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A Two-Dimensional Problem of Revenue

Maximization∗

Omer Lev†

Abstract

We consider the problem of finding the mechanism that maximizes the rev-

enue of a seller of multiple objects. This problem turns out to be significantly

more complex than the case where there is only a single object (which was

solved by Myerson [5]). The analysis is difficult even in the simplest case stud-

ied here, where there are two exclusive objects and a single buyer, with valua-

tions uniformly distributed on triangular domains. We show that the optimal

mechanisms are piecewise linear with either 2 or 3 pieces, and obtain explicit

formulas for most cases of interest.

1 Introduction and Goals

The problem of building an optimal mechanism to maximize the revenue of an auction

holder has been the focus of much research since the 1980s. Myerson [5] established
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some of the basic results for an auction of a single item. His paper considers the case

where a seller wishes to sell a single object and several bidders wish to buy it. The

value of the object may be different to each bidder, but we assume that the values are

distributed according to a density function f , which gives the probability of each set

of bidders’ values. We seek a mechanism that will be, in a sense, an equilibrium: it

should maximize the revenue for the seller even when the bidders know how it works

(and change their behavior accordingly), and the seller knows the strategies of the

bidders.

The first major principle that simplifies the analysis of this problem [2] is that we

may focus on mechanisms which are based on the revelation principle: each bidder

reveals truthfully the value of the object for him, i.e., he won’t profit from lying about

his preference. Furthermore, we wish our truthful bidder to have no desire to lie about

the object’s value for him, and such a mechanism is called incentive compatible (or

IC). Another, more trivial, principle is that bidders should actually wish to participate

in the auction; accordingly, we seek a mechanism that is individually rational (or IR),

under which the value of taking part in the auction for the bidder - whatever his value

of the auctioned object is - won’t be negative.

In the case of only a single bidder, the optimal solution is that there be a “mini-

mum price” (which is dependent on f , the distribution of bidder values for the object),

below which the bidder won’t get the object; above it, he will. Similarly, when there

are multiple bidders, if all have the same probability distribution function f , the opti-

mal solution is a “second-price auction” (which is IC) with a “minimum price.” When

the preferences of each bidder have a different distribution (but are independent of

each other) the solution is slightly more complex, but still relatively straightforward.

Thus, the object is either not sold, or definitely sold (there is no possibility of a value

for which there is a possibility of both obtaining and not obtaining the object).
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Trying to add dimensions to this problem by adding more objects to be auctioned

seems, at first, to be no more difficult than holding several unconnected auctions.

However, as soon as we assume that the seller can sell “bundles” (several objects

together), or when we allow “inter-dependence” between the auctioned items’ values,

the issue becomes far more complex. As Rochet and Stole [6] show in their detailed

survey of various methods to solve multi-dimensional problems, handling such prob-

lems is extremely problematic and there are very few helpful results.

Even in the case of only one seller (“monopolist”) and two objects and their

bundling, we have only a very general picture (for example, Manelli and Vincent [4]

provided a method that can verify that a candidate optimal solution is an extreme

point - when extreme points are a strict superset of optimal solutions). For better

results, Manelli and Vincent [3, 4] add the assumption that the preference for each

object is independent (and thus, for example, the probability of a certain value for a

bundle is the product of the probabilities of all objects values). Even in these cases,

specific solutions are rare.

Thus, the simple case of two mutually exclusive objects whose total valuation

is less than 2 - even when we assume valuations are distributed uniformly - isn’t

straightforward. More formally, we consider the problem where the values for the two

mutually exclusive options are found in the triangle with the vertices (0, 0), (2, 0),

and (0, 2). The solution for this specific problem is shown in Corollary 31 (with a

graphic representation shown in Appendix A.1).

In approaching this problem, we show that the optimal solution must be of the

type for which the probability that no object is sold is either 0 or 1 (Theorem 10; we

use a method adapted from Hart and Reny [1]). This is an obvious extension of the

single-dimension solution. We prove that this is true for our “shape” (the triangle) if

we assume a certain condition on the probability density function (a condition that
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holds for the uniform distribution). Dealing with these types of optimal solutions

enables us to rewrite the problem as essentially an optimization problem with only

one variable.

In seeking a solution to our problem, we first obtain a more general result - if the

probability of winning is either 0 or 1, in many types of shapes and distributions the

mechanism will be, in a sense, “piecewise linear.” That is, it will be composed of

regions, in each one of which the probabilities of receiving the objects are constant.

Furthermore, for values uniformly distributed in “triangles,” we find the optimal

solution for many of the triangles (Corollary 30), and our method can be used to find

the optimal solution for any such triangle.

2 Preliminaries

2.1 Basics

We begin with several definitions of the two-dimensional problem (all straightforward

extensions of the single-dimension problem presented in [2]), and with several basic

properties.

Definition 1. v = (v1, v2) ∈ R2
+ are the values of the buyer for each of the two objects

(v1 for the first, v2 for the second). v is distributed according to a distribution F , with

density function f .

Consider now a direct mechanism, with one buyer and one seller, with two mu-

tually exclusive objects to sell. For every bid the buyer offers, there is a probability

that he will receive one of the objects, and there is a cost - a payment to the seller.

We will seek to maximize the seller’s revenue - the expected payment from the buyer.

4



Definition 2. q : R2
+ → [0, 1]2 is a function representing the probabilities that the

buyer will receive the first object (q1) and the second one (q2). Thus, q(y1, y2) =

(q1(y1, y2), q2(y1, y2)) are the probabilities of receiving the objects if the buyer an-

nounces that his values of the objects are y1 and y2. Since we assume that the objects

are mutually exclusive, q1(y1, y2) + q2(y1, y2) ≤ 1.

Definition 3. c : R2
+ → R+ is a function representing the payment to the seller.

c(y1, y2) is the cost for the buyer if he declares values of y1 for the first object and y2

for the second.

Definition 4. We define the function u : R2
+ → R as u(y1, y2) = q(y1, y2)·v−c(y1, y2),

with v being the value of the objects for the buyer.

By the IC principle, Definition 4 is actually u(v1, v2) = q(v1, v2) ·(v1, v2)−c(v1, v2),

which is the utility function of the buyer. In simple terms, it means that the utility

for the buyer is the expected value he gains, less his cost.

As in the single-dimension case, we will use u as a variable of the optimization

problem. It has several properties that enable us to better analyze it.

Lemma 5. If u(v) satisfies the IC constraint, then it is a convex function with

the gradient ∇u(v) existing for almost every v, and ∂
∂v1
u(v1, v2) = q1(v1, v2) and

∂
∂v2
u(v1, v2) = q2(v1, v2) almost everywhere.

Proof of Lemma See [4].

2.2 Solution Characterization

Our optimization method works when the solution is of the type where the probability

of getting some object, i.e., q1 + q2, equals either 0 or 1. We shall now show several
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conditions that ensure that there is always a solution of this type for a family of

problems - including our specific problem where (v1, v2) is uniformly distributed on a

triangle with the vertex (0, 0) and (1, 1) is in the opposite edge. Our constraints and

conditions are based on those shown in [1].

Our goal is to maximize the seller’s revenue, which is the expected payment from

the buyer, i.e., c(v1, v2). Thus we seek to maximize the expression
∫

R2
+

(q(v) · v −

u(v)) dF =
∫

R2
+

(q(v) · v − u(v))f(v) dv.

Assumption 6. We assume that there is a convex, compact set W ⊂ R2
+ that includes

(0, 0) and (1, 1), such that (x, y) /∈ W ⇒ f(x, y) = 0.

W is the “range” of the values.

Assumption 7. We assume that W is a triangle, with one vertex at (0, 0). We

shall use the notation ∂W for the edge of W for the side opposite (0, 0), and we shall

assume (1, 1) ∈ ∂W .

This means for w = (w1, w2) ∈ ∂W , there is a constant s for which w2 = (1 −

s)w1 + s.

Assumption 8. f almost everywhere has the following property: for t ∈ [0, 1] and

v = (v1, v2):

2f(tv) +
d

dt
tf(tv) ≥ 0

.

For example, f uniform satisfies Assumption 8.

Definition 9. Since W is convex and by Assumption 7, any v = (v1, v2) ∈ W can be

expressed as (w − (t, t)) for a unique w ≡ wv ∈ ∂W . Thus, for any u : W → R we
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can define a new function ũ : W → R as follows:

ũ(v1, v2) = ũ(wv − (t, t)) = u(wv)− t

By Assumption 7, ũ is guaranteed to be well defined and convex.

Notice that the definition means that d
dt
ũ(v0+(t, t)) = 1, and since d

dt
ũ(v0+(t, t)) =

q̃1(v0) + q̃2(v0) (where q̃ = ∇ũ), at every point v ∈ W , q̃1(v) + q̃2(v) = 1.

Theorem 10. By Assumptions 7 and 8, for any optimal u, u = max(0, ũ) a.e. Thus,

the seller’s revenue is maximized when q1(v1, v2) + q2(v1, v2) ∈ {0, 1}.

Proof. Suppose u is an optimal solution. We now define the function û = max(0, ũ).

We shall now prove that a.e. u = û, and that will prove the theorem, since û fulfills

its requirements. Because our domain (W ) is convex and by Assumption 7, we can

change the coordinate system to (t, w) where t ∈ [0, 1] and w ∈ ∂W , and every v in

the domain may be expressed by tw. Since ∂W lies on the line w2 = (1−s)·w1+s, the

transformation is (tw1, t((1−s)w1+s)), and the absolute value of the Jacobian for this

transformation is |s|t ≡ rt. Since q(v)·v−u(v) = q(tw)·tw−u(tw) = t d
dt
u(tw)−u(tw),

we now seek to maximize

∫
W

(q(v) · v − u(v))f(v) dv =

∫
∂W

1∫
0

(t
d

dt
u(tw)− u(tw))rtf(tw) dt dw

Since
1∫
0

t( d
dt
u(tw))rtf(tw) dt = rt2f(tw)u(tw)|10−

1∫
0

(2rt(tw)+rt2 d
dt
f(tw))u(tw) dt, we

now have ∫
∂W

ru(w)f(w)−
1∫

0

r(3tf(tw) + t2
d

dt
f(tw))u(tw) dt dw

Notice that u(tw) ≥ 0 (by IR) and 3tf(tw) + t2 d
dt
f(tw) = t(3f(tw) + t d

dt
f(tw)) =
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t(2f(tw) + d
dt
tf(tw)) ≥ 0 (by Assumption 8), This means that for any given u with

values on ∂W , we wish to minimize the value of u on the interior of W . Since u and

ũ coincide on ∂W , and since d
dt
u(w− (t, t)) = −(q1(w− (t, t)) + q2(w− (t, t))) ≥ −1,

it follows that u(w − (t, t)) ≥ u(w) − t = ũ(w − (t, t)). Every point v ∈ W can be

represented as wv − (t, t) for t ≥ 0 and wv ∈ ∂W , and so u(v1, v2) ≥ ũ(v1, v2). By IR,

u ≥ 0, and therefore u(v1, v2) ≥ û(v1, v2). Furthermore, if there is a measurable set

where 0 < q1 + q2 < 1, this inequality becomes strict (for a subset of W ). Thus

u(w)f(w)−
1∫

0

r(3tf(tw)+t2
d

dt
f(tw))u(tw) dt ≤ û(w)f(w)−

1∫
0

r(3tf(tw)+t2
d

dt
f(tw))û(tw) dt

and ∫
W

(q(v) · v − u(v))f(v) dv ≤
∫
W

(q̂(v) · v − û(v))f(v) dv

Notice that if not a.e. u = û, due to the fact that u is a.e. differentiable, then there is

a measurable set where 0 < q1 + q2 < 1, and therefore the inequalities above become

strict.

Note. In the sequel, we don’t rely on our assumptions on W and f ; we only require

that the optimal solution be of the sort described in Theorem 10, i.e., q1 + q2 ∈ {0, 1}.

2.3 Reframing the Problem

We shall now reduce our two-dimensional problem to essentially one dimension, using

the characterization in Theorem 10. To do so, we shall first change the coordinate

system and then rewrite the equation we wish to optimize.

We will change our axis system from the regular (v1, v2) structure by turning it

45◦ counterclockwise. One axis will be the line v1 + v2 = 0, and the other will be
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the line v1 = v2. We shall use the letter x to denote the former, and t to denote the

latter.

Definition 11. g : R2 → R2 is defined as g(x, t) = (−x
2

+ t, x
2

+ t). Thus,

Dg|(x,t) =

−1
2

1

1
2

1


and Jg|(x,t) = −1.

We shall now “move” the function ũ to these axes as well.

Definition 12. We define ϕ : R→ R as ϕ(x) = ũ(−x
2
, x

2
).

Lemma 13. ũ(v1, v2) = ϕ(v2− v1) + v1+v2
2

. Therefore, D1ũ|(v1,v2) = −ϕ′(v2− v1) + 1
2
,

D2ũ|(v1,v2) = ϕ′(v2 − v1) + 1
2
, and |ϕ′(x)| ≤ 1

2
.

Proof of Lemma

ϕ(v2 − v1) +
v1 + v2

2
= ũ(

v1 − v2

2
,
v2 − v1

2
) +

v1 + v2

2
=

= ũ(
v1 − v2

2
+
v1 + v2

2
,
v2 − v1

2
+
v1 + v2

2
) = ũ(v1, v2)

The derivatives are a result of simple arithmetic.

Recall that we seek to maximize the seller’s revenue, i.e.,
∫

R2
+
q · v − u(v) dF =∫

R2
+

(q · v − u(v))f(v) dv. Starting with ũ we get

∫
R2

Dũ · v − ũ(v) dv =

∞∫
−∞

∞∫
−∞

D1ũ · v1 +D2ũ · v2 − ũ(v1, v2) dv1 dv2

Next, we change variables to the (x, t) axes. We need to multiply the integrals by
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|Jg|(x,t)|. Since, as shown in Definition 11 , Jg|(x,t) = −1, we multiply by 1

D1ũ · v1 +D2ũ · v2 − ũ(v1, v2) = ((−ϕ′(x) +
1

2
)(t− x

2
) + (ϕ′(x) +

1

2
)(t+

x

2
)− (ϕ(x) + t)) =

= −ϕ′(x)t+
t

2
+
ϕ′(x)x

2
− x

4
+ ϕ′(x)t+

t

2
+
ϕ′(x)x

2
+
x

4
− ϕ(x)− t = ϕ′(x)x− ϕ(x)

So our equation for ũ is

∞∫
−∞

∞∫
−∞

(ϕ′(x)x− ϕ(x))f(g(x, t)) dt dx

Now we’ll return to u. Since in areas in which q(v1, v2) 6= 0, u(v1, v2) = ũ(v1, v2)

(recall that Theorem 10 showed u = max(0, ũ)), it follows that the optimized equation

is

∞∫
−∞

∞∫
t0(x)

(ϕ′(x)x− ϕ(x))f(g(x, t)) dt dx =

∞∫
−∞

(ϕ′(x)x− ϕ(x))

∞∫
t0(x)

f(g(x, t)) dt dx

for t0(x) = inf{t|u(−x
2

+ t, x
2

+ t) > 0} (i.e., the point where u stops being 0).

Let’s take a closer look at t0(x).

Lemma 14. There is an interval [b1, b2] (for b1 ≤ 0, b2 ≥ 0), for which t0(x) =

−ϕ(x), and outside it t0(x) does not depend on ϕ, but only on the shape of W .

Proof of Lemma t0(x) has two constraints:

Since u ≥ 0, we get

t0(x) + ϕ(x) ≥ 0⇒ t0(x) ≥ −ϕ(x)

And since u is defined on W ⊂ R2
+, we get

(−x
2
,
x

2
) + (t0(x), t0(x)) ∈ W
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Finally, since (0, 0) ∈ W , t0(0) = −ϕ(0). Due to the convexity of ϕ and W , if

t0(x
′) = −ϕ(x′), then ∀x ∈ [0, x′] (or [x′, 0]): t0(x) = −ϕ(x).

Definition 15. Put f̃(x) =
∞∫

t0(x)

f(g(x, t)) dt

Therefore, the equation we wish to find an optimum for can be written as

∞∫
−∞

(ϕ′(x)x− ϕ(x))f̃(x) dx

Assumption 16. We assume that d
dx
f̃(x) exists and is continuous.

Using ϕ′(x)x − ϕ(x) = (ϕ(x)
x

)′x2, we can view the problem as maximizing the

equation:

−
∞∫

−∞

ϕ(x)(2f̃(x) + xf̃ ′(x)) dx

Using the definitions of b1 and b2 from Lemma 14 we can rewrite the equation as

b1∫
−∞

(ϕ′0(x)x−ϕ0(x))f̃(x) dx+

b2∫
b1

(ϕ′0(x)x−ϕ0(x))f̃ϕ0(x) dx+

∞∫
b2

(ϕ′0(x)x−ϕ0(x))f̃(x) dx

(we use the notation f̃ϕ0 to indicate that for {x|b1 < x < b2}, f̃(x) depends on ϕ0).

3 General Case

Since ϕ0 is optimal, for every ϕ that fits our criteria (convex, |ϕ′(x)| ≤ 1
2
) and that

has the same “b”s as ϕ0, we know that (1− ε)ϕ0 + εϕ (for ε > 0) for small ε are very
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close to ϕ0, but still aren’t optimal:

∞∫
−∞

(ϕ′0(x)x−ϕ0(x))f̃(x) dx ≥
∞∫

−∞

(((1−ε)ϕ′0(x)+εϕ′(x))x−((1−ε)ϕ0(x)+εϕ(x)))f̃(x) dx

Thus,

∂

∂ε

∞∫
−∞

(((1− ε)ϕ′0(x) + εϕ′(x))x− ((1− ε)ϕ0(x) + εϕ(x)))f̃(x) dx|ε=0 ≤ 0

We know that f̃ does not depend on ϕ0 for x < b1 and x > b2, while it does for

b1 < x < b2. Also, since W is compact, there is a z > 0 such that ∀|x| > z : f̃(x) = 0.

Thus we get the following constraint:

b1∫
−z

(ϕ0(x)− ϕ(x))(2f̃(x) + xf̃ ′(x)) dx+

+

b2∫
b1

(ϕ0(x)− ϕ(x))(2f̃ϕ0(x) + xf̃ ′ϕ0
(x)− (ϕ′0(x)x− ϕ0(x))f(x,−ϕ0(x))) dx+

+

z∫
b

(ϕ0(x)− ϕ(x))(2f̃(x) + xf̃ ′(x)) dx ≤ 0

Lemma 17. On intervals [d1, d2] in which ∀x ∈ [d1, d2], if b1 < x < b2: 2f̃(x) +

xf̃ ′(x)−(ϕ′0(x)x−ϕ0(x))f(x,−ϕ0(x)) 6= 0, and if x ≤ b1 or x ≥ b2: 2f̃(x)+xf̃ ′(x) 6=

0, then ϕ0 is composed, at most, of two linear 1 parts on the interval.

Proof of Lemma We shall build a ϕ such that ϕ|x≤d1,x≥d2 = ϕ0. Since for all

x ∈ [d1, d2] the “multiplier” (2f̃(x)+xf̃ ′(x)−(ϕ′0(x)x−ϕ0(x))f(x,−ϕ0(x)) or 2f̃(x)+

xf̃ ′(x)) isn’t 0, then the sign of the multiplier throughout [d1, d2] is the same (by

1When describing ϕ (or sections of it) as being linear, we actually mean that it is affine (since
ϕ(0) doesn’t necessarily equal 0). In doing so, we chose to follow common usage.
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Assumption 16).

If the multiplier is < 0 then if we define ϕ to be the straight line connecting ϕ0(d1)

with ϕ0(d2), then for x ∈ [d1, d2]: ϕ(x) ≥ ϕ0(x), and if ϕ0|[d1,d2] 6= ϕ, the inequality is

strict for some interval. Since for x /∈ [d1, d2]: ϕ0(x) = ϕ(x), the equation is positive

- a contradiction.

Similarly, if the multiplier is > 0, we define ϕ|[d1,d2] to be the straight line from

ϕ0(d1) with the slope ϕ′0(d1), until it changes to be the straight line going through

ϕ0(d2) with the slope ϕ′0(d2). ϕ is, of course, still convex, and for x ∈ [d1, d2]: ϕ(x) ≤

ϕ0(x), and if ϕ0|[d1,d2] 6= ϕ the inequality is strict for some interval. Once again, since

for x /∈ [d1, d2]: ϕ0(x) = ϕ(x), the equation is positive, a contradiction.

Definition 18. We shall define `(x) = 2f̃(x) + xf̃ ′(x). We also define L(x) thus:

L(x) =


x∫
−z
`(t) dt x < b1

z∫
x

`(t) dt x > b2

Lemma 19. On the intervals [−z, b1] and [b2, z], ϕ is piecewise linear, and the slope

changes only at points y for which L(y) = 0.

Proof of Lemma For intervals where `(x) 6= 0, we showed piecewise linearity

in Lemma 17. If there is an interval [d1, d2] in which `(x) = 0, the shape of ϕ0

doesn’t matter: it can be anything, even a straight line. One can see this by using

the alternative representation of the equation we wish to optimize: −
b1∫
−z
ϕ0`(x) dx or

−
z∫
b2

ϕ0`(x) dx. On the interval [d1, d2], where `(x) = 0, the value of ϕ0 is irrelevant:

only the values in the edges (d1 and d2) might matter.

We shall now prove that the change points of different line slopes are y such that

L(y) = 0. Let’s look first at {x|x ≥ b2}. Suppose that the line a1x + c changes to
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a2x + a1d1 + c − a2d1 at point d1 > b2 for which L(d1) > 0; then let us take a ϕ

that equals ϕ0 up to d1, but changes to a slope of a2 at d2 > d1, and then continues

to change slopes just like ϕ0 (at the same points, to the same slopes). d2 is close

enough to d1 so that L(d2) > 0 and L(d2)− L(d1) < L(d2) (such a d2 exists due to f̃

continuity). Thus

0 ≥
d2∫
d1

(a2x+ a1d1 − a2d1 − a1x)`(x) dx+

z∫
d2

(a1d1 − a2d1 − a1d2 + a2d2)`(x) dx =

=(a2 − a1)(

d2∫
d1

(x− d1)`(x) dx+ (d2 − d1)

z∫
d2

`(x) dx)

But according to our definition of d2, and since (a2−a1) > 0 (due to convexity), our

equation is larger than 0, a contradiction. A similar problem arises when L(d1) < 0

(using d2 < d1).

For {x|x ≤ b1} the problem is solved in the same manner. ϕ is built to be exactly

like ϕ0 from d1 onward, and the changes are in the area between −z and d1.

Since f̃ isn’t dependent on ϕ0 for [−z, b1] and [b2, z], neither is L(y), and thus we

have an independent criterion for “slope change” points.

Observation 20. Lemmas 17 and 19 show that ϕ0 is piecewise linear except for

intervals [s, t] ⊆ [b1, b2], for which ∀x ∈ [s, t] : 2f̃ϕ0(x) + xf̃ ′ϕ0
(x) − (ϕ′0(x)x −

ϕ0(x))f(x,−ϕ0(x)) = 0.

Theorem 21. On the interval [b2, z], ϕ0 is piecewise linear, with at most two linear

pieces. Moreover, the slope of the second piece, if it exists, equals 1
2
. Similarly, on the

interval [−z, b1], ϕ0 is piecewise linear with at most two linear pieces, and the slope

of the first piece (if it exists) is −1
2
.
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Proof. First, we shall consider [b2, z]. Let y > b2 be the minimal point for which

L(y) = 0 and
z∫
y

x`(x) < 0. ϕ0 on the interval [b2, z] is made of I linear parts, and for

each i ∈ I the part is from [di−1, di] (obviously, d0 = b2), and its equation is ai + ci

(the cis are arranged so that ϕ0 is continuous). We now define ϕ to be

ϕ(x) =


ϕ0 −z ≤ x < d1

a1 + c1 d1 ≤ x < y

x
2

+ a1y + c1 − y
2

y ≤ x

Let I ′ ⊂ I be a set of parts for which for every i ∈ I ′: di < y. We define î /∈ I ′ as

one for which y ∈ [dî−1, dî]. Finally, let I ′′ = I \ (I ′ ∪ î). Our requirement is that

0 ≥
∑
i∈I′

di∫
di−1

(aix+ ci − a1x− c1)`(x) dx+

y∫
dî−1

(aîx+ cî − a1x− c1)`(x) dx+

+

dî∫
y

(aîx+ cî −
x

2
− a1y − c1 +

y

2
)`(x) dx+

∑
i∈I′′

di∫
di−1

(aix+ ci −
x

2
− a1y − c1 +

y

2
)`(x) dx

However, according to Lemma 19, change points are such that L(di) = 0, and

since L(y) = 0 as well, our requirement is actually

0 ≥
∑
i∈I′

(ai − a1)

di∫
di−1

x`(x) dx+ (aî − a1)

y∫
dî−1

x`(x) dx+

+(aî −
1

2
)

dî∫
y

x`(x) dx+
∑
i∈I′′

(ai −
1

2
)

di∫
di−1

x`(x) dx ≥

≥(+)

y∫
d2

x`(x) dx+ (−)

z∫
y

x`(x) dx

15



(+) and (−) represent positive and negative multipliers respectively (due to ϕ0

convexity). (+) = 0 only if ϕ0|[b2,y] = ϕ and (−) = 0 only if ϕ0|[y,z] = ϕ. Since
z∫
y

x`(x) dx < 0, and y is the earliest point where this is true (as well as L(y) = 0), it

follows that
z∫
d2

x`(x) dx ≥ 0, and
y∫
d2

x`(x) dx ≥ 0. Thus

(+)

y∫
d2

x`(x) dx+ (−)

z∫
y

x`(x) dx ≥ 0

If the inequality is strict, we have a contradiction. If it isn’t strict, since
z∫
y

x`(x) dx <

0, it follows that (−) = 0, and ϕ0|[y,z] = ϕ. If ϕ0 6= ϕ, then (+) > 0, and
z∫
d1

x`(x) dx = 0. In this case we need to take a look at the alternative representa-

tion of our original equation, which we wish to maximize, namely, −
z∫
d1

ϕ0(x)`(x) dx.

ϕ0 is linear (and L(d1) = L(y) = 0), and so
y∫
d1

ϕ0(x)`(x) dx = 0, and the values of

ϕ0 on [d1, y] don’t matter (after y we know that ϕ0 = ϕ). Thus, without loss of

generality, ϕ0 = ϕ.

The case of [−z, b1] is identical.

4 Uniform Distribution

As we move closer to our objective of finding the optimal u for the uniform distribution

on the triangle with the vertices (0, 0), (2, 0), and (0, 2), we decompose our problem

along the v1 = v2 axis. In particular, we analyze the family of triangles that includes

the triangle with the vertices (0, 0), (0, 2), and (1, 1) (with a simple transformation,

this also includes the triangle with the vertices (0, 0), (2, 0), and (1, 1)), and then we

join them together.
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Assumption 22. We shall now work under the assumption that f is distributed

uniformly on the set {(v1, v2)|v2 ≥ v1 ≥ 0, v2 ≤ a ·v1 +1−a}, where a < 1. These are

cases where ∂W lies on the line v2 = av1 + 1− a, and W is the triangle with vertices

(0, 0), (1, 1), and(0, A). (We define A = 1− a).

For x > A or x < 0: f̃(x) = 0. Therefore, there is no b1, only b2, which henceforth

we shall refer to as b. Furthermore, the constraint on t0 for this shape is simple, and

for {x|x ≥ b}, t0(x) = x
2
, and b is a point in which −ϕ(b) = b

2
.

In the “interesting” area - where f̃ 6= 0 - we can see f̃(x) =
∞∫

t0(x)

f(x, t) dt =

− 2−A
A
·x
2
+1∫

t0(x)

1 dt = 1− 2−A
A
· x

2
− t0(x).

Thus, we seek to maximize the expression

b∫
0

(ϕ′(x)x−ϕ(x))(1− 2− A
2A

· x+ϕ(x)) dx+

A∫
b

(ϕ′(x)x−ϕ(x))(1− 2− A
2A

· x− x

2
) dx

Using the identities ϕ′(x)x−ϕ(x) = (ϕ(x)
x

)′x2 and ϕ′(x)ϕ(x)x−ϕ2(x) = (ϕ
2(x)
2x2 )′x3

we get

−b
3

8
− 3

2

b∫
0

(ϕ(x)− 2− A
2A

x+
2

3
)2 dx+

1

6

b∫
0

(2− 3(2− A)

2A
x)2 dx−

A∫
b

ϕ(x)(2− 3

A
x) dx

Using the same parameter variation method we used in Section 3, we get

b∫
0

(ϕ0(x)− ϕ(x))(2− 3(2− A)

2A
x+ 3ϕ0(x)) dx+

A∫
b

(ϕ0(x)− ϕ(x))(2− 3

A
x) dx ≤ 0

Proposition 23. ϕ0 changes to a straight line with a slope of 1
2

at max(b, A
3
).

Proof. In Section 3, we showed that for {x|x > b}, ϕ0(x) is made of two linear parts
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at most, with the slope changes occurring at y where
z∫
y

`(x) dx = 0. In our particular

case, this means that

0 =

A∫
y

2− 3

A
x dx = 2(A− y)− 3

2A
x2|Ay = (

A

3
− y)(A− y)

So the point of the last change to ϕ0 is at b or A
3
. Since the last part of ϕ0 has

the slope 1
2

(the maximal one), the proposition is proved.

Let’s look at the different possibilities of b

Proposition 24. If b ≥ 2
3
A:

(i) If A < 1 and b ≥ 2
3
A, then

ϕ0(x) =
x

2
− b

and

• b = A when A < 1
3
.

• b =
√

A
3

when 1
3
≤ A < 3

4
.

• b = 2
3
A when 3

4
≤ A < 1.

(ii) If A ≥ 1 and b ≥ 2
3
A, then

ϕ0(x) =


(1
b
− 2−A

4A
− 3

4
)x+ b

2A
− 1 0 ≤ x ≤ b

x
2
− b b < x ≤ A

for b = 2
3
A.
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Proof. Due to convexity and minimality / maximality concerns, there is a straight

line from (0, ϕ0(0)) to (b,− b
2
). This is because b ≥ 2

3
A means that (b,− b

2
) is below

2−A
2A
x− 2

3
, and due to convexity, that line can’t be crossed twice on [0, b]; it is crossed,

at most, once, at point d. However, on the interval [0, d], we seek to minimize ϕ0,

while on the interval [d, b] (or [0, b], if there is no d) we seek to maximize it. Minimality

/ maximality concerns mean that there is one straight line from 0 to b. Therefore,

we’re seeking a line of the form mx + d that goes through the point (b,− b
2
). Thus,

our line is mx− b(m+ 1
2
). At the point (b,− b

2
), the line changes to x

2
− b (a slope of

1
2
). We wish to find, for a specific b (and A), the optimal m:

b∫
0

(mx− nx− bm+ bn)(2− 3(2− A)

2A
x+ 3mx− 3bm− 1.5b) dx ≤ 0

(For any −1
2
≤ m ≤ 1

2
).

Simplifying this equation, we get

(m− n)(b3m+
3

4
b3 +

2− A
4A

b3 − b2) ≤ 0

If m =
− 3

4
b3− 2−A

4A
b3+b2

b3
= 1

b
− 2−A

4A
− 3

4
the equation always equals 0, and for b > 2

3
A

and A ≥ 1, m is in the required parameters (i.e., |m| ≤ 1
2
). For A ≤ 1

2
the function

b3m+ 3
4
b3 + 2−A

4A
b3− b2 is always negative (for 2

3
A < b ≤ A), and therefore m must be

maximal, i.e., m = 1
2
. For 1

2
< A < 1, for some “b”s m = 1

b
− 2−A

4A
− 3

4
≤ 1

2
, and for

the other “b”s m = 1
2

(due to the negativity of the equation). So the equation looks
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like this:

ϕ0(x) =



x
2
− b 0 < A < 1

2
or b

2−2b
< A < 1

(1
b
− 2−A

4A
− 3

4
)x+ b

2A
− 1 A ≥ 1 or A < b

2−2b
and 0 ≤ x ≤ b

x
2
− b A ≥ 1 or A < b

2−2b
and b < x ≤ A

Now, the optimal b for this family of equations (i.e., b ≥ 2
3
A) is found by differ-

entiating the original equation (the one we wished to optimize). For the case where

the equation is always x
2
− b, we wish to maximize the following:

b∫
0

b(1− 2− A
2A

x+
x

2
− b) dx+

A∫
b

b(1− A

2A
x− x

2
) dx = −b

3

2
+
A

2
b

The derivative of this equation is −3
2
b2 + A

2
, which reaches 0 when b =

√
A
3
. This

expression is within our constraints (2
3
A < b ≤ A) for 1

3
≤ A ≤ 3

4
. For A < 1

3
it

is always positive, so the maximum is reached at the largest b possible, b = A. For

A > 3
4

the derivative is always negative; that is, the maximum is reached at the

smallest possible b (which is 2
3
A).

For the second type of equation, we wish to maximize the following equation:

b∫
0

(1− b

2A
)(1− 2− A

2A
x+

1

b
x− 2− A

4A
x− 3

4
x+

b

2A
− 1) dx

+

A∫
b

b(1− 2− A
2A

x− x

2
) dx =

1 + 4A

8A2
b3 − 1 + 2A

2A
b2 +

1 + A

2
b

Differentiating that equation results in 3+12A
8A2 b2 − 1+2A

A
b + 1+A

2
, which is always

negative for 2
3
A ≤ b < A, so that for A ≥ 1, the maximal value is reached at b = 2

3
A.
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For 1
2
< A < 1 the smallest b converges with the case of x

2
− b, and so the optimal

value for 1
2
< A < 1 is reached at b = max(2

3
A,

√
A
3
).

Proposition 25. If A
3
≤ b < 2

3
A:

(i) If A < 1 and A
3
≤ b < 2

3
A, then

ϕ0(x) =
x

2
− b

and b = min(2
3
A,

√
A
3
).

(ii) If A ≥ 1 and b < 2
3

and A
3
≤ b < 2

3
A, then

ϕ0(x) =
x

2
− b

(iii) If A ≥ 1 and b ≥ 2
3

and A
3
≤ b < 2

3
A:

ϕ0(x) =


2−A
2A
x− 2

3
0 ≤ x ≤ max(0, A

A−1
(b− 2

3
))

x
2
− b max(0, A

A−1
(b− 2

3
)) < x ≤ A

and

• b =
√

A
3

when A < 11
3
.

• b = 2A−
√
A2−A
3

when A ≥ 11
3
.

Proof. If b ≥ A
3
, the optimal value on the interval [0, b] should be minimal, and thus

should be as close as possible to 2−A
2A
x − 2

3
as long as possible and then change to a

line with the slope 1
2
. For A ≥ 1 this isn’t a problem, as |2−A

2A
| ≤ 1

2
; but for 0 < A < 1,

and other cases where b < 2
3
, there is no part where ϕ0(x) = 2−A

2A
x − 2

3
, so there is
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only one part, with the slope 1
2
, namely:

ϕ0(x) =



x
2
− b A < 1 or A

3
≤ b < 2

3

2−A
2A
x− 2

3
A ≥ 1 and b ≥ 2

3
and 0 ≤ x ≤ max(0, A

A−1
(b− 2

3
))

x
2
− b A ≥ 1 and b ≥ 2

3
and max(0, A

A−1
(b− 2

3
)) < x ≤ A

In seeking the optimal b for each A, we already solved in Proposition 24 the case

of one single line x
2
− b. For A > 1 and b ≥ 2

3
, we wish to maximize

A
A−1

(b− 2
3
)∫

0

2

3
(1− 2− A

2A
x+

2− A
2A

x− 2

3
) dx+

b∫
A

A−1
(b− 2

3
)

b(1− 2− A
2A

x+
x

2
− b) dx

+

A∫
b

b(1− 2− A
2A

x− x

2
) dx =

=
−1

2− 2A
b3 +

A

1− A
b2 +

−3A2 − A
6− 6A

b+
4A

27− 27A

Differentiating this equation results in −3
2−2A

b2 + 2A)
1−Ab+ −3A2−A

6−6A
, which means the

optimal b = 2A−
√
A2−A
3

. However, for 1 ≤ A < 11
3

this is smaller than 2
3
, and so the

optimum is reached at the optimal b < 2
3
, which is b =

√
A
3
. Furthermore, for A > 11

3
,√

A
3
> 2

3
, and so the optimal b is 2A−

√
A2−A
3

.

Proposition 26. If A > 11
3
, the optimal b value is ≥ 2

3
.
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Proof. Letting the slope m be a variable, the original equation (for b ≤ 2
3
) is

b∫
0

b(m+
1

2
)(1− 2− A

2A)
x+mx− b(m+

1

2
)) dx+

A
3∫
b

b(m+
1

2
)(1− 2− A

2A
x− x

2
) dx

+

A∫
A
3

(b(m+
1

2
)− A

3
m+

A

6
)(1− 2− A

2A
x− x

2
) dx

Differentiating this, the optimal b is one that satisfies

(m+
1

2
)(−b2(3

2
m+

3

4
) +

A

2
) = 0

For A > 11
3

and b < 2
3

this is always positive, so that the optimal b ≥ 2
3
.

Theorem 27.

(i) If 0 < A < 11
3
, the optimal ϕ0 is

ϕ0(x) =
x

2
− b

with b = min(
√

A
3
, A).

(ii) If 11
3
≤ A ≤ 3, the optimal ϕ0 is

ϕ0(x) =


2−A
2A
x− 2

3
0 ≤ x ≤ A

A−1
(b− 2

3
)

x
2
− b max(0, A

A−1
(b− 2

3
)) < x ≤ A

with b = 2A−
√
A2−A
3

.

Proof. Using the proofs from Proposition 25 (and for A < 1, from Proposition 24),

what is left to prove is that the optimal b is larger than A
3
. As seen in the previous
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proposition, when looking at ϕ0 that is constructed of two parts - one line with a

slope m (crossing the point (b,− b
2
)) up to A

3
where it changes to a slope of 1

2
, for each

m the optimal b is one that satisfies

(m+
1

2
)(−b2(3

2
m+

3

4
) +

A

2
) = 0

Therefore

b =

√
A

3(m+ 1
2
)

Notice that any possible solution is either of this sort (straight line of slope m,

then changing somewhere to the slope 1
2
) or has a part where it equals 2−A

2A
x− 2

3
, and

then it continues with slope m until changing to slope 1
2
. This “cutting off” (the line

with slope m is “cut” by the line 2−A
2A
x − 2

3
) can only make the solution larger, as

can easily be inferred from the relevant part of the alternative representation of the

optimized equation (the part −3
2

b∫
0

(ϕ(x)− 2−A
2A
x+ 2

3
)2 dx).

Furthermore, what we gain (with the “cutoff”) is larger as b grows, as there is

more to “cut off,” and thus the optimal point may get larger, but not smaller. More

formally, if b̂m is the optimal b when ϕ0 is made of two parts (without the “cutoff”),

and b̄m after the “cutoff,” b̂m ≤ b̄m. Also, notice that for all m, b̂ 1
2
≤ b̂m. Therefore, if

b̂ 1
2
≥ A

3
, then the optimal point is reached in the realm we dealt with in Proposition 25.

A simple calculation shows that for A ≤ 3, b̂ 1
2
≥ A

3
.

Corollary 28. The optimal u is

• For 0 < A ≤ 1
3
:

uA(v1, v2) = max(0, v2 − A)
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• For 1
3
≤ A ≤ 11

3
:

uA(v1, v2) = max(0, v2 −
√
A

3
)

Notice this means only v2 determines the value of uA.

• For 11
3
≤ A ≤ 3:

uA(v1, v2) = max(0,
1

A
v2 +

A− 1

A
v1 −

2

3
, v2 −

2A−
√
A2 − A

3
)

Therefore, up to “above” a line parallel to v1 = v2, only v2 determines value,

and after a certain point, the relationship between v1 and v2 has a slope of 1−A,

which is parallel to ∂W .

Proof. Write u according to the definition of ϕ0, using Lemma 13.

4.1 Joining Triangles

Utilizing the results we have achieved, we can easily extend our solutions to the case

of W (the range of object values) that is made of two joined “triangles” - one with

vertices (0, 0), (1, 1), and (0, A1) and the other with vertices (0, 0), (1, 1), and (A2, 0)

(in order for W to be convex, (1−A1)(1−A2) ≥ 1). Obviously, optimal solutions for

each triangle separately that form a valid solution when triangles are “joined” (e.g.,

the solution is still convex) are optimal for the complete polygon.

Corollary 29. If W is a convex polygon with the vertices (0, 0), (0, A1), (1, 1), and
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(A2, 0), and 11
2
≤ A1, A2 ≤ 3, then

ϕ0(x) =



x
2
− b1 max(0, A1

A1−1
(b1 − 2

3
)) < x ≤ A1

2−A1

2A1
x− 2

3
0 ≤ x ≤ A1

A1−1
(b1 − 2

3
)

A2−2
2A2

x− 2
3

0 > x ≥ − A2

A2−1
(b2 − 2

3
)

−x
2
− b2 min(0,− A2

A2−1
(b− 2

3
)) > x ≥ −A2

and b1 =
2A1−
√
A2

1−A1

3
and b2 =

2A2−
√
A2

2−A2

3
.

Proof. The optimal solution for the triangle with the vertices (0, 0), (1, 1), and (0, A1)

for 11
2
≤ A1 ≤ 3 was proven above. The optimal solution for the triangle with the

vertices (0, 0), (1, 1), and (A2, 0) is equivalent (by replacing v1 with v2 and vice versa)

to the solution of the triangle with the vertices (0, 0), (1, 1), and (0, A2), which was

shown above.

The solution is reached by using the optimal solution for each triangle. There is

a small technical issue to notice: since the second triangle is denoted by negative “x”

values, we must flip the sign of the coefficient in order to retain the values of ϕ0. Due

to the range of A1 and A2 we selected, the resulting ϕ0 is continuous (since ϕ0(0) = 2
3

and doesn’t depend on A), and due to the convexity of W (i.e., (1−A1)(1−A2) ≥ 1),

the resulting ϕ0 is convex.

Corollary 30. If W is a convex polygon with the vertices (0, 0), (0, A1), (1, 1), and

(A2, 0), and 11
2
≤ A1, A2 ≤ 3, then

u = max(0, v2 −
2A1 −

√
A2

1 − A1

3
,

1

A1

v2 +
A1 − 1

A1

v1 −
2

3
,

1

A2

v1 +
A2 − 1

A2

v2 −
2

3
, v1 −

2A2 −
√
A2

2 − A2

3
)
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Proof. Write u according to the definition of ϕ0, using Lemma 13.

Finally, we reach the solution for our original problem:

Corollary 31. For W the triangle with the vertices (0, 0), (2, 0), and (0, 2) the optimal

u is

u = max(0, v2 −
4−
√

2

3
, v1 −

4−
√

2

3
,
v2 + v1

2
− 2

3
)

5 Conclusion and Discussion

In solving the specific problem that we addressed (where the values are uniformly

distributed on the triangle with the vertices (0, 0), (2, 0), and (0, 2)), we obtained

several interesting results, without simplifying the two-dimensional problem (as others

did) by requiring independence of between the two variables. We dealt with problems

for which the optimal solution turns out to be of the form where the probability of

getting the object is either 0 or 1, which is a fairly large family of problems that

includes many common convex shapes with the uniform distribution.

For problems with these types of solutions, we showed that, whatever the distri-

bution, from a certain point the optimal mechanism will have (at most) two sections

(at the “edges” of the shape, i.e., the areas closer to the borders, but farther from

(0, 0)) for which there is a fixed probability for obtaining the objects. Furthermore,

in many cases there will be a section for which there is, in effect, a “minimum price,”

just as in the single-dimension case. This result makes sense, as the areas near the

axes (and hence, near the borders of W ) are those for which there is a significant value

for one object, but a small one for the other, indicating that it will be much more

profitable for the owner to agree to sell only the object for which there is a high value.

We were also able to characterize the points where the objects’ distribution will no
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longer depend solely on the price for only one object (the point changes according to

distribution and the “shape” of W ).

Our results also show that for many shapes (of W ) and distributions, the mecha-

nism will be “piecewise linear,” in the sense that it will be made by regions, in each

one of which the probabilities of receiving the objects are constant. In the uniform

distribution, and in our triangle-shaped W , we were able to show the solution for a

family of problems (where 11
2
≤ A ≤ 3), and our method provides a fairly straight-

forward method to solve the optimal problem for the rest of the family of triangles.

Further work could concentrate on characterizing the types of problems for which

the optimal mechanism is one in which either no object is given, or one is surely

sold, which we believe encompasses more than the problems shown in Section 2.2.

Another direction would be to further characterize the distributions for which the

optimal solution is piecewise linear, which might help simplify the solution of this

class of problems.

Extending our method to n-dimensions isn’t straightforward, but we believe it may

yield at least partial results (e.g., a “minimum price” for objects near the axes). While

one seeks an elegant solution for all two-dimensional (and n-dimensional) auction

problems, we believe that due to the complexity inherent in the problem (as described

in [6]), seeking assumptions - beside variable independence - to simplify the problem

is the way forward.
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A Graphic Representation of Selected Problems

A.1 The Original Problem - A1 = A2 = 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

-0.5

0.5

1

1.5

2

2.5

(0,0)

(0,1)

(!,!)

(1,0)

A

B

C

D

E

F

Figure 1: Uniform distribution on the triangle with the vertices (0, 0), (2, 0), (0, 2).
Numbers indicate values of (q1, q2).
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A.2 When A1 = A2 = 1
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Figure 2: Uniform distribution on the square with the vertices (0, 0), (0, 1), (1, 1),
(1, 0). Numbers indicate values of (q1, q2).
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A.3 When A1 = 1.5, A2 = 3
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Figure 3: Uniform distribution on the triangle with the vertices (0, 0), (0, 1.5),
(3, 0). Numbers indicate values of (q1, q2).
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A.4 When A1 = 1.75, A2 = 1.5
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Figure 4: Uniform distribution on the polygon with the vertices (0, 0), (0, 1.75),
(1, 1), (1.5, 0). Numbers indicate values of (q1, q2).
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