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Abstract

Phase I clinical trials are conducted in order to find the maximum tolerated dose (MTD) of
a given drug from a finite set of doses. For ethical reasons, these studies are usually sequential,
treating patients or group of patients with the best available dose according to the current
knowledge. However, it is proved here that such designs, and, more generally, designs that
concentrate on one dose from some time on, cannot provide consistent estimators for the MTD
unless very strong parametric assumptions hold. We describe a family of sequential designs that
treat individuals with one of the two closest doses to the estimated MTD, and prove that such
designs, under general conditions, concentrate eventually on the two closest doses to the MTD
and estimate the MTD consistently. It is shown that this family contains randomized designs
that assign the MTD with probability that approaches 1 as the size of the experiment goes to
infinity. We compare several designs by simulations, studying their performances in terms of
correct estimation of the MTD and the proportion of individuals treated with the MTD.

1 Introduction

It is generally believed that increasing the dosage of a certain drug increases both the probability of a
toxic reaction and efficacy. It is therefore important to determine the maximum tolerated dose (MTD)
of a given drug, that is, the highest dose of a drug that does not cause unacceptable proportion of
toxic reactions. This is particularly important in severe diseases, typically cancer, where strong and
even lethal side effects may be present. MTD-finding studies, conducted as part of phase I clinical
trials, are usually performed sequentially for reasons of efficiency and due to ethical requirements,
and have the following two different purposes:

1. Treatment: ideally, treat each subject with the MTD; since it is unknown, use the best available
estimate of the MTD at the time of treatment.

2. Experimentation: obtain a good estimate for the MTD at the end of the study.
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The choice between the two is called the treatment versus experimentation dilemma in Bartroff and Lai
(2010). Purpose 1 is an ethical consideration that does not allow to treat subjects with doses that may
have a high toxicity rate or doses with low efficacy. In the words of Shu and O’Quigley (2008): “be-
ing optimal for anything other than the best estimated treatment for the next patient, or group of
patients, to be included in the study is not acceptable”. Purpose 2 is the core of MTD studies, but
may require to treat subjects with high doses in order to find the MTD as fast as possible.

In the case of a continuous response that follows a simple linear regression model and a contin-
uous dose space, Lai and Robbins (1982) show that this dilemma can be resolved asymptotically by
treating each subject with the estimated MTD based on a truncated version of the least squares
estimators. The aim of the current paper is to examine if and how this dilemma can be resolved
in the more common phase I framework of a finite dose space, under minimal assumptions on the
dose-response curve.

The statistical literature regarding phase I clinical trials is quite rich; see, e.g., the review pa-
pers of Rosenberger and Haines (2002) and Potter (2006). Most of the methods, such as the con-
tinual reassessment method (CRM) (O‘Quigley et al. (1990)) and escalation with overdose control
(Babb et al. (1998)), assume a functional parametric model for the dose-response curve and adap-
tively estimate the parameters and the MTD; doses are assigned to patients according to the current
estimate of the MTD. Such parametric methods are consistent only for certain dose-response curves
(Shen and O’Quigley (1996); Zacks et al. (1998)), where consistency means that the estimator of the
MTD is strongly consistent.

Several non-parametric methods were suggested in the literature of phase I trials. Gasparini et al.
(2000) propose a Bayesian scheme, where each subject or cohort is treated with the estimated MTD
according to the posterior distribution. Limitations and problems of this method are discussed by
O’Quigley (2002) and by Cheung (2002) who shows that, for certain dose-response curves, there
is a non-negligible probability of treating each subject with a dose that differs from the MTD.
Leung and Wang (2001) consider a similar, albeit frequentist design, and Ivanova and Wang (2004)
extend the procedure to two-dimensional dose-finding trials. Ivanova et al. (2007) present a non-
parametric approach where the current dose is repeated if the estimated toxicity rate at this dose
is close to the target level; otherwise the dose assigned to the next subject decreases or increases.
Recently, Oron et al. (2010) classified the set of dose-response curves for which the latter method
is consistent. All these methods focus on the ‘Treatment’ purpose, requiring that each subject be
treated with the estimated MTD. We show in Section 2 that they fail to satisfy the ‘Experimentation’
purpose, and that such designs cannot yield consistent estimators for all response curves.

Methods that do not require treatment at the current estimated MTD can yield consistent estima-
tors. The classical non-parametric up and down methods (Dixon and Mood (1948); Derman (1957))
provide consistent estimators, but use only part of the available data at each step to determine the
next dose, and therefore have undesirable properties (O‘Quigley and Zohar (1990)). Ivanova et al.
(2003) suggest an improved up and down method that estimates the dose-response curve by isotonic
regression. To the best of our knowledge, this is the only method in the statistical literature of phase
I that provides consistent estimator for the MTD for every increasing dose-response curve and that
uses all available data at each step. Isotonic regression was considered previously in the framework
of stochastic approximation on a lattice by Mukerjee (1981) who proves consistency of a method
which eventually concentrates on two doses.

In view of the treatment versus experimentation dilemma, we show in Section 2 that a design that
assigns doses according to the estimated MTD has a non negligible probability of concentrating on
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the wrong dose. This implies that the practice of assigning sequentially the current estimated MTD
is statistically undesirable. Instead, it seems preferable to alternate in some fashion between the two
estimated closest doses to the desired level. In Section 3 we present a modification of Mukerjee’s
design and prove that it yields a consistent sequence of estimators for the MTD. We then generalize
the result to a broader family of designs of which Ivanova et al. (2003)’s design is a special case.
Though it is not possible to assign the MTD from a certain stage of the sequential experiment
and on, one can assign the MTD with probability that goes to 1 as the experiment grows. We
introduce in Section 3 a new design, which is a special case of the above family, that accomplishes
this. Properties of several designs for small and moderate sample sizes are studied via simulations
in Section 4. Concluding remarks are given in Section 5. All proofs are given in the Appendix.

2 Treatment Versus Experimentation Dilemma

Let x be a dose of a given drug and let y be a binary outcome, where y = 1 (y = 0) represents a
toxic (non-toxic) response. Let m(x) := P (y = 1|x) be the probability of a toxic response at dose
x, where m : R+ → (0, 1) is an unknown strictly increasing function. Typically, the dose range D
consists of only a few doses, d1 < d2 < . . . < dK , and one aims at finding the dose dj∗ having toxicity
that is closest to a prescribed target toxicity level m∗, i.e., j∗ = arg minj |m(dj)−m∗|. The dose dj∗

is called the MTD. Note that no assumptions on m are made besides being an increasing function;
m is estimable only at K points, and thus the relevant parameter space is of finite dimension.

We consider sequential designs and denote by xn and yn the dose assigned to the n’th subject and
his response, respectively, and by Fn−1 := σ{(x1, y1), (x2, y2), . . . , (xn−1, yn−1)} the available data
prior to the decision on the n’th subject’s dose. We assume for n ≥ 2 that

xn ∈ Fn−1 , yn|Fn−1 ∼ Bernoulli (m(xn)) . (1)

The sequence {xn}∞n=1 is called a design; a sequence of estimators {M̂TDn}∞n=1 is said to be strongly

consistent with respect to a given design if M̂TDn → dj∗ a.s. for all increasing functions m.

Theorem 1. Assuming (1), there exists no design that satisfies for all increasing functions m

P (∃N s.t. ∀n ≥ N : xn = dj∗) = 1, (2)

or equivalently that P (xn 6= dj∗ i.o. ) = 0.

The idea of the proof is that a design that concentrates eventually on one dose, say dj, can yield
a consistent estimator for m(dj), but cannot estimate well m(di) for i 6= j; therefore, such a design
may miss the MTD. (Proofs are given in the Appendix.)

Corollary 1 (Treatment versus experimentation dilemma). Let {M̂TDn}∞n=1 be any sequence of

estimators of the MTD. If for all n, xn+1 = M̂TDn then {M̂TDn}∞n=1 is not strongly consistent.

Corollary 1 has important implications for phase I studies because many designs, including the
CRM and the non-parametric methods mentioned in Section 1, assign the estimated MTD to the
next subjects. Such designs cannot yield consistent estimation of the MTD unless severe parametric
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assumptions on m are imposed. Hence, in our framework, it is not obvious that the aforementioned
ethical requirement of Shu and O’Quigley should be accepted.

In the sequel, we construct sampling designs, and consider estimators m̂n(d) of m(d) and M̂TDn

of the MTD, such that the (n+1)st treatment is at one of the two doses dj or dj+1, where j is such that

m̂n(dj) < m∗ < m̂n(dj+1), and the sequence M̂TDn is strongly consistent. Although ideal treatment
at the MTD is not guaranteed, we have with probability 1 that j = j′ where m(dj′) < m∗ < m(dj′+1)
for large enough n; in words, subjects are treated “almost” with the estimated MTD, and in the long
run they are treated “almost” with the true MTD.

We shall use the isotonic regression estimator of m, which maximizes the likelihood
∏n

i=1 m(xi)
yi [1−

m(xi)]
1−yi under the restriction that m is nondecreasing (Barlow et al. (1972), p. 38). Specifically,

for any r, s ∈ D such that r ≤ s, define

Nn(dr, ds) =
n∑

i=1

I(xi ∈ [dr, ds]),

ȳn(dr, ds) =

{ 1
Nn(dr,ds)

∑n
i=1 yiI(xi ∈ [dr, ds]) Nn(dr, ds) > 0

0 Nn(dr, ds) = 0
.

The estimator for m at stage n is

m̂n(dj) = max
r≤j

min
s≥j

ȳn(dr, ds) j = 1, . . . , K.

The corresponding estimator of the MTD is defined as follows. Let j be the maximal element in
{1, . . . , K−1} that satisfies m̂n(dj) ≤ m∗ (if no j satisfies this, set j = 1); our estimator of the MTD
is

M̂TDn =

{
dj m∗ ≤ m̂n(dj)+m̂n(dj+1)

2

dj+1 m∗ >
m̂n(dj)+m̂n(dj+1)

2
.

(3)

The next section presents designs ({xn}n≥1) under which the estimators above are strongly con-
sistent. The results hold also for other sequences of estimators as detailed below.

3 Mukerjee’s design and generalizations

Mukerjee (1981) suggested a stochastic approximation method on a lattice, which is the basis of the
family of designs we introduce. We describe the method with the necessary adjustments to a finite
dose space, and provide a different proof of consistency.

Mukerjee’s design (MUK) assigns doses in pairs according to the current estimate of m, obtained
by isotonic regression. The doses for subjects (2n + 1) and (2n + 2) are assigned as follows:

1. If m̂2n(dK) < m∗ then x2n+1 = x2n+2 = dK .

2. If m̂2n(d1) > m∗ then x2n+1 = x2n+2 = d1.

3. If m̂2n(dj) ≤ m∗ ≤ m̂2n(dj+1) for some j ∈ {1, . . . , K − 1} then x2n+1 = dj , x2n+2 = dj+1. (if
more than one j satisfies the condition - an arbitrary one is chosen.)
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Theorem 2. Assuming (1), if m(dj′) < m∗ < m(dj′+1) for some j′ ∈ {1, . . . , K−1}, then Mukerjee’s
design satisfies

I. P (∃N1 s.t. ∀n ≥ N1 : x2n+1 = dj′ , x2n+2 = dj′+1) = 1

II. The sequence of estimators defined in (3) satisfies P (∃N2 s.t. ∀n ≥ N2 : M̂TDn = j∗) = 1,

i.e., M̂TDn is strongly consistent.

Part I of the theorem ensures that the design eventually assigns the two closest doses to m−1(m∗)
(one smaller and one larger than m−1(m∗)). One of these two doses is the MTD, and Part II asserts
that it is estimated consistently.

Remark 1. By a similar argument as in the proof of Theorem 2, Mukerjee’s design satisfies

i. If m∗ = m(dj∗) then P (∃N s.t. ∀n ≥ N : xn ∈ {dj∗−1, dj∗, dj∗+1}) = 1.

ii. If m∗ < m(d1) then P (∃N s.t. ∀n ≥ N : xn = d1) = 1.

iii. If m∗ > m(dK) then P (∃N s.t. ∀n ≥ N : xn = dK) = 1.

In all three cases, M̂TDn is strongly consistent.

Together, Theorem 2 and Remark 1 show consistency for any increasing m. The interesting and
important case is the one described in the theorem. Case (i) of Remark 1 is unlikely to occur, and
in cases (ii) and (iii) the dose range is irrelevant for finding the MTD.

Because of the dependence of xn on previous observations, and the dependence of yn on xn, the
observations are not independent, hence standard convergence laws do not apply. Therefore, for the
proof of Theorem 2 we transform the data into a martingale and apply a martingale convergence
theorem.

The proof of Theorem 2 does not use the special features of isotonic regression and can be applied
also to other estimators and designs as in the following remark.

Remark 2. Suppose that m(dj′) < m∗ < m(dj′+1) for some j′ ∈ {1, . . . , K − 1}. Let m̃n(·) be
a consistent sequence of estimators in the sense that m̃n(dj) → m(dj) a.s. on {Nn(dj) → ∞},
j = 1, . . . , K, where Nn(dj) := Nn(dj, dj). Any design with the properties:

• P (∃j ∈ {1, . . . , K − 1} s.t. {xn = dj i.o.} ∩ {xn = dj+1 i.o.}) = 1.

• {m∗ < m̃n(dj) i.o.} ⊆ {xn = dj+1 i.o.}c j = 1, . . . , K − 1.

• {m∗ > m̃n(dj) i.o.} ⊆ {xn = dj−1 i.o.}c j = 2, . . . , K.

(the inclusions are up to a null set) satisfies

P (∃N s.t. ∀n ≥ N : xn ∈ {dj′ , dj′+1}) = 1.

The sequence M̂TDn as defined in (3) is not necessarily consistent as m̃n is not restricted to be

monotone. This can be resolved in an obvious way, e.g., the sequence of estimators M̂TDn defined
as in (3) with j = arg max{Nn(dj, dj+1)} is strongly consistent.
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A special case satisfying Remark 2 is the design of Ivanova et al. (2003) (IVA) with the isotonic
regression estimator for m, where it is assumed that m∗ = 1−0.51/k for some integer k (but consistency
holds for any m∗). At stage n, m̂n is calculated and a higher (lower) dose is assigned if m̂n(xn) is
smaller (larger) than m∗ and there are no (there is at least one) toxicity responses among the last
k subjects. Otherwise, the same dose is assigned to the next subject. One can check that this
design satisfies the conditions of Remark 2, and therefore the sequence of estimators defined in (3)
is consistent.

Remark 3. Mukerjee’s design described in the beginning of this section assigns doses to a pair of
patients in each step. A similar design that assigns one dose at a time can yield consistent estimators
and is more flexible. Specifically, we prescribe the doses dK to one patient in the case m̂n(dK) < m∗, d1

once in the case m̂n(d1) > m∗, and in the case m̂n(dj) ≤ m∗ ≤ m̂n(dj+1) for some j ∈ {1, . . . , K−1},
we assign only one of the doses dj or dj+1 to a single patient in such a way that both would be assigned
infinitely often if m̂n(dj) ≤ m∗ ≤ m̂n(dj+1) occurs infinitely often. Remark 2 implies that such a
design concentrates eventually on a pair of doses, one of which is the MTD, and the corresponding
estimator of the MTD is strongly consistent. Optimality of the proportion of choosing between dj

or dj+1 requires further study. In general, Mukerjee’s suggestion of equal proportions may not be
optimal under suitable criteria.

Constructing a design that (with probability 1) for large enough n satisfies xn = dj∗ is impossible
by Theorem 1. However, by randomly choosing dj or dj+1 when m̂n(dj) ≤ m∗ ≤ m̂n(dj+1), it is
possible to provide a rule such that the probability of the event xn = dj∗ approaches 1. Such a design
‘almost’ resolves the treatment versus experimentation dilemma.

Specifically, as in Remark 3, if m∗ < m̂n(d1) (m∗ > m̂n(dK)) the proposed randomized allocation
design (RAD) assigns xn+1 = d1 (xn+1 = dK). Otherwise, if Bn(dj) := {m̂n(dj) ≤ m∗ ≤ m̂n(dj+1)}
occurs, the RAD randomly chooses dj or dj+1 according to the following rule:

if m∗ ≤ (>)
m̂n(dj) + m̂n(dj+1)

2
then

xn+1 =

{
dj with probability 1− 1

k
( 1

k
)

dj+1 with probability 1
k

(1− 1
k
) ,

(4)

where k := k(n, j) =
∑n

i=1 Bi(dj). Note that if m∗ ≤ m̂n(dj)+m̂n(dj+1)

2
, then dj is the estimated MTD

and xn+1 = dj with large probability. The design is constructed in such a way that if Bn(dj) occurs
infinitely often then the probability of choosing the estimated MTD tends to one (if m(dj) ≤ m∗ ≤
m(dj+1)), and both {xn = dj} and {xn+1 = dj+1} occur infinitely often. Thus, in the RAD, non MTD
treatment occurs asymptotically only rarely (though it occurs infinitely often) and the probability
of treatment at the true MTD approaches one. The properties of this design are summarized in the
following theorem.

Theorem 3. Assume that m(dj′) < m∗ < m(dj′+1). The RAD (4) satisfies

I. P (∃N s.t. ∀n ≥ N : I(Bn(dj′)) = 1) = 1.

II. The sequence M̂TDn is strongly consistent.

III. P (xn = dj∗) → 1.
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Remark 4. As in the Mukerjee’s design, the resulting sequence of estimators of the MTD is strongly
consistent also for the other three cases that are described in Remark 1.

Remark 5. Theorem 3 guarantees large probability of optimal treatment for large n, and treatment at
one of the two closest doses to the MTD with probability 1 from some time on (Part I). However, for
practical purposes (small n), we found that the algorithm performs better when the rate of choosing
the estimated MTD is reduced. For example, replacing k in (4) with a · k + 2, where a is a (small)
constant, yields better small sample performance. Thus, the choice between dj and dj+1 is done
with probability 1

a·k+2
which is ≈ 0.5 for small a. This modification does not change the asymptotic

behavior of the estimator given in Theorem 3, while improving the learning rate of the response curve
in early stages of the experiment.

4 A Simulation study

In this section, we compare the small sample performance of several designs under the following
dose-response curves:

A. (m(d1), . . . , m(d6)) = (0.1, 0.13, 0.15, 0.17, 0.25, 0.3);

B. (m(d1), . . . , m(d6)) = (0.07, 0.11, 0.23, 0.43, 0.84, 0.98).

Scenario B is taken from Table 4 of O‘Quigley et al. (1990). Scenario A represents a dose-response
curve with a much smaller slope. For scenario A, we considered m∗ = 0.2 and m∗ = 0.22 (MTD=d3

and MTD=d4, respectively), and for scenario B, we considered m∗ = 0.2 and m∗ = 0.3 (MTD=d3 in
both cases).

We compare the randomized allocation design (RAD) (4), the up and down design of Ivanova et al.
(2003) (IVA), the design of Mukerjee described in Section 3 (MUK), and the parametric CRM design
(Shen and O’Quigley (1996)) with maximum likelihood as the estimation approach. Three different
versions of the RAD are studied according to different choices of a (see Remark 5): a = (10− 2)/30,
(10−2)/50, and (10−2)/100, denoted RAD1, RAD2, and RAD3, respectively; these values correspond
to 0.9 chance of assigning the estimated MTD for k = 30, 50, and 100.

The CRM assumes the one parameter working model P (y = 1|x = dj) = ξα
j , where ξj (j =

1, . . . , 6) are the constants suggested by O‘Quigley et al. (1990), and α is the unknown parameter.
The CRM approach assigns the next dose according to the maximum likelihood estimate of the MTD.
Note that the two dose-response curves we consider do not satisfy the working model for the CRM;
the ’nearest’ curves in the standard Euclidean metric are

(0.001, 0.005, 0.025, 0.063, 0.202, 0.437) , (0.135, 0.213, 0.341, 0.448, 0.628, 0.786)

for scenarios A and B, respectively. However, scenario B with m∗ = 0.2 satisfies the conditions given
by Cheung and Chappell (2002), conjectured to be sufficient for consistency of the CRM.

All methods started with x1 = d1 and assigned xn+1 = d(xn+1)∧K until the first toxicity response
was observed, and continued according to the specific rules described above. We conducted 10,000
replications from each scenario and ran the experiment for a maximum of 500 individuals. For better
comparison, we coupled all designs in a manner that is akin to the notion of antithetic variables in
the following way: the n’th subject in the r’th replication was associated with a uniform random

7



variable Un,r (independent of all other random variables); if the n’th subject in the r’th replication
was assigned with the dose dj then he had toxicity response if Un,r ≤ m(dj). Thus, when individual
n in replication r had the outcome y = 1 in one design, then the same outcome (y = 1) was obtained
in all designs that assigned the same or a higher dose (to individual n in replication r). Similarly for
the outcome y = 0.

The performances of the designs were measured according to the different purposes of the treat-
ment versus experimentation dilemma, that is, the probability of finding the true MTD at stage
n and the proportion of subjects treated with the true MTD. For CRM, the MTD was estimated
according to the maximum likelihood approach; for the other methods, (3) was used. The results
for small sample sizes are given in Tables 1 and 2; Figures 1 and 2 present the results for all sample
sizes.

Overall, the performances under scenario B are much better than under scenario A. This is
expected, as the response-curve of the latter is much flatter. Also of note is the small probability of
correct estimation for n ≤ 50, which are the typical sample sizes of MTD studies. This is a known
problem in such studies – the probability of selecting the true MTD is more often than not smaller
than 0.5.

When comparing the designs on the basis of the probability of finding the true MTD, we found
that IVA and MUK outperformed the others for large n. The CRM preformed well only in scenario
B with m∗ = 0.2 as suggested by the consistency considerations mentioned above. The randomized
designs and especially RAD3 estimated the MTD relatively well for small n. This is because the
allocation probability is close to one half in these stages. For small n, the performances of all designs
except the CRM are comparable, though, it seems that Mukerjee’s and Ivanova’s designs are over all
the best when aiming at estimating the MTD.

Looking at the proportion of subjects treated with the true MTD, we see that the RADs perform
the best for large n for all scenarios except scenario B with m∗ = 0.2 in which CRM is better.
Generally, RAD3, which has the smallest a, is the best among the RADs, though, in scenario B with
m∗ = 0.3, RAD1 and RAD2 perform somewhat better. For small n, it seems that the best design
depends on the specific dose-response curve and on m∗.

The CRM performs very well in scenario B, but performs poorly under scenario A. This demon-
strates the potential benefit and risk of using parametric models. No single method among the
nonparametric approaches outperforms the others. Further study is needed in order to understand
the operating characteristics of the different designs under different scenarios.
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Table 1: The percent of correct estimation (standard errors) at stage n for n = 20, 30, 40, 50 based on 10,000
replications; the best designs are shown in bold.

% of correct estimation

Scenario Design n=20 n=30 n =40 n=50

A(m∗ = 0.2)

RAD1 25.6(0.47) 28.3(0.45) 30.1(0.46) 32.2(0.47)
RAD2 25.4(0.43) 28.6(0.45) 31.1(0.47) 33.1(0.47)
RAD3 25.9(0.44) 29.3(0.45) 31.4(0.46) 33.4(0.47)
MUK 25.6(0.47) 30.1(0.46) 31.5(0.46) 34.1(0.47)
IVA 24.2(0.43) 27.8(0.45) 30.2(0.46) 33.2(0.47)
CRM 20.5(0.40) 22.8(0.42) 25.6(0.47) 26.9(0.44)

A(m∗ = 0.22)

RAD1 24.3(0.43) 26.3(0.44) 27.8(0.45) 29.6 (0.46)
RAD2 24.6(0.43) 27.5(0.45) 29.1(0.45) 30.7(0.46)
RAD3 25.4(0.43) 28.8(0.45) 30.0(0.46) 31.7(0.46)
MUK 23.8(0.47) 26.6(0.44) 30.1(0.46) 32.5(0.47)
IVA 21.4(0.41) 24.4(0.43) 27.1(0.44) 30.1(0.46)
CRM 22.9(0.42) 24.1(0.43) 25.4(0.43) 26.3(0.44)

B(m∗ = 0.2)

RAD1 44.8(0.45) 49.2(0.50) 52.2(0.50) 53.6(0.50)
RAD2 45.6(0.50) 50.470(0.50) 54.2(0.50) 56.3(0.50)
RAD3 46.3(0.50) 52.6(0.50) 55.8(0.50) 58.8(0.49)
MUK 45.9(0.50) 53.9(0.50) 58.6(0.49) 62.0(0.49)
IVA 46.3(0.50) 51.9(0.50) 56.9(0.50) 60.8(0.49)
CRM 42.1(0.49) 49.9(0.50) 55.1(0.50) 59.3(0.49)

B(m∗ = 0.3)

RAD1 47.9(0.50) 55.8(0.50) 61.7(0.49) 65.5(0.47)
RAD2 48.7(0.50) 56.3(0.50) 62.0(0.48) 66.1(0.47)
RAD3 47.7(0.50) 55.9(0.50) 61.2(0.49) 65.5(0.47)
MUK 48.8(0.50) 55.4(0.50) 59.9 (0.49) 63.47(0.48)
IVA 51.2(0.50) 60.2(0.49) 65.4(0.48) 69.49(0.46)
CRM 50.6(0.50) 58.3(0.49) 63.0(0.49) 65.2(0.48)
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Table 2: The proportion of subjects treated with the true MTD (standard errors) for n = 20, 30, 40, 50 based on
10,000 replications; the best designs are shown in bold.

Proportion of subjects treated with the true MTD

Scenario Design n=20 n=30 n =40 n=50

A(m∗ = 0.2)

RAD1 0.190(0.0021) 0.212(0.0023) 0.229(0.0025) 0.244(0.0026)
RAD2 0.187(0.0020) 0.209(0.0021) 0.227(0.0023) 0.243(0.0024)
RAD3 0.187(0.0019) 0.207(0.0020) 0.225(0.0021) 0.240(0.0021)
MUK 0.198(0.0016) 0.214(0.0017) 0.227(0.0017) 0.239(0.0017)
IVA 0.202(0.0018) 0.220(0.0018) 0.234(0.0018) 0.246(0.00180)
CRM 0.173(0.0022) 0.188(0.0025) 0.202(0.0027) 0.214(0.0029)

A(m∗ = 0.22)

RAD1 0.192(0.0020) 0.217(0.0022) 0.233(0.0023) 0.245(0.0024)
RAD2 0.194(0.0019) 0.221(0.0020) 0.239(0.0021) 0.252(0.0022)
RAD3 0.202(0.0019) 0.230(0.0019) 0.249(0.0020) 0.263(0.0020)
MUK 0.207 (0.0016) 0.235(0.0017) 0.254(0.0017) 0.269(0.0017)
IVA 0.157(0.0015) 0.183(0.0016) 0.203(0.0016) 0.218(0.0016)
CRM 0.170(0.0023) 0.191(0.0027) 0.205(0.0030) 0.216(0.0031)

B(m∗ = 0.2)

RAD1 0.325(0.0023) 0.361(0.0024) 0.389(0.0025) 0.411(0.0027)
RAD2 0.324(0.0022) 0.361(0.0022) 0.389(0.0023) 0.413(0.0023)
RAD3 0.314(0.0020) 0.351(0.0020) 0.381(0.0020) 0.405(0.0020)
MUK 0.312(0.0017) 0.339(0.0015) 0.360(0.0014) 0.375(0.0013)
IVA 0.333(0.0018) 0.367(0.0017) 0.391(0.0016) 0.409(0.0015)
CRM 0.310(0.0023) 0.360(0.0025) 0.402(0.0027) 0.437(0.0028)

B(m∗ = 0.3)

RAD1 0.335(0.0023) 0.382(0.0024) 0.422(0.0025) 0.456(0.0026)
RAD2 0.330(0.0022) 0.376(0.0022) 0.414(0.0022) 0.446(0.0023)
RAD3 0.318(0.0020) 0.359(0.0020) 0.393(0.0019) 0.423(0.0019)
MUK 0.312(0.0016) 0.337(0.0014) 0.356(0.0013) 0.371(0.0013)
IVA 0.362(0.0017) 0.403(0.0017) 0.433(0.0016) 0.456(0.0015)
CRM 0.372(0.0021) 0.434(0.0022) 0.478(0.0022) 0.512(0.0022)
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Figure 1: The percent of finding the true MTD at stage n for n = 20 . . . 500 based on 10,000 replications. The
following designs were compared: RAD1 (red), RAD2 (pink), RAD3 (purple), Mukerjee (blue), Ivanova et al. (2003)
(green) and CRM (yellow).
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(a) Scenario A (m∗ = 0.2)
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(b) Scenario A (m∗ = 0.22)
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(c) Scenario B (m∗ = 0.2)
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(d) Scenario B (m∗ = 0.3)
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Figure 2: The proportion of subjects treated with the true MTD for n = 20 . . . 500 based on 10,000 replications. The
following designs were compared: RAD1 (red), RAD2 (pink), RAD3 (purple), Mukerjee (blue), Ivanova et al. (2003)
(green) and CRM (yellow).
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(a) Scenario A (m∗ = 0.2)
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(b) Scenario A (m∗ = 0.22)
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(c) Scenario B (m∗ = 0.2)
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(d) Scenario B (m∗ = 0.3)
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5 Conclusions

Most designs considered in the literature of phase I clinical trials follow the premise that subjects
must be treated with the estimated MTD. This paper shows that without parametric assumptions
on the response curve, such an approach yields inconsistent estimators. In other words, one cannot
achieve simultaneously the two goals in the treatment versus experimentation dilemma, i.e, finding
the MTD and treating the subjects in an optimal way. This finding necessitates a second thought
about the way doses should be assigned in phase I studies. In particular, this result may imply that
one should try to learn the responses in the two closest doses to the desired level, rather than the
closest one.

A similar result can be proved in parametric models where the dimension of the parameter space
is two or larger. The basic idea of the proof of Theorem 1 is valid also for such models. A design
that concentrates eventually on one dose can yield a consistent estimator for the probability of a
toxic response at that dose only, but knowing the response curve in a single dose cannot yield a
consistent estimator for the unknown parameters, unless the dimension is one. Therefore, Corollary
1 is also relevant for parametric models involving more than one parameter: assigning the estimated
MTD to the next subject at each stage may be undesirable also in this seemingly simpler case.
Shen and O’Quigley (1996) and Shu and O’Quigley (2008), make a similar argument in favor of a
one parameter model as a working model for the CRM.

Following Mukerjee (1981), we suggest to treat each subject with one of the two closest doses to
the estimated desired level. Mukerjee proposes to use each of these doses with equal proportions.
We show that a broader family of choices still yields consistent estimators. Further study is required
in order to achieve optimality under suitable definitions.

The randomized allocation design in which the MTD is assigned to the n’th subject with increasing
probability, treats subject ‘almost’ in an optimal way for large n. However, for small and moderate
sample sizes, this design does not estimate the MTD as well as other designs, as it aims mainly at
the treatment part of the dilemma. This implies that, even tough the MTD can be consistently
estimated, a price is being paid in the experimentation part.

Appendix

Proof of Theorem 1

A sequential design is a sequence of rules or functions: fn(x1, y1, . . . , xn−1, yn−1) ∈ D, where fn = xn

is the dose assigned to the n’th subject. Assume that {fn}∞n=1 satisfies (2) for all increasing m’s. We
will show that such a sequence does not exists. Let m and m′ differ only at one value in D, say d3,
and suppose, for example, that j∗ = 2 and j′∗ = 3 are the MTD’s associated with m and m′. It is
easy to construct such m and m′. Consider two probability measures, P and P ′, generated by m and
m′, defined on the measurable space (Ω,F), where Ω is the sample space of the experiment and F
is the sigma-field generated by the union of all Fn.

Let An be the event that from the n’th subject on we always choose d2. By the assumption of
consistency of the given decision rule fn under P (that is, under m), there is an index n0 such that
P (An0) > 0. Consequently, there exists a vector (x0

1, y
0
1, . . . , x

0
n0−1, y

0
n0−1) such that

Ã := {ω ∈ Ω : (x1, y1, . . . , xn0−1, yn0−1)(ω) = (x0
1, y

0
1, . . . , x

0
n0−1, y

0
n0−1)} ⊆ An0 ,
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and P (Ã) > 0.
By finiteness we also have P ′(Ã) > 0, since the n0−1 outcomes that lead to An0 also have positive

probability under P ′. Therefore, P ′(An0) ≥ P ′(Ã) > 0 so that on a set of positive measure, An0 , we
sample d2 from n0 on, while the MTD under m′ is d3.

Proof of Theorem 2

For the proof, we first need a lemma.

Lemma 1. Mukerjee’s design satisfies

I. ȳn(dj) → m(dj) a.s. on {Nn(dj) →∞}, j = 1, . . . , K, where ȳn(dj) := ȳn(dj, dj).

II. m̂n(dj) → m(dj) a.s. on {Nn(dj) →∞}, j = 1, . . . , K.

Proof. I. m̂n :=
∑n

i=1 I(xi = dj)(yi −m(dj)) is a square integrable martingale with respect to the
filtration Fn, with quadratic variation

∑n
i=1[I(xi = dj)]

2·m(dj)·[1−m(dj)] = m(dj)·[1−m(dj)]Nn(dj),
where Nn(dj) =

∑n
i=1 I(xi = dj). Therefore, by the strong law of large numbers for square integrable

martingales, (Shiryaev (1996) p. 519, Theorem 4)

1

Nn(dj)

n∑
i=1

I(xi = dj)(yi −m(dj)) → 0 a.s. on {Nn(dj) →∞}.

Since ȳn(dj) = m(dj) + 1
Nn(dj)

∑n
i=1 I(xi = dj)(yi −m(dj)), the first part of the lemma follows.

II. We first consider the case j ∈ {2, . . . , K−1}. Mukerjee’s design has the property that if Nn(dj) →
∞ then either Nn(dj+1) → ∞ or Nn(dj−1) → ∞ (or both); without loss of generality, we assume
that Nn(dj+1) →∞, and we condition on the event {Nn(dj) →∞} ∩ {Nn(dj+1) →∞}.

Recall that m̂n(dj) = maxr≤j mins≥j ȳn(dr, ds). We first show that for every r ≤ j and s > j

ȳn(dr, ds) > ȳn(dr, dj), (5)

eventually, with probability 1, i.e., for almost all ω ∈ Ω (where the probability space is (Ω,F , P ) as
defined in the proof of Theorem 1) there exists N(ω) such that (5) holds for all n ≥ N(ω) and where
the random variables are evaluated at ω. To see that, write

ȳn(dr, dj) =

j∑

k=r

Nn(dk)

Nn(dr, dj)
ȳn(dk),

and recall that Nn(dr, dj) > Nn(dj) → ∞. If limnNn(dk) < ∞ then the corresponding term in the
sum above has zero limit; if limnNn(dk) = ∞ then, by part I of the lemma, limn ȳn(dk) = m(dk) a.s.,
and in particular, limn ȳn(dj) = m(dj) a.s.. Thus, lim supn ȳn(dr, dj) ≤ m(dj) a.s.. A similar
argument shows that lim infn ȳn(dj+1, ds) ≥ m(dj+1) a.s., and therefore, for large enough n, with
probability 1, ȳn(dj+1, ds) > ȳn(dr, dj). The inequality (5) follows, as

ȳn(dr, ds) =
Nn(dr, dj)

Nn(dr, ds)
ȳn(dr, dj) +

Nn(dj+1, ds)

Nn(dr, ds)
ȳn(dj+1, ds) >

Nn(dr, dj)

Nn(dr, ds)
ȳn(dr, dj) +

Nn(dj+1, ds)

Nn(dr, ds)
ȳn(dr, dj) = ȳn(dr, dj).
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In view of (5) and the definition of m̂n, for large enough n, with probability 1, m̂n(dj) = maxr≤j ȳn(dr, dj).
Now, since lim supn ȳn(dr, dj) ≤ m(dj) a.s. for r < j, and limn ȳn(dj, dj) = m(dj) a.s., the second
part of the lemma follows for j ∈ {2, . . . , K − 1}.

If j = 1 (the case j = K is similar), then if Nn(d2) → ∞ the proof is the same, otherwise d1 is
the only dose that is assigned infinitely often and therefore, for every j

ȳn(d1, dj) =

j∑

k=1

Nn(dk)

Nn(dr, dj)
ȳn(dk) → m(d1) a.s.

because for k = 1 the limit is m(d1), and for k > 1, the k’th term has limit zero; since m̂n(d1) =
minj≥1 ȳn(d1, dj) the lemma follows.
Proof of Theorem 2. I. For an even n and j < K, denote by Bn(dj) the event that xn+1 =
dj, xn+2 = dj+1, and by B′

n(d1) (B′
n(dK)) the event that xn+1 = d1, xn+2 = d1 (xn+1 = dK , xn+2 = dK).

We show by contradiction that the only j satisfying that {Bn(dj)} occurs infinitely often is j = j′.
Assume that j satisfies j > j′ and {Bn(dj)} occurs infinitely often. By Lemma 1, there exists

N such that m̂n(dj) > m∗ for all n > N , with probability 1. Then, I(Bn(dj)) = 0 for n > N in
contradiction to {Bn(dj)} occurring infinitely often. A similar argument shows that {Bn(dj)} does
not occur infinitely often for j < j′, nor do {B′

n(d1)} and {B′
n(dK)}; hence, for large enough n, with

probability 1, x2n+1 = dj′ , x2n+2 = dj′+1.
II. The first part of the theorem ensures that the design will concentrate eventually on the two
closest doses to m−1(m∗) and both of these doses will be chosen infinitely often. By Lemma 1,
m̂n(dj′) and m̂n(dj′+1) are strongly consistent. This implies that for large enough n, with probability

1, M̂TDn = j∗.

Proof of Theorem 3

For the purposes of this theorem we define xn+1 for each n as

if m∗ ≤ m̂n(dj) + m̂n(dj+1)

2
then xn+1 = djI(Un+1 ≤ k − 1

k
) + dj+1I(Un+1 >

k − 1

k
);

if m∗ >
m̂n(dj) + m̂n(dj+1)

2
then xn+1 = djI(Un+1 ≤ 1

k
) + dj+1I(Un+1 >

1

k
),

where {Ui}∞i=1 are i.i.d uniform [0, 1] random variables independent of the y’s; j is such that I(Bn(dj)) =
1 and k =

∑n
i=1 Bi(dj).

I. The proof is similar to the proof of Theorem 2 after showing that if j ∈ {1, . . . , K − 1} satisfies
that Bn(dj) occurs infinitely often, then both {xn = dj} and {xn = dj+1} occur infinitely often, with
probability 1.

Let {nk}∞k=1 be the (random) subsequence in which I(Bnk
(dj)) = 1. The design implies {xnk+1 =

dj} ⊇ {Unk+1 < 1
k
}, and {Unk+1}∞k=1 are i.i.d. (since nk = min{n : I(Bn(dj)) = 1, n > nk−1} is

a stopping time for all k; see Lemma 2 below). As,
∑

k P (Unk+1 < 1
k
) =

∑
k

1
k

= ∞, the second
Borel-Cantelli lemma shows that {Unk+1 < 1

k
}, and hence {xnk+1 = dj} occur infinitely often. Similar

arguments show that {xn = dj+1} occur infinitely often.
II. This follows from the same arguments as in the proof of Part II of Theorem 2.
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III. The MTD, dj∗ , is either dj′ or dj′+1. Assume that dj∗ = dj′ (the argument is symmetric). For
any n ≥ k0 ≥ 1, define the set

An,k0 = Bn(dj′) ∩ {M̂TDn = dj′} ∩ {k(n, j′) ≥ k0}.

For any fixed k0 and large enough n (so that An,k0 is not null),

P (xn+1 = dj′) ≥ P (xn+1 = dj′|An,k0)P (An,k0) ≥
k0 − 1

k0

P (An,k0),

since P (xn+1 = dj′) = P (Un+1 ≤ k−1
k

) ≥ P (Un+1 ≤ k0−1
k0

) on An,k0 . For any fixed k0, P (An,k0) → 1

by Parts I and II, so that lim infn P (xn = dj′) ≥ k0−1
k0

. As this is true for all k0, the claim follows.

Lemma 2. Let {Un}∞n=1 be a sequence of i.i.d random variables with distribution F , and let {τn}∞n=1

be an increasing sequence of finite stopping times with respect to Gn ⊇ σ(U1, . . . , Un). Assume that
Un+k|Gn ∼ F for all k ≥ 1 and n. Then {Uτn+1}∞n=1 is also a sequence of i.i.d random variables with
distribution F .

Lemma 2 is quite standard, we include a proof for completeness.
Proof. For any subset of indices n1 < n2 < . . . < nl and any measurable sets A1, . . . , Al,

P (
⋂

1≤k≤l

{Uτnk
+1 ∈ Ak}) = E[

∏

1≤k≤l

I(Uτnk
+1 ∈ Ak)] = E[E[

∏

1≤k≤l

I(Uτnk
+1 ∈ Ak)|Gτnl

]]

= E[
∏

1≤k≤l−1

I(Uτnk
+1 ∈ Ak)E[I(Uτnl

+1 ∈ Al)|Gτnl
]]

= E[
∏

1≤k≤l−1

I(Uτnk
+1 ∈ Ak)]P (U1 ∈ Al) = . . . =

∏

1≤k≤l

P (U1 ∈ Ak);

hence the random variables {Uτn+1}∞n=1 are i.i.d.
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