANT LEARNING 4 

2006).  Here we usedQ-learning to quantitatively model human behavior in a repeated choice 

experiment in which in every trial t, the participant chooses an action at from a finite set of 

actions and receives a reward r t.  Q-learning describes how the expected average reward (action 

value), of each action a  in trial t , denoted by ( )tQ a , changes in response to that trial’s action 

and the resultant reward.  The value of the chosen action ( )t tQ a is updated by 

( ) ( ) ( )( )1t t t t t t tQ a Q a r Q aη+ = + −        (1)  

where 0≤η≤1 is the learning rate, which determines the relative contribution of the most recent 

reward to the expected average reward.  The smaller the magnitude of η, the smaller is the 

contribution of the most recent reward to the value of the action.  If 1η =  the value of action at 

following the value update is simply r t.  The value of the non-chosen actions ( )t tQ a a≠  remains 

unchanged.  If the reward tr is larger than the estimated action value ( ( ) 0t t tr Q a− > ),the action 

value increases, which in turn increases the likelihood that this action will be chosen again in the 

future.  The reverse occurs if the reward is smaller than the action value. 

Equation 1 describes how the action values adapt over trials but does not specify how 

these action values are used to select actions.  Several action selection rules, which determine the 

mapping between action values and the policy, have been previously proposed.  Two of these, ε -

greedy and softmax are noteworthy, as they are commonly used for modeling behavior (Sutton & 

Barto, 1998).  According to the ε -greedy action-selection rule,the alternative associated with the 

highest estimated action-value is chosen with probability 1 −ε(0 <ε<1).  The other alternatives 

are chosen randomly with a probabilityε.  The value of the parameterεdetermines the balance 

between exploration and exploitation (Cohen, McClure, & Angela, 2007).  The larger the value 

of ε is, the more likely that actions associated with a low action value will be chosen 
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(exploration).  By contrast, the smaller the value of ε is, the more likely that the action with the 

highest estimated value will be chosen (exploitation). 

An alternative action selection rule is the soft-max rule.  According to this rule, the 

probability of choosing an action a  is proportional to ( )tQ aeβ , where parameter β  controls the 

exploration-exploitation tradeoff.  The lower the value of β is, the more likely that an action 

associated with a relatively low actionvalue will be selected.  In contrast to the ε -greedy action-

selection rule, the soft-max action selection rule has a graded sensitivity to the values of actions.  

Typically, the empirical tradeoff between exploration and exploitation (controlled by εorβ) is 

estimated by fitting one of these actionselection rules to the empirical data (Daw, 2011). 

However, to the best of our knowledge, the shape of the action selection rule has never 

been estimated non-parametrically.  In the Results section we describe a novel method for 

estimating the action selection rule. 

Initial Conditions in RL 

A model of value adaptation and action selection is not fully determined without 

specifying the initial conditions of the value adaptation rule, Equation 1.  This is because the 

value adaptation rule in Equation 1 is a difference equation, in which the current value depends 

on the value of the previous trial.  Therefore, the values of the actions before the first trial need 

to be specified.  The common practice when modeling empirical behavioral data using RL 

models is to initialize all action values to the same value 0Q  (Daw, 2011).  The value of 0Q  is 

determined either arbitrarily (e.g.,0 0Q = ) or by fitting to the empirical data (Sutton & Barto, 

1998; Daw, 2011).  Theoretical studies have shown that under general conditions, the choice of 

initial conditions has no effect on the asymptotic learning behavior.  In other words, the behavior 
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of the model after a sufficiently large number of trials is independent of0Q because the 

contribution of 0Q  to the value of action a diminishes exponentially with the number of trials in 

which actionais chosen (Sutton & Barto, 1998).  Following these theoretical considerations, 

little attention has been directed to determininghow the initial values of Equation 1 are specified.  

While the asymptotic behavior may be independent of the initial conditions, it is not clear 

to what extent this asymptotic behavior describes participants’ behavior in standard experiments 

composed of a finite number of trials.  There are two reasons why the initial conditions may play 

an important role in explaining the non-asymptotic experimentally-observed behavior.  First, the 

learning rate may be low, leading to a slow adaptation and a prolonged contribution of the initial 

conditions to behavior.  Second, the action-selection rule dictates that actions that are associated 

with a relatively low value would be less often selected than those associated with a relatively 

high value.  This sampling bias is also known as adaptive sampling or the hot stove effect 

(Denrell & March, 2001; Denrell, 2005; Denrell, 2007).  As a result, more trials would be needed 

to update the values of actions that are associated with the lower estimated value, potentially 

prolonging the effect of initial conditions on behavior. 

Reset of Initial Conditions Hypothesis 

This article explores how the initial conditions of action values are determined and to 

what extent these initial conditions shape behavior in humans in the first hundred trials of 

repeated choice experiments.  We hypothesize that the initial conditions are not arbitrarily set.  

Rather, we posit that the initial condition of each action value is “optimistic”, formally Q0 = ∞ 

for all action values.  Moreover, we posit that these initial values are reset to the value of the 

reward in the first trial in which that action was chosen.  As a result, the outcome of the first 

action is expected to have a disproportionately large effect on subsequent actions, similar to 
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primacy effects in other fields of cognitive psychology (Hogarth & Einhorn, 1992; Mantonakis, 

Rodero, Lesschaeve, & Hastie, 2009).  The idea of resetting of the initial conditions can apply to 

other forms of learning that are not associated with actions or rewards.  We posit that the 

resetting of initial conditions may also help explain the primacy effect in belief updating (Asch, 

1946; Hogarth & Einhorn, 1992). 

Predicting Aggregate Behavior 

If the initial action values are indeed reset by the outcome of the first choice, a model that 

incorporates reset of initial conditions (RIC) is expected to predict participants’ behavior better 

than a model that assumes any arbitrary initial condition (AIC).  We test this prediction by 

comparing the predictive power of several previously proposed models and the one proposed 

here.  Finally, we show that much of the underweighting of rare events, in which participants 

tend to be more risk aversive when the probability for a successful risky attempt is low (Barron 

& Erev, 2003; Hertwig, Barron, Weber, & Erev, 2004), can be attributed to RIC.  

The Experiment 

To address our questions and test our hypotheses and predictions, we analyzed the results 

of an experiment by Erev et al. (2010).  In this experiment, participants repeatedly  chose 

between two unmarked alternatives in sessions composed of 100 trials.  One alternative, denoted 

as risky yielded either a high or low monatary reward with a fixed probability.  The other 

alternative, denoted as safe, yielded a deterministic reward that was approximetly equal to the 

mean reward of the risky alternative. The first experience is expected to be most pronounced if 

expected rewards are approximately equal for the two alternatives, as is explained in the 

Discussion section. 
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Methods 

The full details of the experimental procedures and methods have been described 

elsewhere (Erev, Ert, & Roth, 2008; Erev I. , et al., 2010).  A relevant summary of these methods 

is described here.  

Participants and Instructions 

Two hundred students (Technion, Israel) participated in the experiment; half in the 

“estimation” session and the other half in the “competition” session.  Participants were paid 40 

Israeli Shekels (ILS) ($11.40) for showing up, and could earn more money or lose part of the 

show-up fee during the experiment.  The procedure lasted about 40 minutes on average per 

participant.   

Participants were told that the experiment would include several independent blocks, and 

that in each they would be asked to repeatedly select one of two unmarked buttons that appeared 

on a computer screen for an unspecified number of trials.  Each selection was followed by a 

presentation of its outcome (in ILS currency).  The payoff from the unselected button (the 

forgone payoff) was not presented.  At the end of the experiment, one choice was randomly 

selected and the participant’s payoff for this choice was added to the show-up fee to determine 

the final payoff.  The instructions (translated from Hebrew) were as follows: 

This experiment includes several games.  Each game includes several trials.  You will 

receive a message before the beginning of each game.  In each trial you will be asked to 

select one of two buttons.  Each press will result in a payoff that will be presented on the 

selected button.  At the end of the experiment one of the trials will be randomly drawn 

(all the trials are equally likely to be drawn).  Your payoff for the experiment will be the 

outcome (in Sheqels) of this trial.  Good luck! (Erev I. , et al., 2010) 
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Experiment Design 

In each trial, pressing the risky button resulted in the delivery of a high monetary payoff 

(H) with probability PH, or a low payoff (L) with probability 1−PH.  Pressing the safe button 

resulted in a medium payoff (M).  There were 100 choice trials in each block.  Different blocks 

differed in reward schedule parameters, namely H, L, M and PH.  The location of the buttons 

changed between sections randomly, so there was no association between button type and 

location.   

There were two experimental sessions: an “estimation” session, and a “competition” 

session.  The two sessions used the same methods and examined similar (but not identical) 

decision problems as will be described below.  Both sessions consisted of different collections of 

60 problem sets and the exact problem sets were determined by a random selection of the 

parameters (rewards and probabilities) L, M, H, and PHaccording to a predefined algorithm (Erev 

I. , et al., 2010).  In each session, participants were randomly assigned to one of five different 

sub-groups.  Each sub-group contained 20 participants who were presented with the same 12 

problem sets.  The distribution of PH across problems is depicted in Figure 1A.  In approximately 

1/3 of the problems, PH was relatively small, PH<.15 (denoted as Low PH problems; black in 

Figure 1A), in approximately 1/3 it was relatively high, PH>.85 (denoted as High PH problems; 

white in Figure 1A) and in approximately 1/3 it had an intermediate value (gray in Figure 1A).  

As shown in Figure 1B, the medium prize M was chosen from a narrow distribution whose mean 

was equal to the expected value of the risky alternative ( )1H Hr P H P L= ⋅ + − ⋅ .  

Results 

Outcome Primacy 
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The RIC hypothesis predicts that the outcome of the first trial should have a 

disproportionately large effect on subsequent choice behavior.  To study this prediction, we 

quantified the extent to which the outcome of the first risky choice, L or H, affects subsequent 

choices.  We separated the blocks of each problem set into two groups, according to the outcome 

of the first risky choice, L or H.  We focused our attention on behavior in 73% of the problem 

sets (88/120), in which there was at least one block associated with each of the two groups.  For 

each group in these problem sets, we computed the frequency of choosing the risky choice in all 

trials subsequent to the first risky choice.  These two frequencies are an estimate of the 

probabilities of choosing the risky action, conditioned on the outcome of the first risky choice for 

the corresponding problem set.   

Averaging over the problem sets, we found that the probability of choosing the risky 

choice, provided that the outcome of the first risky choice was L, is AL = 31±3% (Figure 2A top, 

red).  This number is substantially smaller than that probability, provided that the outcome of the 

first risky choice was H, AH = 47±3% (Figure 2A top, blue; t(174) = 4.96, p=2·10-6, CI [9.7%, 

22.5%], g=0.84).  This result shows that the outcome of the first risky trial has a substantial 

effect on subsequent choice behavior.  Note that AL and AH are based on choices made 

throughout a session of 100 trials. 

To further quantify the time scale associated with the effect of the first trial on behavior, 

we computed, for each of the problems in the 88 problem subset (see above), the probabilities of 

choosing the risky choice in all trials t, conditioned on the outcome of the first risky choice in 

that block.  These conditional probabilities, averaged over the different problem sets, are 

depicted in Figure 2A (bottom), where the blue and red lines indicate the probability of choosing 

the risky choice given that the first risk outcome was H and L, respectively.  In 92.3% of the 
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blocks, the first risky choice was either on the first or the second trial.  Thus, the trial number is 

approximately equal to the number of trials elapsed from the first risky choice.  Therefore, the 

difference between the blue and red curves is a measure of the effect of the outcome of the first 

risky choice on behavior in subsequent trials.   

We found that even in the last trial, t=100, there was a statistically significant difference 

between the two curves (t(206) = 3.397, p=8·10-4, CI [5.7%, 21.5%]).  Similarly, a statistically 

significant difference between the two curves was observed for each of the trials in Figure 2A, 

bottom (p<.05).  This result is a demonstration that the outcome of the first risky choice affects 

behavior for at least 100 trials.  This long-lasting effect of the first experience is reminiscent of 

the primacy effect in other fields of psychology in which the first stimulus is particularly salient 

(Hogarth & Einhorn, 1992; Mantonakis, Rodero, Lesschaeve, & Hastie, 2009).  Therefore, we 

denote the effect of the first risky reward on subsequent behavior as outcome primacy.  In the 

Discussion section we elaborate on the similarities between outcome primacy and other forms of 

primacy. 

Modeling Outcome Primacy 

Arbitrary initial conditions.The outcome of the first risky choice has a significant and 

long-lasting effect on choice behavior (figure 2A, top and bottom).  However, this outcome 

primacy does not necessarily indicate a reset of the initial conditions (the RIC hypothesis).  As  

mentioned in the introduction, a low learning rate and adaptive sampling, which naturally 

emerges in standard RL algorithms, might give rise to a long time scale (Denrell, 2007; Denrell, 

2005; Denrell & March, 2001).  In order to test whether the RL framework can account for 

outcome primacy, we considered a standard AIC Q-learning algorithm with the following action 

selection rule, which is motivated by the experimental data (see below): 
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We term the action selection rule in Equation (2) ε-softmax because it is a hybrid of the ε 

-greedy and softmax action selection rules.  If ε=0 then the ε-softmax is simply the softmax 

action selection rule.  The ε-softmax becomes ε-greedy if β=∞.  Note that the ε-softmax action 

selection rule has a graded sensitivity to action values like the softmax action selection rules, and 

like the ε-greedy, it maintains exploration even when the value of one of the actions is much 

larger than that of the other action.  

The AIC Q-learning model with the ε-softmax action selection rule is characterized by 

four parameters: (1) the initial conditions0Q , (2) the learning rateη (see Equation 1) and two 

parameters of the action selection rule, (3) ε and (4) β.  We found the set of parameters that best 

fit the sequences of actions of each participant in the experiment by maximizing the likelihood of 

the sequence.  We then used these parameters to simulate the behavior of the AIC Q-learning 

model such that each simulated participant was tested on the same problem sets as the 

corresponding human participant.   

The results of these simulations are depicted in Figure 2B, which shows that in the AIC 

Q-learning model, the probability of choosing the risky choice, provided that the outcome of the 

first risky choice was L is AIC
LA = 40±2%, which is not statistically different from that number, 

provided that the outcome of the first risky choice was H, AIC
HA =40±2% (t(170) =0.12, p=0.91, 

CI [-4.2%,4.7%], g=0.25).  Thus, the AIC Q-learning model with the parameters extracted from 

the behavior of the participants in the experiment is inconsistent with the finding that the 
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outcome of the first risky choice has a substantial effect on the aggregate probability of choosing 

the risky alternative (Figure 2B, top).   

Moreover, considering the conditional probabilities of choosing the risky alternative over 

trials (Figure 2B, bottom), we found that in the AIC Q-learning model, these conditional 

probabilities became statistically indistinguishable from trial 13 onwards (t(202) = 0.64, p=.52, 

CI [-5.1%, 10.0%], g=0.09 for trial 13).  These results indicate that the AIC Q-learning cannot 

account for the outcome primacy effect observed in the behavior of the participants (compare 

Figure 2A to Figure 2B). 

Reset of initial condition.  The failure of the AIC Q-learning model to account for the 

observed outcome primacy prompted us to test the effect of incorporating a reset of the initial 

conditions into the Q-learning model.  In this model, the initial values of the two alternatives are 

“optimistic”: Q0 = ∞ for all action values (Sutton & Barto, 1998).  Moreover, these initial values 

are reset to the value of the immediate reward after the first experience of each alternative (see 

RIC hypothesis in the Introduction).  In subsequent trials, these values are updated according to 

Equation 1.  Similar to the analysis of the AIC Q-learning model, we used the method of 

maximum likelihood to estimate the parameters of the RIC Q-learning model with the ε-softmax 

action selection rule that best fit the behavior of the participants.  Note that the number of 

parameters that characterize the RIC Q-learning model is smaller than that of the AIC Q-learning 

model because the initial values are not a free parameter.  We then used these parameters to 

simulate the behavior of the RIC Q-learning model such that each simulated participant was 

tested on the same problem sets as the corresponding human participant.   

The results of these simulations are depicted in Figure 2C, which shows thatthe 

probability of choosing the risky alternative in the RIC model, provided that the outcome of the 
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first risky choice was L, is RIC
LA = 32±2%, i.e., significantly lower than that probability, provided 

that the outcome of the first risky choice was H, RIC
HA = 47±2% (t(164)=6.02, p=1·10-8, CI [9.7%, 

19.2%], g=1.12).  Moreover, the predictions of the RIC model are statistically indistinguishable 

from the experimentally measured aggregate data: the pairs (AL, RIC
LA ) and (AH, RIC

HA ) are not 

statistically different (t(204) =0.42, p=.67, CI [-3.7%, 5.7%]), g=0.06 and (t(203) =0.06, p=.94, 

CI [-5.3%, 5.1%], g=0.01), respectively (Figure 2C, top). 

Similarly, when considering the probabilities of choosing the risky alternative over trials 

conditioned on the outcome of the first risky choice (Figure 2C, bottom), we found that the 

dynamics of the RIC model were qualitative similar to that of the empirical data (Figure 2A, 

bottom).  Moreover, in the RIC simulation, as in the empirical data, even in the last trial, t=100, 

there was a statistically significant difference between the two conditional probabilities (t(201) = 

4.34, p=2·10-5, CI [8.7%, 23.2%], g=0.61). 

Short-Term Consequences of the RIC Hypothesis 

The RIC hypothesis was also supported by the short-term effect of the outcome of the 

first risky choice on subsequent behavior: the initial rate of alternations, regardless of action or 

outcome and the phasic (step like) change in choice preference according to the outcome of the 

first risky action. 

Initial rate of alternations.  In 84% of the blocks (2006 blocks out of 2400), the first choice was 

different from the second, indicating that the probability of alternation in the second trial was 

significantly larger than chance (binomial, p=1·10-237, CI [82.0%-85.0%]).  Moreover, the 

probability of alternation to the safe alternative in the second trial after a risky choice in the first 

trial was higher than chance either if the outcome of the first risky choice was H or L as depicted 

in the second trial in Figure 2A, bottom(516 blocks out of 645, binomial, p=1·10-52, CI [76.6% - 
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83.0%] in case that the first risky choice was Hand 492 blocks out of 569, binomial, p=1·10-68, 

CI = [83.4%-89.2%] in case that the first risky choice was L).  In the framework of AIC Q-

learning, such alternation can results from optimistic initial conditions, i.e., initial values higher 

than typical values of reward on the task (Sutton & Barto, 1998).  However, optimistic initial 

conditions are expected to result, in general, in several trials of a high probability of alternation 

between the choices, depending on the magnitude of the learning rate.  This is because 

independent of the action outcome, its action value is reduced.  By contrast, the probability of 

alternation in the empirical data already drops below chance in the 3rd transition (1017 blocks out 

of 2400, binomial, p=4·10-14, CI = [40.0%-44.4%]).  In contrast to the AIC Q-learning model, the 

RIC Q-learning model predicts a high rate of alternation in the second trial and a lower-than-

chance rate of alternation after both alternatives are chosen, as observed in the behavioral data.  

Specifically the alternation rateduring the first two trial in the RIC Q-learning model was 83% 

which is not significantly different form the empirical alternation rate(t(4798) = -0.89, p=.37, CI 

=[-0.03, 0.01],g=0.026). 

Phasic change in choice preference.  The dynamics of the probability of choosing the 

risky alternative conditioned on the outcome of the first risky choice (Figure 2A, bottom) is 

characterized by a large phasicresponse, followed by a slow decay of the difference between the 

two conditional probabilities.  The co-occurrence of the two phenomena, namely a large phasic 

response and a slow decay is difficult to account for in the framework of AIC.  The reason is that 

a tradeoff between the two phenomena is expected: a low learning rate would enable a slow 

decay but the phasic response would be small.  By contrast, a high learning rate that can account 

for the considerable phasic difference between the two conditional probabilities would result, in 

general, in fast decay.  The latter was observed in the simulation of the AIC model based on 
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subjects' estimated parameters (Figure 2B, Bottom).  By contrast, in the RIC model, these two 

phenomena are decoupled:  the reset of initial conditions results in a large phasic response, 

independent of the value of the learning rate parameter.  Indeed both a large phasic response and 

a slow decay are observed in the simulation of the RIC model (Figure 2C, Bottom).   

Predicting Aggregate Behavior  

In the previous subsections we showed that the RIC model can account for the outcome 

primacy effect as well as the alternation rate in the second trials and the phasic response.  In 

order to further test the predictive power of the RIC model, we compared it to alternative models 

of operant learning.  As described in the Methods section, the behavioral data analyzed in this 

paper were used in a competition (Erev I. , et al., 2010), in which models were compared 

according to their ability to predict the probability of choosing the risky alternative, averaged 

over all trials and participants, given the parameters of the problem set (M, H, L and PH, see 

Methods).   

The competition consisted of two sessions, an estimation session and a competition 

session, each containing 100 participants and 60 problem sets (see Methods).  The estimation 

session was used to optimize the parameters of the candidate models, and their performance was 

tested by comparing their predictions with humans’ behavior in the competition session.  The 

aggregate probability of choosing the risky alternative, was predicted by each model (predictP ) for 

each problem set, and was compared with the empirically measured probability, averaged over 

all participants for that problem set (empiricP ). 

The predictive power of the different models was evaluated using three measures: (1) the 

fraction of problems, in which bothpredictP and empiricP were either above or below 50% (pagree); (2) 

the Pearson’s normalized correlation (ρ) between predictP and empiricP ; (3) the mean square 
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difference (MSD) between predictP and empiricP , averaged over all problem sets (Table 1).  An 

additional measure was the Equivalent Number of Observation  (Erev, Roth, Slonim, & Barron, 

2007).However, because this measure is a monotonic function of the MSD it was not used here. 

In order to evaluate the RIC Q-learning model, we estimatedthe three parameters of the 

RIC Q-learning model, η, β and ε, that best fit the trial-by-trial behavior of each of the 

participants in the estimation session (similar to Figure 2C).The 100 triplets of parameters, one 

triplet for every participant, wereregarded as representatives of the distribution of parameters 

across the population of participants.Then, for every problem set in the competition session, we 

estimated the expected aggregate probability of choosing the risky alternative,predictP , by 

simulating the RIC Q-learning separately for each triplet of parameters and averaging the 

aggregate probability of choosing the risky over all simulations. As can be seen in Table 1, this 

heterogeneous RIC Q-learning model that takes into account the population 

heterogeneityoutperformed all previously-proposed models with respect to MSD and Pagree and 

was performing as well as the best baseline model (Explorative sampler with recency) with 

respect to correlation measurement ρ.  

To studythe contribution of the population heterogeneity to the predictive power of the 

RIC Q-learning model, we considered a homogenousRIC Q-learning model, which is 

characterized by the same triplet of parameters for all simulated participants.The single triplet of 

parameters was found by simulating the model and choosing the triplet that minimized the MSD 

between predictP and empiricP ,averaged over all problem sets in the estimation session, using the 

Nelder-Mead simplex (direct search) method (Lagarias, Reeds, Wright, & Wright, 

1998).Simulating the model with the resultant triplet of parameters over the problems in the 

competition session we found that the predictive power of the homogenous RIC Q-learning 
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model is comparable to the heterogeneous RIC Q-learning model (Table 1).However, in contrast 

to the heterogeneous RIC Q-learning model, the homogeneous RIC Q-learning modelpredicts 

outcome primacy which is substantially smaller than the experimentally observed outcome 

primacy(not shown). 

Repeating the same analysis for the AIC Q-learning model, we found that the predictive 

power of a homogeneous AICQ-learning modelis lower than that of the RIC Q-learning model, 

further strengthening the RIC hypothesis.  Note that the better descriptive power is despite the 

fact that the number of parameters that characterize the AIC Q-learning model is larger than that 

of the RIC Q-learning model (4 and 3, respectively).Nonetheless, it should be noted that the AIC 

Q-learning model outperforms previously proposed RL models (compare with Basic RL, 

Normalized RL and Normalized RL with inertia in Table 1).  The primary difference between 

those models and the AIC Q-learning model is the action-selection function used (softmax vs. ε -

softmax) which demonstrates the importance of choosing an accurate action-selection function 

when modeling choice behavior. 

The Action Selection Rule 

In order to model learning behavior in the framework of Q-learning, as was described in 

the previous sections, the action-selection function should be specified.  Previous studies have 

typically assumed a particular functional form of the action-selection function and estimated its 

parameters from the data (Daw, 2011).  However, to the best of our knowledge the action-

selection rule has not been estimated non-parametrically.  The reason is that there is no direct 

access to the arguments of the action-selection function, the action values, and to the output, the 

probability of choice. 
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By contrast,here we develop a novel procedure to characterize the shape of the action 

selection function non-parametrically.  This method is based on the behavior of the participants 

in the third trial of the blocks, in which both the safe and the risky alternatives had been selected 

in the first two trials (2006 blocks out of 2400 blocks).  These trials were selected for analysis 

because they provide an opportunity to estimate the shape of the action selection function non-

parametrically.  To see this, consider the AIC Q-learning model in blocks in which both the safe 

and the risky alternatives were selected in the first two trials.  According to Equation1, the values 

of the risky action Q3(risky) and the safe action Q3(safe) in the third trial of these blocks are 

given by ( ) ( )3 01
at

Q a Q rη η= − + , where { }1,2at = is the trial number in which action a was 

selected.  The difference between the values of the two alternatives ( ) ( )3 3 3risky safeQ Q Q∆ = −  

is independent of the initial conditions Q0, and is linear in the reward difference
risky safet tr r r∆ = − .  

The resulting linear relation 3Q rη∆ = ∆  enables a direct estimation of the average action 

selection rule with a scale factorη .  Similarly, in the framework of the RIC Q-learning model, the 

above derivation will result in the relation 3Q r∆ = ∆ . 

Figure 3 depicts the probability of choosing the risky alternative in the 3rd trial as a 

function of the difference in the rewardsr∆ .  Note that in contrast to the ε -greedy action 

selection, the probability of choice is graded with the value of r∆  even when 0r∆ ≈ .  Moreover, 

in contrast to the softmax action selection rule, the probability of choice does not converge to a 

deterministic policy even when the absolute value of r∆  is large.  Thus, we chose to model the 

action selection rule of the participants with the ε-softmax rule (Equation 2) which manifests 

graded sensitivity to r∆  while maintaining exploration even when the absolute difference 
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between the action values is large.  This ε-softmax rule was used during all the simulation 

conducted in this paper. 

Underweighting of Rare Events 

When learning from experience, participants are more risk aversive the smaller the 

probability of the high outcome PH, a phenomenon that has been termed underweighting of rare 

events (Barron & Erev, 2003; Hertwig, Barron, Weber, & Erev, 2004) because the participants 

behave as if they underestimate the probability of the low-probability outcome.  In order to 

quantify the magnitude of the underweighting of rare events in the experiment, we considered 

the aggregate probability of choosing the risky choice in the low (PH<.15) and high (PH>.85) PH 

problems (see Methods) separately.  We found that the value of PH had a substantial effect on 

participants' choices: in the high PH blocks, participants chose the risky alternative in 50±3% of 

the trials (white in Figure 4A, Top).  By contrast, participants made a risky choice only in 27±3% 

of the trials in the low PH blocks (black in Figure 4A, Top).  The significant difference in the two 

probabilities of choice, 23±4% is a measure of the magnitude of the underweighting of rare 

events effect (t(89) = 9.1, p=2·10-14, CI = [18.4% 28.6%], g=1.91).  Note that this substantial 

difference in behavior occurred despite the fact that in both cases, the return of the risky 

alternative was approximately equal to that of the safe alternative (Figure 1B). 

The probability of a high reward (H) in the first risky trial (as in any risky trial) is PH.  

Therefore, on average, there will be more H outcomes for the first risky choice in high PH blocks 

than in low PH blocks.  Therefore, outcome primacy predicts that this excess of H outcomes in 

the high PH blocks should bias choice in favor of the risky alternative in those blocks, compared 

to behavior in the low PH blocks.  Therefore, outcome primacy predicts underweighting of rare 

events.  In order to quantify the contribution of outcome primacy to the underweighting of rare 
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events, we constructed a generative model that predicts the effect of PH on aggregate choice 

based on the two conditional probabilities AL and AHwhich measure the effect of the first risky 

choice outcome on aggregate behavior (see Figure 2A, top).  This generative model posits that 

the probability of a choosing the risky alternative in a block is determined solely by the binary 

outcome of the first risky choice, H or L.  If that outcome is H, the model predicts that the 

participants would choose the risky alternative in AH of the trials (see “Outcome Primacy” 

above).  If it is L, the risky alternative would be chosen in AL of the trials.  Consequently, 

according to this generative model, the probability of choosing the risky alternative in a trial in a 

problem characterized by PH is 

  [ ] ( )Pr ' '; 1H H H L Ha risky P A P A P= = ⋅ + ⋅ −     (3) 

In order to relate Equation 3, which predicts behavior for a given problem set to average 

behavior in the low and high PH blocks (Fig. 4A, Top), we averaged Equation 3 over the 

different problems, separately for the low and high PH problem sets.  The predictions of the 

generative model for the low and high PH problems are depicted in Figure 4A (bottom) in black 

and white, respectively.  The generative model predicts that the magnitude of the underweighting 

of rare events should be 14±3%, approximately 60±17% of the magnitude of the empirically 

measured underweighting of rare events (23±4%).  This result indicates that outcome primacy 

contributes substantially to the experimentally observed underweighting of rare events. 

While outcome primacy implies underweighting of rare events, the opposite case, namely 

that underweighting of rare events implies primacy, is not true.  To see this, we analyzed the 

results of the simulations of the AIC Q-learning model and found significant underweighting of 

rare events: in the high PH blocks, the simulated participants chose the risky alternative in 

52±2% of the trials (white in Figure 4B, top).  In contrast, the simulated participants chose 
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‘risky’ only in 30±2% of the trials in the low PH blocks (black in Figure 4B, top), (t(89) = 13.8, 

p=9·10-24, CI = [18.5%-24.8%], g=2.89).  The underweighting of rare events in the AIC Q-

learning model is in line with previous studies showing that the underweighting of rare events 

naturally emerges from RL models (see Discussion).  Nevertheless, there is no outcome primacy 

in the AIC Q-learning model (AIC AIC
H LA A≈ ) and therefore the generative model cannot not 

explain the underweighting of rare events predicted by the AIC Q-learning model (0±3% out of 

22±3%, Figure 4B, bottom). 

Similar to the behavioral data and to the AIC Q-learning model, there was a significant 

underweighting of rare events in the simulations of the RIC Q-learning model: simulated-

participants chose the risky alternative in 51±2% of the trials in the high PH blocks (white in 

Figure 4C, Top) and in 29±2% of the trials in the low PH blocks (black in Figure 4C, Top), (t(89) 

= 11.8, p=7·10-20, CI =[18.6%-26.1%], g=2.47).  This underweighting of rare events in the 

simulations is not statistically different from the experimentally observed effect (t(84) = 0.86, 

p=0.39, CI = [-7.0%-2.7%], g =0.18 and t(84) = 0.46, p=0.65, CI = [-5.2%-3.2%], g=0.09 for the 

low and high PH, respectively).  Similar to the behavioral data and in contrast to the AIC Q-

learning model, outcome primacy accounts for 56±13% of the magnitude of underweighting of 

rare events in the simulation of the RIC Q-learning model (12±2% out of 22±3%, Figure 4C, 

bottom).   

Another way of demonstrating the contribution of outcome primacy to the 

underweighting of rare events is to compare the average aggregate choice in the low and high PH 

blocks, conditioned on the outcome of the first risky choice.  We denote these averages by 
1

HP
rA

where { }1 ,r L H∈  is the outcome of the first risky choice and { }, HP ∈ ↑ ↓ are the PH block type 

(low or high, respectively).  If participants’ aggregate choice behavior is dominated by the 
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primacy effect,  it is expected that the  PH block type will have a negligible  effect on behavior 

once conditioned on the first risky outcome, formally, H HA A↓ ↑≈  and L LA A↓ ↑≈ .  In contrast, if 

participants’ sensitivity to the value of PH is not mediated by the outcome of the first risky 

choice, it is expected that within a PH block type, this outcome will have only a negligible effect 

on behavior, H LA A↓ ↓≈ and H LA A↑ ↑≈ .  

Figure 5A depicts the values of
1

HP
rA , where blue and red hues denote H and L, and dark 

and light brightness denote low and high PH block type, respectively.  We found that the 

contribution of block type to aggregate behavior was smaller than the contribution of the 

outcome of the first risky choice.  To quantify this result, we used a two-way analysis of variance 

that showed that the outcome of the first reward effect was statistically significant (F(1,149) 

=36.13, MSE=1.56, ρ=0.46, p=1.4·10-8).  By contrast, the contribution of the PHblock type and its 

interaction with the outcome of the first risky choice were not statistically significant 

(F(1,149)=2.08, MSE=0.09, ρ=0.2, p=.15 and F(1,149)=1.28, MSE=0.05, p=.26 respectively).  

These results indicate that the outcome of the first risky choice is the major contributor to the 

underweighting of rare events and further support the hypothesis that the outcome primacy effect 

plays an important role in aggregate choice behavior. 

Repeating the same analysis for the AIC Q-learning model (Figure 5B) revealed that in 

this model, the PH block type dominates choice behavior (F(1,147)= 136.74, MSE=1.67, ρ=0.71, 

p=1·10-22) and not the outcome of the first risky choice (F(1,147)=0.2, MSE=2.4·10-3, ρ=0.2, 

p=0.66).  By contrast, in the RIC Q-learning model (Figure 5C), similar to the behavior of the 

participants, the outcome of the first risky choice affected choice behavior more strongly than the 

PH block type (F(1,144)= 45.56, MSE=0.99, ρ=0.54, p=3·10-10 and F(1,144)=9.31, MSE=0.202, 

ρ=0.34, p=3·10-3
, respectively). 
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Discussion 

The primary objective of this study was to test our hypothesis that first experience resets 

the initial conditions in operant learning.  We showed that indeed, the outcome of the first risky 

choice has a long-lasting effect on subsequent choice behavior, a phenomenon we termed 

outcome primacy (Figure 2A).  To the best of our knowledge, the question of primacy in operant 

learning has never been addressed.  To test our hypothesis, we estimated the action-selection 

function non-parametrically, modeled it using a ε-softmax function and implemented it in a Q-

learning model (Figure 3).  In line with our hypothesis, this standard RL model  is consistent 

with the effect of the outcome of the first choice on behavior if we assume that the outcome of 

the first choice resets the value of the action (Figure 2C) but not if we assume arbitrary initial 

conditions (Figure 2B).  Our hypothesis is further supported by the fact that our model predicts 

aggregate probability of choice in operant learning more accurately than other previously 

proposed models (see Table 1).  Finally, our results indicate that outcome primacy substantially 

contributes to the underweighting of rare events (Figures 4 and 5).  These results strongly 

suggest that outcome primacy plays an important role in shaping behavior in operant learning 

tasks.  

The RIC Hypothesis and the Underweighting of Rare Events 

Previous studies have suggested that the underweighting of rare events can result from 

estimation bias, which is enhanced by adaptive sampling(Denrell, 2007; Denrell, 2005), also 

known as the hot stove effect(Denrell & March, 2001).  The idea behind estimation bias is that if 

PH is sufficiently small, the empirical average of the past outcomes of the risky choices is 

typically lower than the true (ensemble) average.  The opposite effect is expected in problem sets 

in which PH is sufficiently large.  This effect is particularly pronounced if participants rely on a 
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relatively small sample, either due to limited memory or overweighting of recent samples 

(Barron & Erev, 2003; Erev, Ert, & Yechiam, 2008; Hertwig, Barron, Weber, & Erev, 2004).  It 

has been hypothesized that the finite number of samples in the experiment is sufficient to 

account for the estimation bias and the underweighting of rare events (Fox & Hadar, 2006).  

However, this hypothesis has been contested by findings that rare events are underweighted even 

when the sample is representative (Hau, Pleskac, Kiefer, & Hertwig, 2008; Hertwig & Erev, 

2009; Ungemach, Chater, & Stewart, 2009).  It should be noted that recency, in which more 

recent samples are more influential than other samples,  (Hogarth & Einhorn, 1992) would result 

in a biased estimation even in representative examples. (Hertwig, Barron, Weber, & Erev, 2004). 

Such recency naturally emerges in Q-learning (both AIC and RIC) because of the adaptation rule 

(Equation 1).  Similarly, the resetting of initial conditions results in more weight being given to a 

single experience, the first experience, which yields a similarestimation bias. 

Adaptive sampling enhances the estimation bias by the following asymmetry: if the 

decision-maker temporarily underestimates the value of the risky alternative, she will tend to 

avoid it.  By contrast, an overestimation of the value of the risky alternative will motivate 

additional choices of the risky alternative and hence reduce the bias.  Adaptive sampling affects 

choice behavior in two ways.  First, it biases participants against the risky alternative, resulting in 

risk aversion behavior. Second, it amplifies the underweighting of rare events caused by the 

estimation bias (Denrell, 2007; Denrell, 2005).  Estimation bias and hot stove effects are 

implicitly incorporated in the AIC and RIC Q-learning models.  The value adaptation results in 

estimated action values based primarily on the most recent trials.  Adaptive sampling is a natural 

consequence of the action selection rule.  In fact, substantial underweighting of rare events was 
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observed in our simulations of the AIC Q-learning model (Figure 4B, top) consistent with 

previous studies (Denrell, 2007; Denrell, 2005).   

Our analysis focused on the contribution of the first experience, through the outcome 

primacy, to the underweighting of rare events.  The analysis of the empirical data showed that 

outcome primacy accounts for a substantial part of the underweighting of rate events (Figures 4A 

and 5A), which is consistent with the RIC Q-learning model (Figures 4C and 5C).  According to 

the RIC Q-learning model, the outcome of the first choices makes a disproportionately large 

contribution to the action values.  This overweighting of the first experience effectively 

decreases the sample used for estimating the action values and thus enhances the estimation bias 

and consequently, the underweighting of rare events. 

The underweighting of rare events depicted in Figures 4 and 5 is quantified as an average 

over the entire block of 100 trials.  Because the contribution of the outcome of the first risky 

choice to behavior decreases with trial number and because outcome primacy contributes 

substantially to the underweighting of rare events, the magnitude of the underweighting of rare 

events is expected to decrease with trial number as well.  To test this, we computed the 

magnitude of the underweighting of rare events for each trial individually, by computing the 

difference in the probabilities of choosing the risky alternative in the high and low PH blocks.   

As depicted in Figure 6 (magenta), the magnitude of the underweighting of rare events 

increases within several trials and decreases gradually throughout the block.  The phasic increase 

can be attributed to the resetting of the initial conditions, whereas the decrease can be attributed 

to an effective increase in the number of samples in the action value estimation, which in turn 

decreases the sampling bias.  This dynamics of the underweighting of rare events is consistent 

with the simulations of the RIC Q-learning model (Figure 6, black, first 100 trials). 
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The simulations of the RIC Q-learning model can also be used to predict the magnitude 

of underweighting of rare events in a longer experiment.  As depicted in Figure 6, black, the 

magnitude of the underweighting of rare events is expected to plateau at a positive value in 

longer experiments.  This residual underweighting of rare events in the steady-state is 

independent of the reset of initial conditions.  

Predicting Outcome Primacy in Different Experimental Paradigms 

The participants in the experiment exhibited outcome primacy, whosemagnitude can be 

quantified as the difference between the probabilities of choosing the risky choice when the 

outcome of the first risky choice is H and that probability when the outcome of the first risky 

choice is L( data 16 4%H LA A A∆ = − = ± ).In this section we consider the contributions of two 

main characteristics of the experimental schedule to the outcome primacy: (1) the fact that in 

each trial, only the payoff of the chosen alternative was known to the participant, also known as 

obtained payoff,and (2) the fact that the expected returns from the two alternatives were 

approximately equal. 

In order to estimate the contribution of the obtained payoff paradigm to outcome 

primacy, we simulated the RIC Q-learning model in a foregone payoff paradigm in which both 

the obtained outcome from the chosen alternative and the foregone outcome from the non-chosen 

alternative are known to the participant after each trial.  Averaging over the problem sets, we 

found that the magnitude of outcome primacy in the simulation of the foregone payoff paradigm 

is forgone 5 3%A∆ = ± , which is significantly smaller than dataA∆ (t(175) = 3.3, p=1·10-3, CI [4.6%, 

18.2%], g=0.50).  Thus, the contribution of adaptive sampling to outcome primacy is substantial 

and we predict that the magnitude of the outcome primacy in a foregone payoff paradigm would 

be substantially lower than in an obtained payoff paradigm.  
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To test for the contribution of equal expected rewards to outcome primacy, we repeated 

the simulations of the RIC Q-learning model for each of the participants, while varying the value 

of the safe alternative, M, according to 'M M q M= + .  The parameter q is a measure of the 

deviation of the reward schedule from equal returns.The original reward schedule of 

approximately equal returnscorresponds to0q= , whereas a positive (negative) value of q 

indicates that the value of the safe alternative is larger (smaller) than the expected average 

reward of the risky alternative.  

The top panel in Figure 7 depicts the probability of choosing the risky choice given that 

the outcome of the first trial was high (H, blue) or low (L, red) as a function of q.  The lower 

panel depicts the difference between these two curves.  The filled circles in both plots denote the 

empirical values, AL (red in top), AH (blue in top) and dataA∆ (black in bottom).  The results of 

these simulations predict that the magnitude of outcome primacy should be maximal when the 

two alternatives have approximately the same return.  Nevertheless, substantial outcome primacy 

is expected in all the values of q that we studied (-1<q<1). 

RIC Model as Non-Stationary Learning 

The magnitude of the learning rate determines the speed-accuracy tradeoff in learning.  

Therefore, the time dependent learning rate, in which the rate is initially high and later low, is 

common in machine learning in general and reinforcement learning in particular (Sutton & 

Barto, 1998) .  In line with this framework, the RIC model is mathematically equivalent to an 

AIC model, in which the learning rate changes according to the following rule: ( )1 1aη =  and 

tη η=  for t>1, where η  is a constant and( )t aη is the learning rate after t choices of alternative a.  

Consistent with this idea, the resetting of initial conditions ensures that after a single trial, the 

estimated actions values are in the ballpark of the true values, enabling fast convergence to the 
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true values. By contrast, an arbitrary initial value may be far from the true value, resulting in a 

slow convergence of the algorithm.  We postulate that this might be the rationale behind this 

cognitive strategy.  Furthermore, for a deterministic action-outcome relation, resetting would be 

the optimal policy for estimating the action-value correctly and quickly. 

To further test the validity of the RIC Q-learning model, we tested whether other models 

incorporating a time-dependent learning rate could explain the behavioral data better.  In 

particular, we focused on power-law learning of the form 1t tαη =  because it guarantees 

convergence of the estimated action value to its true value under general conditions if 1 2α≤ <  

(Sutton & Barto, 1998).  We found that the likelihood of the power-law model is lower than that 

of the RIC Q-learning model and qualitatively, the resulting behavior does not capture the 

primacy effect (not shown). 

Nevertheless, it is likely that the RIC Q-learning model is at best a coarse approximation 

of the true learning strategy.  Therefore, more accurate models should take into account time 

dependent changes in the adaptation rule, as well as in the action selection rule.  However, an 

accurate description of the dynamics of these rules is difficult because of the heterogeneity in 

learning between different participants, because our only access to the subjective values is via 

their binary choices and because these rules could be task dependent. 

Beyond the RIC Q-Learning Model 

One limitation of RIC Q-learning is that it implicitly assumes that consecutive blocks are 

independent and that prior expectations play no role in the model.  However, this is only an 

approximation of the behavior.  To see this, we computed the probabilities of choosing the risky 

alternative in the second trial following a risky choice in the first trial, conditioned on the 

outcome of the first trial (H or L).  According to the RIC model, these probabilities are 
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determined by the parameter ε in the action selection rule and are independent of the outcome of 

the first trial.  We found that these probabilities are statistically different: 21±4% and of 14±4%, 

after H and L, respectively (t(186) = 2.03, p=.043, CI =[0%-12.6%], g=0.30).  This result might 

indicate that prior expectations of the participants also influence their choice behavior in a way 

that is not predicted by the RIC Q-learning model. 

Outcome Primacy and other Forms of Primacy 

The long-lasting effect of the first outcome, which we denoted as outcome primacy is 

reminiscent of other forms of primacy in psychology (Mantonakis, Rodero, Lesschaeve, & 

Hastie, 2009), where“earlier data have more impact[on behavior] than later data”(Peterson & 

DuCharme, 1967).For example, in memory recall tasks, the probability of recalling the first item 

in a list is higher than the probability of recalling subsequent items (Murdock Jr, 1962).  

Similarly, in multiple-choice tasks, in which opinion is based on one-shot experience per option, 

such as in wine tasting, the first option is more likely to be chosen (Mantonakis, Rodero, 

Lesschaeve, & Hastie, 2009).  While the relation between the above examplesof primacy and 

outcome primacy isunclear, we hypothesize that outcome primacy andprimacy in belief updating 

tasks, such as jurors’ decision after a sequence of argumentative speeches or the stating a 

personality impression after a sequence of words describing personality traits(Asch, 1946; 

Cromwell, 1950; Lund, 1925; Peterson & DuCharme, 1967; Stone, 1969) can be explained using 

a similar theoretical framework.   

Belief updating tasks resemble repeated-choice tasks in the fact that participants respond 

after being provided with a sequence of evidence.However in contrast tothe quantitative nature 

of the sequence of rewards in repeated choice tasks, the evidence in belief updating tasks can be 

qualitative and not easily comparable. Order effects in the belief updating tasks have been 
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previously modeledusing the belief-adjustment model, in which evidence, despite its qualitative 

nature, is converted to a numerical reinforcement and is used to update the value associated with 

the evidence’s source, in a manner very similar to Q-learning(Hogarth & Einhorn, 1992).  An 

important difference between the belief-adjustment model and the RIC Q-learning model is that 

in the former model, the representation of the first experience is non-decaying whereas in the 

latter model, first experience resets the initial conditions.  This difference in the models 

manifests in a different prediction: primacy in the belief adjustment model is predicted to be 

everlasting whereas primacy in the RIC Q-learning model is predicted to be a transient, albeit 

possibly long-lasting, phenomenon.  We are unaware of studies of primacy in long belief 

updating tasks (we demonstrated outcome primacy in a task, in which the two sequences of 

evidence are composed of tens of trials).  However in a memory recall task, the magnitude of 

primacy has been shown to decrease with the length of the list(Murdock Jr, 1962). 

It has also been suggested primacy emerges because participants pay less attention to 

successive items of evidence (Anderson, 1981).  In the framework of the Q-learning model, this 

attention decrement can be modeled as a decrease in the learning rate.  As discussed above, the 

RIC hypothesis is a simple example of a time-dependent learning rate, in which the learning rate 

is initially high and is lower in successive trials.   

Conclusion 

Learning from experience is one of the most compelling aspects of human cognition.  

Reinforcement learning provides a computational framework for studying learning from 

experience by usingpast actions and their outcome toestimate action values which in turn are 

used to direct future actions.  Nevertheless, when learning starts, neither previous actions nor 

outcome are available and thus initial conditions should be defined.  In this article, we described 



THE ROLE OF FIRST IMPRESSION IN OPERANT LEARNING 32 

the long-lasting contribution of the first experience to behavior, a phenomenon we termed 

outcome primacy.  The long time scale associated with this effect indicates that behavior does 

not converge to a steady state within a hundred trials and thus the aggregate behavior reported in 

experiments may not reflect the asymptotic expected behavior.  Outcome primacy can be 

understood in the framework of RL if we assume that initial conditions are reset by the outcome 

of first experience.  We suggest that the resetting of the initial condition is a general trait of 

human and animal operant learning, which may be related to other forms of primacy and should 

not be overlooked when modeling and predicting learning from experience. 
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Figure 1.The experimental reward schedule.  A: The distribution (Ndenotes counts) of PH in the 

problem sets.  B: The expected returns from the 'risky' alternatives (<r>) as a function of the safe 

payoff, M. Black, gray and white correspond to problem sets in which the value of PH was 

relatively low (PH<.15), intermediate (.15<PH<.85) and relatively high (PH>.85), respectively. 
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Figure 2.Outcome primacy effect: The average (over problem sets) probability of choosing the 

risky alternative, conditioned on the outcomes of the first risky choice.  Red, low reward (L); 

Blue, high reward (H).Top, average probability of choosing the risky alternative, averaged over 

all subsequent trials; Bottom, average probability of choosing the risky alternative in a trial.  A: 

The empirical data.  B: Simulation of the arbitrary initial conditions (AIC) Q-learning model.  C: 

Simulation of the resetting of initial conditions (RIC) Q-learning model.  Bars (Top) and shaded 

area (Bottom) represent the SEM.   



THE ROLE OF FIRST IMPRESSION IN OPERANT LEARNING 40 

 

Figure 3.The action selection rule.  The probability of choosing the risky alternative in the third 

trial as a function of the difference in the rewards between the risky and safe alternative in the 

first two trials averaged over 2,006 blocks in which both alternatives were sampled in the first 

two trials.  The different blocks were grouped according to the value of ∆r into 25 bins of 

approximately equal size.  For each bin, the fraction of trials in which the risky alternative was 

chosen is plotted as a function of the average value of ∆r.  Error bars correspond to SEM.  
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Figure 4.The underweighting of rare events and the generative model.  Top: The probability of 

choosing the risky alternative averaged over the low PH blocks (black) and the high PH blocks 

(white).  Bottom: The probability of choosing the risky alternative as predicted by the generative 

model based on the outcome of the first risky choice (Figure 2, Top).  A: The empirical data.  B: 

Simulation of the arbitrary initial conditions (AIC) Q-learning model.  C: Simulation of the 

resetting of initial conditions (RIC) Q-learning model.  Error bars correspond to SEM.  
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Figure 5.The underweighting of rare events, conditioned on the outcome of the first risky choice.  

The probability of choosing the risky alternative for the low PH (dark) and high PH (bright) 

blocks, conditioned on the outcome of the first choice: L (red) and H (blue).  A: The empirical 

data.  B: Simulation of the arbitrary initial conditions (AIC) Q-learning model.  C: Simulation of 

the resetting of initial conditions (RIC) Q-learning model.  Error bars correspond to SEM.  
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Figure 6.  The magnitude of the underweighting of the rare event effect (difference between the 

probabilities of choosing the risky alternative in high and low PH blocks) for each trial computed 

for the empirical data set (magenta) and for the resetting of initial conditions (RIC)Q-learning 

simulation with parameters estimated for each participant (same method as in Figure 2).  

Shadowed margins correspond to SEM.The dotted vertical line marks the 100th trial in the block. 
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Figure 7.  The predicted dependency of the outcome primacy effect on reward schedule 

according to the simulation of the resetting of initial conditions (RIC) Q-learning model with 

parameters of each participant estimated as in Figure 2.  Top panel depicts the probability of 

choosing the riskyalternative given that the outcome of the first risky choice was either high (H, 

blue) or low (L, red), as a function of the value of the parameter q which controls the value of the 

safe alternative according to 'M M q M= +  where M is the original value in the empirical data 

and M’  is the safe value used in the simulation.  Bottom panel depicts the difference between the 

two curves in the top panel.  The filled circles denote the empiricalvalues of AL, AH(red and blue 

in top panel) and dataA∆ (black in bottom panel).Simulation was conducted over 20 repetitions of 

the original experiment (200 participants, 12 blocks each) with the parameter q varying between 
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-1 and 1 in steps of 0.05 (total 41 values).  The error bars corresponds to the simulation and data 

SEM. 
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Table 1 

Performance comparison between models in the aggregate risk aversion prediction competition.  

Model Name Number  

of 

Parameters 

Estimation Competition 

Pagree ρ MSD·103 Pagree ρ MSD·103 

Basic RL* 2 56% 0.67 22.4 66% 0.51 26.3 

Normalized RL* 2 76% 0.83 9.2 84% 0.84 8.7 

Normalized RL with inertia* 4 75% 0.86 8.0 86% 0.85 8.4 

Two stage sampler* 7 80% 0.90 6.5 83% 0.87 8.4 

ACT-R*  2 77% 0.88 9.4 87% 0.89 7.5 

Homogenous  AICQ-learning+ 4 80% 0.92 7.2 87% 0.90 7.0 

Explorative sampler with recency* 4 82% 0.88 7.5 86% 0.89 6.6 

Heterogeneous  RIC Q-Learning++ 300 78% 0.93 5.2 88% 0.89 6.4 

Homogenous RIC Q-learning+++ 3 77% 0.91 5.8 88% 0.90 6.4 

* Taken from the competition results (Erev I. , et al., 2010) and ordered by competition session MSD(models 

proposed in this manuscript are marked by bold font). 

+ 
β=52, ε=0.2, η=0.4, Q0=1 were chosen by gradient descent optimization of the MSD on the estimation set. 

++  The heterogeneous population values were chosen by maximizing the likelihood per participant and are 

summarized here by their mean, STD and the median in brackets respectively:  β = (370, 470, 22),ε=(0.16, 0.1, 

0.17), η=(0.5, 0.5, 0.5). 

+++ 
β=52, ε=0.2, η=0.4 were chosen by gradient descent optimization of the MSD on the estimation set. 

RL stands for Reinforcement Learning, AIC for arbitrary initial conditions and RIC for resetting of initial 

conditions. 

 


