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Abstract

We characterize the incentive compatible, constrained e¢ cient pol-
icy ("second-best") in a dynamic matching environment, where im-
patient, privately informed agents arrive over time, and where the
designer gradually learns about the distribution of agents� values.
We also derive conditions on the learning process ensuring that the
complete-information, dynamically e¢ cient allocation of resources ("�rst-
best") is incentive compatible. Our analysis reveals and exploits close,
formal relations between the problem of ensuring implementable al-
location rules in our dynamic allocation problems with incomplete
information and learning, and between the classical problem, posed
by Rothschild [19], of �nding optimal stopping policies for search that
are characterized by a reservation price property .

1 Introduction

We characterize the incentive compatible, constrained e¢ cient policy ("second-
best") in a dynamic allocation environment, where impatient, privately in-
formed agents arrive over time, and where the designer gradually learns about

�We wish to thank Sergiu Hart, Philippe Jehiel, Alessandro Pavan, Xianwen Shi, Phil
Reny and Asher Wolinsky for helpful remarks. Participants at the workshop "Information
and Dynamic Mechanism Design" June 2009, Bonn, made very fruitful comments. We are
grateful to the German Science Foundation for �nancial support. Gershkov: Department
of Economics and Center for the Study of Rationality, The Hebrew University of Jerusalem,
alexg@huji.ac.il; Moldovanu: Department of Economics, University of Bonn, mold@uni-
bonn.de.
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the distribution of agents�values. We also derive conditions on the learning
process ensuring that the complete-information, dynamically e¢ cient allo-
cation of resources ("�rst-best") is incentive compatible. Finally, we relate
these �ndings to several insights about the reservation price property appear-
ing in the search literature following Rothschild�s [19] classical paper.
Although rather rare in the mechanism design literature, the assumption

of gradual learning about the environment (which replaces here the standard
assumption whereby the agents�values are not known but their distribution
is) seems to us descriptive of most real-life dynamic allocation problems.
This feature is inconsequential in static models where an e¢ cient allocation
is achieved by the dominant-strategy Vickrey-Clarke-Groves construction,
but leads to new and interesting phenomena in dynamic settings.
The allocation (or assignment) model studied here is based on a classical

model due to Derman, Lieberman and Ross [7] (DLR hereafter). In the DLR
model, a �nite set of possibly heterogenous, commonly ranked objects needs
to be assigned to a set of heterogeneous agents who arrive one at a time.
After each arrival, the designer decides which object (if any) to assign to the
present agent. In a framework with several homogenous objects the decision
is simply whether to assign an object or not. In the static counterpart of this
problem all agents are present at the same point in time, and the optimal
matching is assortative: the agent with the highest type should get the object
with the highest quality, and so on (see Becker [3])1.
Both the attribute of the present agent (that determines his value for the

various available objects) and the future distribution of attributes are known
to the designer in the DLR analysis. Learning in the complete-information
DLR model has been �rst analyzed by Albright [1]. Gershkov and Moldovanu
[8] (GM) added incomplete information to Albright�s learning model and
showed, via an example, that the e¢ cient policy need not be implementable
if the designer insists on the simultaneity of physical allocations and monetary
payments (such schemes are called "online mechanisms" in the literature)2. If
all payments can be delayed until a time in the future when no new arrivals

1In another classical static model, Mussa and Rosen studied screening under incom-
plete information in a framework where agents need to be matched to commonly ranked
qualities.

2This contrasts available results about e¢ cient dynamic implementation for the stan-
dard case where the designer knows the distribution of values (see for example Parkes and
Singh, [17], and Bergemann and Valimäki [4])
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occur, the e¢ cient allocation can always be implemented since payments
can be then conditioned on the actual allocation in each instance3. But
such uncoupling of the physical and monetary parts is not always realistic in
applications, and we will abstract from it here 4.
When learning about the environment takes place, the information re-

vealed by a strategic agent a¤ects both the current and the option values
attached by the designer to various allocations. Since option values for the
future serve as proxies for the values of allocating resources to other (future)
agents, the private values model with learning indirectly generates informa-
tional externalities5. Segal [21] analyzed revenue maximization in a static
environment with an unknown distribution of the agents�values, and also
observed that agents have an informational e¤ect on others. But, the type
of problems highlighted in our present paper do not occur in Segal�s static
model since a standard VCG mechanism always leads there to the e¢ cient
outcome.
In our model, a necessary condition for extracting truthful information

about values is the monotonicity of the (possible random) allocation rule,
i.e., agents with higher values should not be worse-o¤ than contemporaneous
agents with lower values. Intuitively, monotonicity will be satis�ed if the
increased optimism about the future distribution of values associated with
higher current observation is not too drastic. A drastic optimism may be
detrimental for an agent whose revealed information induces it- leading to
a failure of truthful revelation- if the designer decides in response to deny
present resources in order to keep them for the "sunnier" future. GM [8] de-
rived an implicit condition on the structure of the allocation policy (and thus
on endogenous variables) ensuring that e¢ cient implementation is possible.
They showed that monotonicity holds if the impact of currently revealed in-
formation on today�s values is higher than the impact on option values. This
observation translates to the dynamic framework with learning the single-
crossing idea appearing in the theory of static e¢ cient implementation with
interdependent values. But, the resulting set of conditions was unsatisfactory
since it is not formulated in terms of the primitives of the learning model.

3See also Athey and Segal [2].
4Our main results can also be seen as a measure of the cost of having online payments.
5Dasgupta and Maskin [6] and Jehiel and Moldovanu [9] have analyzed e¢ cient im-

plementation in static models with direct informational externalities. Kittsteiner and
Moldovanu [10] used these insights in a dynamic model with direct externalities and with-
out learning.
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Two natural research directions are suggested by the above insights:

1. Since the complete information, dynamically e¢ cient policy is likely
to be implementable only under restrictive conditions, it is of interest
to characterize the optimal policy respecting the incentive constraints
(second-best). We are able to o¤er here a complete characterization
by using several concepts that were developed in the context of ma-
jorization theory. The crucial insight is that the second-best policy is
deterministic, i.e. it allocates to each type of agent, at each point in
time, a well de�ned available quality instead of a lottery over several
feasible qualities.

2. It is of interest to derive direct conditions - that can be checked in
applications - on the exogenous parameters of the allocation cum
learning environment that allow the implementation of the �rst best
(e.g., conditions on the initial beliefs about the environment and on the
learning protocol). We o¤er here two such sets of su¢ cient conditions
ensuring that the �rst-best is indeed implementable.

Our analysis of the above questions reveals and exploits close, formal rela-
tions between the problem of ensuring monotone - and hence implementable
- allocation rules in our dynamic allocation problems with incomplete infor-
mation and learning, and between the older, classical problem of obtaining
optimal stopping policies for search that are characterized by a reservation
price property. In particular, and letting aside for a while the mechanism
design/dynamic e¢ ciency interpretation, our results about the above second
question can also be seen as o¤ering conditions ensuring that the optimal
search policy without recall for highest prices for several (possibly heteroge-
nous) objects exhibits the relevant generalization of the reservation price
property. By a simple inversion of the interpretation of the optimal policy -
better objects are then associated with lower types - our results also hold for
the version where a buyer sequentially searches for several lowest prices.
It is important to note though that in the relevant search literature in-

complete information and strategic interaction did not play any role. In
particular, our characterization of the optimal, constrained e¢ cient policy
(question 1 above) has no counterpart in the classical search literature.
The paper is organized as follows: In Section 2 we present the dynamic

allocation and learning model and we recall a result, due to Albright [1],
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that characterizes the e¢ cient dynamic allocation policy under complete in-
formation about the arriving agents�values. In Section 3 we add incomplete
information about the agents�value (while keeping the assumption that the
designer gradually learn about the distribution of values). We �rst character-
ize incentive compatible allocations in terms of a monotonicity property. An
example shows that the e¢ cient allocation, as described by Albright, need not
be implementable. We then characterize the incentive-compatible dynamic
policy that maximizes expected welfare while respecting incentive compati-
bility (second best), using mathematical ideas from majorization theory. In
particular, we show that the second-best policy is always deterministic, and
that it satis�es a generalized form of a reservation price property appearing
in classical search models. In Section 4 we o¤er two sets of su¢ cient con-
ditions under which the second-best policy coincides with the �rst-best (in
other words, we o¤er conditions under which the complete information dy-
namically e¢ cient policy characterized by Albright is incentive compatible).
A common requirement is a stochastic dominance condition: higher current
observations should lead to more optimistic beliefs about the distribution of
future values. The other requirement puts a bound on the allowed optimism
associated to higher observations in each period of search. The two obtained
bounds di¤er in their response to an increase in the number of objects (or
search periods): in the �rst result, Theorem 8, the bound becomes tighter in
early search stages, while in the second the bound becomes tighter in later
periods. In Subsection 4.1 we highlight the similarities and the di¤erences
between our results and several earlier results about the reservation price
property obtained in the search literature. Section 5 concludes. All proofs
are relegated to an Appendix.

2 The Model

There are m items and n agents. Each item i is characterized by a "quality"
qi; and each agent j is characterized by a "type" xj. If an item with quality
qi � 0 is assigned to an agent with type xj and this agent is asked to pay p,
then this agent enjoys a utility given by qixj � p. Getting no item generates
utility of zero. The goal is to �nd an assignment that maximizes total welfare.
In a static problem, total welfare is maximized by assigning the item with the
highest quality to the agent with the highest type, the item with the second
highest quality to the agent with the second highest type, and so on... This
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assignment rule is called "assortative matching".
Here we assume that agents arrive sequentially, one agent per period of

time, that each agent can only be served upon arrival (there is no recall),
and that assigned items cannot be reallocated in the future.
Let period n denote the �rst period, period n�1 denote the second period,

..., period 1 denote the last period. If m > n we can obviously discard the
m � n worst items without welfare loss. If m < n we can add "dummy"
objects with qi = 0. Thus, we can assume without loss of generality that
m = n.
While the items�properties 0 � q1 � q2::: � qm are assumed to be known,

the agents�types are assumed to be independent and identically distributed
random variables Xi on [0;+1) with common cumulative distribution func-
tion F .
We assume that there are one or more unknown parameters of the dis-

tribution F from which agents�types are sampled. The beliefs about these
parameters are originally given by a prior distribution which is then sequen-
tially updated via Bayes� rule as additional information is observed. De-
note by �n the designer�s prior over possible distribution functions, and by
�k (xn; :::; xk+1) his beliefs about the distribution function F after observing
types xn; :::; xk+1. Given such beliefs, let eFk(xjxn; :::; xk+1) denote the distri-
bution of the next type xk, conditional on observing xn; :::; xk+1. We assume
that the distribution eFk(xjxn; :::; xk+1) is symmetric with respect to observed
signals - a feature satis�ed by the standard Bayesian learning model used
here.
Finally, we assume that upon arrival each agent observes the whole history

of the previous play.

We start by characterizing the dynamically e¢ cient allocation under
complete information, i.e., the agent�s type is costlessly revealed to the
designer upon the agent�s arrival (thus there is still uncertainty about the
types of future agents). The e¢ cient allocation maximizes at each decision
period the sum of the expected utilities of all agents, given all the information
available at that period.
Let the history at period k, Hk, be the ordered set of all signals reported

by the agents that arrived at periods n; :::; k+1 , and of allocations to those
agents6. Let Hk be the set of all histories at period k. Denote by �k the

6Since we allow for random mechanisms, the history needs to include the results of the
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ordered set of signals reported by the agents that arrived at periods n; :::; k+1.
Finally, denote by �k the set of available objects at k (which has cardinality
k by our convention that equates the number of objects with the number
of periods). Note that an initial inventory �n and a history Hk completely
determine the set �k.
The result below characterizes, at each period, the dynamically e¢ cient

policy in terms of cuto¤s determined by the history of observed signals. This
policy can be seen as the dynamic version of the assortative matching policy
that is optimal in the static case where all agents arrive simultaneously (see
Becker [3]).

Theorem 1 (Albright, 1977)

1. Assume that types xn; ::; xk+1 have been observed, and consider the ar-
rival of an agent with type xk in period k � 1. There exist functions
0 = a0;k (�k; xk) � a1;k (�k; xk) � a2;k(�k; xk)::: � ak;k(�k; xk) = 1
such that the e¢ cient dynamic policy - which maximizes the expected
value of the total reward - assigns the item with the i� th smallest type
if xk 2 (ai�1;k(�k; xk); ai;k(�k; xk)]. The functions ai;k(�k; xk) do not
depend on the q0s.

2. These functions are related to each other by the following recursive
formulae:

ai;k+1(�k+1; xk+1) =

Z
Ai;k

xkd eFk(xkj�k+1; xk+1)
+

Z
Ai;k

ai�1;k(�k; xk)d eFk(xkj�k+1; xk+1)
+

Z
Ai;k

ai;k(�k; xk)d eFk(xkj�k+1; xk+1) (1)

where7

Ai;k = fxk : xk � ai�1;k(�k; xk)g
Ai;k = fxk : ai�1;k(�k; xk) < xk � ai;k(�k; xk)g
Ai;k = fxk : xk > ai;k(�k; xk)g .

previous randomizations. But, a mechanism that depends on these can be replicated by
another mechanism that only depends on the result of the current randomization. For
notational simplicity we shall therefore exclude the results of the previous randomizations
from the speci�cation of histories.

7We set +1 � 0 = �1 � 0 = 0:
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These cuto¤s have very natural interpretation: for each object i and
period k the cuto¤ ai;k(�k; xk) equals the expected value of the agent�s type
to which the item with i � th smallest type is assigned in a problem with
k � 1 periods before the period k � 1 signal is observed.

3 The Incentive E¢ cient (Second-Best) Pol-
icy

We now focus on the additional constraints imposed by incentive compatibil-
ity in the model with incomplete information and learning. We there-
fore assume below that the agents�types are private information. Without
loss of generality, we can restrict attention to direct mechanisms where every
agent, upon arrival, reports his type and where the mechanism speci�es which
item the agent gets (if any), and a payment.8

In this Section we characterize the incentive compatible, optimal solution
(second best). The second-best allocation - that maximizes expect welfare
under the incentive constraints - turns out to be deterministic: it uses cuto¤s
that at each period partition the set of types into disjoint intervals associated
with available qualities such that higher types obtain a higher quality.
We �rst need to characterize incentive compatible allocations in our model:

an allocation policy (which may be random) is implementable under incom-
plete information if and only if, in each period and for every history of events
at preceding periods, the expected quality allocated to the current agent is
non-decreasing in the agent�s reported type.

Proposition 2 For a �xed allocation policy, denote by Qk (Hk; x) the ex-
pected quality allocated to an agent arriving at period k after history Hk, and
reporting signal x. An allocation policy is implementable if and only if for
any k and for any Hk the expected quality Qk (Hk; x) is non-decreasing in x.

Proof. See Appendix A.
8Since agents observe the history, they are better informed after directly observing

types. Yet, the argument holds because: (i) if a policy is implementable by a general
mechanism then, with private values, it is also implementable via an augmented mechanism
where, in addition, agents report types, but the designer does not use this information;
(ii) this augmented mechanism can be replicated by a direct one.
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The next example (taken from Gershkov and Moldovanu [8]) shows that
the e¢ cient dynamic allocation under complete information (�rst best) need
not be monotone in the above sense, and hence need not be implementable
under incomplete information:

Example 3 There are two periods and one indivisible object of quality q = 1.
Before starting the allocation process, the designer believes that with proba-
bility 0.5 the distribution of values is uniform on the interval [0; 1] and with
probability 0.5, the distribution is uniform on [1; 2]. Under Bayesian learn-
ing, the posterior after observing x2 < (>)1; is that x1 is uniformly distributed
on [0; 1] ([1; 2]). This yields

a12(x2) =

8<:
0:5 if x2 < 1

1 if x2 = 1

1:5 if x2 > 1

Thus, the �rst arriving agent should e¢ ciently get the object if x2 2 [0:5; 1][
[1:5; 2], and the implied allocation is not monotone, and therefore not imple-
mentable.

We now characterize the policy that maximizes expected welfare over
the entire class of incentive compatible policies. The main mathematical
idea used to prove that this policy is deterministic relies on several known
concepts from majorization theory (see Lemma 12 in Appendix A):

De�nition 4 1. For any n�tuple  = (1; 2; ::; n) let (j) denote the
jth largest coordinate (so that (n) � (n�1) � ::: � (1)). Let � =
(�1; �2; ::; �n) and � = (�1; �2; ::; �n) be two n�tuples. We say that �
is majorized by � and we write � � � if the following system of n� 1
inequalities and one equality is satis�ed:

�(1) � �(1)

�(1) + �(2) � �(1) + �(2)

::: � :::

�(1) + �(2) + ::�(n�1) � �(1) + �(2) + �(n�1)

�(1) + �(2) + ::+ �(n) = �(1) + �(2) + ::+ �(n)

2. A function 	 : <n ! < is called Schur-convex if 	(�) � 	(�) for any
�; � such that � � �:
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Majorization o¤ers a measure of dispersion for vectors, akin to the second-
order stochastic dominance relation among distributions. A well known result
(see Marshall and Olkin [13]) is:

Theorem 5 Assume that 	 : Rn ! R is symmetric and has continuous
partial derivatives. Then 	 is Schur-convex if and only if for all (y1; :::; yn) 2
Rn and all i; j 2 f1; ::; ng it holds that�

@	(y1; :::; yn)

@yi
� @	(y1; :::; yn)

@yj

�
(yi � yj) � 0.

Our next Theorem shows that at any period k expected welfare from us-
ing the optimal policy in the future is a Schur-convex function of the qualities
available for future allocations. Thus, at each period k it will be optimal
to leave for the future the "most disperse" set (in the sense of majorization)
of feasible qualities that is consistent with incentive compatibility at that
period. This means that period k�s optimal allocation must be the "most
concentrated" feasible one that is consistent with the monotonicity require-
ment behind incentive compatibility. In turn, this implies that period k�s al-
location should be either deterministic, or should randomize among at most
two distinct and neighboring qualities. Finally, we show that randomization
among two neighboring qualities cannot be optimal. This last implication
follows from an adaptation of an insight due to Riley and Zeckhauser [20]
who studied the revenue maximizing mechanism for a seller facing one buyer
whose virtual value need not be increasing. Formally, we have:

Theorem 6 1. At each period k, expected welfare (calculated before the
arrival of the period k agent) is a Schur-convex, linear function of the
available qualities at that period.

2. The incentive compatible, optimal mechanism (second best) is deter-
ministic. That is, for every history at period k, Hk, and for every type
x of the agent that arrives at that period, there exists a quality q that
is allocated to that agent with probability 1 .

3. At each period, the optimal mechanism partitions the type set of the
arriving agent into a collection of disjoint intervals such that all types
in a given interval obtain the same quality with probability 1, and such
that higher types obtain a higher quality.

Proof. See Appendix A.
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4 When The Second Best Coincides with the
First Best

After having characterized the second-best policy, we now look for conditions
on the model�s primitives under which the �rst-best, complete information
policy is implementable.
The next result, related to a result in GM [8], displays an implicit su¢ -

cient condition on the cuto¤s of the e¢ cient, complete information allocation,
characterized in Theorem 1 above.

Proposition 7 Assume that for any k, �k, i 2 f0; ::; kg, the cuto¤ ai;k(�k; xk)
is a Lipschitz function of xk with constant 1. Then, the e¢ cient dynamic
policy is implementable under incomplete information.

Proof. See Appendix B.
Due to the learning process, the current information a¤ects both the

current value of allocating some object to the arriving agent and the option
value of keeping that object and allocating it in the future. The previous
result requires the e¤ect of the current information on the current value to
be stronger than the e¤ect on the option value, similarly to the well known
single-crossing condition that appears in the theory of e¢ cient design with
interdependent valuations. Under such conditions, the second best policy is
also �rst best, i.e., the incentive constrained optimal policy coincides with
the optimal policy under complete information.

Theorem 8 Assume that for any k; and for any pair of ordered lists of
reports �k � �0k that di¤er only in one coordinate, the following conditions
hold:

su¤1 eFk (xj�k) %FOSD eFk (xj�0k)
su¤2 E (xj�k) � E (xj�0k) � �

k�1where � is size of the di¤erence between
�k and �

0
k

Then, the e¢ cient dynamic policy can be implemented also under in-
complete information.

Proof. See Appendix B.
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The �rst condition (stochastic dominance) above says that higher obser-
vations should lead to optimism about future observations9, while the second
condition puts a bound on this optimism. The result is simple, but its disad-
vantage is that, as the number of objects (or search periods) grows, the second
condition gets tighter (i.e., the bound on the optimism associated to higher
observation gradually decreases) in the early search periods. But learning
models typically have a relatively high gradient in early learning periods,
implying that our second condition is likely to be violated if there are many
search periods (Example 15 in Appendix B illustrates this phenomenon).
In order to obtain su¢ cient conditions on the learning process that hold

independently of the number of objects/ periods, we focus now on bounds
that, as the number of objects grows, get tighter in late, rather than in early
periods. Such conditions are, in principle, easier to satisfy since in many
learning models (in particular in those where beliefs converge, say, to the
true distribution) the impact of later observations is signi�cantly lower than
that of early observations. Thus, a tighter bound on the allowed optimism
associated with higher observations is less likely to be binding in late periods.
For mathematical convenience, we make a mild di¤erentiability assumption
that allows us to work with bounds on derivatives rather than with the
Lipschitz condition of Proposition 7.

Theorem 9 Assume that, for all k; all x; and all n� k � i � 1; the condi-
tional distribution function eFk (xjxn; ::; xk+1) and the density efk (xjxn; � � �; xk+1)
are continuously di¤erentiable with respect to xk+i. If for all x, �k, and all
n� k � i � 1, it holds that

0 � @ eFk (xj�k)
@xk+i

� � 1

n� k
@ eFk (xj�k)

@x
(2)

then the e¢ cient dynamic policy can be implemented also under incomplete
information.

Proof. See Appendix B.
9The stochastic dominance condition is, for example, a simple consequence of a standard

setting found in the literature (Milgrom [14]): Assume that values x are drawn according
to a density f (xj�) where � 2 R. Denote by h(�) the density of �; and by H(�) the
corresponding probability distribution - the prior belief which gets then updated after
each observation. If f(xj�) has the Monotone Likelihood Ratio (MLR) property, theneFk (xj�k) %FOSD eFk (xj�0k).
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Remark 10 While the left hand inequality in condition (2) is just another
way to express the stochastic dominance condition also employed in Theorem
8, it is worth to deeper explore the right hand side.

1. Putting aside di¤erentiability, this condition is equivalent to requir-
ing that the function eFk �x+ z

n�k jxk+1; :; xk+i + z; xk+i+1; :; xn
�
is non-

decreasing in z. In other words, after having made n� k observations,
a small shift to the right - which moves the value of the distribution
upwards - is enough to compensate the downward e¤ect on the distri-
bution�s value caused by an (n � k) times larger upward shift in one
of the past observations (recall that, by stochastic dominance, higher
observations move the entire distribution downwards).

2. Alternatively, denote by x� (u) the u�th percentile of next type�s con-
ditional distribution function eFk (xj�k) ; that is, eFk (x� (u) j�k) = u.
Condition (2) implies that

@x� (u)

@xk+i
= �

@ eFk(xj�k)
@xk+i

@ eFk(xj�k)
@x

������
x=x�(u)

� 1

n� k .

In other words, the e¤ect of an increase in a previous observation on
any percentile of the distribution governing the next observation is
bounded by 1

n�k , where n � k is the number of observations already
made.

3. Note that our condition guarantees that 8i; k; n; @ai;k(�k;xk)
@xk

� 1
n�k al-

though @ai;k(�k;xk)

@xk
� 1 seems su¢ cient for the implementation of the

e¢ cient allocation. Nevertheless, the long-term e¤ect of each non-
terminal observation makes it impossible to obtain tighter conditions
that apply generally. To see that, recall equation 12 which shows that
each cuto¤ is given by the expectation of the second highest value among
the type observed next period, and two adjacent next-period cuto¤s. In
particular, the current observation a¤ects today�s cuto¤s via: 1. an
impact on next period cuto¤s, and 2. a shift of the relevant distribution
of the second highest order-statistic. The second e¤ect is bounded by

@E (xk�1jxk; �k)
@xk

=
@

@xk

Z 1

0

�
1� eFk�1 (xjxk; �k)� � 1

n� k + 1

13



With a bound of 1 instead of 1
n�k ; the �rst e¤ect would be bounded by

1�
h eFk�1 (ai;k�1jxk; �k)� eFk�1 (ai�1;k�1jxk; �k)i

where ai;k�1 are tomorrow�s optimal cuto¤s. Since for any period k� 1
there exists an i such that eFk�1 (ai;k�1jxk; �k)� eFk�1 (ai�1;k�1jxk; �k) �
1
k�1 , we would obtain

1�
h eFk�1 (ai;k�1jxk; �k)� eFk�1 (ai�1;k�1jxk; �k)i � k � 2

k � 1
which is arbitrarily close to 1 if the number of the remaining objects is
high. Thus, the combined e¤ect may bigger than 1 for any k � n

2
+ 1

which would violate the the single-crossing condition.

Example 11 A simple illustration where the conditions in the above Theo-
rem are satis�ed is obtained by considering a normal distribution of valuesex � N(�; 1) with unknown mean �, and prior beliefs about � of the forme� � N(�0; 1=�) where � > 0: After observing xn; ::xk+1 the posterior on e�
is given by N(�; 1=(� + n� k)) where

� =
��0 +

P
xi

� + (n� k) .

This yields eFk(xjxn; :::; xk+1) = N(�; 1 + 1=(� + n� k)).
Note that

eFk(x+ z

� + (n� k) jxn; ::; xi + z; ::; xk+1) =
eFk(xjxn; ::; xi; ::; xk+1) (3)

so that the stochastic dominance condition necessarily holds. By di¤erenti-
ating with respect to z both sides of the identity (3), and by letting z go to
zero, we obtain that

@ eFk (xjxn; :::; xk+1)
@xk+i

= � 1

� + n� k
efk (xjxn; :::; xk+1))

@ eFk (xjxn; :::; xk+1)
@xk+i

� � 1

n� k
efk (xjxn; :::; xk+1)

as desired.
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4.1 Search for the Lowest Price and the Reservation
Price Property

In a famous paper, Rothschild [19] studied the problem of a consumer who
obtains a sequence of price quotations from various sellers, and who must de-
cide when to stop the (costly) search for a lower price. In Rothschild�s model,
the buyer has only partial information about the price distribution, and she
updates (in a Bayesian way) her beliefs after each observation. Under full
information about the environment, the optimal stopping rule is character-
ized by a reservation price R such that that the searcher accepts (or stops
search) at any price less than equal to R; and rejects (or continues to search)
any price higher than R: One of the appealing features of this policy (see
Rothschild�s paper for the others) is that, if all customers follow it, a �rm
in the market will face a well-behaved demand function: expected sales are
a non-increasing function of the price it charges. Such regularity conditions
are extensively used in theoretical and empirical studies, and thus it is of
major interest to �nd out when they are validated by theory.
In the case studied by Rothschild, stopping prices necessarily change as

information changes, and hence the optimal policy cannot be characterized
by a single reservation price. But, in order to have expected sales decreasing
in price, it is enough to assume that, for each information state, a searcher fol-
lows a reservation price policy, i.e., for each information state s there exists a
price R(s) such that prices above are rejected and prices below are accepted.
The optimal Bayesian search rule need not generally have this property (see
Rothschild [19] and Kohn an Shavel [11] for examples). Rothschild showed
that the reservation price property holds for a searcher equipped with a
Dirichlet prior about the parameters of a multinomial distribution govern-
ing the price quotations10. Albright [1] computed several cases of Bayesian
learning with conjugate priors where a generalized reservation price property
holds in his model with several objects. This requires then that sets of types
to whom particular objects are allocated are convex and ordered, with bet-
ter objects being allocated to higher types. An obvious open problem was
to establish some more or less general, su¢ cient conditions under which op-
timal search policies have the reservation price property. For the one-object
case studied by Rothschild, various answers to this problem were o¤ered by

10The Dirichlet is the conjugate prior of the multinomial distribution, so the posterior
is also Dirichlet in this case.
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Rosen�eld and Shapiro [18], Morgan [15], Seierstad [22] and Bickchandani
and Sharma [5].
The conditions derived in our paper are more stringent than those ob-

tained in the search literature, mainly because of the presence here of multiple
objects: these induce a more complex structure of the optimal search policies,
and more stringent conditions are needed in order to control it.11

The �rst general conditions ensuring that the optimal search policy in
Rothschild�s search model is characterized by a sequence of reservation prices
appear in a subtle paper by Rosen�eld and Shapiro [18]. In order to under-
stand the relation between our results and theirs, recall �rst our condition
from Theorem 9: For all x , �k ;and all n� k � i � 1

0 � @ eFk (xj�k)
@xk+i

� � 1

n� k
@ eFk (xj�k)

@x
. (4)

The �rst requirement in the paper by Rosen�eld and Shapiro is identical
to our stochastic dominance condition (the left hand side of condition (4)),
while their second condition - translated to the di¤erentiable case and to the
case of a searching seller instead of a searching buyer in order to facilitate
comparison- reads: For all x; k; �k and all n� k � i � 1Z 1

x

@ eFk (yj�k) dy
@xk+i

� � 1

n� k (1�
eFk(xj�k). (5)

In other words, theirs is simply the "average" version of the right hand side
side of our condition (4), and hence it is obviously implied by it.
Seierstad [22] o¤ers another variant. Besides stochastic dominance, his

condition reads (again in the di¤erentiable case): For all x; k and �k

n�kX
i=1

@ eFk (xj�k)
@xk+i

� � efk (xj�k) (6)

which is also clearly implied by our condition (4). The reason why we need
stronger conditions than both Rosen�eld and Shapiro�s and Seierstad�s is
intimately related to the fact that we do analyze a model with several objects:
at each point in time we have several critical cuto¤s to control, instead of
only one. In particular, the reservation price property is connected in our
model to the existence of several �xed points at each period, and we need

11These more stringent conditions are needed even if all objects are homogenous.
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to control the conditional distribution of future values between any two such
�xed points (without a-priori knowing where they will be). In contrast, in
the one-object search problem there are only two �xed points to consider
at each period, and one of them is trivially equal to either "minus in�nity"
(for a searching buyer) or "plus in�nity" (for a searching seller). This fact
allows Rosen�eld and Shapiro to use an average bound, and Seierstad to use
a bound that aggregates the e¤ect of all past observations.
It is important to note that in the classical search model, price quotations

are non-strategic, and the monotonicity requirement behind the reservation
price property is only a convenient, intuitive feature, facilitating the use of
structural empirical methods in applied studies. In contrast, implementabil-
ity is, of course, a "non-plus-ultra" requirement in our strategic, incomplete
information model. In particular, our characterization of the second-best
mechanism has no counterpart in the search literature.

5 Conclusion

We have derived conditions on the primitives of the learning environment
that allow e¢ cient dynamic implementation, and we have characterized the
constrained e¢ cient policy in terms of a generalized reservation price prop-
erty. In yet another interpretation, our results can be seen as delineating the
loss entailed by requiring "online" payments in dynamic allocation problems.
An interesting alternative approach for analyzing learning in our dynamic

mechanism design environment would be to restrict attention to some simple
class of indirect mechanisms that may be appealing for applications, e.g., a
menu of prices at each period. It is important though to point out that such
mechanisms entail some sub-optimality because the designer is not able then
to elicit precise information about the agents�types. Thus she will learn less
than in a direct mechanism, and each particular speci�cation of prices also
determines how much is being learned.
In contrast to our focus on dynamic welfare maximization, there is an

extensive literature on dynamic revenue maximization in the �eld of yield or
revenue management (see the book of Talluri and Van Ryzin [23]). Roughly
speaking, this literature considers intuitive pricing schemes, and does not fo-
cus on implementation issues (since in most considered settings this is not an
issue). But, as soon as learning about the environment takes place simulta-
neously with allocation decisions, one has to be more careful: not all ad-hoc
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pricing schemes will be generally implementable, and the revenue maximiza-
tion exercise must take this fact into account, similarly to the phenomena
illustrated here.
Our model can be easily generalized to allow for random arrival of agents

(e.g., arrivals governed by a stochastic process). In such a framework an
interesting extension is to also allow learning about arrival rates. We shall
analyze such settings in future research.
Finally, one can perform exercises analogous to the present one also for

other (non-Bayesian) learning models.

6 Appendix A: The Incentive E¢ cient (Second-
Best) Policy

Proof of Proposition 2. ) For a given implementable allocation policy,
assume by contradiction that there exist a period k, a history Hk, and two
signals of the current agent x0 > x00 such that Qk (Hk; x0) < Qk (Hk; x

00).
Denote by Pk (Hk; x) the expected payment of the agent that arrives at period
k after historyHk and reports x. The incentive constraint for type x00 implies:

x00Qk (Hk; x
00)� Pk (Hk; x00) � x00Qk (Hk; x0)� Pk (Hk; x0) : (7)

Since by assumption x0 > x00 and Qk (Hk; x0) < Qk (Hk; x
00) ; the above in-

equality implies that

x0 (Qk (Hk; x
00)�Qk (Hk; x0)) > x00 (Qk (Hk; x

00)�Qk (Hk; x0))
� Pk (Hk; x

00)� Pk (Hk; x00)

which further implies that

x0 (Qk (Hk; x
00)�Qk (Hk; x0)) > Pk (Hk; x00)� Pk (Hk; x0)

The above inequality contradicts the incentive compatibility constraint for
type x0:
(We prove this part by constructing a payment scheme that implements

a given monotonic allocation. Consider the following payment scheme:

Pk (Hk; x) = xQk (Hk; x)�
Z x

0

Qk (Hk; y) dy.
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The expected utility of an agent with type x that arrives at period k after
history Hk and reports truthfully is given by

R x
0
Qk (Hk; y) dy . If he reports

x0 6= x, his expected utility is given by

(x� x0)Qk (Hk; x0) +
Z x0

0

Qk (Hk; y) dy.

We need to show that for any k , Hk; x; x0 we have

(x� x0)Qk (Hk; x0) +
Z x0

0

Qk (Hk; y) dy �
Z x

0

Qk (Hk; y) dy.

The last inequality can be written as

(x� x0)Qk (Hk; x0) �
Z x

x0
Qk (Hk; y) dy:

which is true by the monotonicity of Qk (Hk; x).
For the proof of the Theorem 6, we need �rst the following Lemma:

Lemma 12 Consider a set of m numbers qm � qm�1 � :::q1 � 0; and
assume that qj is deleted from the set with probability pj ,where 0 � pj �
1 and

P
j pj = 1

12. Let Q =
Pm

j=1 pjqj denote the expectation of the deleted
term: Denote by eq(m�1) the expectation of the highest order statistic out of
the (m�1) remaining terms, by eq(m�2) the second highest order statistic, and
so on, until eq(1):
1. If there exists i such that Q = qi; then the (m� 1) dimensional vector
(eq(m�1); eq(m�2); :::eq(1)) is majorized by the (m � 1) dimensional vector
(qm; qm�1; ::qi+1; qi�1; ::q1) obtained by deleting qi with probability 1.

2. If there exist no i such that Q = qi; let l and � 2 (0; 1) be such that
Q =

Pm
j=1 pjqj = �ql + (1 � �)ql+1 13. Delete ql with probability �;

and ql+1 with probability (1 � �), and denote by eeq(m�1);eeq(m�2); ::;eeq(1)
the expectations of the order statistics out of the (m � 1) remaining
terms. Then the (m � 1) dimensional vector (eq(m�1); eq(m�2); :::eq(1)) is
majorized by the (m� 1) dimensional vector (eeq(m�1);eeq(m�2); :::eeq(1)).

12In our application below, the deleted element is the quality of the object allocated
today, while the remaining qualities stay for future allocation.
13Note that such an l and � must exist and are unique.
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Proof. 1. If there exists j with pj = 1, the claim is obvious. Assume
therefore that at least two probabilities pj are strictly positive (in particular
this implies q1 < Q < qm). We need to show that the following holds:

eq(m�1) + eq(m�2) + ::+ eq(2) + eq(1) = qm + qm�1 + ::+ qi+1 + qi�1 + ::+ q2 + q1

(1): eq(m�1) + eq(m�2) + :::+ eq(2) � qm + qm�1 + :::+ qi+1 + qi�1 + :::+ q2

:::

(m� 3): eq(m�1) + eq(m�2) � qm + qm�1

(m� 2): eq(m�1) � qm

The �rst equality is clear since both sides are equal to
Pm

j=1 qj � qi: For
inequality (k), there are two cases:
i. k < i. Then inequality (k) reads:

mX
j=1

qj � qi � (1� p1)q1 � p1q2 � (1� p1 � p2)q2 � (p1 + p2)q3 �

:::� (1� p1 � p2 � :::� pk)qk � (p1 + p2 + :::+ pk)qk+1

�
mX
j=1

qj � qi � q1 � q2 � :::� qk ,

(1� p1)q1 + p1q2 + (1� p1 � p2)q2 + (p1 + p2)q3 + :::
+(1� p1 � p2 � :::� pk)qk + (p1 + p2 + :::+ pk)qk+1

� q1 + q2 + :::+ qk

The last inequality holds because the sum of the �rst two terms on the left
side is larger than the �rst term on the right side, the sum of the next two
terms on the left side is larger than the second term on the right side, and
so on...
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ii. k � i. Then inequality (k) reads:
mX
j=1

qj � qi � (1� p1)q1 � p1q2 � (1� p1 � p2)q2 � (p1 + p2)q3 �

:::� (1� p1 � p2 � :::� pk)qk � (p1 + p2 + :::+ pk)qk+1

�
mX
j=1

qj � qi � q1 � q2 � :::� qi�1 � qi+1 � :::� qk+1 ,

(1� p1)q1 + p1q2 + (1� p1 � p2)q2 + (p1 + p2)q3 + :::
+(1� p1 � p2 � :::� pk)qk + (p1 + p2 + :::+ pk)qk+1

� q1 + q2 + qi�1 + qi+1 + :::+ qk+1 ,
(1� pi)qi � p1q1 + p2q2 + :::+ pkqk + (1� p1 � p2 � :::� pk)qk+1

Since
Pm

j=1 pjqj = qi by assumption, (1 � pi)qi =
P

j 6=i pjqj; and the last
inequality becomes:X

j 6=i

pjqj � p1q1 + p2q2 + :::+ pkqk + (1� p1 � p2 � :::� pk)qk+1 ,

mX
j=k+1

pjqj � (1� p1 � p2 � :::� pk)qk+1

The last inequality is true because

mX
j=k+1

pjqj �
mX

j=k+1

pjqk+1 = (
mX

j=k+1

pj)qk+1

= (1� p1 � p2 � :::� pk)qk+1

:This concludes the proof of the �rst statement.
2. The proof is very similar to the above one, and is omitted here.

Proof of Theorem 6. We prove the statement by backward induction,
and we divide the proof in several steps. The argument for period 1 (last
period) is obvious.
1. The argument for the last but one period. Consider period

k = 2 , and de�ne b1;2(�2; x2) =
R1
0
x1d eF1(x1j�2; x2): This is the expectation

of the agent�s type who arrives at period 1; as a function of the observed
history. Denote by q(2:�2) � q(1:�2) � 0 the two highest remaining qualities
- only these are relevant here for welfare maximizing allocations - , and by
p(x2) the probability that the period 2 agent gets the object with the higher
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quality. It is easy to see that incentive compatibility is equivalent here to p
being monotonically increasing. The designer�s problem is given by:

max
p

Z 1

0

(p(x2)[q(2:�2) x2 + q(1:�2) b1;2(�2; x2)]+

(1� p(x2))[q(1:�2) x2 + q(2:�2) b1;2(�2; x2)])d eF2(x2j�2)
over increasing functions p with range in [0; 1]:

After simple manipulations the above reduces to

max
p

�
q(2:�2) � q(1:�2)

� Z 1

0

p(x2)[x2 � b1;2(�2; x2)]d eF2(x2j�2)
over increasing functions p with range in [0; 1]:

Note that the solution of the above maximization problem does not de-
pend on the values of q(2:�2) � q(1:�2) � 0: The problem is completely
analogous to the classical problem faced by a revenue-maximizing seller who
wants to allocate an indivisible object to a unique buyer whose virtual valua-
tion (which need not be increasing) is given by the function x2� b1;2(�2; x2):
By an argument originally due to Riley and Zeckhauser (1984), the solution
is deterministic, and is given by

p(x2) =

�
1; for x2 � b�1;2(�2)
0; otherwise

where b�1;2(�2) = argmaxx2[0;1)
R1
x
[x2�b1;2(�2; x2)]d eF2(x2j�2): In particular,

note that in order to be a maximizer b�1;2(�2) must necessarily belong to the
set

�1;2 (�2) =

�
x : 9" > 0 such that 8y 2 (x; x+ ") it holds that b1;2(�2; y) � y

and 8z 2 (x� "; x) it holds that b1;2(�2; y) � y

�
In other words, if b1;2(�2; x2) is continuous in x2; then b

�
1;2(�2) is one of

the solutions of x2 = b1;2(�2; x2):
Finally, note that the expected welfare after the allocation of period 2 has

been made, but before the period 1 agent arrives, is given by q(1:�1)b1;2(�2; x2):

2. The formula for expected welfare. Assume that the allocation at
stages 1; 2; ::k is deterministic and uses cuto¤s b�i�1;j(�j) , j = 1; 2; ::k: Let
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b1;2(�2; x2) =
R1
0
x1d eF1(x1j�2; x2) and de�ne inductively

bi;k+1(�k+1; xk+1) =

Z
Bi;k

xkd eFk(xkj�k+1; xk+1)
+

Z
Bi;k

bi�1;k(�k; xk)d eFk(xkj�k+1; xk+1)
+

Z
Bi;k

bi;k(�k; xk)d eFk(xkj�k+1; xk+1) (8)

where

Bi;k =
�
xk : xk � b�i�1;k(�k)

	
Bi;k =

�
xk : b

�
i�1;k(�k) < xk � b�i;k(�k)

	
Bi;k =

�
xk : xk > b

�
i;k(�k)

	
That is, bi;k+1(�k+1; xk+1) equals the expected value of the agent�s type to
which the item with i � th smallest type is assigned in a problem with k
periods (before the period k signal is observed) in a non-random mecha-
nism that uses cuto¤s b�i;k(�k). Note that for any k, �k; xk and i; we have
bi;k(�k; xk) � bi�1;k(�k; xk).
Denote by q(i:�k) the i�th lowest quality among the items available for

allocation at period k, �k. We now show that the expected utility after the
allocation at period k + 1 has been completed is given by

kX
i=1

q(i:�k)bi;k+1(�k+1; xk+1), (9)

By Theorem 5, the above function is a Schur-convex function of the available
qualities at stage k:
The statement holds for period 2 (see point 1 above), and assume by

induction that the expected utility from allocating the object of quality q in
period k to an agent with type xk is qxk +

Pk�1
i=1 q(i:�knq)bi;k(�k; xk) where

�knq is the set of the available objects after the allocation of the object of
quality q at period k. Taking the expectation over xk and using the inductive
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formulae 8, we obtain:

kX
j=1

Z
Bj;k

"
q(j:�k)xk +

k�1X
i=1

q(i:�knqj)bi;k(�k; xk)

#
d eFk(xkj�k+1; xk+1)

=
kX
j=1

q(j:�k)

Z
Bj;k

xkd eFk(xkj�k+1; xk+1)
+

kX
j=1

k�1X
i=1

q(i:�knqj)

Z
Bj;k

bi;k(�k; xk)d eFk(xkj�k+1; xk+1)
=

kX
j=1

q(j:�k)

Z
Bj;k

xkd eFk(xkj�k+1; xk+1)
+

kX
j=1

j�1X
i=1

q(i:�k)

Z
Bj;k

bi;k(�k; xk)d eFk(xkj�k+1; xk+1)
+

kX
j=1

kX
i=j+1

q(i:�k)

Z
Bj;k

bi�1;k(�k; xk)d eFk(xkj�k+1; xk+1)
=

kX
j=1

q(j:�k)

Z
Bj;k

xkd eFk(xkj�k+1; xk+1)
+

k�1X
i=1

q(i:�k)

kX
j=i+1

Z
Bj;k

bi;k(�k; xk)d eFk(xkj�k+1; xk+1)
+

kX
i=2

q(i:�k)

i�1X
j=1

Z
Bj;k

bi�1;k(�k; xk)d eFk(xkj�k+1; xk+1)
=

kX
j=1

q(j:�k)

Z
Bj;k

xkd eFk(xkj�k+1; xk+1)
+

k�1X
i=1

q(i:�k)

Z
Bi;k

bi;k(�k; xk)d eFk(xkj�k+1; xk+1)
+

kX
i=2

q(i:�k)

Z
Bi;k

bi�1;k(�k; xk)d eFk(xkj�k+1; xk+1) = kX
j=1

q(j:�k)bj;k+1(�k+1; xk+1).

The the third equality is obtained by changing the order of summation,
and the fourth equality follows from the de�nition of sets Bj;k and Bj;k:
3. The optimal mechanism is deterministic. We now show that

the optimal allocation at period k + 1 is non-random. Take any incentive
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compatible mechanism such that the expected quality assigned to type x after
history Hk+1 is given by Qk+1 (Hk+1; x). Recall that expected utility from
stage k on is a Schur-convex function of the remaining qualities. In particular,
this function is monotonically increasing in the majorization order. Apply
now Lemma 12 to�k+1, the set of items available for allocation at period k+1;
with "deletion of quality qj " taken to mean "allocate quality qj at period
k+1". This application yields another incentive compatible mechanism that
generates at least the same welfare as the original one, and that uses for
any history Hk+1 and arriving type x at stage k + 1 either a non-random
allocation rule, or a random rule that assigns positive probability only to
two neighboring qualities14.
Together with the necessary monotonicity of the expected quality, the

above argument implies that, without loss of generality, we can restrict at-
tention to allocation rules that divide the type space of the arriving agent
into intervals [0; x1); [x1; x2); [x2; x2); :::; [xk; xk+1); [xk+1;1) where [xl; xl) is
the interval of the types that get assigned to object q(l:�k+1) with probabil-
ity 1, while [xl�1; xl) is the interval of randomization between q(l�1:�k+1) and
q(l:�k+1). To complete the proof we need to show that for each potential in-
terval of randomization [xl�1; xl] there exists a cuto¤ xl�1� 2 [xl�1; xl] such
that the designer can increase expected welfare by using (instead of ran-
domization) a deterministic policy that allocates the object of quality ql�1 if
x 2 [xl�1; xl�1� ) and allocate the object of quality ql if x 2 [xl�1� ; xl). Since
this argument involves only two adjacent qualities, the proof is identical to
the one used at point 1 above, and we omit it here.
4. The determination of optimal cuto¤s. We �nally show that the

optimal cuto¤s at period k + 1; b�i;k+1(�k+1) must belong to the set

�i;k+1
�
�k+1

�
=

�
x = 9" > 0 such that: 8y 2 (x; x+ ") holds bi;k+1(�k+1; y) � y

and 8z 2 (x� "; x) holds bi;k+1(�k+1; y) � y

�
.

(10)
If such set is empty, that is, if bi;k+1(�k+1; xk+1) > xk+1 for any xk+1, object
i is never allocated to agent that arrives at period k after history �k+1, and
we set b�i;k+1(�k+1) =1 in this case.
By the derivation at point 3 above, the expected welfare at period k+1 if

an object of quality q is allocated to the agent arriving at k+1 and if future

14The new mechanism is incentive compatible since, by the constructions used in Lemma
12, each type gets the same expected quality as in the original mechanism.
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allocations are governed by the optimal policy is given by

qxk+1 +

kX
j=1

q(j:�k+1nq)bi;k+1(�k+1; xk+1). (11)

Assume by contradiction that there exists a cuto¤x�i
�
�k+1

�
which is used for

allocating an object with quality q(i:�k+1) such that x
�
i

�
�k+1

�
=2 �i;k+1

�
�k+1

�
.

Then either there exists " > 0 such that for any y 2
�
x�i
�
�k+1

�
; x�i
�
�k+1

�
+ "
�

we have bi;k+1(�k+1; y) > y , or there exists " > 0 such that for any y 2�
x�i
�
�k+1

�
� "; x�i

�
�k+1

��
we have bi;k+1(�k+1; y) < y. Take the �rst case (the

second is analogous), and change the cuto¤ from x�i
�
�k+1

�
to x�i

�
�k+1

�
+ �

where 0 < � � ". Such a change is possible only if the cuto¤ for the adjacent
higher quality is above x�i

�
�k+1

�
+ �. Then the change increases expected

welfare since it has an impact only if xk+1 2
�
x�i
�
�k+1

�
; x�i
�
�k+1

�
+ �
�
in

which case the current agent gets object q(i�1:�k+1) instead of q(i:�k+1). The
e¤ect of the increase on (11) is given by�

bi;k+1(�k+1; xk+1)� xk+1
�
(q(i:�k+1) � q(i�1:�k+1)) > 0:

If the cuto¤ for the adjacent higher quality object q(i+1:�k+1) is also equal to
x�i
�
�k+1

�
; then adjust both cuto¤s upwards by �: In this case, the increase

has an impact only if xk+1 2
�
x�i
�
�k+1

�
; x�i
�
�k+1

�
+ �
�
; and the e¤ect on

welfare is�
bi+1;k+1(�k+1; xk+1)� xk+1

� �
q(i+1:�k+1) � q(i�1:�k+1)

�
> 0

To complete the proof we need to show that the selection of cuto¤s from
the set �i;k+1

�
�k+1

�
is independent of the qualities of the available objects.

This however, follows from the linearity of expected welfare in the available
qualities.

7 Appendix B: Coincidence of Second Best
and First Best

Proof of Proposition 7. GM [8] showed that the e¢ cient allocation is
implementable if and only if for any k, i � k and �k the set of types that is
matched with a given quality fx : ai;k(�k; x) > x � ai�1;k(�k; x)g is convex.
The characterization of the complete information e¢ cient allocation provided
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by Albright states that for any k, i � k, x and �k we have ai;k(�k; x) �
ai�1;k(�k; x). Therefore, it is su¢ cient to show that if there exist k, �k and
i 2 f0; ::; kg, and a signal xk with ai;k(�k; xk) < xk, then there is no x0k > xk
such that ai;k(�k; x

0
k) > x

0
k. Assume that such x

0
k exists. Since ai;k is Lipschitz

with constant 1, ai;k(�k; x
0
k) � x0k � xk + ai;k(�k; xk). Since ai;k(�k; xk) < xk,

we obtain ai;k(�k; x
0
k) < x

0
k, which yields a contradiction.

Before proving the main results about the implementability of the com-
plete information e¢ cient allocation (�rst best), we prove two useful struc-
tural results about the e¢ cient cuto¤s. First, we show that the average of
all but the extreme cuto¤s equals the expectation about the next type. Note
that, by Theorem 1 we can write

ai;k+1(�k+1; xk+1) = Exkjxk+1Gi;k(xk; xk+1; �k+1) (12)

where the function Gi;k(xk; xk+1; �k+1) is given by:8<:
ai�1;k(�k+1; xk+1; xk) if xk � ai�1;k(�k+1; xk+1; xk)

xk if ai�1;k(�k+1; xk+1; xk) < xk � ai;k(�k+1; xk+1; xk)
ai;k(�k+1; xk+1; xk) if xk > ai;k(�k+1; xk+1; xk)

.

(13)
In other words Gi;k(xk; xk+1; �k+1) is the second-highest order statistic out
of the set fai�1;k(�k+1; xk+1; xk); xk ; ai;k(�k+1; xk+1; xk)g. Note also that ifeFk(xkj�k+1; xk+1) is symmetric with respect to the observed signals, then
ai;k+1(�k+1; xk+1) is symmetric as well.

Lemma 13 For any k � n; it holds that

k�1X
i=1

ai;k(�k; xk) = (k � 1)Exkj�k(xk):

Proof. We prove the claim by induction. For k = 2, a1;2(�2; x2) =R1
0
x1d eF1 (x1j�1; x2) = Ex1j�2;x2x1. Theorem 1 implies that, for any �xed

xk,

kX
i=1

h
ai�1;k(�k; xk)1Ai;k + ai;k(�k; xk)1Ai;k

i
=

k�1X
i=1

ai;k(�k+1; xk+1; xk) (14)

where 1s is an index function. Using (1) and the previous expression we
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obtain for period k + 1 that:

kX
i=1

ai;k+1(�k+1; xk+1) =

Z 1

0

xd eFk(xj�k+1; xk+1)
+

k�1X
i=1

Exkj�k+1;xk+1ai;k(�k+1; xk+1; xk) = kExkj�k+1;xk+1xk

where the �rst equality follows from (14) , and where the last equality follows
from the induction argument.
Next, we derive a monotonicity properties of the cuto¤s that holds when-

ever higher observations induce more optimistic beliefs about the distribution
of values:

Lemma 14 Assume that for any k, and for any pair of ordered lists of re-
ports �k � �0k that di¤er only in one coordinate eFk (xj�k) %FOSD eFk (xj�0k) :
Then for any i 2 f1; :::; k � 1g the cuto¤ ai;k(�k; xk) is non-decreasing in
xk.

Proof. The proof is by induction on the number of remaining periods. For
k = 2 we have

a2;2(�2; x2) = 1

a1;2(�2; x2) =

Z 1

0

x1d eF1 (x1j�2; x2)
a0;2(�2; x2) = 0

Stochastic dominance immediately implies that the cuto¤s are non-decreasing
in x2. We now apply the induction argument, and assume that, for any �k
and for any i; ai;k(�k; xk) is non-decreasing in xk. This implies that the
function Gi;k(xk; xk+1; �k+1) is non-decreasing in xk and that for any i,

ai;k(�k+1; xk+1; xk) = ai;k(�k+1; xk; xk+1) �
ai;k(�k+1; xk; x

0
k+1) = ai;k(�k+1; x

0
k+1; xk)

where both equalities follow from the assumption of symmetry whereby
switching the order of the observations does not a¤ect the �nal beliefs.
Therefore we obtain Gi;k(xk; xk+1; �k+1) � Gi;k(xk; x

0
k+1; �k+1) for any xk.
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Moreover we have that

ai;k+1(�k+1; xk+1) = Exkjxk+1Gi;k(xk; xk+1; �k+1)

� Exkjxk+1Gi;k(xk; x
0
k+1; �k+1)

� Exkjx0k+1Gi;k(xk; x
0
k+1; �k+1) = ai;k+1(�k+1; x

0
k+1)

where the second inequality follows from the assumed stochastic dominance,
and from the fact that, by the induction argument, Gk(xk; x0k+1; �k+1) is
non-decreasing in xk.
Proof of Theorem 8. Lemma 13 and the second condition in the Theo-
rem�s statement imply that

k�1X
i=1

(ai;k(�k; xk)� ai;k(�k; x0k)) = (k � 1)
�
Exk�1j�k;xkxk�1 � Exk�1j�k;x0kxk�1

�
� k � 1
k � 1 (xk � x

0
k) . (15)

In other words, the sum of cuto¤s
k�1P
i=1

ai;k(�k; xk) is a Lipschitz function with

constant 1 of xk. By Lemma 14, and the stochastic dominance condition, we
know that the cuto¤ai;k(�k; xk) is a non-decreasing function of xk: Therefore,
inequality 15 implies that, for any i, the function ai;k(�k; xk) must also be
a Lipschitz function with constant 1 of xk. By Proposition 7, the e¢ cient
dynamic policy is then implementable.

Example 15 Assume that with probability p the arriving agent�s type x is
distributed on the interval [0; 1] with density f1(x) = 1 � b1

2
+ b1x, and with

probability 1 � p it is distributed on [0; 1] with density f2(x) = 1 � b2
2
+ b2x,

where b1; b2 2 [�2; 2). Note that

E [Fi] =
1

2
+
bi
12
and

E (xj�k) = Pr (bi = b1jxn; ::; xk+1)E [F1] + Pr (bi = b2jxn; ::; xk+1)E [F2] .

Using Bayesian updating we get that

Pr (bi = b1jxn; ::; xk+1) =
 
1 +

1� p
p

nY
j=k+1

1� b2
2
+ b2xj

1� b1
2
+ b1xj

!�1
.
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Therefore,

E (xj�k)� E (xj�0k) =
b1 � b2
12

[Pr (bi = b1j�k)� Pr (bi = b1j�0k)] .

Let �k and �
0
k be two sequences of observed signals that di¤er only in one

coordinate, with �k � �0k. Then by simple calculations we obtain

E (xj�k)� E (xj�0k) <
(b1 � b2)2

12

(xi � x0i)�
1� b2

2
+ b2xi

� �
1� b1

2
+ b1x0i

�
� (b1 � b2)2

3 (2� b2) (2� b1)
(xi � x0i) .

Finally, if
(b1 � b2)2

3 (2� b2) (2� b1)
� 1

n� 1 ,

we obtain that

E (xj�k)� E (xj�0k) �
(xi � x0i)
n� 1 � (xi � x0i)

k � 1 .

as desired. To see that the second condition of Theorem 8 will not hold for
su¢ ciently high number of periods, note that at the �rst period E

�
xj�n�1

�
�

E
�
xj�0n�1

�
= b1�b2

12
[Pr (bi = b1jxn)� Pr (bi = b1jx0n)] is independent of the

number of future observations n. Therefore, there exist number of periods n
and observations xn and x0n such that E

�
xj�n�1

�
� E

�
xj�0n�1

�
> xn�x0n

n�2 .

Proof of Theorem 9. Note �rst that

@E (xj�k)
@xk+i

=
@

@xk+i

1Z
0

�
1� eFk (xj�k)� dxk

� 1

n� k

1Z
0

@ eFk (xj�k)
@x

dxk =
1

n� k (16)

where the inequality follows from the condition of the theorem. By Propo-
sition 7, it is su¢ cient to show that for any k, any history of reports �k,
and any n � k � i � 1, the cuto¤ ai;k(�k; xk) is di¤erentiable and satis�es
@
@xk
ai;k(�k; xk) � 1. Since ai;k(�k; xk) = Exk�1j�k;xkGi;k�1(xk�1; xk; �k); we

need to show that @
@xk
Exk�1j�k;xkGi;k�1(xk�1; xk; �k) exists and that

@

@xk
Exk�1j�k;xkGi;k�1(xk�1; xk; �k) � 1:
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We claim now that Exkj�k+1;xk+1Gi;k(xk; xk+1; �k+1) is di¤erentiable and
that

@Exkj�k+1;xk+1Gi;k(xk; xk+1; �k+1)

@xk+1
� 1

n� k .

This yields @
@xk+1

ai;k+1(�k+1; xk+1) � 1
n�k for any history of signals �k+1, any

pair of signals xk; xk+1, any period k + 1 > 1, and any item i.
We prove the claim by induction on the number of the remaining periods

k. For k = 1, note that a0;1(�2; x2; x1) = 0 and a1;1(�2; x2; x1) = 1: Hence,
we have G1;1(x1; x2; �2) = x1. Therefore, inequality (16) implies

@

@x2
Ex1j�2;x2G1;1(x1; x2; �2) � 1

n� 1 and

@

@x2
a1;2(�2; x2) � 1

n� 1 .

Note also that continuous di¤erentiability of ef1 (xjxn; :::; x2) implies contin-
uous di¤erentiability of a1;2(�2; x2). Assume now that ai;k(�k; xk) is contin-
uously di¤erentiable and that

@Exk�1j�k;xkGi;k�1(xk�1; xk; �k)

@xk
� 1

n� k + 1 ;

@ai;k(�k; xk)

@xk
� 1

n� k + 1
Since ai;k(�k; xk) is continuous, the induction hypothesis implies that for any
i 2 f1; :::; k�1g there exists at most one solution to the equation ai;k(�k; x) =
x. Denote this solution by a�i;k(�k). If ai;k(�k; x) > x for any x, de�ne
a�i;k(�k) = 1, and if ai;k(�k; x) < x for any x de�ne a�i;k(�k) = 0. Recall
that, by induction, we can rewrite

Exkj�k+1;xk+1Gi;k(xk; xk+1; �k+1)

=

a�i�1;k(�k)Z
0

ai�1;k(�k+1; xk+1; xk)f
�
xkj�k+1; xk+1

�
dxk

+

a�i;k(�k)Z
a�i�1;k(�k)

xkf
�
xkj�k+1; xk+1

�
dxk

+

1Z
a�i;k(�k)

ai;k(�k+1; xk+1; xk)f
�
xkj�k+1; xk+1

�
dxk.
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Since ai;k(�k+1; xk+1; xk) is continuously di¤erentiable in xk+1 for any i 2
f1; :::; k� 1g by the induction argument, and since efk �xkj�k+1; xk+1� is con-
tinuously di¤erentiable by assumption, we can invoke the Implicit Function
Theorem to deduce that the �xed point a�i;k(�k) is continuously di¤erentiable
in xk+1. Thus, we obtain that Exkj�k+1;xk+1Gi;k(xk; xk+1; �k+1) is continuously
di¤erentiable in xk+1.
We now show that @

@xk+1
Exkj�k+1;xk+1Gi;k(xk; xk+1; �k+1) �

1
n�k . We have

@

@xk+1

1Z
0

Gi;k(xk; xk+1; �k+1) efk �xkjxk+1; �k+1� dxk
=

1Z
0

@Gi;k(xk; xk+1; �k+1)

@xk+1
efk �xkjxk+1; �k+1� dxk (17)

+

1Z
0

@ efk �xkjxk+1; �k+1�
@xk+1

Gi;k(xk; xk+1; �k+1)dxk. (18)

Consider �rst the term in the sum above (17):

1Z
0

@Gi;k(xk; xk+1; �k+1)

@xk+1
efk �xkjxk+1; �k+1� dxk

=

a�i�1;k(xk+1;�k+1)Z
0

@Gi;k(xk; xk+1; �k+1)

@xk+1
efk �xkjxk+1; �k+1� dxk

+

a�i;k(xk+1;�k+1)Z
a�i�1;k(xk+1;�k+1)

@Gi;k(xk; xk+1; �k+1)

@xk+1
efk �xkjxk+1; �k+1� dxk

+

1Z
a�i;k(xk+1;�k+1)

@Gi;k(xk; xk+1; �k+1)

@xk+1
efk �xkjxk+1; �k+1� dxk

� 1

n� k + 1 �
1

n� k + 1

h eFk �a�i;k �xk+1; �k+1� jxk+1; �k+1�� eFk �a�i�1;k �xk+1; �k+1� jxk+1; �k+1�i
where the existence of the �xed points a�i;k

�
xk+1; �k+1

�
and a�i�1;k

�
xk+1; �k+1

�
follows from the induction argument, while the inequality follows from the
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induction argument and from the fact that @Gi;k(xk;xk+1;�k+1)

@xk+1
= 0 if xk 2�

a�i�1;k
�
xk+1; �k+1

�
; a�i;k

�
xk+1; �k+1

��
.

Consider now the second term in the sum (18):

1Z
0

@ efk �xkjxk+1; �k+1�
@xk+1

Gi;k(xk; xk+1; �k+1)dxk

=
@ eFk �xkjxk+1; �k+1�

@xk+1
Gi;k(xk; xk+1; �k+1)

�����
1

xk=0

�
1Z
0

@ eFk �xkjxk+1; �k+1�
@xk+1

@Gi;k(xk; xk+1; �k+1)

@xk
dxk

= �
1Z
0

@ eFk �xkjxk+1; �k+1�
@xk+1

@Gi;k(xk; xk+1; �k+1)

@xk
dxk

� 1

n� k + 1

1Z
0

@
h
1� eFk �xkjxk+1; �k+1�i

@xk+1
dxk

� n� k
n� k + 1

a�i;k(xk+1;�k+1)Z
a�i�1;k(xk+1;�k+1)

@ eFk �xkjxk+1; �k+1�
@xk+1

dxk

� 1

n� k + 1
1

n� k �
n� k

n� k + 1

a�i;k(xk+1;�k+1)Z
a�i�1;k(xk+1;�k+1)

@ eFk �xkjxk+1; �k+1�
@xk+1

dxk

where the �rst equality follows by integration by parts, and where the second
equality follows because limx!1 eFk �xjxk+1; �k+1� = 1 and eFk �0jxk+1; �k+1� =
0. The �rst inequality follows by the induction argument (which implies the
existence of the �xed points a�i;k

�
xk+1; �k+1

�
, a�i�1;k

�
xk+1; �k+1

�
) and be-

cause

@Gi;k(xk; xk+1; �k+1)

@xk

(
= 1 if xk 2

�
a�i�1;k

�
xk+1; �k+1

�
; a�i;k

�
xk+1; �k+1

��
� 1

n�k+1 if xk =2
�
a�i�1;k

�
xk+1; �k+1

�
; a�i;k

�
xk+1; �k+1

�� .
Combining now the two terms 17 and 18 we obtain

33



@

@xk+1

1Z
0

Gi;k(xk; xk+1; �k+1)
efk �xkjxk+1; �k+1� dxk

� 1

n� k + 1 �
1

n� k + 1

h eFk �a�i;k �xk+1; �k+1� jxk+1; �k+1�� eFk �a�i�1;k �xk+1; �k+1� jxk+1; �k+1�i

+
1

n� k + 1
1

n� k �
n� k

n� k + 1

a�i;k(xk+1;�k+1)Z
a�i�1;k(xk+1;�k+1)

@ eFk �xkjxk+1; �k+1�
@xk+1

dxk (19)

Recalling the miraculous relation

1

n� k + 1
1

n� k +
1

n� k + 1 =
1

n� k
it is therefore su¢ cient to prove that

1

n� k

h eFk �a�i;k �xk+1; �k+1� jxk+1; �k+1�� eFk �a�i�1;k �xk+1; �k+1� jxk+1; �k+1�i

� �

a�i;k(xk+1;�k+1)Z
a�i�1;k(xk+1;�k+1)

@ eFk �xkjxk+1; �k+1�
@xk+1

dxk.

Integrating with respect to x both sides of the assumed inequality

�@
eFk (xj�k)
@xk+i

� 1

n� k
@ eFk (xj�k)

@x

between the �xed points a�i�1;k
�
xk+1; �k+1

�
and a�i;k

�
xk+1; �k+1

�
yields the

desired result.
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