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Abstract

Do participants bring their own priors to an experiment? If so, do they share the same priors as the

researchers who design the experiment? In this article, we examine the extent to which self-generated

priors conform to experimenters’ expectations by explicitly asking participants to indicate their own

priors in estimating the probability of a variety of events. We find in Study 1 that despite being

instructed to follow a uniform distribution, participants appear to have used their own priors, which

deviated from the given instructions. Using subjects’ own priors allows us to account better for their

responses rather than merely to test the accuracy of their estimates. Implications for the study of

judgment and decision making are discussed.

Keywords: Prior probability distributions; Decision making; Experimental design

1. Introduction

In a classic article, Tversky and Kahneman (1983) reported that when naı̈ve respondents

were asked to reflect on their failure to use the conjunction rule properly, one of them said:

‘‘I thought you only asked for my opinion’’ (p. 300). This quote describes vividly how a

participant responds to experimental instructions according to the way she perceives the

problem. Furthermore, her perception seems very different from the intent of the expe-

rimenter. In other words, participants appear to rely on their own priors or models, which

do not necessarily coincide with those taken for granted by researchers designing the

experiments.
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This has important implications for how researchers interpret their experimental results

in the behavioral decision-making tradition, where participants’ responses are compared to

an ‘‘optimal’’ response based on some normative model, and the gap between the responses

is taken as evidence of a bias. Much less examined is the possibility that participants’ priors

may differ from those of the researcher (Suppes, 2007). In this article, we explore a possible

divergence in priors between those assumed by the researchers and those brought to the

experiment by participants. We ask: Do participants share the same priors as the researchers

who design the experiment? If not, does this divergence matter?

To answer these questions, we explicitly ask participants to indicate their own priors in

estimating the probability of a variety of events. We then compare their choices not only to

optimal choices that are prescribed by some normative model (e.g., Griffiths & Tenenbaum,

2006) but also against the most likely response that is derived from their own prior probabil-

ity distribution. Our experimental settings consist of (a) a version of the ‘‘Acquiring a Com-

pany’’ (AAC) problem (Samuelson & Bazerman, 1985); and (b) the ‘‘Beauty Contest’’

problem (Keynes, 1936). We chose these two problems because they are often used to illus-

trate judgmental biases. In both problems, there is a well-defined optimal behavior pre-

scribed by normative theories, and deviations from those established norms are taken as

evidence of judgmental bias or error. In addition, intelligent action in both problems

requires that a subject think about how others will act, and specifically about the distribution

of others’ beliefs.

We find that in our studies, the participants did not share the same priors as the research-

ers who designed the experiment. Furthermore, these differences matter. Specifically, in

both problems, the participants overbid in comparison with the optimal responses based on

the normative models. Yet, when we compare their responses to the most likely response

conditional on their prior probability distributions, we find that we can better account for

their responses.

Our work has important implications for research on judgment and decision making.

Existing research mostly concentrates on the ‘‘computation’’ aspect of participants and

often assumes that suboptimal responses to these problems arise from participants’ assigning

improper weights to their priors. We show, however, that these deviations may be partially

due to participants’ adoption of a set of priors which differs from those assumed by the

researcher and are based on normative theories. This is a different source of error—the fact

that participants themselves may have a very different idea about the experiment. To the

extent that participants respond to experimental instructions according to the way they

perceive the problem, our work implies that their priors should be collected, studied, and

analyzed.

It is important to note that we argue that we may be able to predict subjects’ behavior bet-

ter if we know they rely on priors derived from their own subjective distributions. We do

not claim that such knowledge allows us to explain why they perform suboptimally on such

tasks, or that it eliminates suboptimal performance. Indeed, our results replicate prior find-

ings on suboptimal judgment. However, it is clear that people inject subjectivity into their

interpretation of the problem, and that this predicts the choices they make. Thus, knowledge

about subjects’ priors can help us understand how subjects arrive at their judgments. In this
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article, we are interested in the descriptive aspect of behavior, not in how behavior departs

from the normative perspective.

2. Study 1

Do subjects share the same priors as the researchers who design the experiment? Our

setting was a version of Samuelson and Bazerman’s (1985) ‘‘AAC’’ problem, which asks

participants to determine an offer price for a company based on the uncertain outcome

(uniformly distributed between $0 and $100 ⁄ share) of its oil exploration project. Since the

target has access to the true value, the distribution only represents the acquirer’s uncertainty.

Due to potential synergies, the target is worth 50% more to the bidder than to the current

owner. Informational asymmetries between the target and the acquirer dictate that the

rational offer price is zero. To see this, consider a participant who bids any positive amount

x between 0 and 100. If the offer is accepted by the seller, the true value must be between 0

and x. Effectively, the fact that an offer is accepted narrows the range of possible values

from [0,100] to [0, x]. As a result of this truncation, assuming that the participant actually

does assume a uniform prior (i.e., he or she believes that all the outcomes of the oil explora-

tion are equally likely), the expected value of the firm is 0.5x (and 0.75x to the bidder).

Thus, the bidder is expected to lose an amount equal to (x ) 0.75x). The profit-maximizing

(or loss-minimizing) and rational bid should be zero (i.e., not to bid at all). Therefore, a sub-

ject’s ‘‘overbid’’ is defined by the entire amount of x (the difference between the actual bid

and the optimal bid).

AAC remains one of the most persistent puzzles in the behavioral decision-making litera-

ture. In most studies (e.g., Carroll, Bazerman, & Maury, 1988; Ball, Bazerman, & Carroll,

1991; Selten, Abbink, & Cox, 2005), participants (over)bid a sum between $50 and

$75 ⁄ share. This behavior is typically attributed to a failure to consider the incentives of

other players and ⁄ or rules of the game, or to risk taking. Though participants were shown to

do better after seeing an unrelated set of puzzles such as the Monty Hall Problem (Idson

et al., 2004), overbidding seems to be robust to a variety of decision support features (e.g.,

Bereby-Meyer & Grosskopf, 2008; Grosskopf, Bereby-Meyer, & Bazerman, 2007).

A key aspect of the problem, however, is that the optimal offer of zero is conditional on

respondents’ assuming a uniform distribution of potential values for the target. Subjects are

explicitly instructed that ‘‘all values between 0 and 100 are equally likely.’’ Even without

explicit instructions, respondents should assume uniformity in priors because in the AAC

context, uniformity represents ‘‘ignorance priors’’ (cf. Fox & Rottenstreich, 2003). Accord-

ing to the principle of insufficient reason advanced by Leibniz and Laplace, ‘‘if we see no

reason why one case should happen more than the other, then these cases should be treated

as equally likely’’ (cf. Laplace, 1776, Leibniz, 1678, quoted in Hacking, 1975, pp. 132;

chap. 14, respectively).

To our knowledge, no studies have explicitly asked participants for their own priors or

tested whether these are truly uniformly distributed. Participants are simply assumed to

follow this instruction and use it in their decisions. We set out to elicit participants’ prior
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probability distributions directly and to examine how these distributions are used in deter-

mining an offer.

2.1. Participants and procedures

Seventy-nine undergraduate business students from New York University responded to

one of the two versions of the AAC scenario (we kept substantive details the same as

Samuelson and Bazerman’s, while condensing and simplifying the wording). In the

‘‘informed’’ version, we retained and underlined the phrase (‘‘All values within the range

are equally likely’’) employed in previous studies to instruct respondents to assume a

uniform prior distribution with respect to the outcome of the oil exploration. In the ‘‘unin-
formed’’ version, we eliminated this sentence, providing no instruction as to the nature of

the prior probability distribution.

We asked participants to indicate their priors about the target’s values by assigning prob-

abilities to values between $0 and $100, in $10 increments (see Appendix A). We then

asked them to decide how much, if anything, to offer for the target. Finally, we added a

second stage, in which participants bidding over $50 were told that their offers were

accepted and the rest told that their bids were rejected. We then asked them to come up with

probability distributions and offers for a second, similar target company.

2.2. Results

We first classify subjects’ prior distribution into four categories: (a) Uniform: if the

subject’s probability assessment is 10% for each of the 10 intervals; (b) left skewed: if the

sum of the subject’s probability assessment for intervals below $50 is less than the sum of

his or her probability assessment for intervals above $50; (c) right skewed: if the sum of the

subject’s probability assessment for intervals below $50 is more than the sum of his or her

probability assessment for intervals above $50; and finally (d) symmetric: if the subject’s

probability assessment is symmetric around the intervals $40–$50 and ⁄ or $50–$60 (see

Appendix B for details).

Table 1 exhibits the frequencies of different priors according to the two experimental

conditions: whether subjects are told explicitly to assume uniformity or not.

As seen from Table 1, contrary to experimenters’ expectation, only about 41% of the par-

ticipants assume uniform priors. The remaining 59% do not. Even when respondents were

Table 1

Classification of participants’ prior distributions

Left Skewed Symmetric Right Skewed Uniform

Not told 10 7 12 16

Told 5 7 6 16

Total 15 14 18 32

Percentage 19% 18% 23% 41%
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explicitly instructed to assume uniformity, only 47% actually did so. Apparently, they either

ignored or did not understand the simple instruction that all values were equally likely.

Without explicit instruction (i.e., in the ‘‘uninformed’’ version), the proportion of respon-

dents assuming uniformity fell still further, to 36%. Even in an ‘‘ignorance prior’’ situation,

respondents did not naturally assume a uniform distribution, and their priors differed consid-

erably from the instructions. This implies that as experimenters, we can no longer assume

that uniformity is the implicit prior, which all subjects actually use in their decision-making

process. Other, nonuniform, priors clearly play a role. Furthermore, we find that that there is

no significant relationship between priors and instruction (i.e., whether the subjects were

told or not told that they should have assumed uniformity), v2 (3, n = 79) = 2.1772,

p = .54.

Consistent with prior studies, respondents overbid (average bid was $56.87). However,

can we explain the extent of overbidding by subjects’ actual prior probability distributions?

Our conceptual argument is that part of the subjects’ apparently irrational behavior may be

subjectively rational, that is, consistent with their subjective priors. Thus, what appears to

be irrational may in fact be ‘‘rational’’ in the sense that the behavior can be explained by

priors differing from those assumed by normative theories and experimenters. Implicit in

our argument is a shift in the underlying benchmark of ‘‘rationality’’—from an objective,

normative definition to one which is subjective and individualistic. To answer this question,

we compute the optimal bid implied by a participant’s prior probability distribution. If this

implied optimal is close to the actual offer, we may infer that participants’ choices are at

least consistent with their own priors, though they may still be overbidding according to a

normative model. According to the normative theory, any positive bid above zero is not

rational. Thus, the amount of (objective) overbidding, as compared to the rational bid of

zero, is comprised of the entire positive bid. However, from our perspective, attributing any

positive bid to irrationality ignores the possibility that subjects may have come to the prob-

lem with different priors from uniformity. For instance, a subject assumes a left-skewed

prior, then his or her higher bid is consistent with his or her beliefs about B’s value (which

is believed to be high). We therefore conjecture that at least part of the positive bid may be

attributed to subjects’ priors diverging from those assumed by the experimenters. Because

priors are by definition subjective, there is no right or wrong prior.

Specifically, for each subject, we empirically examine the degree of (subjective) overbid-

ding, which is the difference between the actual bid and an implicit, subjectively optimal

bid conditional on the subject’s prior. Instead of using an objective benchmark in the form

of the normative, rational bid of zero, we compare the actual bid with a subjective mea-

sure ⁄ benchmark for rationality. In other words, instead of computing overbidding with

respect to a normative level of zero, we now compute an implied rational bid, conditional
on each subject’s priors.

To measure the degree to which participants’ offers were consistent with their actual

priors, we calculated the implied expected value of the target firm. We took each partici-

pant’s actual prior probability distribution, and then truncated the distribution by the offer

price the participant made. Since one should not expect the value of the target to be higher

than the offer price, it is reasonable to infer that the true value of the target should lie below

748 C. Fang, S. Carp, Z. Shapira ⁄ Cognitive Science 35 (2011)



a participant’s offer. We then calculated the implied optimal bid (conditional on each partic-

ipant’s priors) by taking the average (expected) value of the target given the truncated prior

distribution for each participant, and multiplying this by 1.5. If this implied optimal bid was

less than the actual offer, participants clearly overbid and their choices were not consistent

with their own prior beliefs.

Here is an example. Suppose that a subject’s prior is right skewed and has the following

probabilities: .3, .3, .1, .1, .1, .1, 0, 0, 0, 0 over the intervals 0–10, 10–20, 20–30, 30–40, 40–

50, 50–60, 60–70, 70–80, 80–90, 90–100, respectively. The subject’s actual offer is $40.

This offer indicates that the subject believes that the actual value of the target is from [$0,

$40], that is, to the left of the cutoff. We then calculate the expected value of the target

given this truncated prior distribution = [0.3*5 + .3*15 + .1*25 + .1*35)] ⁄ (.3 + .3 +

.1 + .1) = $12 ⁄ .8 = $15. Since the target’s value is worth 50% more, the subjective optimal

value is $15*1.5 = $22.50, resulting in subjective overbidding of $40–$22.50 = $17.50.

Fig. 1 plots subjects’ actual bids, which we now decompose into two components: (a) a

first part due to incorrect priors; and (b) a second portion attributable to incorrect computa-

tion or insufficient understanding of probability theory. The first component of the bid is the

difference between the implicit rational bid and zero. This difference arises from priors, spe-

cifically from subjects not believing the kind of uniform priors experimenters assume. The

second component, defined as the difference between a subject’s own expected value of B

and his or her bid, is the only component attributed to irrationality, per se. If a subject’s

implicit optimal bid is X (inferred from his or her priors), and he or she bids Y, then the dif-

ference between X and Y is the amount of ‘‘subjective’’ overbidding. This can result from

many failures of rationality, including failure to account for others’ motives as a result of

asymmetric information (i.e., game-theoretic reasoning) and inability to compute expected
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Fig. 1. (1) Average implied value of the target; (2) actual bids; and (3) the magnitude of overbidding (actual

offer—implied value).
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value or to apply basic principles of probability theory. These issues have been examined

extensively in prior literature (e.g., Bereby-Meyer & Grosskopf, 2008; Grosskopf et al.,

2007). The overbidding resulting from these failures represents the residue portion of the

actual bid that cannot be explained by the subject’s (potentially incorrect) priors. We con-

sider this the true extent of ‘‘irrationality.’’

As shown in Fig. 1, there is a significant effect of priors in (a) the chosen numbers

(F(3, 75) = 10.72, p = .00); (b) subjective optimal bids (F(3, 75) = 22.60, p = .00); and (c)

overbidding (F(3, 75) = 9.25, p = .00). First, both implied optimal bids and actual bids vary

sensibly as a function of the particular prior distribution the participant assumed. Specifi-

cally, those who have left-skewed priors (i.e., their priors are centered on high values) tend

to extend significantly higher bids than the rest, while those with right-skewed priors have

implicit rational bids that are predictably and significantly lower than the rest of the

participants.

Second, participants assuming a prior distribution skewed toward higher values ended up

with the smallest overbidding. They believed, whether reasonably or not, that the outcome

of the oil exploration was likely to be highly successful. Thus, to them, some positive offer

price was justified. Those who assumed a left-skewed distribution of oil exploration out-

comes (thus believing that the outcomes are most likely concentrated on higher values)

exhibited an average implied optimal bid of $74.35, which is very high compared to other

participants. The actual bids of this group were slightly lower, averaging $71, which means

that they actually ‘‘underbid’’ slightly (by $3.80). The magnitudes of overbidding were

)$3.80, $1.47, $5.17, and $12.84, respectively, for participants assuming left-skewed

(higher value), symmetric (but nonuniform), right-skewed (lower value) and uniform prior

distributions.

Overall, subjects’ implied optimal bids account for 70% of the variance in their actual

offers (B = 0.79, p < .00) and are significantly and positively correlated: r(77) = .81,

p = .00. These overall patterns demonstrate that divergent priors explain to some extent the

pattern of ‘‘irrational’’ behavior we observe. Even though subjects may still be overbidding

objectively (relative to the optimal bid of zero), their choices are consistent with their own

priors.

The average amount of (subjective) overbidding, conditional on each subject’s prior, is

about $3.92. The average amount of (objective) overbidding, on the other hand, is the entire

amount of the actual bid (i.e., $57). Clearly, the extent of irrationality (having accounted for

subjects’ beliefs) is much less than commonly believed where experimenters presume unifor-

mity. Subjects may simply be coming to the problem with different assumptions and these

differences matter as they potentially explain behavior previously labeled as ‘‘irrational.’’

How rationally will subjects respond to new information in the second part of the experi-

ment? Of the total 79 subjects, we decided randomly whether their first-round offers were

rejected or accepted—34 subjects were told that their offers were rejected, and the remain-

ing 45 told otherwise. They were then asked to generate probability distributions and offers

for a second, similar target company.

We find that 19 out of the 34 subjects with rejected offers (56%) changed their priors,

while only 16 out of the 45 with accepted priors (26%) did. As seen in Table 2, of the former
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group, 63% (12 out of 19) shifted their priors to be left skewed, reflecting a belief that the

real value of the target is more concentrated in the higher values. In contrast, of the latter

group (i.e., those who changed priors after their offers were told to be accepted), the domi-

nant tendency (i.e., 8 out of 16, 50%) was to shift their priors to be right skewed. This

change reflects, again, a sensible shift in beliefs which are concentrated in the lower ranges.

Even when subjects did not indicate a change of priors, their bidding behavior often chan-

ged to take into account the new information (i.e., accept or reject). We tabulate below the

contrast in (a) actual offers; (b) implied optimal; and (c) overbidding, between those with

rejected and those with accepted first offers. As can be seen in the average numbers and

standard deviations in Table 3, there is a significant effect.

First, for those with rejected first offers, their second actual bid is higher (t(33) = )5.73,

p = .00, two-tailed) and their second implied optimal is higher (t(33) = )5.28, p = .00, two-

tailed). Subjects responded to rejected initial offers by increasing their actual offers, which

were backed up by their actual beliefs, as shown in higher implied, subjective optimal num-

bers. We observe not only that subjects changed their actual bids sensibly but also revised

their underlying priors (as reflected in their implicit, subjective rational bids conditional on

their respective priors) in the expected direction. However, there was no difference between

the degree of overbidding in the first and second rounds (t(33) = 0.98, p = .33, two-tailed).

Recall that the degree of overbidding can be considered a proxy of the degree of subjective

irrationality. Consistent with our overall argument, there is no reason to expect that subjects

become more or less irrational during the course of the game, and the lack of significant

change in the amount of overbidding confirms it.

Table 2

Frequencies of subjects who changed priors in the second round

Rejected Accepted

No. who changed priors 19 16

To the left skewed 12 3

To the right skewed 2 8

To the symmetric 4 4

To the uniform 1 1

Total number of subjects 34 45

Table 3

Tabulation of offers across the two conditions—those whose first offers

were either accepted or rejected

Rejected Accepted

1st actual offer 55.63 (SD = 3.71) 56.89 (SD = 3.10)

2nd actual offer 70.82 (SD = 4.61) 45.88 (SD = 3.25)

1st implied optimal 47.70 (SD = 3.83) 47.69 (SD = 3.83)

2nd implied optimal 65.05 (SD = 4.92) 65.05 (SD = 4.92)

1st overbidding 7.93 (SD = 2.16) 4.99 (SD = 1.82)

2nd overbidding 5.77 (SD = 2.67) 3.15 (SD = 2.29)
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Subjects with accepted first offers extended lower actual bids in the second round

(t(44) = 4.04, p = .00, two-tailed), while their second round optimal bids were higher

(t(44) = 3.25, p = .00, two-tailed). They responded to the accepted offers by decreasing

their second offers, which was consistent with their actual beliefs as reflected in lower

implied, subjective optimal numbers. As expected, there was again no difference between

the degree of overbidding in the first and second rounds (t(44) = 1.04, p = .31, two-tailed).

These additional analyses provide rather conclusive evidence that subjects responded

rationally to new information, updating their prior beliefs accordingly for the next bid.

2.3. Discussion

In tackling a generic probability-based problem such as the AAC, it is helpful to consider

varying degrees of rational behavior exhibited by human subjects. First, subjects may have

different priors from those believed by researchers to be normative or appropriate. Second,

even assuming that a subject does adopt the normative prior, she may or may not incorpo-

rate the inherent information asymmetry. Of course, a rational subject should realize that, if

her offer is accepted by the target who knows the true value of the firm (a situation of asym-

metric information in game-theoretic terms), then the true value must lie below the offer.

However, subjects may not fully comprehend the nature of asymmetric information and thus

fail to account correctly for the incentives of the bargaining partner. Third, even if we

assume that the first and second criteria of rationality are satisfied, subjects may or may not

compute expected value correctly, given a prior probability distribution—they may simply

not know how, may multiply incorrectly, etc.

We consequently define these three—roughly nested and not mutually exclusive—

sources of ‘‘errors’’: (a) incorrect priors; (b) failure to truncate as a result of a lack of game-

theoretical knowledge; and (c) lack of computational knowledge (e.g., probability theory).

The conventional wisdom in research on behavioral decision making (e.g., Bereby-Meyer &

Grosskopf, 2008; Grosskopf et al., 2007) is to attribute any bias primarily to a failure to con-

sider the incentives of other players and ⁄ or rules of the game, and secondarily to gam-

bling ⁄ risk taking. In other words, existing research focuses on the latter two sources of

error. Any deviation from expected, normative behavior (e.g., a bid of zero) is attributed to

the failure of subjects to truncate their priors (error 2) and ⁄ or the inability to calculate

expected value for a given prior distribution (error 3). Our results also lend support to these

views. Even subjects who share the correct probability distribution (i.e., uniformity) for the

task still fail to give the normative response. Among the 32 subjects who assumed unifor-

mity in our study, the average bid was $57.88. The average implied optimal bid for these

subjects was $45.04, leaving the amount of subjective overbidding as $12.84. The behavior

of these subjects can be attributed to failures detailed in the existing literature (e.g., errors 2

and 3).

Our work ventures beyond the existing research by exploring the existence of the first

error (incorrect priors) and its potential efficacy as an explanation for apparently suboptimal

behavior. Our first question is a descriptive one: Do people actually have divergent priors?

We find that a substantial portion of them do indeed hold priors which differ substantially
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from those assumed by researchers. Secondly, we find that this fact contributes considerably

to explaining subjects’ behavior in the AAC game.

3. Study 2

A natural question arises: Can participants’ priors help explain their experimental

responses even when the normative response is not dependent on any predefined priors? To

examine this issue, we employed the ‘‘Beauty Contest’’ problem, which is frequently used

to study the power and limits of iterative reasoning. In this game, first proposed by Keynes

(1936), participants pick a number between 0 and 100, and the winning number is that clos-

est to 2 ⁄ 3 of the average of all the numbers chosen. Since the payoff depends on one’s beliefs

about others’ beliefs, the game provides a convenient setting in which to study priors.

The optimal bid for this problem is zero, a response that is independent of the kind of

priors participants may assume. To see this, consider a rational player. She should never

choose a number above 67 (100 · 2 ⁄ 3). This is because even if one assumes that everybody

else bids the maximum of 100, one should not bid more than 2 ⁄ 3 of 100, according to the

rules of the game. If she believes that others are also rational, she will not pick a number

above 100 · 2 ⁄ 3 · 2 ⁄ 3; and if she believes that the others are rational and that they too

believe all players are rational, she will not pick a number above 100 · 2 ⁄ 3 · 2 ⁄ 3 · 2 ⁄ 3 and

so on, until all positive numbers are eliminated. However, studies find that although players

do learn as the game is repeated, the optimal response of zero is almost never reached (Na-

gel, 1995; Ho & Weigelt, 1996; Thaler, 1988). If iterative thinking does not entirely explain

subject behavior, though, what else can explain it? So far, no studies have directly investi-

gated players’ beliefs about probability distributions. Leaving aside the issue of whether

subjects behave optimally or not, we show that an understanding of participants’ priors may

better illuminate the choices they make.

3.1. Participants and procedures

Seventy-seven undergraduate business students from New York University participated

in this study for course credit. They were given the rules of the game, then asked to (a)

choose a number; and (b) illustrate graphically their beliefs (on a grid marked in deciles 0–

10,…, 90–100) about the distribution of numbers chosen by a class of 100 participants

including themselves (see Appendix B). Thirty-nine participants were asked to estimate the

Table 4

Frequencies of different priors, across the two experimental conditions

Left Skewed Symmetric Right Skewed Uniform

Before 3 (7%) 3 (7%) 31 (74%) 5 (12%)

After 4 (11%) 4 (11%) 27 (77%) 0 (0%)

Total 7 (9%) 7 (9%) 58 (75%) 5 (6%)
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distribution before choosing a number, and the other 38 after choosing the number. We did

not permit those in the ‘‘after’’ group to change the number they chose before their priors

were elicited.

3.2. Results and discussion

First, as seen in Table 4, we find that regardless of whether we elicited probability distri-

butions before or after the subjects chose their numbers, the percentages of those assuming

different priors did not vary, v2 (3, n = 77) = 4.9663, p = .17. Across the two versions, a

majority (75%) of subjects overall assumed a positively skewed prior distribution.

The average number selected was 33.48 (SD = 21.11). Consequently, the winning num-

ber was 22, the integer closest to 22.32. Consistent with previous studies, it is clear that the

average participant selected a number much higher than the optimal choice, zero. Can we

partially explain this behavior using self-generated priors? To determine whether our results

were consistent with the participants’ priors, we calculated each participant’s implicit win-

ning number given her priors about the overall distribution of the numbers picked. To gener-

ate this ‘‘implicit’’ figure conditioned on her priors, we computed the expected value of her

prior distribution (without truncation), then took two-thirds of this value. If a participant

was coherent in her calculation, this implicit number should be very close to the number she

chose.

First, as can be seen from by the frequencies cross-tabulated in Table 5, we find no signif-

icant effect of version in (a) the chosen numbers (F(1, 75) = 1.89, p = .17); (b) subjective

optimal (F(1, 75) = 0.77, p = .38); or (c) overbidding (F(1, 75) = 1.49, p = .23). Respon-

dents who specified a probability distribution before choosing a number and those doing so

afterward do not appear to behave differently. This implies that even if they are not directly

asked to define their priors (i.e., in the ‘‘after’’ version), participants may already have some

probability distribution in mind when deciding upon a strategy.

Second, we find a significant effect of prior distributions. As seen in Table 6, subjects

professing different priors have significantly different (a) chosen numbers (F(3, 73) = 5.43,

p = .00); (b) subjective optimal numbers (F(3, 73) = 8.49, p = .00); and (c) amounts of

overbidding (F(3, 73) = 3.30, p = .03).

In addition, we compute the correlation between the actual number and the subjective

optimal for each type of prior. This correlation is significantly positive for right-skewed

priors: r(56) = .60, p = .00. For both left-skewed and symmetric priors, this correlation is

not significant, r(5) = .67, p = .09 and r(5) = .04, p = .94. For those with uniform priors,

Table 5

Bidding behavior of subjects, across the two experimental conditions

Chosen Number Average Subjective Optimal Average Overbid

Before 30.48 27.34 3.13

After 37.08 29.12 7.95
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the correlation cannot be computed since the subjective optimal numbers do not vary (i.e.,

fixed at 33.33 = 2 ⁄ 3*50).

The average of the ‘‘subjective optimal’’ numbers was 28.15 (SD = 8.85). Respondents

seemed to utilize their priors coherently, as the mean difference between this implicit win-

ning number and the actual winning number was small (5.32), though the two still are differ-

ent statistically (Mann–Whitney U Test: z(76) = 3.75, p < .001). This offers some

preliminary evidence that even in a problem where optimal response does not depend on a

prior distribution, a participant’s prior helps to explain observed results.

We also analyze in detail subjects’ responses to our post-experimental Q&A and find

even more telling evidence of their reliance on priors. Recall that we had gathered respon-

dents’ verbal descriptions of their thought processes at the end of the experiment. Most sub-

jects appear to have followed a two-step heuristic, first deciding on an ‘‘anchor,’’ which

was either an expected or average number (e.g., 50), and then adjusting based on what

others might have believed (e.g., multiplying the anchor by 2 ⁄ 3 in multiple iterations). Here,

are several excerpts from our experiment to illustrate this staged strategy:

I assumed the average would be around 50 and that 2 ⁄ 3 of that is 33. Therefore, I figured

most people would choose to pick 33. I pick 2 ⁄ 3 of 33, which is 24.

Theoretically, the average of all numbers would be 50. 2 ⁄ 3 of 50 is 33, so I assumed most

would put 33. If this is the case, by writing 22, I would be meaning 2 ⁄ 3 of this average.

Obviously if people continued this line of thinking, eventually, all numbers given would

theoretically be negligible from 0.

The class seemed large enough that it would have a normal distribution and the average

number between 1 and 100 is 50. However, students would know this and most likely

pick 2 ⁄ 3 of 50 putting the average at 33. Being at 2 ⁄ 3 of 33 yields my guess of 22.

I figured that most people were going to choose the numbers around the middle so the

average * 2 ⁄ 3 would be around 30.

From these accounts of their thought processes, it is clear that subjects first fixated on an

average number (based on their priors), and then chose various degrees of iterations. As seen

Table 6

Average chosen numbers, subjective optimal, overbidding figures as well as the correlation between the chosen

number and the subjective optimal, for each type of priors

Left Skewed Symmetric Right Skewed Uniform

(1) Chosen No. 61.43 30.29 30.25 36.20

(2) Subjective optimal No. 38.89 34.09 25.69 33.33

(3) Overbid 22.54 )3.81 4.56 2.87

Correlation (1) and (2) 0.67 (.09) 0.04 (.94) 0.60 (.00) n ⁄ a

Note. p values are inside parentheses.
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in Table 7, about 47% of subjects started with an anchor of 50, whereas another 17% used

100 as a starting point. They then carried out rounds of iterations to arrive at their chosen

numbers. For example, 15 subjects (41% of those with 50 as the anchor) documented their

own thought process as involving one iteration whereas 9 subjects (70% of those with 100

as the anchor) carried out more than three iterations.

It is very interesting that almost 64% of the subjects anchored on 50 or 100 as the starting

point. For some reason, 50 being the average and 100 being the maximum carried a lot of

weight in initially shaping their responses. Only when this ‘‘anchor’’ was set did they start to

take into account ‘‘what others might do’’ by iterating through various rounds of rationality.

About 20% of the subjects, however, followed some specific, idiosyncratic heuristic:

Most people will choose their favorite number, statistically most likely to be 3 or 5, or

their birthday. Thus, the majority of numbers will be below 31.

My number is 99. It is the last number with 2 letters. I thought that if I need to choose

one number between 1 and 100, I want to choose the number which is located at the last

with 2 letters.

My chosen number is my favorite number b ⁄ c of my birthday 07-19-1987.

The remaining 16% simply guessed or followed a nonspecific heuristic:

I chose randomly and liked that number.

I honestly guessed.

The evidence from participants’ responses further confirms our belief that even in a prob-

lem where optimal response is not dependent on a prior distribution, knowledge of a partici-

pant’s prior can shed significant light on observed empirical results.

One remaining question is whether subjects would respond to feedback and learn to

update their priors to ones that are more sensible. To explore this question, we ran an

iterated version of the Beauty Contest experiment, asking subjects to play the game three

consecutive times, and telling them the average and winning bids after each round. After

deleting subjects with incomplete rounds of data, we have 44 new subjects who completed

Table 7

The frequencies of different thought processes

Number of Iterations

Total Percentage0 1 2 3 or More

Anchor = 50 12 15 4 5 36 47

Anchor = 100 1 1 2 9 13 17

Specific 12 4 16 20

Random 12 12 16
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all three rounds of Beauty Contest. From the upper panel of Table 8, we first observe that

consistent with our original experiment, about 15% of the subjects (9 out of 44) revealed

priors other than right skewed. After receiving feedback and having the opportunity to learn

from their experience, the frequencies observed for different priors converge toward right

skewed. At Round 3, all subjects now have priors that are right skewed. We also computed

the subjectively optimal bid as well as the amount of overbidding. A one-way within subject

(or repeated measures) anova was conducted to compare the effect of round on the actual

bid, implied optimal bid and overbidding. We find that there is a significant effect of round

for the actual bids, Wilks’ Lambda = 0.417, F(2, 42) = 29.30, p = .00. Similarly, the effect

of round is also significant for the implied optimal bids, Wilks’ Lambda = 0.242, F(2,

42) = 65.84, p = .00. As expected, the amount of overbidding does not differ across rounds,

Wilks’ Lamdba = .897, F(2, 42) = 2.417, p = .101.

4. General discussion

As we demonstrated in these two problems, the observed biases (or deviations from nor-

mative behavior) can be due to the adoption of a different set of priors. Participants’ priors

differ substantially from those assumed by experimenters, and these differences are shown

to matter. In both problems, when we take into account the priors participants bring to the

experiments, we find that the extent of bias is much reduced and we can explain subjects’

behavior much better. Note, however, that we do not argue that participants’ performance

with regard to the goal of a particular study necessarily improves when their priors are

employed. Indeed, we replicated earlier results.

Our article complements a growing body of work showing that Bayesian models are

becoming more prominent in various cognitive sciences (Griffiths, Kemp, & Tenenbaum,

2008). Principles of Bayesian probabilistic inference have been applied to diverse research

programs ranging from visual scene perception (Yuille & Kersten, 2006), language process-

ing and acquisition (Chater & Manning, 2006), to symbolic reasoning (Oaksford & Chater,

2001). This recent body of literature has mostly focused on the degree to which probability

updating follows a Bayesian rule (for a notable exception, see Griffiths & Tenenbaum,

Table 8

Round by round data for an iterative version of the Beauty Contest game

Round 1 Round 2 Round 3

Left skewed 4 1

Symmetric 4

Right skewed 35 43 44

Uniform 1

Total 44 44 44

Chosen number 26.51 16.20 6.75

Subjective optimal 23.14 13.86 6.93

Overbidding 3.37 2.34 )0.18
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2009). We explore here an alternative, and much less examined, possible source of bias:

incorrect priors.

The reliance on one’s priors is found also in the work of McKenzie and his col-

leagues, who argue that participants bring ‘‘extra-experimental knowledge’’ to the task

at hand in the form of multiple, competing hypotheses. They show, for instance, that

participants’ priors regarding the rarity of events can help explain some observed

biases (McKenzie, 2004; McKenzie & Amin, 2002; McKenzie & Mikkelsen, 2000,

2007).

Our work has important implications on research on judgment and decision making.

First, our results suggest that the existence and characteristics of priors can represent an

important element in evaluating judgment and choice. Just as anchor accessibility

results in insufficient adjustment (Epley & Gilovich, 2006), participants’ priors may be

a cause of judgmental errors. Therefore, an awareness of the actual distributions partici-

pants hold may enable us to understand better the roots of any judgmental biases or

errors.

Second, given the fundamental role of priors, soliciting participants’ priors may provide

further insight into the way they process information. In some cases, assuming ignorance

priors (Fox & Rottenstreich, 2003) is appropriate, but in others, it may not be. In such cases,

experimenters may need to elicit participants’ priors, rather than assume participants use the

information provided. While manipulation checks are administered post hoc to insure cor-

rect inference about causality in most studies, these cannot guarantee that participants oper-

ate solely according to the information provided by the experimenter. If the purpose of an

experiment is to test a particular hypothesis of whether participants behave according to a

certain rule, manipulation checks provide a good supporting mechanism. However, search-

ing for the source of potential bias in participants’ behavior may require additional investi-

gation such as the solicitation of prior distributions, as demonstrated in the studies reported

in this article. Methods such as think-aloud verbal protocols (Ericsson & Simon, 1993;

Payne, 1994; Tor & Bazerman, 2003) provide an example of how such information can be

collected.

Finally, our results may shed some light on a potential way to improve judgment under

uncertainty. The normative perspective argues that people will learn from their failure and

will eventually put the appropriate weight on their own priors as well as on objective data

they are provided with. According to this perspective, researchers assume that the improve-

ment will result from teaching them Bayes’ formula. Our view is that better learning may

result from focusing subjects’ attention on the differences between their own and some

larger sample-based prior probability distributions.
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Appendix A

I. Study 1 Questions

PART I. You are CEO of Company A, which is considering acquiring Company B. The

value of B depends directly on the outcome of a major oil exploration project. The more oil

is found, the more Company B is worth, up to a maximum of $100 ⁄ share. If no oil is found,

however, B will be worth nothing – $0 ⁄ share. According to the information, all values

within this range are equally likely. You (Company A) have the most efficient technology in

the oil business, so B would be worth 50% more under your management than under its cur-

rent management. That is, if B is worth X under current management, it would be worth

1.5X to you. You must determine the price (ranging from 0 to infinity) to offer per share of

B. Your dilemma is this: B knows the results of the exploration project, but you do not.

However, if you are going to make an offer, you must make it now. B will accept your offer

as long as it is economically profitable from its own point of view. What do you think is the

probability (in percentage terms, from 0 to 100) that the oil exploration will result in B’s

value (under its current management) being:

between $0 ⁄ and $10 ⁄ share? ______ %

between $10 ⁄ and $20 ⁄ share? ______ %

between $20 ⁄ and $30 ⁄ share? ______ %

between $30 ⁄ and $40 ⁄ share? ______ %

between $40 ⁄ and $50 ⁄ share? ______ %

between $50 ⁄ and $60 ⁄ share? ______ %

between $60 ⁄ and $70 ⁄ share? ______ %

between $70 ⁄ and $80 ⁄ share? ______ %

between $80 ⁄ and $90 ⁄ share? ______ %

between $90 ⁄ and $100 ⁄ share? ______ %

Remember your percentages should sum to 100! Given your assessment above of the

possible results of the oil exploration, what offer would you make (per share) for Company

B? Remember B is worth 50% more to you than it is to current management. My offer is:
$______ per share.

PART II. Your offer for B has not been accepted. What do you think this means? In

pursuance of your corporate expansion strategy, you are now considering making an offer

for Company C. C is engaged in exploring the oil concession next to B’s, and like B, its
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value (also ranging from $0 to 100) depends directly on the outcome of the oil exploration.

Like B, if C is worth X under current management, it is worth 1.5X to you. How would you

assess the probabilities for C, and what, if any, offer would you make? Probability (in per-

centage terms, from 0 to 100) that the oil exploration will result in C’s value (under its cur-

rent management) being:

between $0 ⁄ and $10 ⁄ share? ______ %

between $10 ⁄ and $20 ⁄ share? ______ %

between $20 ⁄ and $30 ⁄ share? ______ %

between $30 ⁄ and $40 ⁄ share? ______ %

between $40 ⁄ and $50 ⁄ share? ______ %

between $50 ⁄ and $60 ⁄ share? ______ %

between $60 ⁄ and $70 ⁄ share? ______ %

between $70 ⁄ and $80 ⁄ share? ______ %

between $80 ⁄ and $90 ⁄ share? ______ %

between $90 ⁄ and $100 ⁄ share? ______ %

My offer is: $______ per share.
PART III
To what extent was your offer decision affected by the fact that all share values from $0

to 100 were equally likely?

(not at all) 1 2 3 4 5 (very much)

To what extent was your offer decision affected by the fact that B was worth 50% more

to you than to current management?

(not at all) 1 2 3 4 5 (very much)

II. Study 2 Questions

What is your assessment of the distribution of the numbers chosen by the students in the

class (including yourself)?
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Appendix B: Classification of priors for data from Experiment 1

Our raw data for each subject is in the form of an array of numbers, each corresponding

to the probability that B’s value falls into one of the 10 equally spaced intervals. We classify

the observed arrays into four prior categories following the simple heuristics below:

1. Uniform: if the subject’s probability assessment is 10% for each of the 10 intervals.

2. Left skewed: if the sum of the subject’s probability assessment for intervals below
$50 is less than the sum of his or her probability assessment for intervals above
$50. In this case, the mass of the subject’s probability assessment is above the mid-

point; that is, $50.

3. Right skewed: if the sum of the subject’s probability assessment for intervals below
$50 is more than the sum of his or her probability assessment for intervals above
$50. In this case, the mass of the subject’s probability assessment is below the mid-

point; that is, $50.

4. Symmetric: if the subject’s probability assessment is symmetric around the inter-

vals $40–$50 and ⁄ or $50–$60.

Below we provide four quick examples for each category:

Intervals Subject A

(Left skewed)

Subject B

(Right skewed)

Subject C

(Uniform)

Subject D

(Symmetric)

$0 and $10 0 0.2 0.1 0.02

$10 and $20 0 0.3 0.1 0.05

$20 and $30 0.05 0.4 0.1 0.03

$30 and $40 0.1 0.1 0.1 0.2

$40 and $50 0.15 0 0.1 0.21

$50 and $60 0.3 0 0.1 0.2

$60 and $70 0.3 0 0.1 0.2

$70 and $80 0.1 0 0.1 0.03

$80 and $90 0.05 0 0.1 0.05

$90 and $100 0 0 0.1 0.02
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