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Abstract

We consider uncoupled dynamics (i.e., dynamics where each player

knows only his own payo¤ function) that reach Pareto e¢ cient and

individually rational outcomes. We prove that the number of periods

it takes is in the worst case exponential in the number of players.

1 Introduction

We are looking for "natural" dynamics that lead to "good" outcomes. By

"good" outcome, in this paper, we mean Pareto e¢ cient ; i.e., an outcome

such that there is no other feasible outcome that is better for all players.

Clearly, e¢ ciency is a prominent and desirable property. There are a few

reasonable properties that we should require of a "natural" dynamic. One

property is uncoupledness, which means that a player�s strategy depends on

his own payo¤ function only. Another reasonable property of a "natural"

dynamic is an acceptable speed of convergence to "good" outcomes: we

would like the speed of convergence not to be exponential. There are a
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few more resaonable properties of "natural" dynamic, but in this paper we

focus only on these two. We will attempt to show that even with these

two requirements of uncoupledness and acceptable speed of convergence a

"natural" dymanic does not exist.

Conitzer and Sandholm [1] introduced the idea of providing lower bounds

on the speed of convergence of uncoupled dynamics by considering the com-

munication complexity of the problem (see also Kushilevitz and Nisan [3]).

Then, Hart and Mansour [2] used this idea to prove that the communication

complexity of the Nash equilibria problem (pure or mixed) is exponential

in the number of players n. As a result, for every uncoupled dynamic there

exists an n-person game where the time it takes to reach a Nash equilibrium

is exponential in n.

In this paper we generalize the ideas from [2] in order to extend the result

to the problem of convergence to a Pareto e¢ cient payo¤. We prove that the

communication complexity of reaching an outcome that is individually ratio-

nal and Pareto e¢ cient is exponential in the number of players. Moreover,

we show that the trivial procedure where each player reports his entire pay-

o¤ function does not achieve much worse communication complexity than

the lower bound that we present.

In addition, we show that without individual rationality the communi-

cation complexity of Pareto e¢ ciency is polynomial in n.

2 Preliminaries

The notations are based on those in Hart and Mansour [2].

We use the standard notations for the strategic form game G. Let n � 2
be the number of players. Ai is the action set of player i. A := A1 � A2 �
:::� An is the action pro�le set. Denote by ui : A ! R the utility function
of player i, and by u = (u1; u2; :::; un) : A ! Rn the mapping. As usual,
u : A! Rn could be multilinearly extended to u : �(A)! Rn:

u(s) =
P
a2A

s(a)u(a)

2



where s(a) is the weight of s on a. Let s 2 �(A), we denote s(B) =
P
a2B

s(a),

for any subset B � A.
Let �nm be the set of all n-player games where each player has at most

m actions.

For every game G let

F (G) := Convfu(a)ja 2 Ag � Rn

be the set of all the feasible payo¤s, and let

PO(G) : = fs 2 �(A)j there is no x = (xi)ni=1 2 F (G)

such that ui(s) < xi for all i = 1; 2; :::; ng � Rn

be the set of Pareto optimal distributions.

The individually rational level of player i is de�ned by

vi = max
ai2Ai

�
min

a�i2A�i
ui(ai; a�i)

�
and let

IR(G) := fs 2 �(A)j ui(s) � vi for every i = 1; 2; :::; ng

be the set of all the individually rational distributions; i.e., every player

gets a payo¤ that is not less than what he could guarantee by any pure

action.

Finally let PIR(G) := PO(G)\ IR(G) be the set of Pareto optimal and
individually rational distributions.

Of course, strengthening the IR condition (e.g., minmax, maximum over

mixed strategies si 2 �(Ai), etc.) can only decrease the resulting PIR

set. For instance, IR includes the distributions from the folk Theorem.

Moreover, PIR includes the core of the game.

The set of IR distributions is never empty; for example, take the pure

a 2 A where for each i, the action ai 2 Ai guarantees vi. Therefore PIR 6=
?, because Pareto optimal distributions of any non-empty set is non-empty.
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2.1 Communication Complexity

We introduce here a brief sketch of the required de�nitions from the com-

munication complexity theory. For more details see [2] and [3].

x; y 2 f0; 1gK are the inputs of players 1 and 2 respectively, where K is

a �nite set. f(x; y) is the function that both players want to compute. The

players send bits to one another. At the end of the communication both

of them know the value of f . The rule by which both players send their

bits is called a protocol and denoted by �. The communication complexity

of a function f for inputs x; y and protocol � is the number of bits sent

during the communication, and is denoted by CC(�; f; x; y). Finally, the

communication complexity of a function f is de�ned by

CC(f) = min
�

�
max

x;y2f0;1gK
CC(�; f; x; y)

�
.

A well-studied function in communication complexity is the disjoint-

edness function, which operates on two subsets of S (or f0; 1gS � f0; 1gS

equivalently), where S is a �nite set, and de�ned by DISJS(S1; S2) = 1 i¤

S1 \ S2 = ?.
In this paper we will use the following result: CC(DISJS) = jSj (see [2]

and [3]).

This setup could be generalized to dynamics in game theory. A PO-

procedure for a family of games G, with a �xed action space A, is de�ned as
follows: each player i holds at the beginning of the procedure his own payo¤

function ui (the uncoupledness assumption). At each step player i chooses

an action ai 2 Ai, and observes the played action a (the "communication").
At the end of the procedure the players reach a distribution s 2 �(A) that
satis�es s 2 PO.

Remark 1 "Reach" should mean "play" in the game theoretical point of

view, and it should mean "know" in communication complexity point of view.

We will use the meaning of "know" but, as we will see it won�t matter.
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The PIR-procedure is de�ned identically.

In this setup, the strategies of the players induce a protocol of the pro-

cedure. Let tCC(�; PO;G) be the number of steps till the termination of

the procedure, and

tCC(PO;G) =min
�

�
max
G2G

tCC(�; PO;G)

�
.

tCC(PIR;G) is de�ned similarly.
The relation between tCC and CC is given by

1

log2 jAj
CC � tCC � CC.

3 The Results

First, we show that the communication complexity of the PO-procedure is

low (polynomial in the number of players):

Claim 2 CC(PO;�nm) � dn logme.

Proof. An example of a procedure that �nds a PO distribution in dlog2 jAje =
dn logme steps is the following: Player 1 informs the other players which
action a 2 A maximizes his payo¤ (it can be done in log2 jAj steps). At the
end of this procedure all the players know the distribution �a, which is a

Pareto optimal distribution.

But the procedure above can lead to an unreasonable payo¤ in terms of

individual rationality. The payo¤ of player i 6= 1 could be less than what he
could guarantee by some pure action.

Let us note that an IR distribution needs no communication:

Claim 3 CC(IR;�ns ) = 1.

Proof. This follows from the fact that each player knows his action ai0
that guarantees his individually rational level; therefore, after one step of

communication, where each player plays ai0, the players know an action

a0 2 A that satis�es �a0 2 IR.
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However, if we require both PO and IR, then the communication com-

plexity becomes exponential.

We present �rst a weaker theorem that proves it for n player games with

at least 3 action for every player. Above we will show that this is true also

for binary games. The Theorem for m � 3 is still interesting because we can
extend this result for approximated PIR and product PIR (see comments

1,2 in section 5) what we cannot do for binary games (m = 2).

Theorem 4 Any PIR-procedure has exponential (in the number of players)

communication complexity; i.e., for every m � 3

CC(PIR;�nm) � CC(PIR;�n3 ) � 2n:

Proof. We shall adapt the proof of Theorem 3 in Hart and Mansour [2] to

the PIR problem.

We consider the following set of games:

G =fG(T1; T2)jT1; T2 � f0; 1gng where the game G(T1; T2) is de�ned as

follows:

Let the set of players be1 f(l; i)jl = 1; 2 and i = 1; 2; :::; n=2g and let the
action set of each player be f0; 1; 2g. Clearly, if we prove the result for a
speci�c family of games where jAij = 3, then the result follows for all �nm
for m � 3.

We de�ne B := f0; 1gn, that is an subset of the action set A = f0; 1; 2gn.
The payo¤ function of player (l; i) is de�ned as follows:

ul;i(a) =

8>><>>:
3

0

2

if a 2 B and a 2 Tl
if a 2 B and a =2 Tl

if a =2 B

The pure individually rational level of all the players is at least 2 (each

player can guarantee it by playing a(l;i) = 2).

If T1 \ T2 = ?, then (u(1;1)(a); u(2;1)(a)) 2 f(0; 0); (0; 3); (3; 0)g for every
action a 2 B. Therefore, every PIR distribution s 2 �(A) satis�es s(B) =

1We assume that n is even.
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0, because positive weight on actions in B will decrease the payo¤ of one of

the players (1; 1) or (1; 2) below the individually rational level 2.

If T1 \ T2 6= ?, then there exists a� 2 B such that u(a�) = (3; 3; :::; 3).

So every PIR distribution s satis�es s(B) = 1, because for actions a =2 B
the payo¤ is u(a) = (2; 2; :::; 2), which is not Pareto optimal.

At the beginning of the procedure each player (l; i) can construct his

payo¤ function by knowing Tl only (without knowing Tk for k 6= l). At the
end of the PIR procedure every player can calculate whether T1 \ T2 = ?
(by calculating whether s(B) = 1 or s(B) = 0). Therefore every PIR-

procedure on the set of games G can induces a protocol of the DISJf0;1gn
function as follows: player l = 1; 2 how holds Sl constructs n=2 dummy-

players (l; i) with the payo¤ function as described above, and then they

simulate the PIR-procedure. At the end of the procedure the players know

whether T1 \ T2 = ?.
Therefore, we have

CC(PIR;�n3 ) � CC(DISJf0;1gn) = 2n.

By the same ideas we can prove the exponential lower bound for binary

games (m = 2).

Theorem 5 Any PIR-procedure has exponential (in the number of players)

communication complexity, i.e.,

CC(PIR;�n2 ) � 2n � 2n=2+1 + 1:

Proof. Let W � f0; 1gn be de�ned by

W = f(a1; a2:::an
2
; an

2
+1; :::; an)j(a1; :::an

2
) 6= (1; 1; :::; 1| {z }

n=2

) and (an
2
+1; :::; an) 6= (1; 1; :::; 1| {z }

n=2

)g.

The size of W is jW j = 2n � 2n=2+1 + 1.
We consider the following set of games:

G =fG(T1; T2)jT1; T2 � Wg, where the game G(T1; T2) is de�ned as fol-
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lows:

As in the previous proof the set of players will be f(l; i)jl = 1; 2 and

i = 1; 2; :::; n=2g and the action set of each player be f0; 1g.
The payo¤ function of player (l; i) is de�ned as follows:

ul;i(a) =

8>><>>:
1 + 1

n

1

0

if a 2 Tl
if a =2 Tl and a(l;i) = 1
if a =2 Tl and a(l;i) = 0

The pure individually rational level of all the players is 1 (each player

can guarantee it by playing a(l;i) = 1).

We claim that if T1\T2 = ?, then the only PIR distribution is the pure
distribution �(1;1;:::;1).

To simplify notations denote by �u(x) :=
n=2P
i=1
(u(1;i)(x) + u(2;i)(x)) the

sum of payo¤s of all the players for a distribution x.

First we prove that �u(a) � n � 1=2 for every a 6= (1; 1; :::; 1). If

(a(1;1); :::a(1;n=2)) = (1; 1; :::; 1), then a =2 T1; T2 because T1; T2 � W , so

�u(a) � n � 1. The same is true if (a(2;1); :::a(2;n=2)) = (1; 1; :::; 1). In the

remaining case where (a(1;1); :::a(1;n=2)) 6= (1; 1; :::; 1) and (a(2;1); :::a(2;n=2)) 6=
(1; 1; :::; 1), there are at most n=2 players that get a payo¤ of 1 + 1=n (be-

cause T1 \ T2 = ?), and at most n=2 � 1 players that get a payo¤ of 1
(because (a(l;1); :::a(l;n=2)) 6= (1; 1; :::; 1) for l = 1; 2). Therefore,

�u(a) � n

2
(1 +

1

n
) + (

n

2
� 1) � 1 = n� 1

2
.

Clearly, �u(1; 1; :::; 1) = n; now let x 2 PIR; then �u(x) � n because

each player gets at least 1, and so xa = 0 for a 6= (1; 1; :::; 1) because other-
wise �u(x) < n.

On the other hand, if T1 \ T2 6= ?, then there exists a pro�le where
every player gets a payo¤ of 1+1=n, and so for every x 2 PIR x(1;1;:::;1) = 0
because u(1; 1; :::; 1) = (1; 1; :::; 1), which is not Pareto optimal.

Summarizing, we get that if x 2 PIR if x(1;1;:::;1) = 1, then T1 \ T2 = ?,
and if x(1;1;:::;1) = 0, then T1 \ T2 6= ?. As in the proof of Theorem 4, we do
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a reduction from the PIR problem on games in G to the DISJW and we

get that

CC(PIR;�n2 ) � CC(PIR;G) �CC(DISJW ) = 2n � 2n=2+1 + 1.

4 Upper bound

In this section we present trivial procedure that achieves near optimal com-

munication complexity to the lower bound of theorem 5. This demonstrates

that for PIR problem naive procedure isn�t far from the optimal.

Let U i be a family of payo¤ functions of player i. For each a 2 A,

the encoding of the payo¤ of player i at a is enc(U i; a) := logjfui(a)jui 2
U igj; i.e., the number of bits required to encode the possible values of ui(a)
as ui varies over U i; the encoding of the family of games U is enc(U) :=

max
i=1;2;:::;n

max
a2A

enc(U i; a). For more details see [2] Section 5.

Proposition 6 Claim 7 For every n � 2 let Unr � �n2 be a family of

binary-action games whose encoding is at most r bits, i.e., enc(Unr ) � r.

Then,

CC(PIR;Unr ) � rn2n.

Proof. Each player can send to others his whole payo¤ function in r2n bits

(each payo¤ can be sent in r bits) after rn2n bits all the players will know

the payo¤ function. Now they can calculate a PIR distribution and they all

could select the same one by some selecting rule, for example: the players

has some common order over the distributions (for example lexicographic

order over the weights of the distribution), and they choose the �rst one2.

2The "�rst one" is well de�ned because the set of PIR distributions is closed.
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5 Comments

1. Approximated PIR Given " > 0, let "-PIR be the set of distri-

butions that lead to outcome that is " close3 to u(PIR). The exponential

result of the "-PIR problem for games in �nm where m � 3 can be de-

rived by a proof similar to this of Theorem 4: Consider the same family of

games, any "-PIR distribution s will satisfy s(B) � 2" if S1 \ S2 = ? and

s(B) � 1 � " if S1 \ S2 6= ?. Therefore, for " < 1
3 , the players can deduce

whether S1 \ S2 = ? from the "-PIR distribution.

While the Nash equilibria problem is known to be exponential and the

related Nash "-eqilibria problem remains an open question, in the PIR

problems same proof solves both PIR and "-PIR.

Note that the result of Theorem 5 for binary games cannot be generalized

to "-PIR in the same simple way.

2. Independent mixtures Consider the problem of �nding a PIR

product distribution, denoted by PIRpro. This set could be empty. For

example:
3; 0 0; 0 1; 1

0; 0 0; 3 1; 1

1; 1 1; 1 1; 1

If we consider the class of games where PIRprod 6= ? for games in

�nm where m � 3, and we de�ne the PIRprod-procedure to be a proce-

dure that terminates when every player knows his si 2 �(Ai), such that
s = (s1; s2; :::; sn) 2 PIRprod, then the communication complexity of this
problem is also exponential by the proof of Theorem 4, except that instead of

checking whether s(B) = 1 or s(B) = 0, now player i should check whether

si(f0; 1g) = 1 or si(f2g) = 1.
3By "close" we mean close in jj jj1 norm on F (G) � Rn.
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