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BEST INVARIANT AND MINIMAX ESTIMATION OF
QUANTILES IN FINITE POPULATIONS

By Yaakov Malinovsky‡,∗,†, Yosef Rinott§,∗

National Institute of Child Health and Human Development‡, The Hebrew
University of Jerusalem, Department of Statistics and Center for the Study

of Rationality.§

We study estimation of finite population quantiles, with empha-
sis on estimators that are invariant under monotone transformations
of the data, and suitable invariant loss functions. We discuss non-
randomized and randomized estimators, best invariant and minimax
estimators and sampling strategies relative to different classes.

The combination of natural invariance of the kind discussed here,
and finite population sampling appears to be novel, and leads to
interesting statistical and combinatorial aspects.

1. Introduction. In this paper we study invariant estimation of quan-
tiles of a finite population. While much of statistics, such as official statistics,
concerns finite population sampling, with emphasis on estimation of totals
and quantiles, most of the work in the past three decades or so on optimality
properties of estimators, including the study of invariance, has concentrated
on i.i.d sampling, that is, sampling from infinite populations.

In finite population sampling, the statistician chooses a strategy which
consists of a sampling design, and an estimator, and the data consist of the
labels of the sampled units, and their corresponding measured values; this
clearly differs from infinite population sampling, where there is no sampling
design to consider, and no labels.

When estimating quantiles of a finite population, it is natural to deal
with estimators that are invariant under monotone transformations of the
measured values, since under such transformations the population unit which
represents the estimated quantile remains unchanged. It is also natural to
consider the possibility of invariance under permutations of the labels.

∗Supported in part by grant number 473/04 from the Israel Science Foundation.
†Supported by the Intramural Research Program of the National Institutes of Health,

Eunice Kennedy Shriver National Institute of Child Health and Human Development.
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Thus, in this paper we deal with best-invariant and minimax strategies,
that is, sampling designs and estimators, for estimation of quantiles in con-
nection with two groups. The infinite (and non-compact) group of monotone
transformations, and the finite group of permutations. Another special as-
pect of the present work is that we consider a loss function which essentially
measures the deviation of the estimate from the estimated quantile in terms
of the number of population units that separate them; see (2.2). This invari-
ant loss function has a combinatorial flavor, and so do some of our proofs, in-
cluding that of Theorem 4.2 which is given in Malinovsky and Rinott (2009)
and a simple use of the celebrated Ramsey Theorem in Theorem 5.3.

Some relevant references: invariance under monotone transformation when
estimating a whole distribution function with various loss functions ap-
pears, for example, in Agarwal (1955), Ferguson (1967), Brown (1988),
Yu and Chow (1991), Yu and Phadia (1992), Stȩpień–Baran (2009), Cohen and Kuo
(1985), and Lehmann and Casella (1998), where the only last two refer-
ence consider finite population models. Invariant quantile estimation in in-
finite populations appears in Ferguson (1967), Brown (1988) (median) and
Zieliński (1999).

Invariance in finite populations appears already in Blackwell and Girshick
(1954), where only finite groups (permutations) are considered, and in many
later references, such as Cassel et al. (1977), where invariance under linear
transformations also appears.

General results on optimality of strategies: sampling designs and estima-
tors, with numerous references, can be found, for example, in Cassel et al.
(1977), and for a recent survey see Rinott (2008).

In Section 2 we provide all definitions and notations. In Section 3 we show
that for our purposes randomized and behavioral estimators are equivalent.
Thus we can choose either formulation of randomization according to our
convenience. In Section 4 we describe the form of invariant estimators and
some of their properties. We study best invariant-symmetric estimators un-
der simple random sampling, and determine them explicitly in certain inter-
esting cases. Sample quantiles, that is, quantiles of the empirical distribution
function, provide a standard way of estimating the corresponding population
quantiles. However, the estimators we propose and study in Section 4 are not
always identical to the sample quantiles; also, that they may depend on the
loss function under consideration. Furthermore, they may not be unique. In
Section 5 we bring minimax results for invariant and non-invariant classes of
estimators. Randomized estimators play a part in the proofs. Such estima-
tors appear also when unbiasedness is desired. They are defined and studied
in Malinovsky (2009).
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2. Definitions and notations. Most of the definitions and notations,
with references, appear in Ferguson (1967), or Rinott (2008).

We consider a size N finite population of values of some measure-
ment. Let x = (x1, x2, ..., xN ) be the N-dimensional vector of population
values, where xj is a real number associated with the unit labeled j ∈ N :=
{1, ..., N}, the label set.

We assume that x ∈ Υ, a known parameter space. For simplicity we
shall consider only parameter spaces of the type Υ = {(x1, x2, ..., xN ) : xi ∈
R, xi distinct}, where R denotes the real line. Note that Υ is symmetric
in the sense that if x ∈ Υ then so is any permutation of the coordinates
of x. The assumption that the coordinates of x are distinct is not essential,
but making it helps avoid various technicalities, and the same is true with
regard to the assumption xi ∈ R, and we could assume that xi ∈ Λ where
Λ is, for example, some known interval, finite or infinite. We will comment
on such possibilities only briefly.

The population distribution function Fx is defined by

(2.1) Fx(t) =
1
N

N∑

j=1

I(−∞, t](xj) =
1
N

N∑

j=1

I[xj ,∞)(t).

Fx is an unknown parameter which is a function of the parameter x. Using
the assumption that the coordinates of x are distinct, we can also write

Fx(t) =
j

N
for x(j) ≤ t < x(j+1), j = 0, 1, ...N, (x(0) := −∞, x(N+1) := ∞),

where x(1) < x(2) < ... < x(N) are the order statistics of x. In particular
Fx(x(j)) = j

N .
The k-th population quantile for a given x ∈ Υ is inf{θ ∈ R : Fx(θ) ≥

k/N}.
Our goal is to estimate quantiles, where for a given estimate a of the k-th

quantile, the loss function is of the type

(2.2) L(a, x) = G(|Fx(a)− k

N
|), a ∈ R ,

for k = 1, ..., N , where G is a nonnegative increasing function. Some of our
results focus on special cases of such G. Note that |Fx(a) − k

N | vanishes if
a is the k-th quantile, and otherwise it counts the deviation of a from the
estimated quantile in terms of number of ordered population units by which
they differ.
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A parameter θ = θ(x) is said to be symmetric if it remains constant
under permutations of the coordinates of x. Clearly the examples given
above, Fx and x(k) are symmetric parameters, and so is the population total
θ(x) =

∑N
i=1 xi, and most of the common parameters of interest. Also, if

for some θ, Fx(θ) ≥ k/N for some x, then the same holds for any permuta-
tion of x since Fx is symmetric. Therefore the population quantiles are also
symmetric.

A loss function L(a, x) is said to be symmetric if it remains constant
when x is replaced by any permutation of its coordinates for any a. It is
clear that the loss (2.2) is symmetric since Fx is symmetric.

A sampling design P is a probability function on the space of all subsets
S of N . We assume noninformative sampling, that is, the probability P(S)
does not depend on the parameter x. Simple random sampling without
replacement of size n is denoted by Ps and satisfies Ps(S) = 1/

(N
n

)
if |S| = n,

and zero otherwise, where |S| denotes the size of S.
The data consist of the set of pairs {(i, xi) : i ∈ S}, that is , the x-values

in the sample S and their corresponding labels. We set

(2.3) D = D[S, x] = {(i, xi) : i ∈ S}.

We denote the set of all such D by D. The notation D[S, x] as defined
above is sometimes convenient, however, is does not reflect the the pairing
(i, xi) : i ∈ S which is part of the data, and the fact that the data depends
on x only through xi’s such that i ∈ S.

By sufficiency arguments, Basu (1958) (also Cassel et al. (1977) and Rinott
(2008)), the order in which the sample was drawn (if defined and known) and
repetitions of units, if the sampling procedure allows it, provide no informa-
tion. Since the relevant data consist only of the set of drawn labels S and
their x-values, we shall only consider designs P on the space of unordered
subsets of N with no repetitions.

We consider here only sampling designs having a fixed sample size, |S| =
n, say; that is, the sample consists of n distinct units. Set X = {xi : i ∈ S}
and let Y = (Y1, ..., Yn) = (X(1), ..., X(n)) denote the ordered values (order
statistics) of X. We have Y1 < ... < Yn. In order to show the dependence on
S, we often use the notation xS = {xi : i ∈ S} instead of X.

A (nonrandomized) estimator t is a real valued function t(D) of the
data. The space of such estimators is denoted by T . We will also use the
notation t(S, x) and t ({(i, xi) : i ∈ S}) for t(D).

An estimator t = t(D) is said to be symmetric if it depends only on the
x-values in the sample, and not on their labels. In other words, the estimator
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depends only on X and not on S. Thus, if {xi : i ∈ S} = {x′i : i ∈ S′} for
some x, x′ ∈ Υ and samples S, S′, then t(D[S, x]) = t(D[S′, x′]). The class of
all symmetric estimators is denoted by TS . It is trivial but important to note
that without information on S, the information in X = {xi : i ∈ S} is the
same as in Y. Hence for symmetric estimators we may write t(X) = t(Y),
and also t(xS). The best known example of a non symmetric estimator is
the Horvitz-Thompson estimator of the finite population total, tHT (D) :=∑

i∈S xi/αi, where the observation having label i is inversely weighted by
the inclusion probability of the i-th unit according to the sampling design
P, αi = PP(i ∈ S). On the other hand the simple sample mean, or the
median and other sample quantiles, for example, are all symmetric.

A pair (P, t) consisting of a sampling design and an estimator is called a
strategy.

The risk of a strategy (P, t) for a given x ∈ Υ is the expected loss defined
by

(2.4) R (P, t; x) = EPL (t(D), x) =
∑

S

L(t(D[S, x]), x)P(S).

For the next definition we need to consider the class of nonrandomized
estimators T as a measure space. As in Ferguson (1967) we do not specify
a sigma-field, however, we assume that singletons, that is, sets consisting of
a single nonrandomized estimator, are in the sigma-field.

A probability distribution δ on the space of nonrandomized estimators T ,
is called a randomized estimator. The space of all randomized estimators
is denoted by T ∗. We define

(2.5) R (P, δ; x) = ER (P, T ;x) =
∑

S

∫

T
L(t, x)dδ(t)P(S),

where T is a random variable taking values in T , whose distribution is given
by δ, and the integral with respect to dδ(t) has to be properly defined over
the function space T .

A randomized estimator is said to be symmetric if δ is concentrated
on nonrandomized symmetric estimators. The class of such estimators is
denoted be T ∗S .

A behavioral estimator is defined by δ = {δD} = {δS,xS
}, where for

each possible data D ∈ D, δD is a distribution on R, with the interpretation
that if D is observed, then a value in R is chosen according to δD as an
estimate of the quantile in question. A behavioral estimator is said to be
symmetric when the distributions δD depend only on xS and not on the
sampled labels.
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For behavioral estimators, letting Z ∈ R be distributed according to δD

we have

(2.6) R (P, δ;x) = ER (P, Z;x) =
∑

S

∫

R
L(z, x)δS,xS

(dz)P(S).

We remark that under the present setup the classes of behavioral and
randomized rules are equivalent by WaldWolf (1951). In Section 3 we show
that this equivalence holds also for invariant symmetric estimators, which
are defined next. Therefore when discussing randomized estimators we con-
sider either formulation according to our convenience and we use the same
notation as defined above for randomized estimators, T ∗ and T ∗S , also for
the classes behavioral and symmetric behavioral estimators.

Given a function ϕ : R → R, we extend its operation to vectors in
the parameter space, by ϕ(x) = (ϕ(x1), ..., ϕ(xN )), to samples by ϕ(Y) =
(ϕ(Y1), ..., ϕ(Yn)), and to data by ϕ(D) = {(i, ϕ(xi)) : i ∈ S} and ϕ(xS) =
{ϕ(xi)) : i ∈ S}. Let Φ denote the group of all strictly increasing continuous
functions from R onto R (bijections).

In the case that in the parameter space we assume xi ∈ Λ, an interval, say,
then we assume that Φ consists of similar extensions of strictly increasing
continuous functions from Λ onto Λ.

A nonrandomized estimator t ∈ T is said to be invariant if for all D and
and all ϕ ∈ Φ, we have

t(ϕ(D)) = ϕ(t(D)).(2.7)

The class of nonrandomized invariant estimators is denoted by TI , and the
subclass of nonrandomized, invariant and symmetric estimators is denoted
by TIS .

A randomized estimator δ ∈ T ∗ is said to be invariant if δ, as a proba-
bility distribution over T , assigns all its mass to the subset TI of invariant
nonrandomized estimators. The class of invariant randomized estimators is
denoted by T ∗I . A randomized estimator δ ∈ T ∗ is said to be invariant-
symmetric if δ, as a probability distribution over T , assigns all its mass to
the subset TIS of invariant and symmetric nonrandomized estimators. The
class of invariant-symmetric randomized estimators is denoted by T ∗IS .

A behavioral estimator is said to be invariant if ZD ∼ δD satisfies
Zϕ(D)

L= ϕ(ZD) for all D ∈ D, where L= denotes equality of distributions
(laws).

An equalizer estimator with respect to a design P is an estimator δ such
that R(P, δ;x) = C for some constant C, for all x ∈ Υ.
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Given a design P, an estimator δ1, is said to be as good as an estimator
δ2, if R(P, δ1; x) ≤ R(P, δ2; x) for all x ∈ Υ. The estimator δ1, is said to
be better than an estimator δ2, if R(P, δ1;x) ≤ R(P, δ2;x) for all x ∈ Υ
and R(P, δ1; x) < R(P, δ2;x) for at least one x ∈ Υ, and equivalent to an
estimator δ2, if R(P, δ1; x) = R(P, δ2; x) for all x ∈ Υ. An estimator δ is
said to be admissible if there exists no estimator better than δ.

An estimator having a property C, that is as good as any other estimator
having this property, is called a best-C estimator. We shall consider C =
the property of being invariant, or invariant and symmetric, or invariant
and symmetric and unbiased (the latter are discussed only in Malinovsky
(2009)).

3. Behavioral and randomized estimators. By a well known result
in WaldWolf (1951), see also Ferguson (1967) and Kirschner (1976), be-
havioral and randomized estimators are equivalent in our problem. It may
happen in certain situations that the classes of behavioral and randomized
rules are equivalent, whereas, the classes of invariant behavioral and ran-
domized rules are not equivalent. See, for example Ferguson (1967) p. 153.
However, in our case the classes of symmetric invariant behavioral and in-
variant randomized rules are also equivalent. The result is close to that of
Ferguson (1967) p. 197.

Proposition 3.1. For the group of transformations Φ defined above,
the classes of symmetric invariant behavioral and symmetric invariant ran-
domized estimators are equivalent.

Proof. The class of behavioral (invariant) estimators contains the class
of randomized (invariant) estimators. For details see Ferguson (1967). We
show that in our case the converse is also true, that is, given a symmetric
invariant behavioral estimator δ = {δD}, we construct an equivalent sym-
metric invariant randomized estimator.

Consider a symmetric invariant behavioral estimator. Since it is symmet-
ric we can write δxS for δD. Let ZxS ∼ δxS , and for simplicity of notation
we now write χ for the set xS . Choose χ0, a particular point in the sam-
ple space, and a random variable Zχ0 ∼ δχ0 . For each χ in the sample
space choose ϕχ ∈ Φ such that ϕχ(χ0) = χ. Define Z̃χ = ϕχ(Zχ0). This
constructs a randomized estimator as follows: consider the nonrandomized
function ta(χ) = ϕχ(a) for each a ∈ R. Then Z̃χ is distributed as the ran-
domized estimator ta(χ), with a = Zχ0 ∼ δχ0 . Note that the invariance
of the behavioral estimator Zχ implies that Zχ

L= ϕχ(Zχ0), and therefore



Y. MALINOVSKY AND Y. RINOTT/ ESTIMATION OF QUANTILES 8

marginal distribution of Z̃χ is the same as that of Zχ, and therefore they
are equivalent.

It remains to show that the constructed randomized estimator is invariant
which means that the nonrandomized estimators ta(χ) are invariant, that
is, ta(ϕ(χ)) = ϕ(ta(χ)) with probability 1 with respect to a ∼ δχ0 . This
follows from ϕ(ta(χ)) = ϕ(ϕχ(Zχ0))

L= Zϕ(ϕχ(χ0)) = Zϕ(χ) = Zϕϕ(χ)(χ0)
L=

ϕϕ(χ)(Zχ0) = ta(ϕ(χ)). In particular we have ϕ(ϕχ(Zχ0))
L= ϕϕ(χ)(Zχ0).

By Lemma 3.1 below this implies the equality almost surely, and then by
the above relations ϕ(ta(χ)) = ta(ϕ(χ)) almost surely, and the proof is
complete.

Lemma 3.1. If V is a random variable and f and g are strictly increasing
continuous functions such that g(V ) L= h(V ) then g(V )=h(V ) almost surely.

Proof. It suffices to prove that if g(V ) L= V then g(V ) = V with proba-
bility one. Let F denote the distribution function of V , and denote g−1 by h.
Then the assumed equality in distribution is equivalent to F (h(v)) = F (v)
for all v in the support of F .

If F is strictly increasing then the assumption becomes F (h(v)) = F (v)
for all v, which implies h(v) = v for all v. If F is not strictly increasing then
almost the same argument works for points of increase of F , whereas other
points have F probability zero. More specifically, if v is in the support of F
then either F (v + ε) > F (v) for all sufficiently small ε, or F (v − ε) < F (v)
for all sufficiently small ε. In the first case, for example, we cannot have
F (h(v)) = F (v) for any h satisfying h(v) > v. If h(v) < v, then for some ε
we have h(v+ε) < v by continuity of h. Then F (h(v+ε)) < F (v) < F (v+ε)
contradicting the assumption that F (h(v)) = F (v) for all v in the support
of F .

4. Invariant estimators.

4.1. General form of invariant and symmetric estimators. Proposition
4.1 below in an infinite population setup, appears in Uhlmann (1963), Ferguson
(1967), p.153, Ex 4.2.3, and Zieliński (1999). They show that the only non-
randomized invariant estimators are of the form Yj , for some j independent
of the data. In the above references the data consist of a sample of iid ob-
servations from an unknown distribution or equivalently from an infinite
population. In our case of finite population the data include also the labels
of the observations. In the proposition below we show that invariant esti-
mators are of the form Yj(D). However, the fact that the data now contain
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labels makes it impossible to conclude that j is independent of the data as
in the infinite population case where labels do not exist. If symmetry is also
assumed, then by definition j(D) no longer depends on S, and then it can be
shown that it does not depend on D at all. Further subtle issues that arise
in the presence of labels appear in Theorem 5.1 and the lemmas around it.

The next proposition is stated and proved for behavioral estimators, hence
it holds also for randomized estimators, including the first part where sym-
metry is not assumed and therefore Proposition 3.1 does not apply.

Proposition 4.1. The behavioral invariant estimators are of the form
t(D) = YJ(D), where J(D) is a random variable taking values in {1, ..., n},
having distribution that depends on D. Moreover, the distribution of J(D) =
J(D[S, x]) depends only on S and not on x.

Also, symmetric behavioral invariant estimators are of the form t(D) =
t(Y) = YJ , where J is a random variable taking values in {1, ..., n}, having
distribution that is not a function of the data.

Proof. The statement of this proposition is an adaptation of exercise
3, p. 197 in Ferguson (1967), which deals with iid sampling from contin-
uous distributions. The following proof is a simplification of the proof in
Ferguson’s web site.

A behavioral estimator is defined by a collection of random variables
ZD ∼ δD, taking values in the decision space, which in our case is R or a
subset thereof. Invariance means Zϕ(D)

L= ϕ(ZD). In particular this holds for
all strictly increasing continuous functions ϕ, which leave X1, ..., Xn fixed.
The set of such functions ϕ is denoted by Φ

′
.

For ϕ ∈ Φ
′
we have

(4.1) ZD = Zϕ(D)
L= ϕ(ZD).

It follows that the support of ZD must be contained in the set {Y1, . . . , Yn};
otherwise, it is easy to construct ϕ ∈ Φ

′
such that Support[ZD] 6= Support[ϕ(ZD)],

contradicting (4.1). Therefore, behavioral invariant estimators are of the
form YJ(D), where J(D) is a random variable taking values in {1, ..., n},
whose distribution may depend on D.

Moreover, the above representation implies that Zϕ(D)
L= ϕ(YJ(ϕ(D))) and

invariance means Zϕ(D)
L= ϕ(ZD) = ϕ(YJ(D)). It follows that ϕ(YJ(ϕ(D)))

L=
ϕ(YJ(D)), and therefore

(4.2) J(ϕ(D)) L= J(D).
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Let D
′
= {(i, x′i) : i ∈ S}. For any vector x = (x1, ..., xN ) there exists ϕ ∈ Φ,

such that {ϕ(x
′
i) : i ∈ S} = {xi : i ∈ S}. This with (4.2) implies that J(D)

may depend only on S.
The last part of the Proposition follows readily since by symmetry J(D)

does not depend on S either, and therefore it does not depend on D.

Corollary 4.1. There are only n nonrandomized symmetric invariant
estimators, of the form

(4.3) t(D) = Yj , j = 1, ..., n.

Remark 4.1. In the case that the parameter space is

Υ = {(x1, x2, ..., xN ) : xi ∈ Λ, xi distinct},
where Λ = [a, b], say, then the estimators Y0 ≡ a and Yn+1 ≡ b are also
invariant and must be taken into account. In this case the above results
hold, but the range of J or j changes from {1, ..., n} to {0, ..., n + 1}.

4.2. Best invariant-symmetric estimators under simple random sampling.
In this subsection we consider only simple random sampling, that is, Ps.
We now deal with symmetric estimators. In Section 5 we shall consider
nonsymmetric estimators.

For the estimators of (4.3) we have

Lemma 4.1. Under Ps and the loss (2.2) any estimator Yj is an equal-
izer.

Proof. It is easy to see that the distribution of NFx (Yj) under Ps is
the same as the distribution of the j-th order statistic in a simple random
sample of size n from {1, . . . , N}. Clearly, this distribution does not depend
on the parameter x, and the result follows. More explicitly, the distribution
of Fx (Yj) under Ps for j = 1, . . . , n is

PPs

(
Fx (Yj) =

m

N

)
=

(
m− 1
j − 1

)(
N −m

n− j

)

(
N

n

) ; m = j, . . . , N − n + j.

See, e.g., Wilks (1962), p.243, Arnold et al. (1992) p.54, David and Nagaraja
(2003) p.23. It follows that the distribution of Fx (Yj) under Ps does not
depend on the parameter x ∈ Υ and under (2.2) the estimator Yj is therefore
an equalizer.
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We remark that the estimator Y0 ≡ a described in Remark 4.1 is not an
equalizer, while Yn+1 ≡ b is an equalizer.

Lemma 4.1 follows from the easy fact that under Ps the distribution of
Fx(Yj) is independent of x. However, Lemma 4.1 does not hold in general,
that is, for any sampling design. For example, if n = 2, N = 3, k = 1,
and t(D) = Y1, then a design that chooses S = {1, 2} with probability
= 1 has the risk (and loss) G(0) under (2.2) if x1 < x2 < x3. However, if
x3 < x2 < x1, the risk is G(|13 |).

Definition 4.1. Define
(4.4)

j∗ := j∗G,k = arg min
j

R(Ps, Yj ; x) = arg min
j∈{1,...,n}

EPsG(
∣∣FN (Yj)− k

N

∣∣).

If the minimum is not unique, then one can view j∗G,k as the set where the
minimum obtains, or one of the minimizers.

Remark 4.2. Below we discuss the estimator Yj∗. Proposition 4.3 gives
an explicit expression for j∗ for square error loss, that is, G(u) = u2. For
example, when N = 100, n = 10, and k = 79, one gets j∗ = 9. Note, however,
that (j∗−1)/n = 8/10 > k/N = 79/100, so that here Yj∗ = Y9 is clearly not
the sample quantile corresponding to the k-th population quantile; this sample
quantile is at most Y8. Thus our estimators are not always the “natural”
sample quantiles, although in general they are close. One can define such
quantiles as any Yj̄ such that k

N − 1
n < j̄

n < k
N + 1

n . The above example shows
that j∗ does not always satisfy the latter inequalities, although it does very
often.

In general, j∗, may depend on G. For example, when L(a, x) = |Fx(a)−
k
N |r, that is, when G(u) = ur, j∗ depends on r. Consider N = 9, n = 7,
k = 2; direct calculations show that for r ≤ c we have j∗ = 2 whereas r > c
implies j∗ = 1, where c = log(17/3)/log(2) ≈ 2.5. This means that the
above estimator of the second population quantile, t = Yj∗ depends on the
loss function. This is a natural but somewhat undesirable state of affairs,
since statisticians often do not have a precise loss function in mind.

By definition and Proposition 4.1, we obtain

Corollary 4.2. Under Ps, Yj∗ is the best nonrandomized invariant-
symmetric estimator, that is, it is best in the class of nonrandomized, sym-
metric and invariant estimators.
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A stronger result holds:

Theorem 4.1. Under Ps, the (nonrandomized) estimator Yj∗ is also the
best invariant-symmetric estimator in T ∗IS , that is, the estimator minimizing

(4.5) EPsEG(|FN (t(D))− k

N
|)

among randomized and behavioral invariant-symmetric estimators t(D).
Note that the expectation EPs in (4.5) is with respect to simple random

sampling, while the the second expectation is with respect to the randomness
of t(D).

Proof. According to Lemma 4.1 the estimator t(D) = Yj is an equalizer.
From Corollary 4.1 it follows that every nonrandomized symmetric invariant
estimator is of the form Yj for some j and the best invariant-symmetric
among nonrandomized estimators is Yj∗ , and therefore

EPsG(
∣∣FN (Yj∗)− k

N

∣∣) ≤
n∑

j=1

αjEPsG(
∣∣FN (Yj)− k

N

∣∣) ∀x,(4.6)

for any α1, ..., αn such that αi ≥ 0 ∀i = 1, ..., n and
n∑

i=1

αi = 1.

Note that any risk of a randomized invariant-symmetric estimator can be
represented by the right-hand side of (4.6). Together with Proposition 4.1,
it follows that the estimator Yj∗ is the best among randomized invariant-
symmetric estimators in T ∗IS , and by Proposition 3.1 it is also best among
behavioral invariant-symmetric estimators.

We next describe two important cases where j∗ is known, and in these
cases, by Theorem 4.1, the best randomized of behavioral invariant-symmetric
estimator is given explicitly. First, for estimating the median when N and
n are odd, that is, k = N+1

2 , we have j∗ = n+1
2 for any (increasing) G; see

Theorem 4.2 below. The other case is when G = u2, given in Proposition
4.3.

The following theorem is a special case of a result in Malinovsky and Rinott
(2009). The result seems obvious, but the proof requires more calculations
than expected; it has a simple combinatorial flavor since under simple ran-
dom sampling the quantities NFx(Yj) appearing below are distributed as
the order statistics of a simple random sample of size n from {1, . . . , N}.
Below ≥st stands for “stochastically larger”.
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Theorem 4.2. Let Y1, . . . , Yn be the order statistics of a simple random
sample without replacement from a finite population consisting of N distinct
values, where n and N are odd. Then

(4.7)
∣∣∣∣Fx(Yj)− N + 1

2N

∣∣∣∣ ≥st

∣∣∣∣Fx(Yn+1
2

)− N + 1
2N

∣∣∣∣ for j = 1, . . . , n.

It follows that in this case j∗ = n+1
2 .

If the parameter space is such that xi ∈ [a, b], then it is easily seen that
Theorem 4.2 holds also for j = 0 and j = n+1, where Y0 ≡ a and Yn+1 ≡ b.

Next we compute j∗ = j∗G,k explicitly G(u) = u2, that is, for the case of
square error, where L(a, x) = |Fx(a) − k

N |2. The following lemma is useful
for this purpose. It can be found in Wilks (1962), p. 244.

Lemma 4.2.

EPs (Fx(Yj)) =
j

N

N + 1
n + 1

, j = 1, ..., n

EPs

(
F 2

x (Yj)
)

=
j

N

N + 1
n + 1

(
(j + 1)(N + 2)

N(n + 2)
− 1

N

)
, j = 1, ..., n.

We remark that for estimating the median, for example, in the case of
odd N and n, we have “unbiasedness” in the sense that Theorem 4.2 implies
j∗ = n+1

2 , and by the first equality in Lemma 4.2 EPs (Fx(Yj∗)) = N+1
2N . In

general, such unbiasedness may require randomized estimators.

Theorem 4.3. j∗ = arg minj∈{1,...,n}EPs(
∣∣FN (Yj) − k

N

∣∣)2 is the value

j∗ ∈ {1, ..., n} that is the nearest integer to j∗∗ = n+2
N+2

(
k + 1

2

)
− 1

2 .

Proof. From

EPs

(
Fx(Yj)− k

N

)2

= EPs

(
F 2

x (Yj)
)
− 2

k

N
EPs (Fx(Yj)) +

k2

N2

it follows that

arg min
1≤j≤n

{
EPs

(
Fx(Yj)− k

N

)2
}

= arg min
1≤j≤n

{
EPs

(
F 2

x (Yj)
)
− 2

k

N
EPs (Fx(Yj))

}
.



Y. MALINOVSKY AND Y. RINOTT/ ESTIMATION OF QUANTILES 14

Using Lemma 4.2 we have:

EPs

(
F 2

x (Yj)
)
− 2

k

N
EPs (Fx(Yj))

=
j

N

N + 1
n + 1

(
(j + 1)(N + 2)

N(n + 2)
− 1

N

)
− 2

k

N

j

N

N + 1
n + 1

=
(N + 1)(N + 2)

N2(n + 1)(n + 2)
j2 +

(
(N + 1)(N + 2)

N2(n + 1)(n + 2)
− N + 1

N2(n + 1)
(2k + 1)

)
j = f(j).

The last expression f(j) is a convex parabola as a function of the continuous
variable j which attains a minimum at the point = n+2

N+2

(
k + 1

2

)
− 1

2 . This
point is not necessarily an integer.

Setting j∗ = arg minj∈{1,...,n}EPS

(
Fx(Yj)− k

N

)2
it is clear by symmetry of

the parabola f(j) around its minimum, that j∗ is the nearest integer to the
minimum point of f .

Remark 4.3. If N and n are odd and we estimate the median
(
k = N+1

2

)
,

then, j∗ = j∗∗ = n+1
2 (the sample median).

The estimator defined in Theorem 4.3 is not always unique: if N = 7, n =
4, k = 4, then n+2

N+2

(
k + 1

2

)
− 1

2 = 2.5. Hence the estimators for the 4
7 quantile

(Median) are both Y2 or Y3, as well as any estimator which randomizes
between these two estimators.

If N = 20, n = 6, k = 5, then n+2
N+2

(
k + 1

2

)
− 1

2 = 1.5. Hence for the 4
20

quantile the estimators of Theorem 4.3 are Y1 or Y2.

Corollary 4.3. The estimator given in Theorem 4.3 is unique if either
n is odd or both N and

n

2
are even.

Proof. In the proof of Proposition 4.3 it was shown that EPs

(
Fx(X(j))− k

N

)2

is a convex and symmetric function with minimum at the point j∗∗ =
n+2
N+2

2k+1
2 − 1

2 . Hence, is clear that if the number n+2
N+2

2k+1
2 is not an in-

teger then the estimator t∗ is unique. If n is odd, then the numerator of the
above ratio is odd, while the denominator is clearly even. If N and n

2 are

even, then n+2
N+2

2k+1
2 = (n

2
+1)(2k+1)

N+2 , and again the numerator is odd while
the denominator is even.

Clearly, there exist many other cases where n+2
N+2

2k+1
2 is not an integer not

covered above.
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Remark 4.4. The uniqueness of Corollary 4.3 does not hold for absolute
loss. For example, when N = 7 and n = 3 and our purpose is to estimate
the quntile 5

7 , the best invariant-symmetric estimator under absolute loss is
Y2 or Y3.

5. Minimax results for non symmetric or non invariant estima-
tors.

5.1. Minimax strategies and invariance. In this section we study mini-
max strategies with invariant estimators. In particular we show that in min-
imax strategies the estimators are necessarily symmetric. Symmetrization of
strategies as (5.3) below appears in Blackwell and Girshick (1954), and in
Kiefer (1957) with references to work of Hunt and Stein from the 1940s. The
required notations and formulations explained next follow Stenger (1979)
and Rinott (2008), where further references can be found.

Let π be a permutation of N . For S ⊆ N we define πS = {πi : i ∈ S}.
For x ∈ Υ let πx be the parameter vector having coordinates

(5.1) (πx)i = xπ−1i.

Thus, the group Π of permutations of {1, 2, ..., N} can also be seen as a
group operating on the (symmetric) parameter space Υ, where the group
operation is permutation of the coordinates.

Recall that an estimator (nonrandom, randomized or behavioral) is sym-
metric if t(S, x) is only a function of xS , that is, if xS = x′S′ for two sets of
size n in N , then t(S, x) = t(S′, x′), where for a randomized estimator the
latter equality stands for equality in distribution.

Given an estimator t, let tπ(S, x) = t ({(πi, xi) : i ∈ S}).
Given a strategy (P, t) with a fixed sample size and a nonrandomized

estimator t, let t∗ be the randomized estimator

(5.2) t∗(D[S, x]) = tπ(S, x) with probability cP(πS) for π ∈ Π,

and for a randomized behavioral estimator ZD ∼ δD let t∗ be the randomized
behavioral estimator

(5.3) t∗(D[S, x]) = Z{(πi,xi):i∈S} with probability cP(πS) for π ∈ Π,

where c =
1

n!(N − n)!
=

1
N !Ps(S)

is such that
∑

π∈Π cP(πS) = 1, and

Z{(πi,xi):i∈S}, π ∈ Π, are taken to be independent. Set S = {s1, . . . , sn}. An
equivalent formulation is

(5.4) t∗({(i, xi) : i ∈ S}) = Z({(`i,xsi ):i=1,...,n}) w. p. cP({`1, . . . , `n}),
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for all (`1, . . . , `n) having distinct coordinates in N .
Note that the probabilities P(πS)

N !Ps(S) in (5.3) seem to depend on S, making
t∗ appear like a non symmetric estimator. However, from (5.4) we see that
t∗ is symmetric and depends only on xS . Thus we have

Lemma 5.1. t∗ is a symmetric (randomized) estimator.

Lemma 5.2. If t is invariant, then t∗ is invariant.

Proof. By definition t∗(D[S, ϕ(x)]) = Z(πS,ϕ(x)) with probability cP(πS).

Since Z(πS,ϕ(x))
L= ϕ(Z(πS,x)), invariance follows.

Example 5.1. Consider N = 3, n = 2, and the sampling design P (Si) =
qi, i = 1, 2, 3, q1 + q2 + q3 = 1, where S1 = {1, 2}, S2 = {1, 3}, S3 = {2, 3}.
Consider the nonrandomized invariant nonsymmetric estimator

t =

{
Y1, if 1 ∈ S

Y2, if 1 /∈ S,

where, as defined in Section 2, Yi are the sample order statistics. The cor-
responding estimator t∗ of (5.3) is the symmetric (depending only on Y1, Y2

and independent of S) randomized estimator

t∗ =

{
Y1, w.p. q1 + q2

Y2, w.p. q3 .

By Lemmas 5.1 and 5.2 and Proposition 4.1 we now know the form of t∗

as follows:

Theorem 5.1. If t(D) is invariant, then the corresponding estimator t∗

of (5.3) is a randomized estimator of the form t∗(D) = YJ , where J is a
random variable whose distribution is independent of the data D.

Example 5.2. Let N = 3, n = 2. Given a sample S of two elements,
define ` = `(S) = min{i : i ∈ S}, and m = m(S) = max{i : i ∈ S}.
Consider the following nonrandomized invariant nonsymmetric estimator

t =

{
Y1, if x` < xm

Y2, if x` > xm .
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Then for lπ := min{πi : i ∈ S} and mπ := max{πi : i ∈ S}

tπ =

{
Y1, if x`π < xmπ

Y2, if x`π > xmπ .

The corresponding estimator t∗ of (5.2) is the randomized symmetric esti-
mator: {

Y1, with probability 1
2

Y2, with probability 1
2 .

A version of the next proposition appears with references as Proposition
13 in Rinott (2008). It is relevant in reducing considerations of minimax
strategies to Ps and symmetric estimators.

Proposition 5.1. Let L(t, x) be a symmetric loss function and as al-
ways let Υ be a symmetric parameter space. Given a strategy (P, t) with fixed
sample size n and a behavioral (or randomized, or nonrandomized) estimator
t, let t∗(D[S, x]) be the estimator defined by (5.3). Then

(5.5) sup
x∈Υ

R(Ps, t
∗;x) ≤ sup

x∈Υ
R(P, t;x).

Proof. Consider a behavioral estimator ZD ∼ δD, and observe that in
the present case (2.6) can be expressed as in the first equality below:

R (Ps, t
∗; x) =

∑

S

∑
π

P(πS)
N !Ps(S)

EL
(
Z{(πi,xi):i∈S}, x

)
Ps(S)

=
1

N !

∑

S

∑
π

P(πS)EL
(
Z{(πi,xi):i∈S}, x

)

(1)
=

1
N !

∑
π

∑

S

P(S)EL
(
Z{(i,xπ−1i):i∈S}, x

)
(2)
=

1
N !

∑
π

∑

S

P(S)EL
(
Z{(i,xπ−1i):i∈S}, πx

)

(3)
=

1
N !

∑
π

∑

S

P(S)EL
(
Z{(i,(πx)i:i∈S}, πx

)
=

1
N !

∑
π

R (P, t;πx) ≤ sup
π

R (P, t;πx) ,

where the equality (1) follows by substituting S for πS, (2) by symmetry of
L, and (3) by (5.1). Taking sup over x ∈ Υ yields the result.

Theorem 5.2. The strategy (Ps, Yj∗), with j∗ defined in (4.4) is mini-
max among all strategies (P, t) consisting of a sampling design P having a
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fixed sample size n, and any randomized or behavioral invariant estimator
t(D), that is,

(5.6) inf
(t∈T ∗I ,P)

sup
x∈Υ

EPEG(
∣∣Fx(t(D))− k

N

∣∣) = sup
x∈Υ

EPsG(
∣∣Fx(Yj∗)− k

N

∣∣),

where EP stands for expectation with respect to the design P and E on the
left-hand side is with respect to the randomness of t. Equivalently,

(5.7) inf
(t∈T ∗I ,P)

sup
x∈Υ

R(P, t(D);x) ≥ sup
x∈Υ

R(Ps, Yj∗;x).

Proof. By the first part of Proposition 4.1, we can restrict attention to
estimators of the form YJ(D). Using Theorem 5.1 together with Proposition
5.1 we have

sup
x∈Υ

EPEG(|Fx(YJ(D))−
k

N
|) ≥ sup

x∈Υ
EPSEG(|Fx(t∗(D))− k

N
|),(5.8)

where t∗(D) = YJ is the randomized estimator obtained from t(D) = YJ(D)

by (5.3), and the distribution of J is independent of the data D.
Because, YJ is a symmetric estimator we have from Theorem 4.1 for j∗

defined in (4.4)

EPSEG(|Fx(t∗(D))− k

N
|) ≥ EPSG(|Fx(Yj∗)− k

N
|).(5.9)

Combining (5.8) and (5.9), we end the proof.

The next corollary follows from Theorems 4.2 and 5.2.

Corollary 5.1. For odd N and n, the strategy
(
Ps, Yn+1

2

)
is minimax

among all strategies (P, t) consisting of a sampling design P having a fixed
sample size n, and a randomized or behavioral invariant estimator t, that is,
(5.10)

inf
(t∈T ∗I ,P)

sup
x∈Υ

EPEG(|Fx(t(D))− N + 1
2N

|) = sup
x∈Υ

EPsG(|Fx(Yn+1
2

)− N + 1
2N

|).

5.2. Minimax results without invariance. In this section we prove two
results which compare the minimax risk of our estimators to classes of es-
timators which are not invariant. In Theorem 5.3 we focus for simlicity on
the sample median, and compare it to non-invariant estimators whose dis-
tance from the median is bounded. In Theorem 5.4 we compare our quantile
estimates to linear estimators.

An admissible equalizer estimator is minimax. In fact a somewhat weaker
property suffices:
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Lemma 5.3. An equalizer estimator t0 is minimax relative to some class
of estimators if for any estimator t in the class, and any ε > 0 there exists
x ∈ Υ such that

(5.11) R(Ps, t(xS);x) > R(Ps, t0(xS);x)− ε.

Proof. If t0 is not minimax, then for some t, supx R(Ps, t(xS);x) <
supx R(Ps, t0(xS);x). Since t0 is an equalizer it follows that supx R(Ps, t(xS);x) <
R(Ps, t0(xS);x) and therefore for some ε > 0 supx R(Ps, t(xS);x) < R(Ps, t0(xS);x)−
ε, contradicting (5.11).

Let N and n be odd, and set t0(xS) = Yn+1
2

. By Lemma 4.1 t0 is an equal-
izer. The following theorem is of interest because it reflects the combinatorial
nature of our structure.

Theorem 5.3. Assume the loss function is of the form L(a, x) = G(|F (a)−
N+1
2N |), where G is convex and increasing. As usual, Υ = {(x1, x2, ..., xN ) :

xi ∈ R, xi distinct} and let the sampling design be Ps. Then t0 is minimax
among nonrandomized symmetric estimators t satisfying

(5.12) |t(xS)− Yn+1
2
| < B for some B;

that is, supx R(Ps, t(xS);x) ≥ R(Ps, t0(xS);x) ∀x ∈ Υ.

The above result can be easily extended to randomized estimator which
are a finite or countable mixture of nonrandomized estimators. More gener-
ally, recall that for a randomized estimator the risk R is defined by R (P, δ; x)
=

∑
S

∫
L(t, x)dδ(t)P(S), where the integral is with respect to the measure

δ on the function space T . Without going into measurability issues, any in-
tegral

∫
L(t, x)dδ(t) would be defined by finite sum approximations of the

type
∑

ti L(ti, x)∆(ti) and therefore for the Theorem 5.3 applies also to ran-
domized estimators.

Furthermore, given a strategy (P, t) we can use Proposition 5.1 to replace
it by the strategy (Ps, t

∗) with t∗ defined in (5.2), and conclude that Theorem
5.3 holds without the assumption of symmetry on t, and for any sampling
design P, that is, (Ps, t0) is minimax among all strategies (P, t) such that
P has sample size n, and t is a nonrandomized estimator satisfying (5.12).

The latter condition may seem artificial: it does not hold for the sample
mean, for example. However, since Yn+1

2
is the most natural estimator of

the population median, one may interpret condition (5.12) as a reasonable
restriction suggesting that if an estimate is too far from the sample median,
it should be corrected (or trimmed).
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Proof of Theorem 5.3. To prove (5.11) (with ε = 0) form an infinite
set Γ of points in R such that each pair of points in Γ is spaced by more than
B. Every set xS of n data points in Γ satisfies either (a) t(xS) < Yn+1

2
, or

(b) t(xS) ≥ Yn+1
2

, where as before Yn+1
2

is the median of xS . By the infinite
Ramsey Theorem, see, e,g, Graham et al (1990) page 19 Theorem A, there
exists an infinite subset ∆ of Γ such that either all its n-subsets xS satisfy
(a) above, or all satisfy (b). In the latter case, we take N point in ∆ and
form x, to obtain R(Ps, t(xS);x) = R(Ps, t0;x) (here we use the B spacing).

It remains to consider the case that for the above x, all n-subsets xS satisfy
(a). Divide (partition) the set of

(N
n

)
possible samples into two subsets, A1

and A2, as follows: A1 = {S : Yn+1
2
≤ x(N+1)/2}, and A2 = {S : Yn+1

2
>

x(N+1)/2}. Assume that the components of x are arranged in increasing
order. For each S = {s1, . . . , sn} in A2, its reflection around the median,
S′ = {N + 1 − s1, . . . , N + 1 − sn} ∈ A1, and |Fx(t0(xS)) − N+1

2N | has the
same value for S and S′. For any S ∈ A2 there corresponds one point in A1,
it reflection. In fact |A2| < |A1| since some point in A1 have reflection also
in A1. Moreover, for S ∈ A2 we have, due to condition (a), |Fx(t0(xS)) −
N+1
2N | = |Fx(t(xS)) − N+1

2N | + 1/N , and for S ∈ A1 we have |Fx(t0(xS)) −
N+1
2N | = |Fx(t(xS)) − N+1

2N | − 1/N , where again the B spacing was used. It
follows that

R(Ps, t(xS);x)−R(Ps, t0(xS);x)

≥
∑

S∈A2

[
G(|Fx(t0(xS))− N + 1

2N
| − 1/N)−G(|Fx(t0(xS))− N + 1

2N
|)

+ G(|Fx(t0(xS′))− N + 1
2N

|+ 1/N)−G(|Fx(t0(xS′))− N + 1
2N

|)
]
Ps(S) ≥ 0,

(5.13)

where the first inequality holds because we have neglected some summands
of the type appearing in the last line of (5.13) that are all in A1 and are
positive since G is increasing. The second inequality follows by convexity of
G.

The next result compares the maximum risk of linear estimators, which
in general are not invariant, including the sample mean which is not covered
by Theorem 5.3, and the best invariant estimators Yj∗ .

Theorem 5.4. Under the sampling design Ps, the best invariant es-
timator of the k-th quantile, t0 = Yj∗ with j∗ defined in (4.4), is mini-
max among (symmetric, nonrandomized) estimators that are convex com-
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binations of the type tw(Y) =
∑n

i=1 wiYi; that is, supx R(Ps, tw(xS);x) ≥
R(Ps, t0(xS);x) ∀x ∈ Υ.

Proof. By Lemma 5.3 it suffices to show that for some x ∈ Υ we have

(5.14) R(Ps, tw(xS);x) ≥ R(Ps, t0(xS);x),

and we show it for x constructed as follows. Let w = wk < 1 (the case
wk = 1 is trivial) be the first non zero among w1, . . . , wn, and set xi =
f(i) := 1− wi, i = 1, . . . , N , and x = (x1, . . . , xN ).

We claim that for any S = {i1, . . . , in} we have for the above x, Yk = xik ,
and xik ≤ tw(xS) < xik+1; this is equivalent to proving that for any 1 ≤
i1 < . . . < in ≤ N we have f(ik) ≤

∑n
j=k wjf(ij) < f(ik + 1). The left-hand

side inequality follows by monotonicity of f , and the right-hand side from∑n
j=k wjf(ij) < 1− wkw

ik = 1− wik+1 = f(ik + 1).
The relation xik ≤ tw(xS) < xik+1 implies that for any sample of size n

from x, the estimator tw is equivalent to Yk, which is an invariant estimator,
and by Corollary 4.2 the risk of Yk is not smaller than that of the best
invariant estimator Yj∗ , and (5.14) follows.
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