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Abstract

We analyze maximization of revenue in the dynamic and stochastic knapsack

problem where a given capacity needs to be allocated by a given deadline to

sequentially arriving agents. Each agent is described by a two-dimensional type

that re�ects his capacity requirement and his willingness to pay per unit of

capacity. Types are private information. We �rst characterize implementable

policies. Then we solve the revenue maximization problem for the special case

where there is private information about per-unit values, but capacity needs are

observable. After that we derive two sets of additional conditions on the joint

distribution of values and weights under which the revenue maximizing policy for

the case with observable weights is implementable, and thus optimal also for the

case with two-dimensional private information. In particular, we investigate the

role of concave continuation revenues for implementation. We also construct a

simple policy for which per-unit prices vary with requested weight but not with

time, and prove that it is asymptotically revenue maximizing when available

capacity/ time to the deadline both go to in�nity. This highlights the importance

of nonlinear as opposed to dynamic pricing.
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Department of Economics, University of Bonn, Lennestr. 37, 53113 Bonn Germany; ddizdar@uni-

bonn.de, mold@uni-bonn.de. Gershkov: Department of Economics and Center for the Study of

Rationality, The Hebrew University of Jerusalem, 91905 Jerusalem; alexg@huji.ac.il
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1 Introduction

The knapsack problem is a classic combinatorial optimization problem with numerous

practical applications: several objects with given, known capacity needs (or weights)

and given, known, values must be packed in a "knapsack" of given capacity in order to

maximize the total value of the included objects. In the dynamic and stochastic version

(see Ross and Tsang [24]) objects sequentially arrive over time and their weight/value

combination is stochastic but becomes known to the designer at arrival times. Objects

cannot be recalled later, so it must be decided upon arrival whether an object is

included or not. Several applications that come to mind are: logistic decisions in

the freight transportation industry, the allocation of �xed capacities in the travel

and leisure industries (e.g., airlines, trains, hotels, rental cars), the allocation of �xed

equipment or personnel in a given period of time (e.g., equipment and personnel for

medical procedures in an emergency), the allocation of �xed budgets to investment

opportunities that appear sequentially, the allocation of R&D funds to emerging ideas,

the allocation of dated advertising space on web portals.

In the present paper we add incomplete information to the dynamic and stochastic

setting. In this way, we obtain a dynamic monopolistic screening problem: there is

a �nite number of periods, and at each period a request for capacity arrives from an

agent that is impatient and privately informed about both his valuation per unit of

capacity and the needed capacity1. Each agent derives positive utility if he gets the

needed capacity (or more), and zero utility otherwise. The designer accepts or rejects

the requests in order to maximize the revenue obtained from the allocation.

The dynamic and stochastic knapsack problem with complete information about

values and requests has been analyzed by Papastavrou, Rajagopalan and Kleywegt

[19] and by Kleywegt and Papastavrou [14]. These authors have characterized optimal

policies in terms of weight-dependent value thresholds. Kincaid and Darling [12], and

Gallego and van Ryzin [8] looked at a model that can be re-interpreted as having (one

dimensional) incomplete information about values, but in their frameworks all requests

1Our results are easily extended to the setting where arrivals are stochastic and/or time is con-

tinuous.
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have the same known weight2. In particular, Gallego and van Ryzin show that optimal

revenue is concave in capacity in the case of equal weights. Kleywegt and Papastavrou

have examples showing that total value is not necessarily globally concave in capacity

if the weight requests are heterogeneous, and provide a su¢ cient condition for this

structural property to hold. Gallego and van Ryzin also showed that the optimal

policy, which exhibits complicated time dynamics, can often be replaced by a simple

time-independent policy without much loss: the simple policy performs asymptotically

optimal as the number of periods and the units to be sold go to in�nity. Finally,

Gershkov and Moldovanu [9] generalized the Gallego-van Ryzin model to incorporate

objects with the same weight but with several qualities that are equally ranked by all

agents, independently of their types (which are also one-dimensional).

The theory of multidimensional mechanism design is relatively complex: the main

problem is that incentive compatibility - which in the one-dimensional case often re-

duces to a monotonicity constraint - imposes, besides a monotonicity requirement,

an integrability constraint that is not easily included in maximization problems (see

examples in Rochet [22], Armstrong [2], Jehiel, Moldovanu and Stacchetti [11], and

the survey of Rochet and Stole [23]). Our implementation problem is special though

because useful deviations in the weight dimension can only be one-sided (upwards).

This feature allows here a less cumbersome characterization of implementable poli-

cies that can be embedded in the dynamic analysis under certain conditions on the

joint distribution of values and weights of the arriving agents. Other multidimensional

mechanism design problems with restricted deviations in one or more dimensions have

been studied by Blackorby and Szalay [4], Che and Gale [5], Iyengar and Kumar [10],

Kittsteiner and Moldovanu [13], and Pai and Vohra [18].

1.1 Outline and Preview of Results

We �rst characterize implementable policies, as explained above. Then, we solve the

revenue maximization problem for the case where there is private information about

2We refer the reader to the book by Talluri and Van Ryzin [25] for references to the large literature

on revenue (or yield) management that adopts variations on these models.
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per-unit values, but weights are observable. We will sometimes refer to this as the

relaxed problem. Under a standard monotonicity assumption on virtual values, this is

the virtual value analog of the problem solved by Papastravou, Rajagopalan and Kley-

wegt. The resulting optimal policy is Markovian, deterministic, and has a threshold

property with respect to virtual values. It is important to emphasize that this policy

need not be implementable for the case where both values and weights are unobserv-

able, unless additional conditions are imposed. Our main results in the �rst part of

the paper are therefore concerned with the implementability of the relaxed optimal

solution: we derive two sets of additional conditions on the joint distribution of values

and weights under which the revenue maximizing policy for the case with observable

weights is implementable, and thus optimal also for the case with two-dimensional pri-

vate information. The �rst condition - which is satis�ed in a variety of intuitive settings

- is a hazard rate ordering that expresses a form of positive correlation between weights

and values. It ensures that the incentive constraint in the capacity dimension is never

binding. Related conditions can be found in previous work on multidimensional mech-

anism design with restricted deviations mentioned above, e.g. in the papers of Pai and

Vohra, Iyengar and Kumar or Blackorby and Szalay. More interestingly, we also draw

a connection between incentive compatibility and the structural property of concavity

of revenue in capacity. Concavity of optimal revenue in the relaxed problem creates a

tendency to set higher virtual value thresholds for higher capacity requests. It is then

less attractive for agents to overstate their capacity needs, which facilitates the imple-

mentation of the relaxed solution by relaxing the incentive constraints. We quantify

this relation in our second set of additional conditions: concavity of revenue combined

with a (substantial) weakening of the hazard rate order imply implementability of the

relaxed solution. For completeness, we also brie�y translate to our model the su¢ cient

condition for concavity of revenue due to Papastavrou, Rajagopalan and Kleywegt in

order to obtain a condition on the model�s primitives.

In the second part of the paper we construct - for general distributions of weights

and values - a time-independent, nonlinear price schedule which is asymptotically

revenue maximizing when the available capacity and the time to the deadline both
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go to in�nity, and when weights are observable. This extends an asymptotic result

by Gallego and van Ryzin (for a detailed discussion see Section 5) and suggests that

complicated dynamic pricing may not be that important for revenue maximization

if the distribution of agents� types is known. Our result emphasizes though that

nonlinear pricing remains asymptotically important in dynamic settings. As a nice

link to the �rst part of the paper, the constructed nonlinear price schedule turns

out to be implementable for the case with two-dimensional private information if the

weakened hazard rate condition employed in our discussion of concavity is satis�ed.

Since prices are time-independent, the policy is also immune to strategic buyer arrivals

(which we do not model here explicitly). We also point out that a policy that varies

with time but not with requested weight (whose asymptotic optimality in the complete

information case has been established by Lin, Lu and Yao [15]) is usually not optimal

under incomplete information.

The paper is organized as follows: In Section 2 we present the dynamic model and

the informational assumptions about values and weights. In Section 3 we characterize

incentive compatible allocation policies. In Section 4 we focus on dynamic revenue

maximization. We �rst characterize the revenue maximizing policy for the case where

values are private information but weight requests are observable. We then o¤er two

results that exhibit conditions under which the above policy is incentive compatible,

and thus optimal also for the case where both values and weights are private informa-

tion. Section 5 contains the asymptotic analysis.

2 The Model

The designer has a "knapsack" of given capacity C 2 R that he wants to allocate in a

revenue-maximizing way to several agents in at most T <1 periods. In each period,

an impatient agent arrives with a demand for capacity characterized by a weight (or

quantity request) w, and by a per-unit value v3: While the realization of the random

vector (w; v) is private information to the arriving agent, its distribution is assumed to

be common knowledge and given by the joint cumulative distribution function F (w; v),

3It is an easy extension to assume that the arrival probability per period is given by p < 1:
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with continuously di¤erentiable density f(w; v) > 0, de�ned on [0;1)2. Demands are

independent across di¤erent periods4.

In each period, the designer decides on a capacity to be allocated to the arriving

agent (possibly none), and on a monetary payment. Type (w; v)�s utility is given by

wv � p if at price p he is allocated a capacity w0 � w and by �p if he is assigned

an insu¢ cient capacity w0 < w. Each agent observes the remaining capacity of the

designer.5. Finally, we assume that for all w, the conditional virtual value functions

v̂(v; w) := v � 1�F (vjw)
f(vjw) are unbounded as a function of v and strictly monotone

increasing in v with @
@v
v̂(v; w) > 0 for all (w; v).

3 Incentive Compatible Policies

In order to characterize the revenue-maximizing scheme, we may restrict attention,

without loss of generality, to direct mechanisms where every agent, upon arrival, re-

ports a type (w; v) and the mechanism then speci�es an allocation and a payment. In

this section, we characterize incentive compatibility for a class of allocation policies

that necessarily contains the revenue-maximizing one. The schemes we develop also

have an obvious and immediate interpretation as indirect mechanisms, where the de-

signer sets menus of per-unit prices depending on time and on the remaining capacity.

An allocation rule is called deterministic and Markovian if, at any period t =

1; :::; T and for any possible type of agent arriving at t, it uses a non-random allocation

rule that only depends on the arrival time t, on the declared type of the arriving agent,

and on the still available capacity at period t, denoted by c. The restriction to these

4As pointed out by a referee, the results of Sections 3 and 4 apply with the obvious modi�-

cations also if types in di¤erent periods are independent, but not necessarily drawn from identical

distributions.
5Alternatively, we can assume that each agent observes the entire history of the previous alloca-

tions. These assumptions are innocuous in the following sense: when we analyze revenue maximization

in Section 4, we �rst solve for the optimal policy in the relaxed problem with observable weight types

w. We then provide conditions for when this relaxed solution is implementable. Since in the case of

observable weight requests, the seller cannot gain by hiding the available capacity, the seller cannot

increase expected revenue by hiding the remaining capacity also in the original problem
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policies is innocuous as shown in Section 4.

We can assume without loss of generality that a deterministic Markovian allocation

rule for time t with remaining capacity c has the form �ct : [0;+1)2 ! f1; 0g where 1

(0) means that the reported capacity demand w is satis�ed (not satis�ed). Indeed, it

never makes sense to allocate an insu¢ cient quantity 0 < w0 < w because individually

rational agents are not willing to pay for this. On the other hand, allocating more

capacity than the reported demand is useless as well: Such allocations do not further

increase agents�utility while they may decrease continuation values for the designer.

Let qct : [0;+1)2 ! R be the associated payment rule.

Proposition 1 A deterministic, Markovian allocation rule f�ctgt;c is implementable if

and only if for every t and every c it satis�es the following two conditions6:

1. 8 (w; v); v0 � v; �ct(w; v) = 1 ) �ct(w; v
0) = 1.

2. The function wpct(w) is non-decreasing in w; where

pct(w) = inffv = �ct(w; v) = 1g:7

When the above two conditions are satis�ed, the allocation rule f�ctgt;c together

with the payment rule

qct (w; v) =

8><>:wp
c
t(w) if �ct(w; v) = 1

0 if �ct(w; v) = 0

constitute an incentive compatible policy.

Proof. See Appendix.

The threshold property embodied in Condition 1 of the above Proposition is stan-

dard, and is a natural feature of welfare maximizing rules under complete information.

When there is incomplete information in the value dimension, this condition imposes

limitations on the payments that can be extracted in equilibrium. Condition 2 is new:

6We use here "implementable" in the standard sense from the mechanism design literature. An

allocation rule is implementable if we can associate to it a payment rule such that any agent �nds it

optimal to truthfully reveal her type when faced with the combined allocation-payment scheme.
7We set pct(w) =1 if the set fv=�ct(w; v) = 1g is empty.
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it re�ects the limitations imposed in our model by the incomplete information in the

weight dimension. We would like to note that the above simple result is based on a

combination of three main factors: 1) Due to our special utility function and to the

pursued goal of revenue maximization, it is su¢ cient to consider only policies that

allocate either the demanded weight to the agent or nothing; 2) The monotonicity

requirement behind incentive compatibility boils down to the above simple conditions;

3) The integrability condition is automatically satis�ed by all monotone allocation

rules in the considered class. In general, one has to consider more allocation functions,

more implications of monotonicity, and possibly an integrability constraint.

4 Dynamic Revenue Maximization

We �rst demonstrate how the dynamic revenue maximization problem can be solved

if w is observable. This is, essentially, the dynamic programming problem analyzed

by Papastavrou, Rajagopalan and Kleywegt, translated from values to virtual values.

Nevertheless, the logic of the derivation is somewhat involved, so we detail it below:

1. Without loss of generality, we can restrict attention to Markovian policies. The

optimality of Markovian, possibly randomized, policies is standard for all models

where, as is the case here, the per-period rewards and transition probabilities are

history-independent - see for example Theorem 11.1.1 in Puterman [20] which

shows that, for any history-dependent policy, there is a Markovian, possibly

randomized, policy with the same payo¤.

2. If there is incomplete information about v; but complete information about the

weight requirement w, then Markovian, deterministic and implementable policies

are characterized for each t and c by the threshold property of Condition 1 in

Proposition 1.

3. Naturally, in the given revenue maximization problem with complete informa-

tion about w we need to restrict attention to interim individually-rational poli-

cies where no agent ever pays more than the utility obtained from her actual
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capacity allocation. It is easy to see that, for any Markov, deterministic and

implementable allocation rule �ct , the maximal, individually-rational payment

function which supports it is given by

qct (w; v) =

8<: wpct(w) if �ct(w; v) = 1

0 if �ct(w; v) = 0

where pct(w) = inffv = �ct(w; v) = 1g as de�ned in the above section. Otherwise,

the designer pays some positive subsidy to the agent, and this cannot be revenue-

maximizing.

4. At each period t, and for each remaining capacity c; the designer�s problem

under complete information about w is equivalent to a simpler, one-dimensional

static problem where a known capacity needs to be allocated to the arriving

agent, and where the seller has a salvage value for each remaining capacity: the

salvage values in the static problem correspond to the continuation values in

the dynamic version. Analogously to the analysis of Myerson [17], each static

revenue-maximization problem has a monotone (in the sense of Condition 1 in

Proposition 1), non-randomized solution as long as, for any weight w; the agent�s

conditional virtual valuation v � 1�F (vjw)
f(vjw) is increasing in v8. If per-unit prices

are set at pct(w) in period t � T (so T + 1 � t periods, including the current

one, remain until the deadline) with remaining capacity c; and if the optimal

Markovian policy is followed from time t + 1 onwards, the expected revenue

R(c; T + 1� t) can be written as:

R(c; T + 1� t) =
Z c

0

w pct(w) (1� F (pct(w)jw)) �fw(w) dw

+

Z c

0

[(1� F (pct(w)jw))R�(c� w; T � t) + F (pct(w)jw)R�(c; T � t)] �fw(w) dw;

where �fw denotes the marginal density in w, and where R� denotes optimal

revenues, with R�(c; 0) = 0 for all c. The �rst-order conditions for the revenue-

8Note that the optimal policy continues to be deterministic even if virtual valuations are not

monotonic. This follows by a similar argument to the one given by Riley and Zeckhauser [21]. We

nevertheless keep the monotonicity assumption for simplicity, and because we need related conditions

for some of the results below.
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maximizing unit prices pct(w) are given by
9:

w

�
pct(w)�

1� F (pct(w)jw)
f(pct(w)jw)

�
= R�(c; T � t)�R�(c� w; T � t):

5. By backward induction, and by the above reasoning, the seller has a Markov, non-

randomized optimal policy in the dynamic problem with complete information

about w. Note also that, by a simple duplication argument, R�(c; T +1�t) must

be monotone non-decreasing in c:

Points 1, 4 and 5 above imply that the restriction to deterministic and Markovian

allocation policies is without loss of generality. If the above solution to the relaxed

problem satis�es the incentive compatibility constraint in the weight dimension, i.e. if

wpct(w) happens to be monotone as required by Condition 2 of Proposition 1, then the

associated allocation where �ct(w; v) = 1 if and only if v � pct(w) is also implementable

in the original problem with incomplete information about both v and w. It then

constitutes the revenue maximizing scheme that we are after. The next example

illustrates that Condition 2 of Proposition 1 can be binding.

Example 1 Assume that T = 1. The distribution of the agents� types is given by

the following stochastic process. First, the weight request w is realized according to

an exponential distribution with parameter �. Next, the per-unit value of the agent is

sampled from the following distribution

F (vjw) =

8<: 1� e��v if w > w�

1� e��v if w � w�

where � > � and w� 2 (0; c).

In this case, for an observable weight request, the seller charges the take-it-or-leave-

it o¤er of 1
�
( 1
�
) per unit if the weight request is smaller (larger) than or equal to w�:

This implies that

wpct(w) =

8<: w
�
if w > w�

w
�
if w � w�

.

and therefore, wpct(w) is not monotone.
9By our assumption of unbounded conditional virtual values (which is a mild assumption on

distributions with unbounded support), these �rst-order conditions always admit a solution, and

must therefore be satis�ed at the optimum.
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4.1 The Hazard Rate Stochastic Ordering

A simple su¢ cient condition that guarantees implementability of the relaxed solution is

a particular stochastic ordering of the conditional distributions of per-unit values: the

conditional distribution given a higher weight should be (weakly) statistically higher

in the hazard rate order than the conditional distribution given a lower weight. This is

similar to conditions found in static frameworks by Pai and Vohra, Iyengar and Kumar

or Blackorby and Szalay.

Theorem 1 For each c; t; and w let pct(w) denote the solution to the revenue max-

imizing problem under complete information about w, determined recursively by the

Bellman equation

w

�
pct(w)�

1� F (pct(w)jw)
f(pct(w)jw)

�
= R�(c; T � t)�R�(c� w; T � t): (1)

Assume that the following conditions hold:

1. For any w; the conditional hazard rate f(vjw)
1�F (vjw) is non-decreasing in v

10:

2. For any w0 � w, and for any v; f(vjw)
1�F (vjw) �

f(vjw0)
1�F (vjw0) .

Then, wpct(w) is non-decreasing in w; and, consequently, the underlying allocation

where �ct(w; v) = 1 if and only if v � pct(w) is implementable. In particular, equations

(1) characterize the revenue maximizing scheme under incomplete information about

both values and weights.

Proof. See Appendix.

An important special case for which the conditions of the above Theorem hold is

the one where the distribution of per-unit values is independent of the distribution of

weights, and has an increasing hazard rate.

10Note that this condition already implies the needed monotonicity in v of the conditional virtual

value for all w:
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4.2 The Role of Concavity

A major result for the case where capacity comes in discrete units, and where all

weights are equal is that optimal expected revenue is concave in capacity (see Gallego

and van Ryzin [8] for a continuous time framework with Poisson arrivals and Bitran

and Mondschein [3] for a discrete time setting). This is a very intuitive property since

it says that additional capacity is more valuable to the designer when capacity itself

is scarce. Due to the more complicated combinatorial nature of the knapsack problem

with heterogenous weights, concavity need not generally hold (see Papastavrou, Ra-

jagopalan and Kleywegt [19] for examples where concavity of expected welfare in the

framework with complete information fails). When concavity does hold, the optimal

per-unit virtual value thresholds for the relaxed problem increase with weight, which

facilitates implementation for the case of two-dimensional private information.

Our main result in this subsection identi�es a condition on the distribution of

types that, together with concavity of the expected revenue in the remaining capacity,

ensures that, for each t and c, wpct(w) is increasing.

Theorem 2 Assume that

1. The expected revenue R�(c; T + 1� t) is a concave function of c for all times t:

2. For any w � w0; v � 1�F (vjw)
f(vjw) � vw

w0 �
1�F ( vw

w0 jw
0)

f( vw
w0 jw

0) .

For each c; t; and w let pct(w) denote the solution to the revenue maximizing problem

under complete information about w; determined recursively by equations (1). Then

wpct(w) is non-decreasing in w; and hence the underlying allocation where �
c
t(w; v) = 1

if and only if v � pct(w) is implementable. In particular, equation (1) characterizes

the revenue maximizing scheme under incomplete information about both values and

weights.

Proof. See Appendix.

Remark 1 The su¢ cient conditions for implementability used in Theorem 1 are,

taken together, stronger than Condition 2 in Theorem 2. To see this, assume that,
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for any w; the conditional hazard rate f(vjw)
1�F (vjw) is increasing in v; and that for any

w0 � w and for all v, f(vjw)
1�F (vjw) �

f(vjw0)
1�F (vjw0) . This yields:

v � 1� F (vjw)
f(vjw) � vw

w0
�
1� F (vw

w0 jw)
f(vw

w0 jw)
� vw

w0
�
1� F (vw

w0 jw
0)

f(vw
w0 jw0)

where the �rst inequality follows by the monotonicity of the hazard rate, and the second

by the stochastic order assumption. Note also that Condition 2 of Theorem 2 can be

formulated as requiring that the functions �v � 1�F (�vjw
�
)

f(�vjw
�
)
are non-decreasing in �.

Finally, note that this condition will play an important role for implementability of the

asymptotically optimal policy that we construct in Section 5 below.

We next modify a result of Papastavrou, Rajagopalan and Kleywegt [19] in order to

identify conditions on the joint distribution F (w; v) that imply concavity of expected

revenue with respect to c for all periods, as required by the above Theorem11. It is

convenient to introduce the joint distribution of weight and total valuation u = vw,

which we denote by G(w; u) with density g(w; u). By means of a transformation of

variables, the densities f and g are related by w g(w;wv) = f(w; v): In particular,

marginal densities in w coincide, i.e.

�fw(w) =

Z 1

0

f(w; v) dv =

Z 1

0

g(w; u) du = �gw(w):

An increasing virtual value implies that the virtual total value is increasing in u

with strictly positive derivative for any given w:

û(u;w) := u� 1�G(ujw)
g(ujw) = wv � 1� F (vjw)

f(vjw)=w = wv̂(v; w)

We write û�1(û; w) for the inverse of û(u;w) with respect to u and de�ne a distribution

Ĝ(û; w) by both Ĝ(ûjw) := G(û�1(û; w)jw) for all w and �̂gw(w) := �gw(w). On the level

of v̂, this corresponds to F̂ (v̂jw) = F (v̂�1(v̂; w)jw) and �̂fw(w) = �fw(w).

11In the Appendix we also provide an elementary proof of the result of Papastavrou, Rajagopalan

and Kleywegt since a proof is neither contained in the above mentioned paper nor in the related one

by Kleywegt and Papastavrou [14]. Moreover, we were unable to �nd a more general result from �nite

horizon stochastic dynamic programming ensuring concavity of expected value in the state variable

c; which is only a part of the relevant state description.
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Theorem 3 Assume that the conditional distribution Ĝ(wjû) is concave in w for all

û; that both ĝ(wjû) and d
dw
ĝ(wjû) are bounded, and that the total virtual value û has

a �nite mean. Then, in the revenue maximization problem where the designer has

complete information about w; the expected revenue R�(c; T + 1 � t) is concave as a

function of c for all times t:

Proof. See Appendix.

Example 2 A simple setting where the conditions of Theorem 2 are satis�ed while

those of Theorem 1 are violated is obtained as follows. Assume that G(w; u) is such

that u and w are independent, the hazard rate gu(u)
1�Gu(u) is non-decreasing, and Gw is

concave12. Then Condition 1 of Theorem 2 is satis�ed according to Theorem 3 because

the Ĝ(wjû) are concave. Consider then w < w0. By independence of u and w, we have

w0v̂(vw
w0 ; w

0) = û(vw;w0) = û(vw;w) = wv̂(v; w) and hence v̂(v; w) = w0

w
v̂(vw

w0 ; w
0).

As w0

w
> 1, this implies Condition 2 of Theorem 2 in the relevant domain where

virtual values are non-negative. However, as we show now, Condition 2 of Theorem

1, i.e. the hazard rate ordering, is violated. Indeed, the equation we have just derived

implies also that f(vjw)
1�F (vjw) = w

w0
f( vw

w0 jw
0)

1�F ( vw
w0 jw

0) . But, the conditional hazard rates of F

are non-decreasing (because Gu has non-decreasing hazard rate) and w
w0 < 1, so that

f(vjw)
1�F (vjw) =

w
w0

f( vw
w0 jw

0)

1�F ( vw
w0 jw

0) <
f(vjw0)

1�F (vjw0) , which contradicts the hazard rate ordering of

Theorem 1.

5 Asymptotically Optimal and Time-Independent

Pricing

The optimal policy identi�ed above requires price adjustments in every period, and for

any quantity request w. These dynamics are arguably too complicated to be applied

in practice. Gallego and van Ryzin [8] use an asymptotic argument to show that

the theoretical gain from optimal dynamic pricing compared to a suitably chosen,

time-independent policy is usually small in the setting with unit demands. Our main

12We also assume that the other mild technical conditions of Theorem 3 are satis�ed.
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theorem in this section extends their result to the dynamic knapsack problem with

general distribution of types. We construct a static nonlinear price schedule that uses

the existing correlations between w and v , and show that it is asymptotically optimal

if both capacity and time horizon go to in�nity.

While the basic strategy of the proof follows the suggestion made by Gallego and

van Ryzin, there are several major di¤erences. In fact, in section 5 of their paper

these authors also consider the case of heterogenous capacity demands. However,

they assume that weights and values are independent and, most importantly, their

optimality benchmark does not even allow per-unit prices to depend on weight requests.

But, as we have seen above, such weight-dependency is a general property of the

dynamically optimal solution, even if w and v are independent. We therefore take our

solution of the relaxed problem as the optimality benchmark, and we also consider

general type distributions F .

As above, we start by focusing on the case of observable weights. We then show

that Condition 2 of Theorem 2 is a su¢ cient condition for implementability for the

case with two-dimensional private information .

Like Gallego and van Ryzin, we �rst solve a simpler, suitably chosen deterministic

maximization problem. The revenue obtained in the solution to that problem provides

an upper bound for the optimal expected revenue of the stochastic problem, and the

solution itself suggests the use of per-unit prices that depend on weight requests, but

that are constant in time. We next show that the derived policy is asymptotically opti-

mal also in the original stochastic problem where both capacity and time go to in�nity:

the ratio of expected revenue from following the considered policy over expected rev-

enue from the optimal Markovian policy converges to one. Moreover, there are various

ways to quantify this ratio for moderately large capacities and time horizons.

Let us �rst recall some assumptions, and introduce further notation. The mar-

ginal density �fw(w) and the conditional densities f(vjw) pin down the distribution of

(independent) arriving types (wt; vt)Tt=1. Given w, the demanded per-unit price p and

the probability �w of a request being accepted are related by �w(p) = 1 � F (pjw).

Let pw(�) be the inverse of �, and note that this is well de�ned on (0; 1]. Because
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of monotonicity of conditional virtual values, the instantaneous (expected) per-unit

revenue functions rw(�) := � pw(�) are strictly concave, and each one attains a unique

interior maximum. Indeed, pw(�) = F (�jw)�1(1� �) and hence

d

d�
rw(�) = pw(�)� � 1

f(pw(�)jw) = pw(�)� 1� F (p
w(�)jw)

f(pw(�)jw) = v̂(pw(�); w);

d2

d�2
rw(�) = �

�
@

@v
v̂

�
(pw(�); w)

1

f(pw(�)jw) < 0:

Consequently, rw is strictly concave, strictly increasing up to the �w;� that satis�es

v̂(pw(�w;�); w) = 0 and strictly decreasing from there on.

5.1 The Deterministic Problem

We now formulate an auxiliary deterministic problem that closely resembles the re-

laxed stochastic problem. Let Cap : (0;1) ! (0;1) ; w 7! Cap(w) be a measurable

function. Consider the problem:

max
Cap(�)

Z 1

0

max
(�wt )t=1;:::;T

 
TX
t=1

rw(�wt )

!
w �fw(w) dw; (2)

subject to

TX
t=1

�wt w
�fw(w) � Cap(w) a.s. and

Z 1

0

Cap(w) dw � C: (3)

In words, we analyze a problem where:

1. The capacity C needs to be divided into capacities Cap(w), one for each w:

2. In each w - subproblem, a deterministic quantity request of w �fw(w) arrives in

each period, and �wt determines a share (not a probability!) of this request that

is accepted and sold at per-unit price pw(�wt ).

3. In each sub-problem, the allocated capacity over time cannot exceed Cap(w),

and total allocated capacity in all sub-problems
R1
0
Cap(w) dw, cannot exceed

C.

4. The designer�s goal is to maximize total revenue. We call the revenue at the

solution Rd(C; T ).
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As rw is strictly concave and increasing up to �w;�, it is straightforward to verify

that, given a choice Cap(w); the solution to the w - subproblem,

max
(�wt )t=1;:::;T

 
TX
t=1

rw(�wt )

!
w �fw(w) such that

TX
t=1

�wt w
�fw(w) � Cap(w)

is given by:

�wt � �w;d :=

8><>:�
w;� if �w;� � Cap(w)

Tw �fw(w)

Cap(w)
Tw �fw(w)

else
(4)

Accordingly, the revenue in the w-subproblem is rw(�w;d)Tw �fw(w).

Proposition 2 The solution to the deterministic problem given by (2) and (3) is

characterized by :

1. v̂(pw(�w;d); w) = �(C; T ) = const

2. �wt = �w;d = Cap(w)
Tw �fw(w)

,

3.
R1
0
Cap(w) dw = min(C; T

R1
0
�w;�w �fw(w) dw)

Proof. See Appendix.

To get an intuition for the above result, observe that the marginal increase of the

optimal revenue for the w-subproblem from marginally increasing Cap(w) is:�
d

d�
rw
��

Cap(w)
Tw �fw(w)

�
= v̂(pw(�w;d); w) if �w;� >

Cap(w)
Tw �fw(w)

;

and 0 else.

Proposition 2 says that, optimally, the capacity should be split in such a way that

the marginal revenue from increasing Cap(w) is the same for all w. Actually solving

the problem amounts to the simple static exercise of determining the constant �(C; T )

in accordance with the integral feasibility constraint.

The above construction is justi�ed by the following two-step argument: on the

one hand, we show in Theorem 4 below that the optimal revenue in the deterministic

problem, Rd(C; T ), bounds from above the optimal revenue in the original stochastic

case. On the other hand, as we show in Section 5.2, the optimal solution of the
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deterministic problem serves to de�ne a simple time-independent policy which in the

stochastic problem captures revenues RTI(C; T ) such that RTI(C;T )
Rd(C;T )

converges to one

as C and T go to in�nity. Combining these two points yields the kind of asymptotic

optimality result we want to establish.

Since we assume here that weights are observable, a Markovian policy � for the

original stochastic problem is characterized by the acceptance probabilities �wtt [ct]

contingent on current time t, remaining capacity ct and weight request wt. Expected

revenue from policy � at the beginning of period t (i.e. when there are (T � t + 1)

periods left) with remaining capacity ct is given by:

R�(ct; T � t+ 1) = E�

"
TX
s=t

ws p
ws(�wss [cs]) Ifvs�pws (�wss [cs])g

#

s:t:
TX
s=t

ws Ifvs�pws (�wss [cs])g � ct:

Here, the constraint must hold almost surely when following �. As before, we write

R�(ct; T �t+1) for the optimal revenue, i.e. the supremum of expected revenues taken

over all feasible Markovian policies �.

Theorem 4 For any capacity C and deadline T , it holds that R�(C; T ) � Rd(C; T ).

Proof. See Appendix.

5.2 A Simple Policy for The Stochastic Problem

Having established the upper bound of Theorem 4, we now proceed with the sec-

ond part of our two-step argument outlined in the preceding section. We use the

optimal solution of the deterministic problem in order to de�ne a w-contingent yet

time-independent policy �TI for the stochastic case as follows:

1. Given C and T , solve the deterministic problem to obtain �(C; T ), �w;d and thus

pw;d := pw(�w;d) = v̂�1(�(C; T ); w).

2. In the stochastic problem charge these weight-contingent prices pw;d for the entire

time horizon, provided that the quantity request does not exceed the remaining

capacity. Else, charge a price equal to +1 (i.e., reject the request).
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Note that under Condition 2 of Theorem 2, the time-independent policy �TI is

implementable also if weights are not observable! Indeed, setting all virtual

valuation thresholds equal to a constant is like setting them optimally for linear, and

hence concave salvage values.

We now determine how well the time-independent policy constructed above per-

forms compared to the optimal Markovian policy. Recall that we do this by comparing

its expected revenue, RTI(C; T ); with the optimal revenue in the deterministic prob-

lem, Rd(C; T ); which, as we know by Theorem 4, provides an upper bound for the

optimal revenue in the stochastic problem, R�(C; T ).

Theorem 5 1. For any joint distribution of values and weights,

lim
C;T!1;C

T
=const

RTI(C; T )

Rd(C; T )
= 1

2. Assume that w and v are independent. Then,

RTI(C; T )

Rd(C; T )
�
 
1 �

p
E[w2]=E[w]

2
p
min(C; ��E[w]T )

!
:

In particular, limmin(C;T )!1
RTI(C;T )
Rd(C;T )

= 1

Proof. See Appendix.

We have chosen to focus on these two general limit results, but various other

quantitative ones could be proven by similar techniques at the expense of slightly

more technical e¤ort, and possibly some further assumptions on the distribution F 13.

This should be clear from the proof in the Appendix. Note that since policy �TI is

stationary, it does not generate incentives to postpone arrivals even in a more complex

model where buyers are patient and can choose their arrival time.

Remark 2 In a complete information knapsack model, Lin, Lu and Yao [15] study

policies which start by accepting only high value requests, and then switch-over to

accepting also lower values as time goes by. They establish asymptotic optimality of

13Since Rd(C; T ) � R�(C; T ) � RTI(C; T ) (the �rst inequality is Theorem 4, and the second

follows by optimality), our estimate in Theorem 5-2 immediately extends to R�(C;T )
Rd(C;T )

or to RTI(C;T )
R�(C;T ) .
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such policies (with carefully chosen switch-over times) as available capacity and time

go to in�nity. In other words, their prices are time-dependent but do not condition

on the weight request. It is easy to show that, in our incomplete information model

such policies are, in general, suboptimal. Consider �rst a one-period example where

the seller has capacity 2, and where the arriving agent has either a weight request of 1

or 2 (equally likely). If the weight request is 1(2), the agent�s per-unit value distributes

uniformly between 0 and 1 (between 1 and 2). The optimal mechanism in this case is

as follows: if the buyer requests one unit, the seller sells it for a price of 0.5, and if the

buyer requests two units, the seller sells each unit at a price of 1. Note that this policy

is implementable since the requested per-unit price is monotonically increasing in the

weight request. The expected revenue is 9/8. If, however, the seller is forced to sell

all units at the same per-unit price without conditioning on the weight request, he will

charge the price of 1 for each unit, yielding an expected revenue of 1, and thus loose

1/8 versus the optimal policy. Replicate now this problem so that there are T periods

and capacity C=2T. Then, the expected revenue from the optimal mechanism is 9/8T,

while the expected revenue from the constrained mechanism is only T. Obviously, the

constrained mechanism is not asymptotically optimal.

6 Appendix

Proof of Proposition 1. I) =) So assume that conditions 1 and 2 are satis�ed

and de�ne for any t; c:

qct (w; v) =

8><>:wp
c
t(w) if �ct(w; v) = 1

0 if �ct(w; v) = 0

Consider then an arrival of type (w; v) in period t with remaining capacity c: There

are two cases:

a) �ct(w; v) = 1: In particular, v � pct(w). Then, truth-telling yields utility w(v �

pct(w)) � 0. Assume that the agent reports instead ( bw; bv): If �ct( bw; bv) = 0; then the

agent�s utility is zero and the deviation is not pro�table. Assume then that �ct( bw; bv) =
1: By the form of the utility function, a report of bw < w is never pro�table. But, for
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bw � w, the agent�s utility is wv� bwpct( bw) � w(v� pct(w)), where we used condition 2.
Therefore, such a deviation is also not pro�table.

b) �ct(w; v) = 0: In particular, v � pct(w). Truth-telling yields here utility of zero.

Assume that the agent reports instead ( bw; bv): If �ct( bw; bv) = 0; then the agent�s utility
remains zero, and the deviation is not pro�table. Assume then that �ct( bw; bv) = 1: By
the form of the utility function, a report of bw < w is never pro�table. Thus, consider
the case where bw � w. In this case, the agent�s utility is wv� bwpct( bw) � w(v�pct(w)) �
0; where we used condition 2. Therefore, such a deviation is also not pro�table.

II) (= Consider now an implementable, deterministic and Markovian allo-

cation policy f�ctgt;c. Assume �rst, by contradiction, that condition 1 in the state-

ment of the Proposition is not satis�ed. Then, there exist (w; v) and (w; v0) such

that v0 > v, �ct(w; v) = 1 and �ct(w; v
0) = 0: We obtain the chain of inequalities

wv0 � qct (w; v) > wv � qct (w; v) � �qct (w; v0) where the second inequality follows by

incentive compatibility for type (w; v). This shows that a deviation to a report (w; v)

is pro�table for type (w; v0); a contradiction to implementability. Therefore, condition

1 must hold.

In particular, note that for any two types who have the same weight request, (w; v)

and (w; v0), if both are accepted, i.e. �ct(w; v) = �
c
t(w; v

0) = 1; the payment must be

the same (otherwise the type which needs to make the higher payment would deviate

and report the other type). Denote this payment by rct (w). Note also that any two

types (w; v) and (w0; v0) such that �ct(w; v) = �
c
t(w

0; v0) = 0 must also make the same

payment (otherwise the type that needs to make the higher payment would deviate

and report the other type) and denote this payment by s.

Assume now, by contradiction, that condition 2 does not hold. Then there exist

w and w0 such that w0 > w but w0pct(w
0) < wpct(w): In particular, w

0pct(w
0) < 1; and

therefore pct(w
0) <1:

Assume �rst that pct(w) <1. We have w0pct(w0)� rct (w0) = wpct(w)� rct (w) = �s

because, by incentive compatibility, both types (w; pct(w)) and (w
0; pct(w

0)) must be

indi¤erent between getting their request and not getting it. Since by assumption

w0pct(w
0) < wpct(w); we obtain that r

c
t (w

0) < rct (w): Consider now a type (w; v) for
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which v > pct(w). By reporting truthfully, this type gets utility wv � rct (w); while

by deviating to (w0; v) he gets utility wv � rct (w0) > wv � rct (w); a contradiction to

incentive compatibility.

Assume now that pct(w) is in�nite, and therefore wp
c
t(w) is in�nite. Consider a type

(w0; v) where v > pct(w
0): The utility of this type is w0v� rct (w0) > w0pct(w0)� rct (w0) =

�s. In particular, rct (w0) must be �nite. By reporting truthfully, a type (w; v) gets

utility �s , while by deviating to a report of (w0; v) he gets wv � rct (w0): For v large

enough, we obtain wv � rct (w0) > �s; a contradiction to implementability.

Thus, condition 2 must hold and, in particular, the payment rct (w) is monotonic in

w:

Proof of Theorem 1. Let w < w0. We need to show that wpct(w) � w0pct(w0) � 0:

If pct(w) � pct(w0) the result is clear. Assume then that pct(w) > pct(w0): We obtain the

following chain of inequalities:

w

�
1� F (pct(w)jw)
f(pct(w)jw)

�
� w0

�
1� F (pct(w0)jw0)
f(pct(w

0)jw0)

�
� w0

�
1� F (pct(w)jw)
f(pct(w)jw)

� 1� F (p
c
t(w

0)jw0)
f(pct(w

0)jw0)

�
� w0

�
1� F (pct(w0)jw)
f(pct(w

0)jw) � 1� F (p
c
t(w

0)jw0)
f(pct(w

0)jw0)

�
� 0;

where the second inequality follows by the monotonicity of the hazard rate, and

the third by the hazard rate ordering condition.

Since R�(c� w; T � t) is monotonically decreasing in w, we obtain that

w

�
pct(w)�

1� F (pct(w)jw)
f(pct(w)jw)

�
� w0

�
pct(w

0)� 1� F (p
c
t(w

0)jw0)
f(pct(w

0)jw0)

�
,

wpct(w)� w0pct(w0) � w

�
1� F (pct(w)jw)
f(pct(w)jw)

�
� w0

�
1� F (pct(w0)jw0)
f(pct(w

0)jw0)

�
� 0

where the last inequality follows by the derivation above. Hence wpct(w)�w0pct(w0) � 0

as desired.

Proof of Theorem 2. For any concave function �, and for any x < y < z in its

domain, the well known "Three Chord Lemma" asserts that

�(y)� �(x)
y � x � �(z)� �(x)

z � x � �(z)� �(y)
z � y
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Consider then w < w0 and let x = c � w0 < y = c � w < z = c: For the case of a

concave revenue, the Lemma yields then:

R�(c� w; T � t)�R�(c� w0; T � t)
w0 � w � R�(c; T � t)�R�(c� w0; T � t)

w0

� R�(c; T � t)�R�(c� w; T � t)
w

:

We obtain in particular

pct(w
0)� 1� F (p

c
t(w

0)jw0)
f(pct(w

0)jw0) =
R�(c; T � t)�R�(c� w0; T � t)

w0

� R�(c; T � t)�R�(c� w; T � t)
w

= pct(w)�
1� F (pct(w)jw)
f(pct(w)jw)

;

which yields

pct(w
0)� 1� F (p

c
t(w

0)jw0)
f(pct(w

0)jw0) � pct(w)�
1� F (pct(w)jw)
f(pct(w)jw)

� w

w0
pct(w)�

1� F ( w
w0p

c
t(w)jw0)

f( w
w0p

c
t(w)jw0)

where the last inequality follows by the condition in the statement of the Theorem.

Since virtual values are increasing, this yields pct(w
0) � w

w0p
c
t(w), w0pct(w

0) � wpct(w)

as desired.

For the proof of Theorem 3, we �rst need a Lemma on maximization of expected

welfare under complete information. The result appears (without proof) in Papas-

tavrou, Rajagopalan and Kleywegt [19].

Lemma 1 . Assume that the total value u has �nite mean, and that both g(wju) and
d
dw
g(wju) are bounded and continuous. Consider the allocation policy that maximizes

expected welfare under complete information (i..e, upon arrival the agent�s type is

revealed to the designer). If G(wju) is concave in w for all u; then the optimal expected

welfare, denoted U ct is twice continuously di¤erentiable and concave in the remaining

capacity c for all periods t � T .

Proof. Note that, for notational convenience throughout this proof, we index optimal

expected welfare by the current time t and not by periods remaining to deadline. By

standard arguments, the optimal policy for this unconstrained dynamic optimization

problem is deterministic and Markovian, and U ct is non-decreasing in remaining ca-

pacity c by a simple strategy duplication argument. Moreover, the optimal policy
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can be characterized by weight thresholds wct (u) � c : If c remains at time t and a

request whose acceptance would generate value u arrives, then it is accepted if and

only if w � wct (u). If U ct+1 � u, then the weight threshold must satisfy the indi¤erence

condition

u = U ct+1 � U
c�wct (u)
t+1 : (5)

Otherwise, we have wct (u) = c.

We now prove the Lemma by backward induction. At time t = T , i.e. in the deadline

period, it holds that

U cT =

Z 1

0

G(cju)u �gu(u) du:

This is concave in c because all G(cju) are concave by assumption, because u �gu(u) is

positive, and because the distribution of u has a �nite mean. Since both g(wju) and
d
dw
g(wju) are bounded and continuous, U cT is also twice continuously di¤erentiable.

Suppose now that the Lemma has been proven down to time t + 1. The optimal

expected welfare at t provided that capacity c remains may be written as:

U ct =

Z 1

0

"
uG(wct (u)ju) +

Z wct (u)

0

U c�wt+1 g(wju) dw + (1�G(wct (u)ju))U ct+1

#
�gu(u) du:

(6)

We proceed to show concavity with respect to c of the term in brackets, for all u.

This in turn implies concavity of U ct and hence, with a short additional argument for

di¤erentiability, is su¢ cient to conclude the induction step. We distinguish the cases

u > U ct+1 for which the indi¤erence condition (5) does not hold, and u � U ct+1 for

which it does. For both cases, we demonstrate that the second derivative (one-sided

if necessary) of the bracket term with respect to c is non-positive, and thus establish

global concavity.

Case 1: u > U ct+1. The bracket term becomes uG(cju) +
R c
0
U c�wt+1 g(wju) dw+ (1�

G(cju))U ct+1. By continuity of U ct+1, this representation also holds in a small interval
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around c. We �nd

d

dc

�
uG(cju) +

Z c

0

U c�wt+1 g(wju) dw + (1�G(cju))U ct+1
�

= ug(cju) +
Z c

0

d

dc
U c�wt+1 g(wju) dw + U0t+1 g(cju)

�g(cju)U ct+1 + (1�G(cju))
d

dc
U ct+1

= (u� U ct+1)g(cju) +
Z c

0

d

dc
U c�wt+1 g(wju) dw + (1�G(cju))

d

dc
U ct+1

and

d2

dc2

�
uG(cju) +

Z c

0

U c�wt+1 g(wju) dw + (1�G(cju))U ct+1
�

= (u� U ct+1)g0(cju)� g(cju)
d

dc
U ct+1 +

Z c

0

d2

dc2
U c�wt+1 g(wju) dw

+
d

dw
Uwt+1

��
w=0

g(cju)� g(cju) d
dc
U ct+1 + (1�G(cju))

d2

dc2
U ct+1: (7)

The last term is non-positive by the concavity of U ct+1, the �rst term is non-positive

because u > U ct+1 and because G(cju) has a non-increasing density by assumption. In

addition, g(cju) d
dc
U ct+1 is non-negative, and hence (7) is bounded from above byZ c

0

d2

dc2
U c�wt+1 g(wju) dw + g(cju)

�
d

dw
Uwt+1

��
w=0

� d

dc
U ct+1

�
:

But
R c
0
d2

dc2
U c�wt+1 g(wju) dw may be bounded from above by g(cju)

R c
0
d2

dc2
U c�wt+1 dw because

of the decreasing density and because d2

dc2
U c�wt+1 � 0. Thus,

d2

dc2

�
uG(cju) +

Z c

0

U c�wt+1 g(wju) dw + (1�G(cju))U ct+1
�

� g(cju)
�Z c

0

d2

dc2
U c�wt+1 dw +

d

dw
Uwt+1

��
w=0

� d

dc
U ct+1

�
= g(cju)

�Z c

0

d2

dw2
U c�wt+1 dw +

d

dw
Uwt+1

��
w=0

� d

dc
U ct+1

�
= 0: (8)

Case 2: u � U ct+1 . Here u = U ct+1 � U
c�wct (u)
t+1 . Consequently, the bracket term in

(6) becomes

U ct+1 � U
c�wct (u)
t+1 G(wct (u)ju) +

Z wct (u)

0

U c�wt+1 g(wju) dw: (9)

Before computing its �rst and second derivatives, we di¤erentiate the identity u =

U ct+1 � U
c�wct (u)
t+1 to obtain an expression for d

dc
wct (u) (derivative from the right if u =
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U ct+1):

0 =
d

dc
U ct+1 �

d

dw
Uwt+1

��
w=c�wct (u)

�
1� d

dc
wct (u)

�
:

Since indeed d
dw
Uwt+1 > 0 in our setup with strictly positive densities, this implies

d

dc
wct (u) =

d
dw
Uwt+1

��
w=c�wct (u)

� d
dc
U ct+1

d
dw
Uwt+1

��
w=c�wct (u)

: (10)

By concavity of U ct+1, its derivative is non-increasing and hence the identity (10) yields

in particular d
dc
wct (u) � 0. We now compute the derivatives of (9):

d

dc

"
U ct+1 � U

c�wct (u)
t+1 G(wct (u)ju) +

Z wct (u)

0

U c�wt+1 g(wju) dw
#

=
d

dc
U ct+1 �

d

dw
Uwt+1

��
w=c�wct (u)

�
1� d

dc
wct (u)

�
G(wct (u)ju)� U

c�wct (u)
t+1 g(wct (u)ju)

d

dc
wct (u)

+ U
c�wct (u)
t+1 g(wct (u)ju)

d

dc
wct (u) +

Z wct (u)

0

d

dc
U c�wt+1 g(wju) dw

(10)
=

d

dc
U ct+1 �

d

dc
U ct+1G(w

c
t (u)ju) +

Z wct (u)

0

d

dc
U c�wt+1 g(wju) dw

=
d

dc
U ct+1(1�G(wct (u)ju)) +

Z wct (u)

0

d

dc
U c�wt+1 g(wju) dw:

Thus,

d2

dc2

"
U ct+1 � U

c�wct (u)
t+1 G(wct (u)ju) +

Z wct (u)

0

U c�wt+1 g(wju) dw
#

=
d2

dc2
U ct+1(1�G(wct (u)ju))�

d

dc
U ct+1 g(w

c
t (u)ju)

d

dc
wct (u)

+
d

dw
Uwt+1

��
w=c�wct (u)

g(wct (u)ju)
d

dc
wct (u) +

Z wct (u)

0

d2

dc2
U c�wt+1 g(wju) dw

� g(wct (u)ju)
d

dc
wct (u)

�
d

dw
Uwt+1

��
w=c�wct (u)

� d

dc
U ct+1

�
+

Z wct (u)

0

d2

dw2
U c�wt+1 g(wju) dw:

For the �nal inequality we used concavity of U ct+1, as well as
d2

dc2
U c�wt+1 = d2

dw2
U c�wt+1 .

Noting that (10) implies that d
dc
wct (u) � 1 and once more using concavity of U ct+1, we

may bound the �rst term from above. Since g(wju) is non-increasing in w, we can also

bound the second term to obtain:

d2

dc2

"
U ct+1 � U

c�wct (u)
t+1 G(wct (u)ju) +

Z wct (u)

0

U c�wt+1 g(wju) dw
#

(11)

� g(wct (u)ju)
 
d

dw
Uwt+1

��
w=c�wct (u)

� d

dc
U ct+1 +

Z wct (u)

0

d2

dw2
U c�wt+1 dw

!
= 0:

26



Taken together, (8) and (11) establish concavity of the integrand in (6) with respect

to c. This implies that U ct is concave. Having a second look at the computations just

done reveals that the integrand in (6) has a kink in the second derivative at u = U ct+1.

However, this event has measure zero for any given c, so that we also get that U ct is

twice continuously di¤erentiable. This completes the induction step.

Proof of Theorem 3. The main idea of the proof is to translate the problem of

setting revenue-maximizing prices when w is observable into the problem of maximizing

welfare with respect to virtual values (rather than the values themselves), and then to

use Lemma 1.

To begin with, note that there is a dual way to describe the policy that maximizes

expected welfare under complete information. In the proof of Lemma 1, we char-

acterized it by optimal weight thresholds wct (u). Alternatively, given any requested

quantity w, (not greater than the remaining c) we may set a valuation per unit thresh-

old vct (w). Requests above this valuation are accepted, those below are not. Optimal

such thresholds are characterized by the Bellman-type condition:

w vct (w) = U ct+1 � U c�wt+1 : (12)

Thus, one way of writing the optimal expected welfare under complete information is:

U ct =

Z c

0

w

Z 1

vct (w)

vf(vjw) dv �fw(w) dw

+

Z c

0

�
(1� F (vct (w)jw))U c�wt+1 + F (vct (w)jw)U ct+1

�
�fw(w) dw: (13)

In contrast, the optimal expected revenue with complete information about w but

incomplete information about v satis�es:

R�(c; T + 1� t) =
Z c

0

w pct(w) (1� F (pct(w)jw)) �fw(w) dw (14)

+

Z c

0

[(1� F (pct(w)jw))R�(c� w; T � t) + F (pct(w)jw)R�(c; T � t)] �fw(w) dw;

where pct(w) are the per-unit prices from (1). We rephrase this in terms of F̂ , whose

de�nition required monotonicity of virtual values. Setting v̂ct (w) := v̂(pct(w); w) we

have on the one hand:

F (pct(w)jw) = F̂ (v̂ct (w)jw):
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On the other hand:

pct(w) (1� F (pct(w)jw)) =

Z 1

pct (w)

[v f(vjw)� (1� F (vjw))] dv

=

Z 1

pct (w)

v̂(v; w) f̂(v̂(v; w)jw) d
dv
v̂(v; w) dv

=

Z 1

v̂ct (w)

v̂ f̂(v̂jw) dv̂:

Plugging this and the identities for the marginal densities in w into (14), we obtain:

R�(c; T + 1� t) =
Z 1

0

w

Z 1

v̂ct (w)

v̂f̂(v̂jw) dv̂ �̂fw(w) dw

+

Z 1

0

h
(1� F̂ (v̂ct (w)jw))R�(c� w; T � t) + F̂ (v̂ct (w)jw)R�(c; T � t)

i
�̂
fw(w) dw:

Comparing this with (13), it follows that maximizing expected revenue when w is

observable is equivalent to maximizing expected welfare with respect to the distribution

of weight and conditional virtual valuation (note the identical zero boundary values at

T + 1). Invoking Lemma 1 applied to Ĝ, we see that R�(c; T + 1� t) is concave with

respect to c for all t (note that the fact that the support of virtual valuations contains

also negative numbers does not matter for the argument of Lemma 1).

Proof of Proposition 2. The Proposition is an immediate consequence of the

characterization (4) of optimal solutions for the w-subproblems given Cap(w), and of

a straightforward variational argument ensuring that marginal revenues from marginal

increase of Cap(w) must be constant almost surely in w.

Proof of Theorem 4. We need to distinguish two cases:

Case 1: Assume that C > T
R1
0
�w;�w �fw(w) dw. In this case, �(C; T ) = 0 and

Rd(C; T ) = T
R1
0
rw(�w;�)w �fw(w) dw. We also know that R�(C; T ) � R�(+1; T );

where R�(+1; T ) denotes the optimal expected revenue from a stochastic problem

without any capacity constraint. But, for such a problem, the optimal Markovian

policy maximizes at each period the instantaneous expected revenue upon observing

wt, wt rwt(�): That is, the optimal policy sets �
wt
t [+1] = �w;�. Thus,

R�(C; T ) � R�(+1; T ) = T

Z 1

0

w rw(�w;�) �fw(w) dw = Rd(C; T ):
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Case 2: Assume now that C � T
R1
0
�w;�w �fw(w) dw. For � � 0 , consider the

unconstrained maximization problem

max
Cap(�)

�Z 1

0

rw
�
Cap(w)
Tw �fw(w)

�
Tw �fw(w) dw + �

�
C �

Z 1

0

Cap(w) dw
��

The Euler-Lagrange equation is
�
d
d�
rw
� � Cap(w)

Tw �fw(w)

�
= �. Hence, if we write Rd(C; T; �)

for the optimal value of the above problem, and if we let � = �(C; T ) where �(C; T )

is the constant from Proposition 2, then the solution equals the one of the constrained

deterministic problem. In particular
R1
0
Cap(w) dw = C, and Rd(C; T; �(C; T )) =

Rd(C; T ) .

Recall that for the stochastic problem, and for any Markovian policy � we have

R�(C; T ) = E�

"
TX
t=1

wt p
wt(�wtt [ct]) Ifvt�pwt (�wtt [ct])g

#
;

and de�ne

R�(C; T; �(C; T )) = R�(C; T ) + �(C; T )

 
C � E�

"
TX
t=1

wt Ifvt�pwt (�wtt [ct])g

#!
:

Since for any policy � that is admissible in the original problem, it holds that

TX
t=1

wt Ifvt�pwt (�wtt [ct])g � C a:s:;

we have R�(C; T ) � R�(C; T; �(C; T )). We will show below that, for arbitrary �

(which satis�es the capacity constraint or not), it holds that:

R�(C; T; �(C; T )) � Rd(C; T; �(C; T )): (15)

This yields for any � that is admissible in the original problem:

R�(C; T ) � R�(C; T; �(C; T )) � Rd(C; T; �(C; T )) = Rd(C; T ):

Taking the supremum over � concludes then the proof for the second case.

It remains to prove (15). The argument uses the �ltration fFtgTt=1 of � - algebras

containing information prior to time t ( in particular the value of ct) and in addition
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the currently observed wt.

R�(C; T; �(C; T )) = E�

"
TX
t=1

wt (p
wt(�wtt [ct])� �(C; T )) Ifvt�pwt (�wtt [ct])g

#
+ �(C; T )C

= E�

"
TX
t=1

E�

h
wt (p

wt(�wtt [ct])� �(C; T )) Ifvt�pwt (�wtt [ct])gjFt
i#
+ �(C; T )C

= E�

"
TX
t=1

wt (p
wt(�wtt [ct])� �(C; T ))E�

h
Ifvt�pwt (�wtt [ct])gjFt

i#
+ �(C; T )C

= E�

"
TX
t=1

wt (r
wt(�wtt [ct])� �(C; T )�wtt [ct])

#
+ �(C; T )C

� E�

"
TX
t=1

wt
�
rwt(�wt;d)� �(C; T )�wt;d

�#
+ �(C; T )C

= E(wt)Tt=1

"
TX
t=1

wt
�
rwt(�wt;d)� �(C; T )�wt;d

�#
+ �(C; T )C

= T

Z 1

0

(rw(�w;d)� �(C; T )�w;d)w �fw(w) dw + �(C; T )C = Rd(C; T; �(C; T )):

For the inequality, we have used that �w;d maximizes rw(�)� �(C; T )�.

For the proof of Theorem 5, we �rst need a Lemma:

Lemma 2 Let RTI(C; T ) be the revenue obtained form the stationary policy �TI : Let

( ewt; evt)Tt=1 be an independent copy of the process (wt; vt)Tt=1. It holds that:
1.

RTI(C; T ) = E(wt)Tt=1

"
TX
t=1

rwt(�wt;d)wt

 
1� P

"
t�1X
s=1

ewsIfevs�p ews;dg > C � wt
#!#

:

(16)

2.

RTI(C; T )

Rd(C; T )
� 1 (17)

�

PT
t=1

R1
0
rw(�w;d)w

�
min

�
1;

(t�1)�2d
((T�t+1)�d�w)2

�
Ifw�(T�t+1)�dg + Ifw>(T�t+1)�dg

�
�fw(w) dw

T
R1
0
rw(�w;d)w �fw(w) dw

where �d :=
min(C;T

R1
0 �w;�w �fw(w) dw)

T
, and where �2d := E[w2Ifv�pw;dg] � �2d =R1

0
w2�w;d �fw(w) dw � �2d.
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Proof. 1. RTI(C; T ) may be written as:

RTI(C; T ) = E(wt;vt)Tt=1

"
TX
t=1

pwt;dwt Ifvt�pwt;dg If
Pt�1
s=1 ws Ifvs�pws;dg�C�wtg

#

= E(wt)Tt=1

"
TX
t=1

rwt(�wt;d)wt

#
� E(wt;vt)Tt=1

"
TX
t=1

pwt;dwt Ifvt�pwt;dg If
Pt�1
s=1 ws Ifvs�pws;dg>C�wtg

#

In order to simplify the second term, we use the fact that vt and (ws; vs)t�1s=1 are inde-

pendent conditional on wt:

E(wt;vt)Tt=1

"
TX
t=1

pwt;dwt Ifvt�pwt;dg If
Pt�1
s=1 ws Ifvs�pws;dg>C�wtg

#

= E(wt;vt)Tt=1

"
TX
t=1

E
h
pwt;dwt Ifvt�pwt;dg If

Pt�1
s=1 ws Ifvs�pws;dg>C�wtg

jwt
i#

= E(wt;vt)Tt=1

"
TX
t=1

pwt;dwtE
�
Ifvt�pwt;dgjwt

�
E
h
If
Pt�1
s=1 ws Ifvs�pws;dg>C�wtg

jwt
i#

= E(wt;vt)Tt=1

"
TX
t=1

pwt;dwt �
wt;d P

"
t�1X
s=1

ews Ifevs�p ews;dg > C � wt

##

= E(wt)Tt=1

"
TX
t=1

rwt(�wt;d)wt P

"
t�1X
s=1

ews Ifevs�p ews;dg > C � wt

##
:

This establishes equation (16).

2. Recall that Rd(C; T ) = T
R1
0
rw(�w;d)w �fw(w) dw. Observe furthermore that

�w;d depends onC and T only through the ratio C
e¤

T
, whereCe¤ = min(C; T

R1
0
�w;�w �fw(w) dw),

via E[wIfv�pw;dg] =
R1
0
w�w;d �fw(w) dw = Ce¤

T
= �d. Observe �rst that

P

"
t�1X
s=1

ews Ifevs�p ews;dg > C � wt

#
� P

"
t�1X
s=1

ews Ifevs�p ews;dg > T�d � wt

#

= P

"
t�1X
s=1

ews Ifevs�p ews;dg � (t� 1)�d > (T � t+ 1)�d � wt

#
:

We trivially bound the last expression by 1 if (T � t+ 1)�d � wt � 0 , and otherwise
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use Chebychev�s inequality to deduce

P

"
t�1X
s=1

ews Ifevs�p ews;dg � (t� 1)�d > (T � t+ 1)�d � wt

#

� P

24 t�1X
s=1

ews Ifevs�p ews;dg � (t� 1)�d

!2
> ((T � t+ 1)�d � wt)2

35
�

E
h�Pt�1

s=1 ews Ifevs�p ews;dg � (t� 1)�d
�2i

((T � t+ 1)�d � wt)2
=

(t� 1)�2d
((T � t+ 1)�d � wt)2

:

As we are bounding a probability, we can replace this estimate by the trivial bound

1 again whenever this is better, i.e. if wt is smaller than but close to (T � t + 1)�d.

Thus,

E(wt;vt)Tt=1

"
TX
t=1

pwt;dwt Ifvt�pwt;dg If
Pt�1
s=1 ws Ifvs�pws;dg>C�wtg

#

�
TX
t=1

Z 1

0

rw(�w;d)w

�
min

�
1;

(t� 1)�2d
((T � t+ 1)�d � w)2

�
Ifw�(T�t+1)�dg + Ifw>(T�t+1)�dg

�
�fw(w) dw:

Finally, dividing by Rd(C; T ) yields the desired estimate.

Proof of Theorem 5. 1. The starting point is the estimate from (17). Note that

rw(�w;d)w �fw(w) is an integrable upper bound for

rw(�w;d)w

�
min

�
1;

(t� 1)�2d
((T � t+ 1)�d � w)2

�
Ifw�(T�t+1)�dg + Ifw>(T�t+1)�dg

�
�fw(w):

Moreover, for �xed w, for arbitrary � 2 (0; 1) and for t � �T we have w < (1� �)T�d
eventually as T;C !1, C

T
= const. Moreover,

(t� 1)�2d
((T � t+ 1)�d � w)2

� �T�2d
((1� �)T�d � w)2

! 0; as T !1:

The Dominated Convergence Theorem implies then thatZ 1

0

rw(�w;d)w

�
min

�
1;

(t� 1)�2d
((T � t+ 1)�d � w)2

�
Ifw�(T�t+1)�dg + Ifw>(T�t+1)�dg

�
�fw(w) dw ! 0;

in the considered limit, for arbitrary � 2 (0; 1) and for t � �T . Consequently, also the

term that is subtracted in the estimate (17) converges to zero.

2. A straightforward application of the proof by Gallego and van Ryzin is possible

for this last part. For completeness, we spell it out. If w and v are independent, all
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the �w;d for di¤erent w coincide, as do the �w;�. Call them �d and ��, respectively. We

have then

RTI(C; T ) = p(�d)E

"
min

 
C;

TX
t=1

wt Ifvt�p(�d)g

!#

= p(�d)E

24 TX
t=1

wt Ifvt�p(�d)g �
 

TX
t=1

wt Ifvt�p(�d)g � C

!+35
We use now the following estimate for E[(X � k)+], where X is a random variable

with mean m and variance �2 and where k is a constant:

E[(X � k)+] �
p
�2 + (k �m)2 � (k �m)

2
:

Note that by independence

E

"
TX
t=1

wt Ifvt�p(�d)g

#
= E[w]T�d;

V ar

"
TX
t=1

wt Ifvt�p(�d)g

#
= T

�
E[(w Ifv�p(�d)g)

2]� E[w]2(�d)2
�

= T
�
E[w2]�d � E[w]2(�d)2

�
If ��TE[w] > C and hence if �d = C

TE[w]
this yields:

RCP (C; T ) � Rd(C; T )� p(�d)

q
TE[w2]�d

2
= Rd(C; T )

 
1 �

p
E[w2]=E[w]

2
p
C

!
:

If ��TE[w] � C and hence if �d = ��, then C � E
hPT

t=1wt Ifvt�p(�d)g

i
, so that

E

��PT
t=1wt Ifvt�p(�d)g � C

�+�
�

p
�2

2
. Thus,

RTI(C; T ) � Rd(C; T )� p(��)
p
��TE(w2)

2
= Rd(C; T )

 
1 �

p
E[w2]=E[w]

2
p
��E(w)T

!
:

Hence, we can conclude that:

RTI(C; T )

Rd(C; T )
�
 
1 �

p
E[w2]=E[w]

2
p
min(C; T��E[w]))

!
:
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