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Abstract

We study thewar of attritionand theall-pay auctionwhen players' signals
are affiliated and symmetrically distributed. We (a) find sufficient conditions
for the existence of symmetric monotonicequilibriumbidding strategies; and
(b) examine the performance of these auction formsin terms of the expected
revenue accruing to the seller. Under our conditions the war of attrition
rai ses greater expected revenuethan all other other known sealed bid auction
forms.

1 Introduction

Since the classic work of Vickrey [19], the ranking of various auction forms in
terms of expected revenue has been the central question of auction theory (Mil-
grom [12] and Wilson [20] provide surveys). When the bidders are risk-neutral

*We are grateful to Erwin Amann, Paul Klemperer, Wolfgang L eininger and Robert Wilson for
helpful comments and discussions. The first author would like to thank the Center for Rationality
and Interactive Decision Theory at the Hebrew University for its generous hospitality during avisit
that contributed much to this project.



and their information about the value of the object isindependently and identically
distributed, the so-called “revenue equivalence principle” (see, for instance, My-
erson [15]) provides a complete answer to the revenue ranking question. When
the assumption of independence is relaxed, the answer is less well understood.
Utilizing the assumption that the bidders information is affiliated, Milgrom and
Weber [13] develop the most comprehensive set of revenue ranking resultsto date;
however, they restrict attention to “standard” auction forms in which only the
winner isrequired to pay.

In this paper, we extend the analysis of Milgrom and Weber [13] to auctions
with the property that losing bidders also pay positive amounts.® Specifically, we
examine the performance of two aternative auction forms, the war of attrition
and the all-pay auction. These auction forms share the common feature that all
losing bidders pay exactly their bids and differ only in the amounts paid by the
winning bidder. In the former, the winning bidder pays the second highest bid;
whereas in the latter, the winner pays his own bid. As such, they are analogous
to the standard second-price and first-price sealed bid auctions, respectively.? We
identify circumstancesin which the expected revenue fromthe auctions considered
here exceeds that from the corresponding auctions in which only the winner pays.
Thus, the war of attrition yields greater revenue than the second-price auction,
and the all-pay auction yields greater revenue than the first-price auction. We
also show that the war of attrition outperformsthe al-pay auction and thus yields
higher revenue than all known sealed bid auctions.

Our reasonsfor examining these aternative, “non-standard” auction formsare
threefold: First, from a mechanism design standpoint, the restriction to alloca-
tion schemes which require only the person receiving the object to pay seems
unwarranted. Second, although these forms may not be widely used in an auction
setting, the underlying games are natural models of conflict in many situations.
For instance, the war of attrition has been used as amodel for conflict among ani-
mals and insects ([10], [3]) and the struggle for survival among firms ([8]), while
the all-pay auction has been used to model the arms race ([17]) and rent-seeking
activity, such as lobbying ([5], [4]). Our third reason for considering these forms

10f course, in an auction with an entry fee each bidder would also pay a positive amount.
However, the amount would be fixed by the seller and, unlike the auctionswe consider, not depend
on the bid itself.

2Indeed, the “war of attrition” is perhaps better described as a “ second-price all-pay auction”
and the “al-pay auction” as a “first-price al-pay auction.” We have chosen, however, to retain
existing terminol ogy.



isthat, as our resultsindicate, they raise greater revenue than the forms previously
considered and hence are worthy of attention as auctions per se.®

This paper is organized as follows. Section 2 briefly describes the model
used in the analysis. Since this is the same as the model in [13], we eschew a
detailed description. As in [13], our maor assumption is that bidders signals
are affiliated. In Section 3, we find sufficient conditions for the existence of a
symmetric and increasing equilibrium in the war of attrition. Section 4 contains
a parallel development for the all-pay auction. In both the war of attrition and
the all-pay auction, we find that symmetric, increasing equilibriaexist if bidders
signals are not “too affiliated.” In Section 5, we develop revenue comparisons
between these auctions and the standard forms. These comparisonsform the basis
for the results reported above. Section 6 studies circumstances under which the
symmetric equilibriawe consider are unique in the class of increasing equilibria
Technical results are collected in two appendices. Appendix A contains some
useful results on affiliated random variables. Appendix B contains some results
relevant for Section 6.

2 Preliminaries

We follow the model and notation of Milgrom and Weber [13] exactly. Thereis
a single object to be auctioned and there are n bidders. Each bidder i receives a
real valued signal, X;, prior to the auction that affects the value of the object. Let
S=(5,%, ..., Sn) be other random variables that influence the value but are not
observed by any bidder. The value of the object to bidder i is then:

Vi=u(SX (X))

where u is non-negative, continuous, and increasing® in its variables.

TherandomvariablesS,, S, ..., Sy, X1, Xz, ..., X,y haveajointdensity f (S, X, Xz, ...

and the function f is symmetric in the bidders signals. The random variables
SIS, ..., S, X, X, .., X, are assumed to be affiliated, and it is assumed that
E[Vi] <co.

The reader should consult [13] for details.

SWhileit isknown that in common value settingsit is possibleto extract nearly al the surplus
([ 71, [11]), the mechanisms that do this depend on the underlying distribution of signals.
4Throughout the paper, the term “increasing” is synonymous with “strictly increasing.”
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In what follows, the random variable Y1 = max{X;};-1. Let fy, (- | X) denote
the conditional density of Y; given that X; = x, and let Fy, (- | X) denote the
corresponding cumulative distribution function. The variables X; and Y; are
aso affiliated; in Appendix A we derive some simple facts about the conditional
distribution, Fy, (- | x) , that are useful for our analysis.

Define v(x,y) = E[V1 | X1 =%, Y1 =Y]. Since X; and Y; are &ffiliated, v(X,y)
isa non-decreasing function of its arguments. Asin [13], we assumethat it is, in
fact, increasing.

3 Equilibriumin the War of Attrition

We model the war of attrition as an auction in the following manner. Prior to the
start of the auction each bidder, i, receives a signal, X;, which gives him or her
some information about the value of the object. Each bidder submits a sealed bid
of b;, and the payoffsare:

\Ni:

Vi — max; bj if b > max; bj
—b; if b < max; bj

#{lezb.}v' — bi if bi = MaX; zi bj
where i7j. We have assumed that if bj = max; by, the prize goes to each winning
bidder with equal probability.

The analogy with the classic war of attrition model of conflict among two
animals (Bishop, Canning and Smith [3]) should be clear. The derivation of a
symmetric equilibrium with independent private values, that is, when X; =V,
and the X;’s are independently and identically distributed, is well known (see, for
instance, [14]).

We begin with a heuristic derivation of the symmetric equilibrium strategy.

Suppose that players j#1 follow the symmetric and increasing equilibrium
strategy 3. Suppose player 1 receivesasignal, X; = X, and “bids’ b. Then player



1’'s expected payoff is:

~L(b)
NEx = [ EN =X Ya=y - A0 by (v dy
~ [1-Fu (5O [x)]b
o (1)
= | ) = BN (y | X) dy
—[1-Fy (37D | X)] b
Maximizing (1) with respect to b yields the first order condition:
M= (v(xB7Hb)) —b) fy, (570) | X) st
— [1=Fy, (570) | X)] + bfy, (5720) | X) 5525
(2
= v(x8740)) fy, (57D [ X) 5ty — |1 - Fu (5710) | X)]
=0
At asymmetric equilibrium, b = 3(x), and thus (2) becomes:
VO, () s L Py, (x 0] =0
Rearranging thisyields:
iy — VO Xy (X X)
6(X)— 1_FY1 <X|X) (3)
and thus: L0 (t] 1)
Wi Y1
) = /ool Fv, t|tdt “)

The derivation of (4) isonly heuristic because (3) ismerely anecessary condi-
tion, and the global optimality of 5(x) against 5 has not been established. Theorem
1 below provides a sufficient condition for 5 to be a symmetric equilibrium.

Definition 1 The hazard rate of the distribution, Fy, (- | X), is defined as:

fY1 (y | X)

I= TR R
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With affiliation, the hazard rate, A(y | X), is a non-increasing function of x
(Lemma2in Appendix A).

Definition 2 Let ¢ : ®2 — R be defined by: (X, Yy) = (X, Y)A(Y | X).

Theorem 1 Suppose that, for all y, (-, y) isanincreasing function. A symmetric
equilibriumin the war of attritionis given by the function 3 defined as:

309= [ XOO V(L DAt | et 5)

Proof. Let X denote the supremum of the support of Y;. If playersj#1 use the
strategy /3, thenit is never profitable for player 1 to bid more than 3(X).
If player 1 bids an amount, 3(2), when the signal is x, his or her payoff is:

NEY = [ (ENIX=x Y=y - 56 (v X dy
~ 1R 2101 50

—[1-Fy(z[x] 52

/ Zoo (V(x,y) — BTy (y | x) dy

or:

N@E0 = [ vt~ [ 50y dy

—1-F,2Z|X] 8@

[ vt v 19 dy = BOIFG [OF. + [ SRy ] ¥y
~ - Fv. 210150

| vt (v 19 dy — 5@Fa@I 0+ [* BOFly ] ¥dy
~ - Fv. 210150

[ vt 10 dy+ [ F IRy ] ¥y — 5

Using the fact that:
Ay) =V, Y)Y |Y)
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we obtain:

M@0 = [ vy v 10dy— 5@+ [ vy )R 0dy

[ vt 10y = [° My A 1)~ MDA [Py | 0] oy

1- FYl(y | XY|

[ vt 10 dy = [ iy 10A ) [ L)

[ (v - v |3 ety ey

z le(y | X)
xY) — ¢y, y)] ——d
| L) et S
Since, by assumption, (-, y) isanincreasingfunction, forally < x,[¢(X,y) — (Y, y)] >
0,and, foraly > x,[¢(X,Y) — (Y, Y)] <O0. Thus, IN(z X) ismaximized by choosing
Z=X
Finally, observe that the equilibrium payoff to a player who receives a signal
of xis:

/ Zoo VY, (Y [ ) dy — /_ ZOO BILAVARY Bg : ’)g] dy

0

X f
169 = [ 1oty = o0 Ty =

and thus each player iswilling to participate in the auction. O

Notice that ©(x,y) is the product of v(x,y) and A(y | X) where the former is
increasinginx, whilethelatter isdecreasinginx. Asaresult, ¢(-,y) isincreasingif
the affiliation between X; and Y3 isnot so strong that it overwhelmstheincreasein
the expected value of the object, v(-, y), resulting from ahigher signal, x. Of course,
the assumption is automatically satisfied if bidders signals are independent.

The assumption that (-, y) isincreasing can be replaced by the weaker condi-
tion that, for al x :

for a” y < X, [S‘Q(X’ y) - S‘Q(y’ y)] > O (6)
foraly>x[¢(xy) —¢(y,y)] <O0.
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since thisisal that is needed to ensure that I (z x) ismaximized at z = X.

As an example of a situation where the conditions of Theorem 1 are satisfied,
suppose n = 2, and let X (resp. Y) be the random variable that denotes bidder 1's
(resp. 2's) signal. Let:

f(xy) = g(1+xy) on [0,1] x [0,1] .

Then fy,(y | X) = 2354, and A(y | X) = zxiae- 1 V(X y) = x, then o(x,y) =

o, and it may be verified that (-, y) is an increasing function.

Next, let suppfyx denote the common support of the bidders signals, and let
x and X denote the infimum and supremum of suppfy, respectively. Of course, it
may be that x= —oc or X = oo or both.

Two features of the equilibrium strategy, (5) deserve to be highlighted. First, a
bidder receiving the lowest possible signal, X, bids zero. Thisistrue even if v(x, X)
is strictly positive. Second, as a bidder’s signal approaches X, his bid becomes
unbounded. Again, this holds even if the expected value of the object at X, v(X, X)

isfinite.

Proposition 1 Suppose that, for all y, ¢(-,y) isan increasing function. Then (i)
lim,_y 8(X) = 0; and (ii) limy_x 3(X) = oco.

Proof. (i) followsdirectly from (5).
To verify (ii), choose z such that v(z,2) > 0. From (5), we can write:

500 = [ vy |y

= /_ ZOO v(y, Y)A(y | y)dy + /Z Xv(y,y)A(y | y)dy

™
> [ v+ [ W@y | Ay

> [ v I ndy+ [z | 2y

where the first inequality follows from the fact that »(-,y) = v(-,y)A(y | -) is
increasing and the second from the fact that v(z, -) isincreasing.
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But now observethat for al y:

Ay|2) = —d%an[l— Fu(y| 2])

and thus:

1—Fy,(z] z)) ®

/Z Ayl z)dy= ln(m

Using (8) in (7) we obtain:

509> [ vy [y+vaain (113 )

1-Fy, (x| 2

Asx — X, Fy,(X | 2 — 1. This completes the proof. O

4 Equilibrium in the All-Pay Auction

In an all-pay auction each bidder submits a sealed bid of b; and the payoffs are:

Vi — by if b > max; bj
W =< —b if b < MaX; bj
#{lezb.}v' — bi if bi = MaX; zi bj

whereiZj. Asbefore, we have assumed that if b; = max; by, the prize goesto each
winning bidder with equal probability.

Once again it is useful to begin with a heuristic derivation.

Suppose playersj #1 follow the symmetric (increasing) equilibrium strategy «.
Suppose player 1 receivesasignal, X; = x, and “bids’ b. Then player 1's expected
payoff is:

a~(b)
Mo;x) = /_ E[Vi|Xi=X% Yi=y|fy,(y|xdy—Db

9)

a~(b)
= [ vyfuly |0y — b
Maximizing (9) with respect to b yields the first order condition:
= v(x a1 (b))fy (a7 (b) | x)m -1
(10)

=0



At asymmetric equilibrium, «(X) = b and thus (10) becomes:
o’ (X) = v(x, X)fy, (X | X) (1)

and thus:

a9 = [ vt By, (t] 1) dt

Once again, thederivationis heuristic since (11) isonly anecessary condition.
Definition 3 Let < : ®2 — R be defined by 1)(x,y) = (X, Y)fy,(y | X).

Theorem 2 Supposethat, for all y, «(-,y) isan increasing function. A symmetric
equilibriumin the all-pay auction is given by the function « defined as:

a(X) = /_ VL, (8] ) . (12)

Proof. Let X denote the supremum of the support of Y;. If playersj#1 use the
strategy «, then clearly it cannot be a best response for player 1 to bid more than
a(X).

If player 1 bids an amount «(2) when the signal is x, hisor her payoff is:

N(zx)

/_zOO E[Vi|Xi=X% Y=Y fy, (Y| X dy— a2

[ v (v 19 dy — a2

/ ZOO V(X )y, (y | X) dy — / ZOO vy, Y)fy, (y | y) dy

z
|y vyl dy
Since, by assumption, (-, y) isanincreasingfunction, forally < x,[¢(X,y) — ©(y,y)] >
0,and, forall y > x, [(X,y) — ¥(y,Y)] < 0. Thus, IN(z X) ismaximized by choosing
Z=X
Finally, observe that the equilibrium payoff to a player who receives a signal
of xis:

N = [ W&y - eyl = 0 (13

10



and thus each player iswilling to participate in the auction. O

It is useful to compare some qualitative features of the equilibrium strategy
(12) in the al-pay auction to the equilibrium strategy (5) of the war of attrition.
It is till the case that a bidder receiving the lowest possible signal, x, bids zero.
Thisistrue even if v(x, x) is strictly positive. However, in an all-pay auction, as a
bidder’ssignal approachesx, hisbid isbounded if the expected value of the object
at X, (X, X) isfinite. Thisisin contrast to the unboundedness of the bidsin thewar
of attrition.

Proposition 2 Suppose that, for all y, «(-,y) is an increasing function. Then (i)
limy_y a(X) = 0; and (i) limy_x a(X) < limy_x V(X, X).

Proof. (i) followsimmediately from (12).
To verify (ii) notice that from (13):

o= [ Vet Xy v [y dy

and as x — X, the right hand side tends to limy_.x3 v(X, X). O

5 Revenue Comparisons

In this section we examine the performance of the war of attrition and the all-pay
auction in terms of the expected revenue accruing to the seller. As a benchmark,
recall from Milgrom and Weber [13] that, with affiliation, the expected revenue
from a second-price auction is greater than the expected revenue from afirst-price
auction.

5.1 War of Attrition ver sus Second-Price Auction

Our first result isthat, under the condition that (X, y) isincreasing in x, therevenue
from the war of attrition is greater than that from a second-price auction.

Theorem 3 Suppose¢(-,Y) isincreasing. Then the expected revenue fromthewar

of attrition is greater than or equal to the expected revenue from a second-price
auction.

11



Proof. Inasecond-price auction, the equilibrium bid by a bidder who receives
asignal of xisv(x, X) (see[13], pages 1100-1101), and thus the expected payment
by such abidder is:

&0 = [ vy 0dy (14

In a war of attrition, the expected payment in equilibrium by a bidder who
receivesasignal of xis:

e = [ SOy | ¥y + [1— F(x] 9] 56

OO0 = [ F IR [ 0dy+ [1— Fux | X] 509

5090 — [ FOFuly | ey
_ /X vy 1Y) vy ) (19
- [1=Fu(yly) 1-Fuy[y)

X [y ly) 1-Fv(y|x)
| M 19 _1—FY1(y|y)H Wy | ) ]d

A(Y | Y)
] x)] v

Fory < x, Lemmaz2 in Appendix A impliesthat A(y | y) > A(y | X) and thus:

Ay | y)]
2y

Fv,(Y | X)] dy

[ vy 19

e = [ VI [

> /_ XOO vy, Vv, (y | X)dy (16

= &
using (14). O
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5.2 All-Pay Auction versus First-Price Auction

Our second result is that, under the condition that «>(x,y) is increasing in x, the
revenue from the all-pay auction is greater than that from a first-price auction.®

Theorem 4 Suppose +(-,y) is increasing. Then the expected revenue from the
all-pay auction is greater than or equal to the expected revenue from a first-price
sealed bid auction.

Proof. Let b*(x) denote the equilibrium bid of a bidder who receives a signal
of x (see[13], page 1107). Then the expected payment is:

e(x) = Fy(x]|x)b*(x)
) (17)
= Fy (x| x) /_ VY Y)AL(Y [ X)

where L(y | X) = exp (— M ;YYll((tt'rt)) dt) . (17) can berewritten as:

X x f
o= [ vty 19| o0 B e~ [ C e o as

From Lemma4 in Appendix A, for all y < x:

AL Fv.(y[y)
exp( y FYl(t | t)dt) = [Fyl(x | X)]

Thus, we can write:

X x f
o = [ vty 1| pe S e (— [ Eel ) o

IA

/_ XOO vy Vv, (Y | y)dy
= aX)

= ea(x).O

SAmann and Leininger [2] have independently provided an aternative proof of thisresuilt.
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5.3 War of Attrition versus All-Pay Auction

Our next result compares the expected revenue from the war of attrition to that
from an all-pay auction.

We first establish that the sufficient condition identified in Section 3 implies
that thereis an increasing equilibriumin the all-pay auction a so.

Proposition 3 Suppose that ¢(-,y) isanincreasing function of x. Then(-,y) is
an increasing function of x.

Proof. Letx<X.Thensincey(-,Y) isan increasing function, we have that:

f,(y | X) fr(y | X) ]
1-Fy(y|X 1-Fyuly|x)

By Lemma3in Appendix A, Fv,(y | X) > Fy,(y | X) and thus:

V(x,y) l (19)

<V(>(,y)l

1 S 1
1- FY1(y| X) 1 FYl(y | X/)

Now, from (19), we can immediately infer that:
VO, Yy (Y | ¥) < (X, )y (Y | X)

which completes the proof. O

We now show that if ¢(-,y) isincreasing, the war of attrition outperformsthe
all-pay auction.®

Theorem 5 Suppose ¢(+,y) isincreasing. Then the expected revenue from the
war of attrition is greater than or equal to the expected revenue from an all-pay
auction.

5Bulow and Klemperer [6] have constructed a very interesting example in which the all-pay
auction extracts all the surplus from the bidders. In the example, + (-,y) isincreasing but ¢ (-,y)
isnot.
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Proof. Inan all-pay auction, the expected payment in equilibrium by a bidder
who receivesasignal of xis:

e = [ vyl | Vdy (20

From (15) in awar of attrition, the expected payment in equilibriumis:

() Ay | y)] dy

LAY %)

_ [ [ fulyly) ] [1-Fuly] X
B /_oov(y’y)f“(y')() _1—FY1(y|y)_l f(y [ %) ]d

-1 - FYl(y | X)-
1-Fuyly)]

AR

dy

= /_ XOO vy, Vv, (y | y)

Y

/_ XOO vy, Vv, (y | y)dy

= eax).

since, by Lemma 3 in Appendix A, for all y < x, Fy,(y | X) < Fy,(y | y) and thus
[l—Fvl(WX)] -1 0O

1-Fv, (¥ly)

Analogous to the result that the equilibrium bids in the second-price auction
exceed those in the first-price auction, we have the result that the equilibrium bids
inthewar of attrition exceed those in the all-pay auction. To seethis, observethat:

B(X) = /_X V(t, )Mt | Dt

_ X le(t | t)
= [ e [1 ~Fu t)] “

> [ vt Ot Dot
= aX).

15



5.4 All-Pay Auction versus Second-Price Auction

It remains to compare the expected revenues from the all-pay auction to that from
the second-price auction. We now show by means of two examplesthat no general
ranking of the two auctionsis possible.

Let:

4
f(xy) = ¢ (1+xy) on [0,1] x[0,1].
The density function f satisfies the affiliation inequality.
If v(X,y¥) = X, 1(X,Yy) is an increasing function of x so that the conditions of
Theorem 2 aresatisfied. Routinecalculationsshow that, for all x > 0, ea(X) > ex(X),
and thus, in this case, the expected revenue from an all-pay auction isgreater than

that from a second-price auction.
On the other hand, if v(x,y) = x*, we have that for x* ~ 0.707 :

ea(X) > e(x) Ifx<x
ean(X) <e(x) iIfx>x

and furthermore:
1 1
&= [ eik(dx< [ eMik®d=e
0 0
so that, in this case, the expected revenue from an all-pay auction isless than that

from a second-price auction.

5.5 Summary of Revenue Comparisons

The relationships between the expected revenues from the various auction forms
may be summarized as follows:

&
< <o
S VA ew
<y <,
€a

16



whereey isthe expected revenuefrom the auction mechanism“M" and the symbols
“ <, "and " <, " mean, respectively, that the inequality holds when ¢ or + is
increasing. Theresult that e; < e, is, of course, due to Milgrom and Weber [13].

6 OntheUniquenessof Equilibrium

In this section, we examine whether the equilibrium in the war of attrition which
we previoudly analyzed, isuniquein the class of increasing equilibrium strategies.
We then examine the same question for the al-pay auction. For both the war of
attrition and the all-pay auction we provide sufficient conditions to guarantee the
uniqueness of the respective equilibria of Theorems 1 and 2.

Let suppfx € R denote the common support of the bidders signals, and let
X € R be the infimum of suppfx and X the supremum of suppfx. We allow for
the possibility that X = oo ; thus, we assume that either (i) supp fx = [x, oc) or (ii)
suppfx = [x,X].

Throughout this section, we assume that there are only two bidders. Bidder 1
receives asignal of x and bidder 2 of y. The value of the object to bidder 1 isthen
V(X,y). It isassumed that v is continuoudly differentiablein its arguments.

Thesymmetric density f of the signalsisassumed to be everywhere positiveon
its support and continuoudly differentiable on the interior of the support. Finally,
we assume that the strategies employed by each bidder, 5, and 3, are dtrictly
increasing.

6.1 TheWar of Attrition

Itiswell known that the war of attrition isplagued with amultiplicity of equilibria
(seeRiley [18] and Nalebuff and Riley [16]). Thusit isnot surprising that we need
strong conditions to guarantee uniqueness. Our main result is:

Theorem 6 Suppose ¢ (-,Y) is increasing and v(x,x) > 0. Then the symmetric

equilibrium (3, ) from Theorem 1 is the unique increasing equilibrium of the two
bidder war of attrition.

17



Proof. Itisroutineto verify that if 3; and 3, form an equilibrium, then for all
xandy :

v (% 551 (5200)) A (5 (52(9)1x)

85 (57 1(5109))
(21)

v (y, 813 A (BT (B))ly)

81 (B7(52))

By Lemmas 7and 8 in Appendix B, we know that the equilibrium bidding
strategies must be continuous and have a common range.
Defineafunctiony : suppfx — suppfx by:

y(x) = 62" (51(9) - (22)

Given asignal x for player 1, y(x) isthe unique signal for player 2 which induces
him to bid 3,(x) also.
Using (22) in (21) resultsin:

Bo(y(®¥) = vxy()) Ay [x)
(23)
B9 = v(y(9,X) A (Xly(X)
Differentiating (22) with respect to x yields:
_ A
YOI = 500y (4
Substituting from (23) into (24) yields the ordinary differential equation:
y = v (Y, X) AX]y) (25)

VX Y) AV

We may write this differential equationasy'(xX) = g(x,y)

From Lemma 9, we get the boundary condition, y(x) = x, and sincef (x|x) > 0,
A(X|X) > 0. By assumption v(x,x) > 0. Thus (25) is well defined at the boundary
point x. (Indeed g(x,x) = 1.)

Sincebothv(-,-) andf(-, -) arecontinuoudly differentiableinall their arguments,
gisLipschitziny.

Thus, by Theorem 1 in Chapter 15 of Hirsch and Smale [9], we know that the
solution to the differential equation (25) islocally unique. By standard techniques

18



the local solution may be extended (see Hirsch and Smale [9] Chapter 8, Section
5).

Since y(X) = x solves the differential equation (25), it is the unique solution
and hence the symmetric equilibrium (3, ) is the unique equilibrium. O

Toillustrate the workings of Theorem 6 it isuseful to consider an example due
toRiley [18].

Suppose that v(X,y) = x, and X and Y are independently and identically dis-
tributed on [0, oc) with the density function fy(x) = e*. Then A\(x) = 1 for all x,
and the differential equation (25) becomes:

_y
y = X (26)
together with the boundary condition that y(0) = 0.
Observethat for all k >0, y(x) = kx isasolution to (26) and y(0) = 0. We have
a continuum of solutions because the right hand side of (26) is not continuously
differentiable in x (or even defined) at the point (0,0), and thus, the conditions
that guarantee a unique solution are not satisfied. For each k > 0, the following
increasing strategies form an asymmetric equilibrium:

(X)) = %xz

Bay) = %(yz

Interms of Theorem 6 the examplefailsto satisfy the condition that v(x, x) > 0.

Consider a modification of the example so that, for x > 0, X and Y are
independently and identically distributed on [x,oc) with the density function
fy(x) = e (<), Again A\(X) = 1 for all x and the differential equation (25) re-
mains: y

= (27)

together with anew boundary condition y(x) = x.

Now, however, y(x) = x is the unique solution to (27) , and thus the symmetric
equilibriumis the unique equilibrium with increasing strategies.

Consequently, we have that if x > 0, there isa unique equilibrium in the above
example and multiplicity arises only when x = 0.

Nalebuff and Riley [16] have shown that in the war of attrition there is an
abundance of equilibria that are non-decreasing. In particular, these have the
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character that one player concedes to the other by bidding O when his signal isin
someinterval [x,x*]. Of course, such equilibriaareinefficient in the sense that the
auction may be won by the bidder who attaches a lower value to the object.

6.2 TheAll-Pay Auction

In this subsection we provide sufficient conditions for the symmetric equilibrium
of Section 4 to be the unique equilibrium of the two bidder all-pay auction. Instead
of providing detailed proofswhich are very similar to the proofsin the case of the
war of attrition, we indicate the argumentsinformally.

Suppose «; and «a, are equilibrium strategies in the al-pay auction and that
these are both increasing.

First, by following arguments similar to those in Lemmas 6, 7, and 8 in
Appendix B, we can establish that «; and «, are both continuousand haveidentical
ranges.

Next, thefirst order conditionsfor an all-pay auction imply that for al x and y:

a5 (az'(109)) = v(xaz"(1(9)) f (az*(a1()[x)
(28)
of (a1(02y))) = V(y.a1 (a2) T (a1 (02(y)ly)

Asin the proof of Theorem 6 define:

() = a5 (aa(¥)) (29)
And as before thisresults in a differential equation:

v(y,x) f(X]y)
== 30
Y= V) o (0
which is analogousto (25).
Applying the uniqueness result once again (Theorem 1 in Chapter 15 in [9])

we obtain:

Theorem 7 Suppose that (-,y) isincreasing and either (i) v(x,x) > 0 or that
(i) suppfx = [x,X] . Then the symmetric equilibrium («, o) from Theorem 2 isthe
unique increasing equilibrium of the two bidder all-pay auction.’

“Amann and Leininger [1] show that there is a uniqueincreasing equilibriumin the case when
X and Y are independently, but not necessarily symmetrically, distributed on [0, 1]. Theorem 7
specializesthisto the symmetric case but alowsfor affiliation and, if (i) holds, an infinite support.
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Proof. In case (i), the boundary condition y(xX) = x may be used to show that
(30) has a unique solution. In case (ii), the boundary condition y(X) = X may be
used. Recall that f(x|x) and f (X|X) are both assumed to be positive. O

The reader may wonder why condition (ii) in the above Theorem does not
suffice for the conclusion of Theorem 6. The reason isthat if suppfx = [x,X] then
it must be that A\(X|X) = oo and so the right hand side of (25) is not defined at
y=X=X

7 Conclusion

We have identified conditions under which the war of attrition and the all-pay
auction generate higher expected revenue than their standard counterparts. the
second-price and first-price sealed bid auctions. These conditions guarantee that
the equilibrium strategies areincreasing in the signals received by the bidders; and
implicitly require that the affiliation between bidders’ signalsis not too strong.

If bidders signalsare strongly affiliated the possibility of non-increasing equi-
libria is not implausible. Suppose there is an increasing equilibrium. In such
a situation, bidder 1, say, who receives a higher signal would consider it very
likely that other bidders also received higher signals. Hence, the reductionin his
conditional probability of winning the auction would overwhelm the increase in
his expected value from receiving the higher signal. Thiswould induce the bidder
to lower rather than raise his bid because his prospects of losing the auction have
increased, and, in these circumstances, he would be required to pay hisbid. This
destroys the increasing equilibrium. Under the presumption that thereis a sym-
metric, pure-strategy equilibrium, such an equilibrium must be non-increasing.
The characterization of symmetric equilibrium strategiesin the two auctionswhen
there is no symmetric increasing equilibrium remains an open problem.

8 Appendix A: Affiliation

In this Appendix we collect some miscellaneous results on affiliated random
variables that are used to derive the results of this paper.
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Definition 4 SupposetherandomvariablesX andY haveajoint density f : #2 —
R. Xand Y are said to be affiliated if for all X > xandy >y,

fFO YY) < TyEXLY).

Let X and Y have ajoint density of f and let Fy(- | X) denote the conditional
distribution of Y given X = x.

Lemma 1l Suppose X and Y are affiliated. Then Fy(y | X)/fy(y | X) is non-
increasing in x.

Proof. SeeMilgrom and Weber [13] (page 1107). O

Definition 5 The hazard rate of the distribution Fv(- | X) is defined as:
fy(y | X)
A | X) = ———————.
A L
Lemma 2 Suppose X and Y are affiliated. Then A(y | X) is non-increasing in x.

Proof. Supposex > x. By the affiliation inequality, for any t > y we have:

fx 0 f(xX,y) < f(xy) f(x,t)
which can berearranged as:
f(x,t) - f(x,1)
fxy) = f(X,y)

f(t10f0) _ f(t]x)f(x)
fly[)f() — fly|x)f(x)

fy(t| X) - fy(t | X)
f(y [ %) ~ fly [ x)
Integrating with respect to t over therange [y, oo) yields:
1-FAy[X _1-K(|X)
Wy ¥ = fly[X)

or:

which is the same as;

which is the same as;
Ay | X) > My X).
0O

Lemma 3 Suppose X and Y are affiliated. Then Fy(y | X) is non-increasing in x.

22



Proof. Noticethat:
Fr(y | _ [Fv(y] X)] y l fr(y [ %) ]
1-Fy(y|x) | f(Y[X) 1-Fv(y|Xx)

isanon-increasing function of x since both termsin the brackets are positive and
non-increasing by Lemmas 1 and 2. ThusFy(y | X) isalso non-increasing in x. O

Lemma 4 Suppose X and Y are affiliated. Then for all y < x:

(e Fyv(y |y)
& ( ) FY(t|t)dt) = [Fme)

Proof. Notethat:

_/X MO g _/X FEY)
Fy(t | t) Fy(t | Y)

INFy(y | y) — InFy(x | y)
< InFy(y |y) — InFy(x | X)

where the first inequality follows from the fact that [fv(t | -)/Fy(t | -)] is a non-
decreasing function; (Lemma 1) and the second inequality follow from the fact
that Fy(x | -) isnon-increasing. (Lemma3). O

9 Appendix B: Lemmasfor Section 6

In this appendix we establish that if (31, 32) is an equilibrium of the two bidder
war of attrition and both 3; and 3, areincreasing, then Range 5; = Range 3,. This
allows the construction of the functiony : suppfx — suppfx used in the proof of
Theorem 6.

Lemma5 Suppose ¢ (-,Y) isincreasing. Then®

lim 51(x) = 1im a(y) = oo

8Nalebuff and Riley [16] provide a similar result for the case when X and Y are independent.
We have adapted their proof to the affiliated case.
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Proof.  Suppose not, then limy_5 32(y) — b* < co. To rule this out, consider a
subinterval [32(Y), 52 (y’)] of (O, b*) with associated signalsy satisfyingy <y <
y’. From the necessary conditionsfor an equilibrium, for all y € (y',y”) , we have

1 = VOB )BT E0)
A CRE)))

Y (P C2IV) DY G G\ D)
B1(871(B20))

N tcin 21 ) MY R EX)]'9)
BCCY)

where the first inequality follows from the assumption that ( By 1(62(y))) =

v (- 87 (320)) A (B (B2(Y))]-) isincreasing. The second follows from the as-
sumptionthat v(y,-) , 31 and 3, areal increasing.
I ntegrating with respect to 3,(y) over therange [52(Y), 52 (Y')] yields

1-F (57(50)Y)

N > , -1 I
P2 = ) >V Y RGN IN | TS )

where we have used theidentity A (y |2 = —§In[1 - F(y| 2)] .

Now observe that, asy’ — X, f=(y’) — b*and 1 - F (51_ 1(52()/'))|)/) — 0.

Furthermore, 1 — F (B7%(32(y))ly') > 0. Thus, the right hand side of the above
expression becomes unbounded.
The proof for 31 issymmetric. O

Let Range 5 = {3 (y) : z € suppfx}, and cl[Range /3] beitsclosure.

Lemma 6 cl[Range 31] = cl[Range 3,]

Proof. We argue that cl[Range /1] C cl[Range3,]. Suppose not, that is, there
existsab € cl[Range ;] suchthat b ¢ cl[Range 3,].
Casel. b>0
Then thereexistse > 0 such that (b — ¢,b + ¢) ¢ cl[Range 3,].
Definey* = sup{y : 52(y) < b}.
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We assume without loss of generality that b € Range /3;. Thisis because if
b € cl[Range 31], there exists a sequence b” — b such that b" € Range 31, and,
for largen, thereexists e > 0, (b" — ¢,b" + ¢) ¢ cl[Range j35].

Suppose b = 31(X). If player 1 bids b after recelving asignal of x, his expected
payoff is:

M0 = [ ()~ GODId -~ [1-F( [9]b (3D

Alternatively, if player 1 bidsb — ¢ after asignal of x his payoff is:

M- 0= [ (xy) — BOIORY - [1-F |9 b-9 (32

since player 2 never bidsin theinterval (b — ¢, b).
From (31) and (32)

Mi(b—ex) —Ma(b;x) = [1—F(y" [ X)] ¢ (33)

By Lemmab, y* <X,F (y* | Xx) < 1.Now, from(33),itfollowsthat M, (b — ¢;x) >
My (b; x) =M1 (51(X); X), contradicting the fact that 3; and 3, form an equilibrium.

Thus, we have established that cl[Range 31] N K++ = cl[Range 1] N R

Case2. b=0,thatis, 0 € cl[Range 3;] and O ¢ cl[Range 3].

Once again we can assume that 0 € Range ;. If not, then there exists a
sequenceb” — Osuchthatb” € Range3; andb" > 0.By Casel, b" € cl[Range 3;]
and hence O € cl[Range 3;].

Since0 ¢ cl[Range 3,], 52 (X) > 0. By Case 1, 3, (X) € cl[Range 31]. Weclaim
that, for all b’ < 3, (x) suchthat ¥ > 0, b’ ¢ cl[Range /31]. This follows from the
fact that since 5, isincreasing, b/ ¢ cl[Range/,] and, hence, by Case 1, b’ ¢
cl[Range j34].

Thus, if player 2 were to bid a by satisfying 0 < b’ < 3, (x), when the signal
is x, he would win in exactly the same circumstances as with abid of 3, (x), and
his expected payoff would be higher. Hence, M, (52 (X) ; X) < M, (b’; X) whichisa
contradiction. O

Lemma 7 /3; and /3, are continuous in x and y, respectively.
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Proof.  Suppose /3; is discontinuous at X.
Case 1. Suppose b’ = lim,_q f1(X — €) < S1(X).

Definey” = sup{y : f2(y) < f1(X)}.
Player 1's expected payoff when bidding 51(X) with asignal of xis:

M0 = [ (06y) — ANy — [1- Fy b))

Suppose player 1 deviates by bidding b’ instead. By Lemma 6, the closures of
the ranges of the two bidding functions are equal, thus, abid of b’ winswhenever
y < y*. Hence, player 1's expected payoff becomes:

M50 = [ () — Oy — [1- Fy 0] b

Again, from Lemma 5, y* < X and thus, F(y*|x) < 1. But now we have
My (b';x) > My (51(X); X), which contradicts the fact that 3; and 3, congtitute an
equilibrium.

Case 2. Suppose 31(X) <lim._o B1(X+¢) = b".

Definey = sup{y : fa(y) < 81(¥)} and y™ = sup{y : Bz(y) < b"}. We claim
that y* = y**. Clearly y* < y*=, and if y* < y**, then there is a y such that
£1(X) < F2(y) < b”. But this contradicts Lemma 6.

For small ¢, definey(c) = sup{y : 52(y) < S1(X+ ¢)}. It may be verified that:

limy(e) = lim [sup{y : B2(y) < ulx + )} =y =y (34)
If player 1 bids 51(X + ¢) when hissignal isx + ¢, his payoff is.

Mo =[xt ey) — RO+ Idy

— [1=F(y(9) [x+ )] Ba(x+€)

Suppose player 1 deviates by bidding 51(X) whenthesignal isx+¢. By Lemma
6, the closures of the ranges of the two bidding functions are equal; thus, player
1'sbid winswhenever y < y*. Hence, player 1's expected payoff becomes:

MR+ = [k ey) — O ddy

— [1=F(y|x+ )] f2(x)
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The difference between thetwo is:

[My(Br(X); x+¢) — Mp(BuX+e);x+6)]
= = [ ey - 6D Gix Oy

+[1=Fy(e) [x+ o] fulx+e)

— [1 = Fly"[x+ ] 51(x)

Sincelim._oYy(¢) = y*, taking limitsresultsin:

Mo [ (B2(X); X+¢) — My (Br(X+¢); X+ )]

[1—=Fy )] (b" = B1(x)
> 0

Again, from Lemmab, y* < X and thus, F(y*|X) < 1. Hence, for some small
€, My (61(X); X+ €) > M1 (B1(X + ¢€); X+ ¢), which again contradicts the fact that 3,
and 3, constitute an equilibrium. O

From Lemmas 6 and 7, the following isimmediate.
Lemma 8 Range 5, = Range j..
Lemma9 1 (X) = 32(x) = 0.
Proof. Thefact that 5; (X) = 32 (X) follows from Lemma 8.
If 51 (X) = B2(X) > O, then player 1's expected payoff when his signal isx is

negative since he alwaysloses and pays 3 (x). But then, abid of 0 when hissignal
isx isaprofitabledeviation. O
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