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DELUDEDLY AGREEING TO AGREE

ZIV HELLMAN

Abstract. We study conditions relating to the impossibility of agreeing to

disagree in models of interactive KD45 belief (in contrast to models of S5

knowledge, which are used in nearly all the agreements literature). Agreement
and disagreement are studied under models of belief in three broad settings:

non-probabilistic decision models, probabilistic belief revision of priors, and

dynamic communication among players. We show that even when the truth
axiom is not assumed it turns out that players will find it impossible to agree

to disagree under fairly broad conditions.

1. Introduction

One of the strongest assumptions underpinning the standard model of knowledge,
known as S5, is the truth axiom, which essentially states that ‘everything that a
player knows is true’. This is equivalent, from one perspective, to asserting that no
mistakes are ever made in the processing of signals.

Mistakes, of course, abound around us, and sometimes such mistakes can have
significant consequences. Consider, for example the following scenario1 (a variation
of an example appearing in Hart and Tauman (2004)): There are two traders. They
trade on a daily basis, and since a trade involves one trader selling and the other
buying, they can at least observe each others’ willingness to trade. We may imagine
that these two traders are the ‘market leaders’, in the sense that their actions are
followed by others in the market and copied.

Let Ω be the set of all states of the world, with Ω containing nine states; Ω =
{1, 2, . . . , 9}. For simplicity we will assume that there is a common prior p over Ω,
with p(ω) = 1/9 for all states ω. The private information of the two traders, Anne
and Bob are summarized by partitions ΠA and ΠB respectively, with

ΠA = 1234|5678|9
and

ΠB = 123|456|789.

One standard interpretation of the structure of such partitional knowledge is that
Anne and Bob receive signals. If the true state is 2, for example, Anne receives a
signal that enables her to rule out the states 5, 6, 7, 8, 9, and she therefore knows
that the true state is one of 1, 2, 3, 4. Bob, at the true state 3, receives a signal that
enables him to rule out the states 4, 5, 6, 7, 8, 9, and he therefore knows that the

The Department of Mathematics and the Centre for the Study of Rationality, The Hebrew
University of Jerusalem, email: ziv.hellman@mail.huji.ac.il. This research was supported
in part by the European Research Council under the European Commission’s Seventh Framework

Programme (FP7/20072013)/ERC grant agreement no. 249159.
1 The scenario was suggested to the author by Uri Weiss.
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true state is one of 1, 2, 3. Specifically, suppose that Bob may receive any one of
three signals, σ1, σ2, σ3, where σ1 informs Bob that the true state is one of 1, 2, 3,
σ2 informs Bob that the true state is one of 4, 5, 6, and σ3 informs Bob that the
true state is one of 7, 8, 9 (we will be less interested in this example with specifying
Anne’s possible signals).

Signal States
σ1 → {1, 2, 3}
σ2 → {4, 5, 6}
σ3 → {7, 8, 9}

Figure 1: Bob’s signals and their interpretation when there are no processing errors.

So far, so standard. Now consider the possibility of a mistake in signals process-
ing on the part of Bob. Suppose that Bob inputs the signals he receives into a black
box that he has been assured outputs 1, 2, 3, 4, 5, 6, or 7, 8, 9 if the input is σ1,σ2,
or σ3 respectively. Unbeknownst to Bob (and to Anne), however, Bob’s black box
is defective; when either σ1 or σ2 are given as input, the box outputs 4, 5, 6.

Signal States
σ1 → {4, 5, 6}
σ2 → {4, 5, 6}
σ3 → {7, 8, 9}

Figure 2: Bob’s signal processing error.

Consider next the event E = {4, 9}. This event will be interpreted as a ‘good’
outcome (e.g., company earnings are about to rise), with the complement repre-
senting a ‘bad’ event that ought to trigger the sale of shares. Suppose that the true
state is 2, and that each one of the two traders behaves each day according to the
following rule: {

Buy if the probability of E is 0.3 or more;
Sell if the probability of E is less than 0.3.

Given these assumptions, the following sequence of actions transpires. On Day 1,
Anne, who processes signals correctly, supposes that the true state is one of 1, 2, 3, 4,
judges the probability of E to be 1/4 and seeks to sell shares. Bob erroneously
supposes that the true state is one of 4, 5, 6, judges the probability of E to be 1/3,
and therefore buys shares from Anne.

Since Bob was willing to buy on Day 1, Anne ‘learns’ that the true state is not
in 1, 2, 3. She therefore erroneously supposes on Day 2 that the true state is 4 and
offers to buy on Day 2. Bob does the same. By Day 3, it is ‘common knowledge’
that 4 is the ‘true state’ – Bob’s error has now become Anne’s error. Both traders
seek to buy as many shares as they can, to their detriment, and a bubble has
developed.

Geanakoplos (1989) and Morris (1996) show that in knowledge models that sat-
isfy the truth axiom (but are not necessarily S5) more information is always ben-
eficial for a player, in the sense that with more information a rational player will
never choose an action that gives him less in expectation than an action that he
chooses when he has less information. Without the truth axiom, that no longer
holds true. Indeed, as the example here shows, without the truth axiom, not only
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is the ‘mistaken’ player in danger of choosing detrimental actions, his errors can
cascade and ‘infect’ other players to their detriment: in Day 1 above, Anne makes
the right decision in seeking to sell shares, but on Day 2, due to Bob’s mistake,
she is buying shares. Arguably, Anne has been mistaken all along, in accepting
Bob’s reports at face value, without considering the possibility that Bob might be
mistaken.

The above story motivates the study of agreement and disagreement in mod-
els of belief as opposed to models of knowledge, which is the standard setting of
most of the agreement literature. In this paper, we consider theorems relating to
impossibility of agreeing to disagree in models of belief in three broad settings:
in the non-probabilistic case, in which players make abstract decisions based on
their beliefs (in the spirit of literature on the subject initiated by Bachrach (1985));
in the probabilistic case (as in most of the agreements literature) where agree-
ment is defined in terms of the expectations of players revising prior probabilities
by conditioning on partition refinements; and in the dynamic setting consisting of
communications of reports made by players (in the spirit of literature on the subject
initiated by Geanakoplos and Polemarchakis (1982)).

Considering belief as opposed to knowledge as arising from players making mis-
takes in belief revision from priors leads to concepts of deluded belief revision and
the deluded conditional expected value of a random variable, which are introduced
here. It is hoped that these may make a contribution to the literature on bounded
rationality. Somewhat surprisingly, even when the truth axiom is not assumed it
turns out players will find it impossible to agree to disagree under fairly broad
conditions, as detailed in the claims in this paper. In fact, as Theorem 2 and
the corollary and example following it show, situations in which there are states
at which all players uniformly make mistakes lead to impossibility of agreeing to
disagree results, although the players might agree to disagree if they did not make
any mistakes at all!

The paper also includes a study of the structures several types of belief models,
and introduces a new concept of belief revision from priors that is appropriate for
belief models, which we term delusional revision.

1.1. Review of Literature. Battigalli and Bonanno (1999) and Bonanno and
Nehring (1999) contain a wealth of ground-breaking results relating to belief models
in interactive settings, as does Samet (2011). Many results of this paper build on
ideas appearing in those papers.

Samet (2010b) and Samet (2008) are two papers devoted to studying conditions
for the impossibility of agreeing to disagree in the non-probabilistic case in knowl-
edge models and non-partitional models; a large debt is owned to ideas appearing in
those papers in the non-probabilistic section of this paper. Tarbush (2011) extends
some of D. Samet’s results to KD45 models (in a mainly modal setting) in a spirit
similar to that of this paper.

Tallon, Vergnaud and Zamir (2004) study novel concepts of revision in KD45
models when players directly communicate their beliefs to each other. In this paper,
in contrast, each player communicates only his decisions based on his beliefs, leading
to indirect assessments of their beliefs by the other players.
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1.2. Acknowledgements. Thanks are due to Uri Weiss for suggesting the topic
and to Ilan Nehama, Yehuda Levy and Dov Samet for helpful conversations.

2. Preliminaries

2.1. Belief Structures.

Fix a finite set of players I and a finite set of states of the world2 denoted by
Ω. Subsets of Ω are called events. The set of probability distributions over Ω is
denoted by ∆(Ω).

A function Bi : 2Ω → 2Ω associated with player i is called a belief operator for i.
A type function ti over Ω for player i is defined by assigning, for each ω, a probability
distribution ti(ω) ∈ ∆(Ω) representing player i’s beliefs at ω. We associate with
each type function ti a partition Πi of Ω defined3 by Πi(ω) = {ω′ | ti(ω′) = ti(ω)}.
If we impose on a type function the property that ti(ω)(Πi(ω)) = 1, then the
type functions is partitional. A probabilistic belief structure over Ω is then a set of
partitional type functions (ti)i∈I over Ω.

For each i, define the belief operator B1
i by ; BiiE is termed the event that i is

certain of, given E.4

The belief operator B1
i is a special case of a p-belief operator Bpi , where Bpi E =

{ω | ti(ω)(E) ≥ p} (see Monderer and Samet (1989)), and the full probabilistic
belief structure defined above is appropriate for the general study of p-belief op-
erators. Since we want to concentrate solely on 1-belief here, a simpler structure,
termed a belief structure, will suffice for our purposes.

A function bi : Ω→ 2Ω \∅ is a possibility function. The event bi(ω) is interpreted
as the set of states that are considered possible for i at ω, while all other states
are excluded by i at ω. We will call a possibility function bi : Ω → 2Ω \ {∅} that
is measurable with respect to a partition Πi and satisfies bi(ω) ⊆ Πi(ω) for each
ω ∈ Ω a KD45 possibility function.

The following four axioms on a belief operator Bi : 2Ω → 2Ω are standard in the
literature:

(K) Bi(¬E ∪ F ) ∩BiE ⊆ BiF
(D) BiE ⊆ ¬Bi¬E
(4) BiE ⊆ BiBiE
(5) ¬BiE ⊆ Bi¬BiE

Given possibility function bi, define a belief operator Bi : 2Ω → 2Ω by

(1) BiE := {ω | bi(ω) ⊆ E}.
Samet (2011) shows that a belief operator Bi satisfies the above axioms K,D,4 and
5 if and only if there exists a KD45 possibility function bi such that the belief
operator derivable from bi is the operator Bi.

5

2 In the basic definitions of elements of belief structures we largely follow Samet (2011).
3 The presentation here reverses most presentations of belief structures, in which partitions

are given and used to define type functions; here we are starting with type functions and using
them to define the partitions.

4 The property that ti(ω)(Πi(ω)) = 1 at each state ω therefore states that player i is always

certain of his type.
5 Hence the name KD45.
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A belief structure over Ω is a set of pairs Π = (Πi, bi)i∈I , where each bi is a KD45
possibility function with respect to the partition Πi of Ω. We will sometimes also
call such a structure a KD45 belief structure. Since one may define a belief structure
equivalently by specifying either the possibility functions or the belief operators as
primitives, we will allow ourselves to specify either of them as is convenient.

A probabilistic belief structure (ti)i∈I over Ω induces a belief structure (Πi, bi)i∈I
over Ω, where Πi is the partition of Ω into the types of player i and bi(ω) is the
set of states in Πi(ω) that have positive ti(ω) probability. Conversely, every belief
structure over Ω is induced by a probabilistic belief structure over Ω. We will
sometimes make use of this by choosing, for a given belief structure Π = (Πi, bi)i∈I ,
an arbitrary probabilistic belief structure (tbi )i∈I that induces Π.

2.2. Intrapersonal Belief Consistency.

Belief is ‘one axiom short of knowledge’, in the following sense. An operator Ki

on Ω is a knowledge operator derived from a partition of Ω if and only if it satisfies
the KD45 axioms and additionally the truth axiom, defined as:

(T) KiE ⊆ E.

A belief structure that satisfies the axioms KD45+T is called an S5 (or knowledge)
structure or model.

The truth axiom states that knowledge is correct; if E is known it must true.
This can equivalently be written as ¬KiE ∪ E = Ω. This is where the distinction
between knowledge and belief lies: for a belief operator, we do not assume that
BiE ⊆ E.

Equivalently, we do not assume that ¬BiE∪E = Ω always holds (i.e., it may not
be true at all states). However, as shown in Samet (2011), a player always believes
that it holds, that is,

Intrapersonal Belief Consistency: KD45 ⇒ for each event E

Bi(¬BiE ∪ E) = Ω.

The equivalent concepts in the context of possibility functions are defined quite
simply in terms of set containment. Let Π = (Πi, bi)i∈I be a belief structure. If
ω ∈ bi(ω) then bi is non-deluded at ω. If ω /∈ bi(ω) then bi is deluded at ω; in this
case we will also sometimes say that ω is a deluded state for player i.

If there is at least one state at which bi is deluded, then bi is delusional, and we
will similarly say that the corresponding belief operator Bi is delusional if this is
the case. It is straight-forward to show that a belief structure Π is non-delusional
for all players if and only if it is an S5 structure, and it is similarly straight-forward
to show that a state ω is non-deluded for player i if and only if tbi (ω) = 0 for any
probabilistic belief structure (tbi )i∈I that induces Π.

2.3. Partitional Aspect of KD45 Structures.

It is well-known that in a belief structure Π = (Πi, bi)i∈I , the axioms of tran-
sitivity (i.e., for all i and all ω, ω′ ∈ Ω, if ω′ ∈ bi(ω) then bi(ω

′) ⊆ bi(ω)) and
euclideaness (i.e., for all i and all ω, ω′ ∈ Ω, if ω′ ∈ bi(ω) then bi(ω) ⊆ bi(ω

′)). It
follows that if ω′ ∈ bi(ω) then bi(ω

′) = bi(ω).



DELUDEDLY AGREEING TO AGREE 6

Denote

fi(ω) := {ω′ | ω′ /∈ bi(ω) and bi(ω
′) = bi(ω)}.

By definition, bi(ω)∩fi(ω) = ∅. Furthermore, it is easy to show that bi(ω)∪fi(ω) =
Πi(ω) for all ω ∈ Ω.

The general structure of a model of KD45 belief of a player i is therefore of an
over-arching partition Πi, with each partition element π ∈ Πi furthermore parti-
tioned into bi(ω) and fi(ω) (using an arbitrary ω ∈ π). Every element ω′ ∈ fi(ω)
is mapped by bi into bi(ω), where it is ‘trapped’, in the sense that bi(bi(ω

′)) =
bi(ω

′) = bi(ω).

In examples, we will compactly express KD45 belief structures by separating
states in different partition elements of Πi by the square boxes. Within each parti-
tion element we will denote states that are in the same component of bi(ω) by an
oval box.

For example, if we write�� ��1 2 3 4 5
�� ��6 7 8

�� ��9

then the intention is, for example, that 5, 6 and 7 are all in the same partition
element, i.e., Πi(5) = {5, 6, 7}, but 5 is a delusional state such that bi(5) = {6, 7}.

2.4. Standard belief revision and priors.

Let µ be a probability distribution over Ω, and let Πi be a partition of of Ω. The
(standard) revision of µ at ω according to Πi is the probability distribution µ̂(ω)
such that

(2) µ̂(ω)(ω′) =

{
µ(ω′)

µ(Πi(ω)) if ω′ ∈ Πi(ω)

0 otherwise

if µ(Πi(ω)) > 0; otherwise it is undefined.

Let f be a random variable over Ω, µ be a probability distribution over Ω, and
Πi a partition of Ω. Then the conditional expected value of f at ω is

(3) Eµi (f | Πi(ω)) :=
1

µ(Πi(ω))

∑
ω′∈Πi(ω)

f(ω′)µ(ω)(ω′),

if µ(Πi(ω)) 6= 0 (otherwise it is not defined).

Let (ti)i∈I be a probabilistic belief structure over Ω, with (Πi)i∈I the correspond-
ing partition. A (standard) prior for ti is a probability distribution µ ∈ ∆(Ω), such
that µ̂(ω) = ti(ω) at each ω, where µ̂(ω) is the standard revision of µ at ω accord-
ing to Πi as defined in Equation (2). A (standard) common prior for (ti)i∈I is a
probability distribution µ ∈ ∆(Ω) that is a prior for each ti.

Given a probabilistic belief structure (ti)i∈I with corresponding partition (Pi)i∈I ,
player i’s posterior expected value of f at ω is

(4) Etii (f | Πi(ω)) :=
∑

ω′∈Πi(ω)

ti(ω
′)f(ω′).

If there is a common prior µ, then for any random variable f the posterior
expected value of each player equals the conditional expected value of f relative to
µ and Πi, i.e., Etii (f | Πi(ω)) = Eµi (f | Πi(ω)).
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3. Interpretations of KD45 Belief Structures

There are several ways of attaching interpretations to KD45 belief structures.
One way is to consider a deluded state ω for player i simply as a state to which i
attaches zero probability. This expresses the player’s ‘certainty’ that ω cannot be
the true state ‘under any circumstances’; the player is therefore wrong if ω does
occur, because there is no way to persuade him that ω occurs.

That interpretation is a static one. From a dynamic perspective, standard belief
revision, as expressed in Equation (2), leaves no room for error or delusion; a player
can ascribe zero probability to a state after revision if and only if he ascribes zero
probability to that state prior to the revision. Since we wish to model situations in
which mistakes are made in the revision process, we need to revisit revision. This
is done in Section 3.1.

Another possible interpretation was hinted at in the introduction: misinterpreted
signals. A formal development of that interpretation is in Section 3.2.

3.1. Delusional belief revision. Let µ be a probability distribution over Ω, and
let bi be a belief structure over Ω with corresponding partition Πi. We introduce
here the delusional revision of µ at ω according to bi, defining it as the probability
distribution µ̂(ω) such that

(5) µ̂(ω)(ω′) =

{
µ(ω′)
µ(bi(ω)) if ω′ ∈ bi(ω)

0 otherwise

if µ(bi(ω)) > 0; otherwise it is undefined.

Let f be a random variable over Ω, let µ be a probability distribution over Ω,
and let bi be a belief structure over Ω with corresponding partition Πi. Then the
delusional conditional expected value of f at ω according to bi is

(6) Eµi (f | bi(ω)) :=
1

µ(bi(ω))

∑
ω′∈bi(ω)

f(ω′)µ(ω)(ω′),

if µ(Πi(ω)) 6= 0 (otherwise it is not defined).

Comparing Equation (5) with Equation (2), and similarly Equation (6) with
Equation (3), one sees that the distinction lies in the question of whether the states
in bi(ω) or Πi(ω) are to be taken into account. If there are no deluded states
at all for player i, the distinction disappears. However, if ω is a deluded state
for player i, then we argue that Equation (5) is more appropriate, because at ω
player i believes that the true state is in bi(ω), hence should condition only on the
probability µ(bi(ω)), not on the larger set Πi(ω).

Let (ti)i∈I be a probabilistic belief structure over Ω, with (Πi)i∈I the correspond-
ing partition. Let bi be the belief structure induced by ti. A delusional prior for
ti is a probability distribution µ ∈ ∆(Ω), such that µ̂(ω) = ti(ω) at each ω, where
µ̂(ω) is the delusional revision of µ at ω according to bi as defined in Equation (5).
A common delusional prior for (ti)i∈I is a probability distribution µ ∈ ∆(Ω) that
is a prior for each ti.

Let φi be a standard prior for ti, and suppose that for a state ω, ti(ω)(ω) = 0,
and therefore that ω ∈ Πi(ω) but ω /∈ bi(ω). Then by Equation (2) it must be the
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case that φi(ω) = 0. The same reasoning does not hold for a delusional prior; a
standard prior is a delusional prior, but the converse is not necessarily true.

Example 1. Consider a one-player probabilistic belief structure over a state space
Ω = {ω1, ω2, ω3} defined by

t(ωk)(ω1) = 0; t(ωk)(ω2) =
1

2
; t(ωk)(ω3) =

1

2

for k ∈ {1, 2, 3}:

t =

0︷︸︸︷
ω1

1
2︷︸︸︷
ω2

1
2︷︸︸︷
ω3 .

This induces a belief structure

b(ω1) = b(ω2) = b(ω3) = {ω2, ω3},

with ω1 a deluded state, visualised as

ω1

�� ��ω2 ω3

The probability structure has only one (standard) prior, µ = (0, 1/2, 1/2), but
it has an infinite number of delusional priors. The set of delusional priors includes,
for example, (0, 1/2, 1/2) and (1/3, 1/3, 1/3). �

The fact that if φi is a standard prior for ti, and ti(ω)(ω) = 0 then φ(ω) = 0,
has implications for common priors. It is immediate that if ti(ω)(ω) = 0 and
tj(ω)(ω) > 0 for some pair of players i and j and any state ω, then the probabilistic
belief structure (ti)i∈I has no standard common prior; it may, however, have a
common delusional prior. If such non-singularities are avoided, the following lemma
holds.

Lemma 1. Suppose that a probabilistic belief structure (ti)i∈I satisfies the property
that for each ω ∈ Ω either ti(ω)(ω) = 0 for all i or ti(ω)(ω) > 0 for all i. Then
(ti)i∈I has a common delusional prior if and only if it has a common standard
prior.

We note here that there is no need to define a delusional version of the posterior
expected value of a random variable f that is essentially different from the standard
posterior expected value. One can define

(7) Etii (f | bi(ω)) :=
∑

ω′∈bi(ω)

ti(ω
′)f(ω′).

But then

(8) Etii (f | bi(ω)) = Etii (f | Πi(ω)) =
∑

ω′∈Πi(ω)

ti(ω
′)f(ω′).

This holds because for any state ω′, ti(ω
′) 6= 0 only if ω′ ∈ bi(ω′). If i is deluded

at ω′, the right-hand side of Equation (8) does not involve f(ω′), and the value of
f(ω′) is therefore immaterial for calculating conditional expectation.
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3.2. KD45 from Misinterpreting Signals.

For each player i, let Si be a set of distinct signals. A signalling function σi is
a function σi : Ω→ Si, which naturally induces a partition Πσi

i of Ω by setting

(9) Πσi
i (ω) = {ω′ | σi(ω′) = σi(ω)}.

It is straight-forward to show that any such partition Πσi
i derived from a sig-

nalling function is an S5 knowledge structure.

Next, let Mi ( Si be a set intended to represent the signals that i misreads. Let
ηi : Mi → Si \Mi be an arbitrary function, and define χi : Ω→ Si by

(10) χi(ω) =

{
ηi(σi(ω)) if σi(ω) ∈Mi

σi(ω) otherwise

This represents the action of misreading signals on the part of i. When ω is a state
such that σi(ω) ∈ Mi \ Si, then χi(ω) = σi(ω), and the signal is read correctly by
player i; however, if σi(ω) ∈ Mi, then χi(ω) = η(σi(ω)) ∈ Si \Mi, and i is misled
into thinking that the signal differs from the true signal si(ω).

Let

(11) Θχi
i (ω) = {ω′ | χi(ω′) = χi(ω)},

and let

(12) bχii (ω) = {ω′ | ω′ ∈ Θχi
i (ω) and σi(ω

′) ∈ Si \Mi}.

It is easy to check that (bχii )i∈I constructed in such a way satisfies the KD45
axioms of a belief structure, with (Θχi

i )i∈I the corresponding partition: for any
pair ω, ω′ ∈ Ω, if ω′ ∈ bi(ω) then bi(ω

′) = bi(ω), and furthermore, the states in
Πχi
i (ω) \ bχii (ω) are all feed-in states to bχii (ω).

Furthermore, for each ω, Θχi
i (ω) (as defined in Equation (11)) is a union of

elements of Πσi
i (as defined in Equation (9)):

Θχi
i (ω) =

⋃
{ω′∈Θ

χi
i (ω)}

Πσi
i (ω′);

letting ω̂ be any state ω̂ ∈ bχii (ω), we also have

(13) bχii (ω) = Πσi
i (ω̂).

4. Interactive Belief

Axiomatic structures of knowledge and belief, such as S5 and KD45, have been
intensely studied for decades (especially in the context of modal logic). These are
by construction single-agent models. In the literature on interactive decision theory,
such models are usually extended to multi-player contexts simply by postulating
that each player individually holds belief or knowledge operators that satisfy the
appropriate axioms (as in the section above in this paper).

Interactive situations, however, open up scope for considering interactions be-
tween the belief operators of different players, enabling one to consider interesting
new doxastic models.6

6 Battigalli and Bonanno (1999) contains a survey of concepts related to interactive KD45
belief.



DELUDEDLY AGREEING TO AGREE 10

4.1. Interpersonal Belief Consistency.

Intrapersonal consistency expresses the property that every player always be-
lieves that his own beliefs are correct. A stronger condition is interpersonal con-
sistency, in which each player believes that not only he, but all other players have
correct beliefs. Formally, a belief structure satisfies interpersonal belief consistency
if for each player i and j and event E ⊆ Ω,

(14) Bi(¬BjE ∪ E) = Ω.

In S5 knowledge models, interpersonal knowledge consistency always holds, i.e.,
Ki(¬KjE ∪ E) = Ω is true for all i, j and E. Adding Equation (14) as an axiom
to KD45 belief structures therefore results in models that are intermediate between
pure KD45 structures and S5 structures.7

Another way of expressing the same concept is in terms of perceived worlds. The
world perceived by player i is the minimal event F that satisfies Bi(F ) = Ω. Samet
(2011) proves that the world perceived by a player always exists and is unique, and
that players’ beliefs are interpersonally consistent if and only if all players perceive
the same world.

Denote by Di ⊂ Ω the set of player i’s deluded states, and by NDi = Ω \Di.

Lemma 2. The world perceived by i is NDi.

We also introduce the following. Let ND =
⋂
i∈I NDi be the set of states

at which all players are uniformly non-deluded and D =
⋂
i∈I Di be the set of

states at which all players are uniformly deluded. A state ω ∈ Ω is non-singular if
ω ∈ ND ∪D, otherwise it is singular. A singular state is one in which there exist
players i and j such that i is deluded at ω and j is non-deluded at ω.

A belief structure is non-singular if all the states ω ∈ Ω are non-singular with
respect to it. One way to think of this is to consider a non-singular belief structure
to be a structure such that at each state ‘either all players are right, or all players
are wrong (although they made be wrong in different ways, meaning that we allow
the possibility that bi(ω) 6= bj(ω) at a state ω at which the players are deluded)’.

4.2. Convictions.

For a knowledge operator Ki, the set of all events E that player i knows at ω is
called player i’s ken at ω; formally,

keni(ω) := {E | ω ∈ Ki(E)}.

We introduce here concepts broadly analogous to those defined for kens in Samet
(2008) for belief structures.

Given a belief operator Bi, call the set of all events E that player i believes at
ω player i’s conviction,8 and denote it by

coni(ω) := {E | ω ∈ Bi(E)}.

7 Bonanno and Nehring (1999) introduces a similar concept to interpersonal belief consistency
that is called ‘common belief of no error’ in that paper.

8 The word ‘ken’ is usually defined as ‘range of knowledge’ in dictionaries. The word ‘conviction’
may be defined as ‘fixed or strong belief’.
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Coni will denote the family of all of i’s convictions, i.e.,

Coni := {coni(ω) | ω ∈ Ω}.

When we want to denote a particular conviction in Coni without specifying the
state ω, we will frequently use the notation Ci ∈ Coni. For each player i, coni(ω)
consists of all the supersets of bi(ω), whether or not bi is deluded at ω.

We have defined Coni using the belief operator Bi, but we can also go in the
other direction: given the family Coni, one has that

(15) Bi(E) = {ω | E ∈ coni(ω) and ω ∈ E}.

We introduce here the following notation: let Ci ⊆ Coni be a family of convictions
of a player i. Then Ω |Ci will denote the set of all states in Ω such that i’s convictions
at ω are in Ci, i.e.

(16) Ω |Ci := {ω | coni(ω) ∈ Ci}

From the definitions it easily follows that

(17) Ω |Coni = Ω.

Furthermore, denote by

(18) ND(Ci) := {ω ∈ Ω |Ci | ω is not deluded for player i}

the set of non-deluded states whose convictions are in Ci.

4.3. Permission.

For a given conviction of a player i, Ci, and conviction of a player j, Cj we
want a way to identify those convictions of another player j for which i’s beliefs as
represented by Ci are not contradicted by j’s beliefs as represented by Cj .

Formally, a conviction Ci ∈ Coni permits a conviction Cj ∈ Conj if for each
E ∈ Cj , ¬Bj(E) /∈ Ci, and for each E /∈ Cj , Bj(E) /∈ Ci. The set of all convictions
in Conj that are permitted by Ci is denoted by Permitj(Ci).

Lemma 3. Let Π be a KD45 belief structure. Then for any pair of players i and
j and for each ω, for all ω′ ∈ bi(ω)

conj(ω
′) ∈ Permitj(coni(ω)),

4.4. Interpersonal Belief Credibility.

S5 knowledge structures, by dint of satisfying the truth axiom, satisfy the follow-
ing property:

⋂
i∈I keni(ω) 6= ∅ for all states ω ∈ Ω. The corresponding property

for belief structures,

(19)
⋂
i∈I

coni(ω) 6= ∅

for all states ω, clearly does not hold in all belief structures. We can equivalently
ask whether or not

⋂
i∈I bi(ω) 6= ∅ for all ω ∈ Ω.

When Equation (19) does hold, we will say that the belief structure satisfies
interpersonal belief credibility ; the motivation for this name is that if at state ω
player i reports to the other players that he believes bi(ω), his report is ‘credible’
because all the other players believe that some state in bi(ω) is true.
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Since interpersonal credibility always holds in S5 knowledge structures, adding
Equation (19) as an axiom to KD45 belief structures results in models that are
intermediate between pure KD45 structures and S5 structures.

It is easy to construct examples of structures that satisfy interpersonal belief con-
sistency but not interpersonal belief credibility, examples of structures that satisfy
interpersonal belief credibility but not interpersonal belief consistency, and exam-
ples of structures that satisfy both properties but are not knowledge structures.

4.5. Decisions.

It is reasonable to expect that a rational player will base his or her decisions at
a state of the world on the basis of her or her beliefs. This finds formal expression
as follows.

Expanding on ideas in Samet (2008) and Samet (2010b), let D be a non-empty
set of decisions, and let (Ω, (bi)i∈I be a belief structure. A decision function di
for player i associates each of i’s convictions (as determined by bi) with a deci-
sion, i.e., di : Coni → D. A vector of decision functions d = (di)i∈I over is a
decision function profile. With tolerable abuse of notation, we will write di(ω) for
di(coni(ω)). Similarly, when working with a possibility function bi, since bi defines
a conviction at each ω, we will sometimes write di(b(ω)), with the intention clear
from the context.

Denote by [di = d] the event that i’s decision is d, i.e., [di = d] = {ω | di(ω) = d}.

5. KD45 Structures and Substructures

5.1. Common Belief Operator. Let B(E) = ∩iBi(E) and let Bm denote the
m-th power of the operator B. Define the common belief operator Q by Q(E) :=
∩∞m=1B

m(E). When we wish to speak about common belief that exists solely
between two players i and j, we will write Bij := Bi(E) ∩ Bj(E), and Qij(E) :=
∩∞m=1B

m
ij (E).

5.2. Common Belief Set. The operator Q can also be expressed in terms of
possibility functions bi. Let Π = {Ω, (bi)i∈I} be a belief structure. Define a function
b : Ω→ 2Ω by b(ω) :=

⋃
i∈I bi(ω). For any m ≥ 1, let bm be the composition of the

function b repeated m times. Define, for each ω,

(20) bQ(ω) :=
⋃
m≥1

bm(ω)

Then for each event E,

(21) Q(E) = {ω | bQ(ω) ⊆ E}.

For any state ω, call bQ(ω) the common belief set of ω in Ω. From the fact that
KD45 belief structures satisfy transitivity, it follows easily that for any event E, if
ω ∈ Q(E) then ω′ ∈ Q(E) for all ω′ ∈ bQ(ω). Using the same reasoning, it is easy
to show that for any state ω,

(22) bQ(ω) =
⋃

{ω′∈
⋃
i∈I bi(ω)}

bQ(ω′).
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Denote, for each player i,

(23) Si(bQ(ω)) :=
⋃

ω′′∈bQ(ω)

bi(ω
′′),

and

(24) T i(bQ(ω)) :=
⋃

ω′′∈bQ(ω)

Πi(ω
′′),

and

(25) Ci(bQ(ω)) := {coni(ω
′) | ω′ ∈ ω ∪ bQ(ω)}.

Lemma 4 is a technical result that will be needed later on. It states that for
ascertaining the common belief convictions, one needn’t confine attention solely to
the states ω′ in bQ(ω); delusional states associated with states in bQ(ω) are just as
good for that purpose.

Lemma 5 describes the relationship between the information sink states in com-
mon belief sets, the common belief sets themselves, and associated delusional states;
a similar result (in a modal setting) appears in Tarbush (2011).

Lemma 4. Let Π = (Ω, (bi)i∈I) be a belief structure, with (Πi) the corresponding
partition profile. For each player i and every ω ∈ Ω,

Ci(bQ(ω)) = {coni(ω′′) | ω′′ ∈ T i(bQ(ω))}.

Lemma 5. Let Π = (Ω, (bi)i∈I) be a belief structure, with (Πi) the corresponding
partition profile. For each player i and every ω ∈ Ω,

Si(bQ(ω)) ⊆ bQ(ω) ⊆ T i(bQ(ω)).

6. Permission Consistency and Truth Equivalence

Knowledge structures are naturally partitioned into common knowledge compo-
nents. Let {Ω, (ki)i∈I)} be a knowledge structure. The meet is the finest common
coarsening of the players’ partitions. Each element of the meet of Π is called a
common knowledge component of Π.

Let T ⊆ Ω be a common knowledge component. T can be characterised in several
ways. One way is by knowledge chains. Defining k : Ω→ 2Ω by k(ω) :=

⋃
i∈I ki(ω)

and for m ≥ 0 letting km be the composition of the function k repeated m times,
it is well known that T =

⋃
m≥1 k

m(ω) for any ω ∈ T .

Another property that T satisfies is that

(26)
⋃
ω∈T

ki(ω) =
⋃
ω∈T

kj(ω)

for all i, j ∈ I.

Furthermore, let T ⊆ Ω and denote by Ki the set of all kens of player i at states
in T , i.e., Ki := {keni(ω) | ω ∈ T}. Denote similarly Kj := {kenj(ω) | ω ∈ T}. We
will say that Ki and Ki are permission consistent if

for each Ki ∈ Ki,Permitj(Ki) ⊆ Kj ,
and

for each Kj ∈ Kj ,Permiti(Kj) ⊆ Ki.
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Samet (2008) shows that in knowledge structures a pair of families of kens Ki
and Kj of players i and j respectively, as defined above for T ⊆ Ω, is permission
consistent if and only if T is a common knowledge component, if and only if

(27)
⋂

Ki∈Ki

Ki =
⋂

Kj∈Kj

Kj ,

if and only if
⋃
ω∈T ki(ω) =

⋃
ω∈T kj(ω).

6.1. Permission Consistency.

Definition 1. In a belief structure, a pair of families of convictions Ci ⊆ Coni and
Cj ⊆ Conj of players i and j respectively is permission consistent if

for each Ci ∈ Ci,Permitj(Ci) ⊆ Cj ,

and
for each Cj ∈ Cj ,Permiti(Cj) ⊆ Ci.

By extension, a set of families of convictions C = (Ci)i∈I is permission consistent if
the elements of the set are all pair-wise permission consistent. �

Proposition 1 shows that permission consistency roughly generalises the con-
struction of common knowledge components by way of knowledge chains to belief
spaces .

Proposition 1. Recall the definition in Equation (25), of Ci(bQ(ω)) := {coni(ω
′) |

ω′ ∈ ω ∪ bQ(ω)}.
(a) For any ω ∈ Ω and players i and j, the pair of families Ci(bQ(ω)) and

Cj(bQ(ω)) are permission consistent.

(b) Let (Ki)i∈I be a set of permission consistent families. Then for any state ω
such that coni(ω) ∈ Ki for some player i, Cj(bQ(ω)) ⊆ Kj for all j ∈ I.

6.2. Truth Equivalence.

Definition 2. In a belief structure, a pair of families of convictions Ci ⊆ Coni and
Cj ⊆ Conj of players i and j respectively is truth equivalent if⋂

Ci∈Ci

Ci =
⋂

Cj∈Cj

Cj .

By extension, a set of families of convictions C = (Ci)i∈I is truth equivalent if the
elements of the set are all pair-wise truth equivalent. �

We show in Proposition 4 that permission consistency implies truth equivalence.

The definition of truth equivalence is inspired by the property expressed in Equa-
tion (27) for knowledge structures. The reason the name ‘truth equivalence’ was
chosen for this concept in belief structures will be made clearer in the next series
of results. In particular, Corollary 1 shows that truth equivalence implies that⋃
ω∈T bi(ω) =

⋃
ω∈T bj(ω) holds for some T ⊆ Ω; compare this to Equation (26)

above in knowledge structures.

Lemma 6. Let Ci ⊆ Coni be a family of convictions of player i. Then

(28)
⋂

Ci∈Ci

Ci = {E |
⋃

ω∈Ω|Ci
bi(ω) ⊆ E},
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(where Ω |Ci is defined by Equation (16)).

Corollary 1. Let Ci ⊆ Coni and Cj ⊆ Conj be a pair of truth equivalent families
of convictions. Then

(29)
⋃

ω∈Ω|Ci
bi(ω) =

⋃
ω′∈Ω|Cj

bj(ω
′)

(where Ω |Ci and Ω
∣∣Cj are defined by Equation (16)).

If C = (Ci)i∈I is a set of truth equivalent families, then by the result of Corollary
1, ND(Ci) = ND(Cj) for all i, j ∈ I (where the operator ND is defined by Equation
(18)). We can therefore define

(30) ND(C) := ND(Ci)
for any i ∈ I.

Definition 3. Let C = (Ci)i∈I be a set of truth equivalent families. There is strong
common belief in truth at a state ω if bi(ω) ⊆ ND(C) for all i ∈ I.

We can now formalise the way that truth equivalence yields a form of ‘local
knowledge’, in the sense that the set of non-delusional states ND(C) corresponding
to truth equivalent families of convictions ‘looks like’ a common knowledge com-
ponent in a knowledge structure. Define the belief structure ΠC = {Ω, bC1 , . . . , bCn}
to be the belief structure whose space of states is ND(C), and whose possibility
function bCi , for each player i, is defined by bCi (ω) = bi(ω). Then:

Proposition 2. The belief structure ΠC is a knowledge structure, i.e., it satisfies
the S5 axioms.

Lemma 7. Let C = (Ci)i∈I be a set of truth equivalent families, and let ω be a
state at which there is strong common belief of truth (i.e., bi(ω) ∈ ND(C) for all
i ∈ I). Then the common belief set bQ(ω) satisfies bQ(ω) ⊆ ND(C). In particular,
if ω ∈ ND(C) then bQ(ω) ⊆ ND(C).

Lemma 8. There is strong common belief in truth at a state ω if and only if there
exists Ω0 ⊆ Ω such that bQ(ω) =

⋃
ω′∈Ω0

bi(ω
′) for all i ∈ I.

Lemma 7 and Proposition 2 justify the use of the term ‘common belief in truth’:
at a state in which there is strong common belief in truth, all the players believe
that all the states of common belief are effectively elements of a knowledge structure
in which the truth axiom holds.

Belief structures in which the set of all of player i’s convictions is truth equivalent
to the set of all the convictions of any other player j are precisely the non-singular
structures:

Proposition 3. For a belief structure Π = {Ω, (bi)i∈I}, the following are equiva-
lent:

(1) All players perceive the same world.
(2) Π is non-singular (hence it satisfies interpersonal belief consistency).
(3) For all players i and j,

⋂
Ci∈Coni

Ci =
⋂

Cj∈Conj
Cj.

(4) For all players i and j,
⋃
ω∈Ω bi(ω) =

⋃
ω∈Ω bj(ω).

(5) There is strong common belief in truth at every state.
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We add here one more result: suppose that Π = {Ω, (bi)i∈I} is a non-singular
belief structure. For each ω and i ∈ I, define NDi(ω) to be the smallest set of
non-deluded states in Ω such that (a) bi(ω) ⊆ NDi(ω) and (b)

⋃
ω′∈NDi(ω) bi(ω

′) =⋃
ω′∈NDi(ω) bj(ω

′), for all j ∈ I.

Lemma 9. Let Π = {Ω, (bi)i∈I} satisfy interpersonal belief consistency.

(1) If ω is a non-deluded state for all the players, then NDi(ω) = NDj(ω) for
all i, j ∈ I.

(2) For all ω ∈ Ω, the common belief set of ω, bQ(ω), satisfies

bQ(ω) =
⋃
i∈I

NDi(ω).

7. Agreement in Belief Structures: The Non-Probabilistic Case

7.1. Independence of Irrelevant Belief and Permission Consistent Con-
sensus.

Definition 4 (Independence of Irrelevant Belief). A decision function profile
d = (di)i∈I satisfies independence of irrelevant belief (IIB) if, for any pair of players
i, j ∈ I, decisions di and dj , and conviction families Ci ⊆ Coni and Cj ⊆ Conj if

1. Ci and Cj are truth equivalent and
2. for each Ci ∈ Ci, di(Ci) = di, and for each Cj ∈ Cj , dj(Cj) = dj ,

then di = dj . �

Definition 5 (Permission Consistent Consensus). A decision function profile
d = (di)i∈I satisfies permission consistent consensus (PCC) if, for every pair of
players i, j ∈ I, decisions di and dj , and conviction families Ci ⊆ Coni and Cj ⊆
Conj if

1. Ci and Cj are permission consistent and
2. for each Ci ∈ Ci, di(Ci) = di, and for each Cj ∈ Cj , dj(Cj) = dj ,

then di = dj . �

The next definition captures the idea of impossibility of agreeing to disagree in
our context: two players cannot agree to disagree on decisions if the set of states
at which they have common belief that they choose different decisions is empty.

Definition 6 (Impossibility of agreeing to disagree). A decision function
profile d = (di)i∈I satisfies impossibility of agreeing to disagree (IAD) if for all
players i and j and decisions di 6= dj ,

Qij([di = di] ∩ [dj = dj ]) = ∅.
�

Proposition 4. Let Π be a belief structure, and let Ci ⊆ Coni and Cj ⊆ Conj be
truth equivalent. Then Ci and Cj are permission consistent.

Proposition 4 leads immediately to Proposition 5 as a corollary:

Proposition 5. In belief structures, PCC implies IIB.

We show by example that the converse does not hold.
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Example 2. We construct a two-player belief structure. The state space is

Ω = {y0, y1, y2, y3} ∪ {z−100, . . . , z−2, z−1, z0, z1, z2, . . . , z100}.

The possibility function bi of player i is:

bi(y0) = z1

bi(y1) = y1

bi(y2) = bi(y3) = {y2, y3}

bi(zk) =


zk+1 if k ∈ {0, 2, 4, . . . , 98}
zk if k ∈ {1, 3, 5, . . . , 99} ∪ {100}
zk−1 if k ∈ {−1,−3,−5, . . . ,−99}
zk if k ∈ {−2,−4,−6, . . . ,−100}

A visualisation of player i’s beliefs appears in Figure 3.

�� ��y
1

�� ��y
2
y
3

. . .
�� ��z−4 z−3

�� ��z−2 z−1 z
0

y
0

�� ��z
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z
2

�� ��z
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z
4

�� ��z
5

. . .

Figure 3: Player j’s beliefs in Example 2.

The possibility function bj of player j is:

bj(y0) = bj(y1) = bj(y2) = {y1, y2}
bj(y3) = y3

bj(zk) =


zk+1 k ∈ {1, 3, 5, . . . , 99}
zk k ∈ {2, 4, 6, . . . , 100}
zk−1 k ∈ {0,−2,−4, . . . ,−98}
zk k ∈ {−1,−3,−5, . . . ,−99} ∪ {−100}

A visualisation of player j’s beliefs appears in Figure 4.
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Figure 4: Player i’s beliefs in Example 2.

Let Ci = {coni(zk)} and Cj = {conj(zk)} be families of convictions. An appli-
cation of Proposition 1 shows that Ci and Cj are permission consistent. However,⋂

Ci∈Ci Ci 6=
⋂

Cj∈Cj Cj , hence they are not truth equivalent.

In contrast, the conviction families Hi = {coni(yk) | k ∈ {1, 2, 3}} and Hj =
{conj(yk) | k ∈ {1, 2, 3}} do satisfy truth equivalence.

Let the set of decisions be D = {d1, d2, d3}. Defining decision functions

di(ω) =

{
d1 ω ∈ y0 ∪ {zk | k ∈ {−100, . . . , 100}}
d3 ω ∈ {y1, y2, y3}
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and

dj(ω) =

{
d2 ω ∈ {zk | k ∈ {−100, . . . , 100}}
d3 ω ∈ {y0, y1, y2, y3}

with d1 6= d2, shows that a belief structure can satisfy IIB without satisfying PCC.
�

7.2. Impossibility of Agreeing to Disagree.

Theorem 1. Let d be a decision function profile on a belief structure. Then d
satisfies PCC if and only if it satisfies impossibility of agreeing to disagree.

In contrast, IIB is not sufficient to guarantee the impossibility of agreeing to
disagree in KD45: in the model in Example 2, bQ(z0) = {zk | k ∈ {−100, . . . ,−1}∪
{1, . . . 100}}, hence

Qij([di = d1] ∩ [dj = d2]) 6= ∅
(with d1 6= d2), despite IIB being satisfied.

8. Agreement in Belief Structures: The Probabilistic Case

In the previous section, we showed that satisfying PCC is equivalent to the
impossibility of agreeing to disagree. However, as we will show in this section,
when a probabilistic belief structure is derived from a common delusional prior,
PCC is not guaranteed. We can, never the less, find a condition that ensures that
an analogue of the standard No Betting theorem from the literature on knowledge
structures holds in belief structures.

8.1. Standard No Betting.

Definition 7. An n-tuple of random variables {f1, . . . , fn} is a bet if
∑n
i=1 fi = 0.

�

Definition 8. Let (ti)i∈I be a probabilistic belief structure. Then a bet is an
agreeable bet at ω (relative to (ti)) if Etii (f | Πi(ω)) > 0 for all i ∈ I. A bet f is a
common knowledge agreeable bet at ω if it is common knowledge at ω that f is an
agreeable bet. �

The main characterisation of the existence of common priors in S5 knowledge
models in the literature is what is sometimes known as the No Betting Theorem: a
finite type space has a common prior if and only if there does not exist a common
knowledge agreeable bet at any ω. In the special case of a two-player probabilistic
belief structure where the random variable is the characteristic function

1H(ω) =

{
1 if ω ∈ H
0 if ω /∈ H

where H is an event, this characterisation implies the seminal Aumann Agreement
Theorem (Aumann (1976)), which states that if it is common knowledge at a state
of the world that player 1 ascribes probability η1 to event H and player 2 ascribes
probability η2 to the same event, then η1 = η2.

In S5 knowledge structures, independence of irrelevant beliefs becomes symmet-
ric independence of irrelevant knowledge, and Samet (2008) proves that symmetric
independence of irrelevant knowledge is equivalent to the impossibility of agree-
ing to disagree. This immediately implies the Aumann Agreement Theorem. Let
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(ti)i∈I be a probabilistic belief structure, and let 1H be the characteristic function
of an event H ⊆ Ω. For each player i, let the set of decisions be DiR+

0 , the set
of non-negative real numbers, and let di(ω) = Etii (1H | Πi(ω)). Then from the
perspective of this paper, the proof of the main theorem in Aumann (1976) can be
interpreted essentially as showing that when there is a common prior this set of
decisions (d)i satisfies independence of irrelevant belief, and therefore impossibility
of agreeing to disagree.

8.2. KD45 No Betting.

Definition 9. Let (ti)i∈I be a probabilistic belief structure and (bi)i∈I a belief
structure induced by (ti)i∈I . A bet f is a common belief agreeable bet at ω if it is
common belief at ω that f is an agreeable bet. �

With these definitions, we can now ask whether an analogue to the No Betting
Theorem of S5 models holds in the KD45 setting. Given a probabilistic belief
structure (ti)i∈I , does the existence of a common delusional prior imply that there
is no common belief agreeable bet?

The answer to this question is no, as the following example9 shows.

Example 3. Let Ω = {ω1, ω2, ω3}. Consider the two-player probabilistic belief
structure (t1, t2) defined by

t1(ωk)(ω1) =
1

3
; t1(ωk)(ω2) =

1

3
; t1(ωk)(ω3) =

1

3
,

and

t2(ωk)(ω1) = 0; t2(ωk)(ω2) =
1

2
; t2(ωk)(ω3) =

1

2
for k ∈ {1, 2, 3}:

t1 =

1
3︷︸︸︷
ω1

1
3︷︸︸︷
ω2

1
3︷︸︸︷
ω3 ,

t2 =

0︷︸︸︷
ω1

1
2︷︸︸︷
ω2

1
2︷︸︸︷
ω3 .

This induces the belief structure (b1, b2)

b1(ω1) = b1(ω2) = b1(ω3) = {ω1, ω2, ω3},
and

b2(ω1) = b2(ω2) = b2(ω3) = {ω2, ω3},
visualised as �� ��ω1 ω2 ω3

ω1

�� ��ω2 ω3

For this belief structure, µ = (1/3, 1/3, 1/3) is a common delusional prior. Let
H = {ω1, ω2}. Then it is common belief at every state ω that Et11 (1H | b1(ω)) = 2/3,
while Et22 (1H | b2(ω)) = 1/2.

Note that this belief structure satisfies (vacuously) IIB, but not PCC. �

9 This example is inspired by an example in Collins (1997).
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To recapitulate something resembling the No Betting Theorem in belief struc-
tures, we add a new definition.

Definition 10. There is weak common belief in truth10 at a state ω if there exists
a state ω′ ∈ bQ(ω) at which there is strong common belief in truth. �

An equivalent way of stating the content of Definition 10 is as follows: there is
weak common belief in truth at ω iff there exists a state ω′ ∈ bQ(ω) such that⋃

ω′′∈bQ(ω′)

bi(ω
′′) =

⋃
ω′′∈bQ(ω′)

bj(ω
′′)

for all i, j ∈ I. This can be read intuitively as the players ‘eventually’ getting to
strong common belief in truth as they follow chains in the common belief set.

A belief structure version of the No Betting Theorem can be attained if we
assume weak common belief in truth.

Theorem 2. Let (ti)i∈I be a probabilistic belief structure over Ω and let ω be a state
at which there is weak common belief in truth. Then there is a common delusional
prior if and only if there is no common belief agreeable bet at ω.

Since strong common belief in truth implies weak common belief in truth, and
in a non-singular probabilistic belief structure there is strong common belief in
truth at every state, Theorem 3 (which is close in content to a result appearing in
Bonanno and Nehring (1999)) follows from Theorem 2 as a corollary.

Theorem 3. Let (ti)i∈I be a non-singular probabilistic belief structure over Ω.
Then there is a common delusional prior if and only if there is no common belief
agreeable bet at any state ω ∈ Ω.

Example 4. The state space consists of {0, 1, 2, 3, 4, 5, 6, 7}. There are two players,
i and j. The belief structure ((Πi, bi), (Πj , bj)) is as follows:

Player i’s beliefs are �� ��1
�� ��2 3 4

�� ��5
�� ��6 7

Player j’s beliefs are �� ��1 2 3 4
�� ��5 6 7

The states 3 and 4 are delusional states for both player i and player j, hence they
perceive the same world. Note also that bi(3) = {5} while bj(3) = {1, 2}, and
this structure therefore does not satisfy interpersonal belief credibility. In fact,
the structure can naturally be divided into two ‘certainty components’, {1, 2} and
{5, 6, 7}; at states 3 and 4, player i is certain that the true component is {5, 6, 7}
while player j is certain that the true component is {1, 2}.

The above belief structure can be induced by the following non-singular proba-
bilistic belief structure (ti, tj):

ti =

1︷︸︸︷
1

1︷︸︸︷
2

0︷︸︸︷
3

0︷︸︸︷
4

1︷︸︸︷
5

1/2︷︸︸︷
6

1/2︷︸︸︷
7

10 Although weak common belief in truth may seem abstract at first reading, it arises naturally

in the study of interactive belief models. Concepts very similar to that of weak common belief in
truth are introduced and used in Battigalli and Bonanno (1999) and Tarbush (2011).
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tj =

1/2︷︸︸︷
1

1/2︷︸︸︷
2

0︷︸︸︷
3

0︷︸︸︷
4

1/3︷︸︸︷
5

1/3︷︸︸︷
6

1/3︷︸︸︷
7

This probabilistic belief structure has an infinite number of common delusional
priors; for example,

µ = (
1

7
,

1

7
,

1

14
,

1

14
,

1

7
,

1

7
,

1

7
).

There can therefore be no common belief disagreement.

We close by noting the following. Suppose that are working in the standard S5
knowledge model (hence that the players make ‘no mistakes’, that is, they revise
beliefs perfectly correctly), and that the players start out with two separate priors,
given by

µi = (
1

7
,

1

7
,

1

28
,

3

28
,

1

7
,

1

7
,

1

7
)

and

µj = (
1

7
,

1

7
,

1

14
,

1

14
,

1

7
,

1

7
,

1

7
).

Then the players will revise their beliefs into the following posteriors

t̂i =

1︷︸︸︷
1

1︷︸︸︷
2

1/8︷︸︸︷
3

3/8︷︸︸︷
4

1/2︷︸︸︷
5

1/2︷︸︸︷
6

1/2︷︸︸︷
7

t̂j =

1/3︷︸︸︷
1

1/3︷︸︸︷
2

1/6︷︸︸︷
3

1/6︷︸︸︷
4

1/3︷︸︸︷
5

1/3︷︸︸︷
6

1/3︷︸︸︷
7 .

Defining a bet (fi,−fi) by

fi = (1/4, 1/4,−6, 3,−1/8, 1/32, 1/32),

it can be checked that this bet is common knowledge agreeable at every state. But
if the players make mistakes, using delusional revision with both players having
deluded states at 3 and 4, then instead of t̂i and t̂j they will derive the posteri-
ors ti and tj , which as we have seen have a common delusional prior precluding
disagreement. �

9. Dynamically Agreeing to Agree

The previous section dealt with conditions related to atemporal impossibility
of disagreeing when the truth axiom is not assumed. In this section we consider
dynamic back-and-forth processes leading to agreement (as in the example in the
introduction) in the interactive KD45 setting.

9.1. S5 Dynamic Agreement.

We first review the model of dynamic agreement in the standard S5 (knowledge)
case, as introduced in Geanakoplos and Polemarchakis (1982), restricting attention
to the two-player case for simplicity.11

11 The two-player model has been extended to multi-player settings in several directions (see,
for example).
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We suppose that there are two players, labelled 1 and 2, who share a common
prior µ over the state space Ω. Each player has an initial partition, Π0

1 and Π0
2, of

the state space, which induces a pair of types t01 and t02 by standard belief revision,
i.e., ti(ω)(ω′) = µ(ω′)/µ(Π0

i (ω)). A random variable f over Ω is given. It is
assumed that it is common knowledge that the players share the common prior µ,
that their respective partitions are Π0

1 and Π0
2, and that f is the random variable

under consideration.

Fix a state ω ∈ Ω. We assume that there is a discrete sequence of times τ =
0, 1, . . ., and define by induction a partition element Πτ

i (ω) for each player i, with
Π0
i given at the start. At each time τ , each player i announces Aτi (ω), which is his

expected value of f conditional on Πτ
i :

Aτi (ω) := E
tτi
i (f | Πτ

i (ω)).

From this, define

W τ
1 (ω) := {ω′ ∈ Πτ

1(ω) | Et
τ
2

2 (f | Πτ
2(ω)) = Aτ2(ω)}

and

W τ
2 (ω) := {ω′ ∈ Πτ

2(ω) | Et
τ
1

1 (f | Πτ
1(ω)) = Aτ1(ω)}.

These ingredients are used to define the next step:

Πτ+1
i (ω) := Πτ

i (ω) ∩W τ
i (ω),

for i = 1, 2, with a corresponding τ τ+1
i (ω)(ω′) = µ(ω′)/µ(Πτ+1

i (ω)) for ω′ ∈
Πτ+1
i (ω).

The elements of the sequence of triples

{Π0
i (ω), A0

i (ω),W 0
i (ω)}, {Π1

i (ω), A1
i (ω),W 1

i (ω)}, . . .
satisfy the following properties:

(1) For each τ , Π0
1(ω)∩Π0

2(ω) ⊆ Πτ
1(ω) ⊆ Π0

1(ω) and Π0
1(ω)∩Π0

2(ω) ⊆ Πτ
2(ω) ⊆

Π0
2(ω).

(2) There is a time τ0 such that for all τ > τ0 , Πτ+1
i (ω) = Πτ

i (ω) and Aτ+1
i (ω) =

Aτi (ω).

By (2), the revision process converges after a finite number of steps to agreement
among the players.

9.2. KD45 Dynamic Agreement.

In this section, we suppose again that there is a common prior µ over Ω. We also
suppose that each player i has a signals set Si and a signalling function σi : Ω→ Si,
which induces a partition Πσi

i of Ω (as in Equation (9)). Again, a random variable
f over Ω is under consideration. The common prior µ, the random variable f , and
the signalling functions σ1 and σ2 are common knowledge.

As in Section 3.2, each player misreads some of his signals, and there is a function
χi : Ω→ Si, defined as in Equation (10), which induces a belief structure (bχ1

1 , bχ2

2 )
with corresponding partitions (Θχ1

1 ,Θχ2

2 ). Furthermore, we assume that this belief
structure satisfies interpersonal belief credibility, i.e., for all ω ∈ Ω, bχ1

1 (ω)∩bχ2

2 (ω) 6=
∅.

We will assume that each player is ignorant of the fact that sometimes he mis-
reads signals, and is also ignorant of the fact that the other player sometimes
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misreads signals. Hence, if ω is the true state, player i is convinced that the set
of possible true states is bχii (ω); implementing delusional revision, he computes
ti(ω)(ω′) = µ(ω′)/µ(bχii (ω)) for ω′ ∈ bχii (ω).

But we know by Equation (13) that for any ω̂ ∈ bχii (ω), bχii (ω) = Πσi
i (ω̂),

and therefore ti(ω)(ω′) = µ(ω′)/Πσi
i (ω̂). Player i then reports A0

i (ω) := E
tτi
i (f |

Πσi
i (ω̂)). In particular, choose ω̂ ∈ bχ1

1 (ω) ∩ bχ2

2 (ω), and use the reports A0
i (ω) to

define

W 0
1 := {ω′ ∈ Πσi

1 (ω̂) | Et
τ
2

2 (f | Πσi
2 (ω̂) = A0

2(ω))}
and

W 0
2 := {ω′ ∈ Πσi

2 (ω̂) | Et
τ
1

1 (fΠσi
1 (ω̂) = Aτ1(ω))}.

The rest of the dynamic follows by induction as in the previous subsection, with
bτ+1
i (ω) = bτi (ω) ∩W 0

i , and the sequences

{b1i (ω), A1
i (ω),W 1

i (ω)}, {b2i (ω), A2
i (ω),W 2

i (ω)} . . .

satisfying the property that there is a τ0 such that for all τ > τ0, bτ+1
i (ω) = bτi (ω)

and Aτ+1
i (ω) = Aτi (ω).

This constitutes a proof of Theorem 4.

Theorem 4. The elements of the sequence of triples

{b1i (ω), A1
i (ω),W 1

i (ω)}, {b2i (ω), A2
i (ω),W 2

i (ω)} . . .

satisfy the following properties:

(1) For each τ , b01(ω) ∩ b02(ω) ⊆ bτ1(ω) ⊆ b01(ω) and b01(ω) ∩ b02(ω) ⊆ bτ2(ω) ⊆
b02(ω).

(2) There is a time τ
0

such that for all τ > τ
0
, bτ+1
i (ω) = bτi (ω) and Aτ+1

i (ω) =
Aτi (ω).

This revision process converges after a finite number of steps to agreement among
the players.

10. Appendix: Proofs

Proof of Lemma 1. Let (ti)i∈I be non-singular. If (ti)i∈I has a common standard
prior µ, then since µ is also a delusional prior for each ti, it is a common standard
prior.

In the other direction, let µ be a common delusional prior. Let D ⊂ Ω be the set
of states that at which all players in I are deluded. Define a probability distribution
µ̂ by

µ̂(ω) =

{
0 if ω ∈ D
µ(ω)

µ(Ω\D) otherwise

It is straight-forward to check that µ̂ is a common standard prior (since ti(ω) = 0
for all i at each state ω ∈ D).

Proof of Lemma 2. Denote F = Ω \ Di. Each state in ω ∈ F is non-deluded
(for player i), hence ω ∈ bi(ω) ⊆ F . It follows that F ⊂ Bi(F ). If ω ∈ Di, then
ω /∈ bi(ω), but it is still the case that bi(ω) ⊆ F , so that Di ⊂ Bi(F ). Since
Ω = F ∪Di, Bi(F ) = Ω.
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Next, suppose that E is a proper subset of F . Then F \ E contains a non-
deluded state ω of player i, hence ω ∈ bi(ω) 6⊂ E. But from that one concludes
that ω /∈ Bi(E). F is therefore the minimal event that satisfies Bi(F ) = Ω.

Proof of Lemma 3.12 Suppose that ω′ ∈ bi(ω). Let E ∈ conj(ω
′). Then ω′ ∈

Bj(E). If ¬Bj(E) ∈ coni(ω) then ω ∈ Bi(¬Bj(E)) and hence ω′ ∈ bi(ω) ⊆ ¬Bj(E),
a contradiction.

If E /∈ conj(ω
′) then ω′ /∈ Bj(E). If Bj(E) ∈ conj(ω

′) then ω ∈ Bi(Bj(E)) and
therefore ω′ ∈ bi(ω) ⊆ Bj(E), a contradition.

Proof of Lemma 4. Let C ∈ Ci(bQ(ω)). Then C = coni(ω
′) for some ω′ ∈

ω∪bQ(ω), which holds if and only if C = {E | bi(ω′) ⊆ E}. But for any ω′′ ∈ Πi(ω
′),

bi(ω
′′) = bi(ω

′), hence

{E | bi(ω′′) ⊆ E} = {E | bi(ω′) ⊆ E},
which means that C ∈ Ci(bQ(ω)) iff

C ∈ {coni(ω
′′) | ω′′ ∈ T i(bQ(ω))}.

Proof of Lemma 5. Fix ω. We first show that
⋃
ω′∈bQ(ω) bi(ω

′) ⊆ bQ(ω).

Suppose that ω′′ ∈
⋃
ω′∈bQ(ω) bi(ω

′). Then it must be the case that ω′′ ∈ bi(ω
′)

for some ω′ ∈ bQ(ω). At the same time, ω′ ∈
⋃m
j=1 b

j(ω) for some integer m.

Now, b(ω′) =
⋃
i∈I bi(ω

′), hence ω′′ ∈ b(ω′), i.e. ω′′ ∈
⋃m+1
j=1 bj(ω), and therefore

ω′′ ∈ bQ(ω).

Next, suppose that ω′′ ∈ bQ(ω). Distinguish two cases:

(i) ω′′ ∈ bi(ω′′). Then ω′′ ∈ Πi(ω
′′).

(ii) ω′′ /∈ bi(ω′′). Let ω′ ∈ βi(ω′′). Then ω′ ∈ bQ(ω) and ω′′ ∈ Πi(ω
′), hence

the proof is completed.

Proof of Proposition 1. (a) We first prove the following statement. Suppose
that coni(ω

′) ∈ Ci(bQ(ω)) for some state ω′, and that Πj(ω
′′)∩ bi(ω′) = ∅ for some

state ω′′. Then conj(ω
′′) /∈ Permitj(coni(ω

′)).

Indeed, let E = bj(ω
′′), which implies that Bj(E) = Πj(ω

′′), equivalently
¬Bj(E) = ¬Πj(ω

′′). By assumption, Πj(ω
′′) ∩ bi(ω′) = ∅, hence bi(ω

′) ⊆ ¬Bj(E).
This implies that ¬Bj(E) ∈ coni(ω

′). This suffices to show that conj(ω
′′) /∈

Permitj(coni(ω
′)), which is what we wanted to show.

Therefore, every conviction conj(ω
′′) of j that is permitted by coni(ω

′) must
satisfy the property that Πj(ω

′′) ∩ bi(ω′) 6= ∅. Thus it suffices to show that if
Πj(ω

′′)∩bi(ω′) 6= ∅ then conj(ω
′′) ∈ Cj(bQ(ω)). But as we supposed that coni(ω

′) ∈
Ci(bQ(ω)), it follows that bi(ω

′) ⊂ bQ(ω). Hence furthermore, if there is a state
ω′′′ ∈ Πj(ω

′′) ∩ bi(ω′) then bj(ω
′′′) ⊂ bQ(ω), while bj(ω

′′′) = bj(ω
′′). This implies

that conj(ω
′′) ∈ Cj(bQ(ω)).

(b) Let coni(ω) ∈ Ki. By the definition of bQ(ω) (see Equation (20)), any
ω′ ∈ bQ(ω) satisfies ω′ ∈ bk(ω′′) for some ω′′ ∈ ω ∪ bQ(ω) and some k ∈ I. By
Lemma 3, for any ω′ ∈ bk(ω′′) and all j ∈ I, conj(ω

′) ∈ Permitj(conk(ω)). By the
assumption of permission consistency, Permitj(conk(ω)) ⊆ Kj . This is sufficient to
conclude that Cj(bQ(ω)) ⊆ Kj for all j ∈ I.

12 This proof is very similar to the proof of Lemma 1 in Samet (2008).
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Proof of Lemma 6. It suffices to show that⋂
Ci∈Ci

Ci = {E | Si(ω) ⊆ E for all ω ∈ Ω |Ci }.

But E ∈ coni(ω) if and only if bi(ω) is contained in E. Hence E ∈ coni(ω) for all
ω ∈ Ω |Ci if and only if bi(ω) is contained in E for all ω ∈ Ω |Ci , which is equivalent
to Si(ω) ⊆ E for all ω ∈ Ω |Ci .

Proof of Corollary 1. Suppose that there is a state ω ∈ Ω |Ci such that there
exists ω′′ ∈ bi(ω) with ω′′ /∈ bj(ω′) for any ω′ ∈ Ω

∣∣Cj . But then, by Equation 28,⋃
ω∈Ω|Ci bi(ω) is an event in

⋂
Ci∈Ci Ci, while

⋃
ω′∈Ω|Cj bj(ω

′) /∈
⋂

Ci∈Ci Ci. This

contradicts the assumption that Ci and Cj are truth equivalent.

Proof of Proposition 2 For each i, bCi satisfies transitivity and euclideaness be-
cause bCi (ω) = bi(ω) by definition, and bi satisfies those properties. To show that
ΠC is a knowledge structure, all that is left is to show that bCi satisfies the truth
axiom; but this follows from the fact that all the states in ND(C) are non-deluded
for bi.

Proof of Lemma 7. By Proposition 2, the belief structure ΠC is a knowledge
structure. It follows that for any ω′ ∈ ND(C), the common belief set bQ(ω′) of
ω′ in Π is identical to one of the common knowledge components in ΠC , which is
ND(C).

To complete the proof, since bi(ω) ⊆ ND(C) for all i, b(ω) ⊆ ND(C), and then
by induction ω′ ∈ ND(C) for all ω′ ∈ bQ(ω).

Proof of Lemma 8. In one direction, suppose that there is strong common
belief in truth at a state ω. Then by Lemma 7, bQ(ω) ⊆ ND(C), i.e., each state
in bQ(ω) is non-delusional for all players. Setting Ω0 = bQ(ω), it follows that
bQ(ω) =

⋃
ω′∈Ω0

bi(ω
′).

In the other direction, suppose that there exists Ω0 ⊆ Ω such that bQ(ω) =⋃
ω′∈Ω0

bi(ω
′) for all i ∈ I. This implies that

⋃
ω′∈Ω0

bi(ω
′) =

⋃
ω′∈Ω0

bj(ω
′) for all

i, j ∈ I. Let Ci := {coni(ω
′) | ω′ ∈ Ω0} for all i ∈ I, and let C be the set of all the

families Ci for i ∈ I. Then
⋂

Ci∈Ci =
⋂

Cj∈Cj for all i, j ∈ I, and ω′ ∈ ND(C) for all

ω′ ∈ Ω0.

Since bQ(ω) =
⋃
ω′∈Ω0

bi(ω
′) for all i ∈ I, it follows that b(ω) ⊆ ND(C), which

further implies that bi(ω) ⊆ ND(C) for all i, hence there is strong common belief
in truth at ω.

Proof of Proposition 3. We prove the equivalence of items (1) through (4) step
by step:

(1) All players perceive the same world ⇒ Π satisfies interpersonal belief con-
sistency.

Proof : By Lemma 2, the world perceived by player i is Ω\Di, where Di

is the set of states at which i is deluded. It follows that if Π does not satisfy
interpersonal belief consistency, and hence there is a state ω at which player
i is deluded but player j is not deluded, then the world perceived by i does
not contain ω but the world perceived by j does contain ω.

(2) Π satisfies interpersonal belief consistency⇒ for all players i and j,
⋂

Ci∈Coni
Ci =⋂

Cj∈Conj
Cj .
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Proof : By Lemma 6, for a player i, using Equation (28) with the fam-
ily of convictions Coni,

⋂
Ci∈Coni

Ci = {E |
⋃
ω∈Ω bi(ω) ⊆ E} (since in

this case Ω |Ci = Ω). It follows that if
⋂

Ci∈Coni
Ci 6=

⋂
Cj∈Conj

Cj , then⋃
ω∈Ω bi(ω) =

⋃
ω′∈Ω bj(ω

′). But that implies that there is a state ω at
which either i is deluded and j is not deluded, or j is deluded and i is not
deluded.

(3) For all players i and j,
⋂

Ci∈Coni
Ci =

⋂
Cj∈Conj

Cj ⇒ for all players i and

j,
⋃
ω∈Ω bi(ω) =

⋃
ω′∈Ω bj(ω

′)
Proof : This is Corollary 1 applied to Coni and Conj .

(4) For all players i and j,
⋃
ω∈Ω bi(ω) =

⋃
ω′∈Ω bj(ω

′) ⇒ all players perceive
the same world.

Proof : By Lemma 2, the world perceived by player i is Ω\Di, where Di

is the set of states at which i is deluded. But if
⋃
ω∈Ω bi(ω) =

⋃
ω′∈Ω bj(ω

′),
then Ω \Di = Ω \Dj .

Finally, we show that all players perceive the same world iff Π is non-singular.

Suppose that Π is non-singular. Then C = (Coni)i∈I is a set of truth equivalent
families. But then for each state ω, since bi(ω) is a set of non-delusional states for
player i, bi(ω) ⊆ ND(C), and hence there is strong common belief in truth at ω.

In the other direction, suppose that there is strong common belief in truth at
every state ω. By Lemma 8, there exists Ω0 such that bQ(ω) =

⋃
ω′∈Ω0

bi(ω
′) for all

players i ∈ I. From this, we can deduce that every state ω that is non-delusional
for a player i (hence ω ∈ bQ(ω)) must also be non-delusional for every other player
j ∈ I. Hence Π is non-singular.

Proof of Lemma 9. Since Π satisfies interpersonal belief consistency, there is
strong common belief in truth at every state.

(1) Let ω be a non-deluded state for all the players. By Lemma 8, there exists
Ω0 ⊆ Ω such that bQ(ω) =

⋃
ω′∈Ω0

bi(ω
′) for all i ∈ I.

We will show that Ω0 satisfies conditions (a) and (b) of the definition of
NDi(ω). Since ω is non-deluded for i, ω ∈ bQ(ω) =

⋃
ω′∈Ω0

bi(ω
′), hence

bi(ω) ⊆ Ω0. This shows that condition (a) is satisfied. Since bQ(ω) =⋃
ω′∈Ω0

bi(ω
′) for all i, it follows that

⋃
ω′∈Ω0

bi(ω
′) =

⋃
ω′∈Ω0

bj(ω
′) for all

i, j ∈ I. Hence condition (b) is satisfied.
Suppose that there exists Ω1 ( Ω0 also satisfying (a) and (b). Then

it would be the case that bQ(ω) =
⋃
ω′∈Ω1

bi(ω
′), contradicting bQ(ω) =⋃

ω′∈Ω0
bi(ω

′). The conclusion is that Ω0 = NDi(ω) for all i ∈ I.

(2) Since any ω′ ∈ bi(ω) is a non-deluded state, by the proof of part (1) of this
theorem bQ(ω′) = NDi(ω′) for all such ω′. Inserting this into Equation
(22), according to which bQ(ω) =

⋃
{ω′∈

⋃
i∈I bi(ω)} b

Q(ω′), we conclude that

bQ(ω) =
⋃
i∈I ND

i(ω).

Proof of Proposition 4. Suppose that
⋂

Ci∈Ci Ci =
⋂

Cj∈Cj Cj . Let coni(ω) ∈ Ci.
We first prove that if bj(ω

′) ∩ bi(ω) = ∅, then conj(ω
′) /∈ Permitj(Ci). To see this,

let E = bj(ω
′). Clearly, E ∈ conj(ω

′). Suppose that ¬Bj(E) /∈ coni(ω). Then
bi(ω) 6⊂ ¬Bj(E), meaning that there is a state ω′′ ∈ bi(ω) such that ω′′ ∈ Bj(E).
By assumption bj(ω

′) ∩ bi(ω) = ∅, hence ω′′ /∈ bj(ω′), meaning that ω′′ ∈ fj(ω′).
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But that means that ω′′ /∈ bj(ω′), but ω′′ ∈ bi(ω). At the same time, conj(ω
′′) ∈

Cj . But then
⋃
ω∈Ω|Ci bi(ω) 6=

⋃
ω′∈Ω|Cj bj(ω), contradicting Equation (29). The

conclusion is that ¬Bj(E) ∈ coni(ω), showing that conj(ω
′) /∈ Permitj(coni(ω)).

We have shown that all convictions of j that are permitted by coni(ω) must
intersect coni(ω). It therefore suffices to show that if bj(ω

′) ∩ bi(ω) 6= ∅, then
conj(ω

′) ∈ Cj . Suppose that conj(ω
′) /∈ Cj . Let E = ¬bj(ω′) and let ω′′ ∈ Ω

∣∣Cj ,
i.e. conj(ω

′′) ∈ Cj . Since we are working in a KD45 model, this implies that
bj(ω

′) ∩ bj(ω′′) = ∅. That then implies that E ∈ conj(ω
′′).

Hence E ∈
⋂

Ci∈Ci Ci. As Ci and Cj are truth equivalent, E ∈
⋂

Cj∈Cj Cj , and in

particular E ∈ coni(ω). But this is impossible, since bi(ω) 6⊆ E.

Proof of Theorem 1. In the first direction, it suffices to restrict attention to any
pair of players i, j ∈ I. Suppose that PCC holds and assume that ω ∈ Qij([di =
di] ∩ [dj = dj ]). Recall the definition in Equation (25), of

Ci(bQ(ω)) := {coni(ω
′) | ω′ ∈ ω ∪ bQ(ω)}.

We want to show that (1) and (2) in the definition of PCC hold for Ci(bQ(ω)) and
Cj(bQ(ω)).

For (1), it suffices to show that for any ω′ ∈ bQ(ω) and any ω′′ such that
conj(ω

′′) /∈ Cj(bQ(ω)) one has conj(ω
′′) /∈ Permitj(coni(ω

′)). Towards this end,
let E = bQ(ω). By Lemma 5, for each ω ∈ E, bj(ω) ⊆ E, hence E ⊆ Bj(E). Now,
bi(ω

′) ⊆ E for each ω ∈ E, hence ω′ ∈ Bi(Bj(E)), which is another way of saying
Bj(E) ∈ coni(ω

′).

By Lemma 4, it cannot be the case that ω′′ ∈ T j(bQ(ω)) (where T j is as defined in
Equation 24), because if ω′′ ∈ T j(bQ(ω)), then conj(ω

′′) ∈ Cj(E), which contradicts
one of our assumptions.

Hence ω′′ /∈ T j(bQ(ω)), which implies that bj(ω
′′) 6⊆ E, and we conclude that

E /∈ conj(ω
′′).

To show (2), note that by Equation (21), ω ∈ Qij([di = di] ∩ [dj = dj ]) implies
that bQ(ω) ⊆ Cij([di = di] ∩ [dj = dj ]). Since bi(ω) ⊆ bQ(ω) for each i, and the
conviction of i at ω and hence the decision at ω is determined by bi(ω), di(ω) = di.
Since bQ(ω′) ⊆ bQ(ω) for every ω′ ∈ bQ(ω), the same reasoning gives us that
di(ω

′) = di for all i and all ω′ ∈ bQ(ω). Thus, for each Ci ∈ Ci(bQ(ω)), di(Ci) = di,
and a similar equality holds for j. By PCC, it follows that di = dj , as required.

In the other direction, suppose that IAD holds, and assume that (1) and (2) in the
definition of PCC hold for a collection of families of convictions (Ci)i∈I . Since (Ci)i∈I
are permission consistent, by Proposition 1 for any state ω such that coni(ω) ∈ Ci
for some player i, Cj(bQ(ω)) ⊆ Cj for all j ∈ I. Hence for each ω′ ∈ bQ(ω),
coni(ω

′) ∈ Ci for all i ∈ I. Therefore, by property (2) of PCC, di(ω
′) = di for all

i ∈ I. It follows that for any pair of players i and j, ω ∈ Qij([di = di]∩ [dj = dj ]),
i.e, Qij([di = di] ∩ [dj = dj ]) 6= ∅. By IAD, di = dj , showing that permission
consistent consensus holds.

Proof of Theorem 2. We first add a definition and a lemma, for the sake of
proving the theorem.

Definition 11. Let (ti)i∈I be a probabilistic belief structure over Ω with cor-
responding partition profile Π := (Πi)i∈I , and let X ⊂ Ω be a subset of Ω.
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Define Π restricted to X, denoted ΠX , to be the partition profile over X given
by ΠX

i (ω) := Πi(ω) ∩ X for any state ω. Further, for each i ∈ I let tXi be
any type function over (X,ΠX) that satisfies the property that for any ω ∈ Ω,
ti(ω)(ΠX

i )tXi (ω) = ti(ω). �

Intuitively, ΠX
i is the partition of X derived from the partition Πi of Ω by

‘ignoring all states outside of X’. It then follows intuitively that tXi (ω), for each
state ω ∈ X, is ti(ω) scaled relative to the other states in ΠX

i (ω) in such a way that∑
ω∈X t

X
i (ω) = 1.

For a random variable f , denote

EXi (f | ΠX
i (ω)) :=

∑
ω′∈ΠXi (ω)

tXi (ω′)f(ω′).

A bet {f1, . . . , fn} is an agreeable bet relative to (tXi )i at ω ∈ X if EXi (f | ω) > 0
for all i ∈ I. We will say that it is simply an agreeable relative to (tXi )i if it is an
agreeable bet relative to (tXi )i at all states ω ∈ X.

Lemma 10. Let (ti)i∈I be a probabilistic belief structure over Ω, let ω ∈ Ω and let
X be a non-empty subset of bQ(ω), the common belief set of ω. Suppose that there
exists an agreeable bet relative to (tXi )i. Then there exists an agreeable bet relative
to bQ(ω).

Proof. Let f be an agreeable bet relative to (tXi )i. If X = bQ(ω), there is
nothing to prove.

Otherwise, we distinguish a few cases:

(1) Suppose that there exists a state ω′′ ∈ X such that bi(ω
′′) \ X 6= ∅ for

some i ∈ I. Let ω′ ∈ bi(ω′′) \ X (hence ti(ω
′) > 0), and let ε := EXi (fi |

ΠX
i (ω′)) = EXi (fi | ΠX

i (ω′′)). By assumption, ε > 0 (since f is an agreeable
bet relative to (tXi )i). Set Y := X ∪ ω′.

Next, let f i(ω
′) be a negative real number satisfying

0 > f i(ω
′) >

−(1− tYi (ω′))

tYi (ω′)
ε ,

and for j 6= i, set f j(ω
′) := −f i(ω′)/(n− 1) > 0, where n = |I|.

Clearly, by construction,
∑
j∈I f j(ω

′) = 0. Complete the definition of f

by letting f(ω′′′) := f(ω′′′) for all ω′′′ ∈ X. It is straightforward to check
that f is an agreeable bet relative to (tYi )i∈I .

(2) Suppose that there is a state ω′ ∈ bQ(ω) \X such that bi(ω
′) ∩X 6= ∅. Set

Y := X ∪ ω′.
We distinguish two sub-cases:

(a) If ti(ω
′) = 0, then for all j ∈ I \ i let f j(ω

′) be any arbitrary positive

number, and set f i(ω
′) = −

∑
j∈I\i f j(ω

′). Then f is an agreeable bet

relative to (tYi )i∈I .
(b) If ti(ω

′) > 0, let ε := EXi (fi | ΠX
i (ω′)). By assumption, ε > 0 (since

bi(ω
′) ∩X 6= ∅ and f is an agreeable bet relative to (tXi )i). From this

point, define f j for all j ∈ I exactly as in Case 1 above, yielding an

agreeable bet relative to (tYi )i∈I .
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Now simply repeat this procedure as often as necessary to extend the agreeable
bet to every state in the finite set bQ(ω).

Completion of the proof of Theorem 2. Let (ti)i∈I be a probabilistic belief
structure over Ω, and let ω be a state at which there is weak common belief in
truth, and hence there is ω′ ∈ bQ(ω) at which there is strong common belief in
truth, i.e., ⋃

ω′′∈bQ(ω′)

bi(ω
′′) =

⋃
ω′′∈bQ(ω′)

bj(ω
′′)

for all i, j ∈ I. If we restrict attention solely to the states in bQ(ω′), we can consider
the operators bi for all i to constitute an S5 knowledge structure over bQ(ω), as in
the proof of Proposition 2.

In one direction, suppose that there is a common delusional prior µ. Then
µ restricted to bQ(ω′) is a common (standard) prior over bQ(ω′) regarded as a
knowledge structure, hence there can be no common knowledge agreeable bet at
any state in bQ(ω′). If there were a common belief agreeable bet at ω, then that bet
would be a common knowledge agreeable bet over bQ(ω′) regarded as a knowledge
structure, which we just showed cannot happen. The contradiction establishes that
there is no common belief agreeable bet at ω.

In the other direction, suppose that there is no common delusional prior. Then
there can be no common (standard) prior over bQ(ω′) regarded as a knowledge
structure, because if there were such a prior µ, it could be extended to a common
delusional prior µ̂ over all of bQ(ω) simply by setting

µ̂(ω′′) =

{
µ(ω′′) if ω′′ ∈ bQ(ω′)
0 otherwise.

We can then apply the standard No Betting Theorem for knowledge structures to
conclude that there is a common knowledge agreeable bet {f1, . . . , fn} over bQ(ω′)
as a knowledge structure, which is a common belief agreeable bet over bQ(ω′) as
a belief structure. Applying Lemma 10, this can be extended to a common belief
agreeable bet over all of bQ(ω), which is what was needed to be shown.

References

Aumann, R. J. (1976), Agreeing to Disagree, Ann. Statist., 4(6), 1236–1239.
Bachrach, M. (1985), Some extensions of a claim of Aumann in an axiomatic model

of knowledge. J. Econ. Theory, 37 (1), 167–190.
Battigalli, P., and G. Bonanno (1999), Recent Results on Belief, Knowledge and

the Epistemic Foundations of Game Theory Review of Economic Studies, 64,
23–46.

Bonanno, G., and K. Nehring (1999), How to Make Sense of the Common Prior
Assumption under Incomplete Information, Int. J. Game Theory 28, 409–434.

Collins, J., (1997), How We can Agree to Disagree. Working paper.
Geanakoplos, J. (1989), Game Theory Without Partitions and Applications to Spec-

ulation and Consensus, Cowles Foundation Discussion Paper 914.
Geanakoplos, J., and H. Polemarchakis (1982), We Can’t Disagree Forever, Journal

of the Economic Theory, (28), 192–200.
Hart, S., and Y. Tauman (2004), Market Crashes without External Shocks, Journal

of Business, (77), 1–8.



DELUDEDLY AGREEING TO AGREE 30

Monderer, D., and D. Samet (1989), Approximating Common Knowledge with
Common Beliefs, Games and Economic Behavior, 1(2), 170–190.

Morris, S. (1996), The Logic of Belief and Belief Change: A Decision Theoretic
Approach, Journal of the Economic Theory, (69), 1–23.

Samet, D. (2008), The Sure-thing Principle and the Independence of Irrelevant
Knowledge, unpublished mimeo.

Samet, D. (2010b), Agreeing to Disagree: The Non-Probabilistic Case, Games and
Economic Behavior, (69), 169 – 174.

Samet, D. (2011), Common Belief of Rationality in Games of Perfect Information,
Working Paper.

Tallon, J. M., J C. Vergnaud and S. Zamir (2004), Communication Among Agents:
A Way to Revise Beliefs in KD45 Kripke Structures, Journal of Applied Non-
Classical Logics, (14), 477 – 500.

Tarbush, B. (2011), Agreeing to disagree with generalised decision functions, Uni-
versity of Oxford, Department of Economics, Working Paper.


