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Abstract

We study auctions with additive valuations where agents have a limit on the number of items they
may receive. We refer to this setting as capacitated allocation games. We seek truthful and envy free
mechanisms that maximize the social welfare. I.e., where agents have no incentive to lie and no agent
seeks to exchange outcomes with another.

In 1983, Leonard showed that VCG with Clarke Pivot payments (which is known to be truthful,
individually rational, and have no positive transfers), is also an envy free mechanism for the special case
of n items and n unit capacity agents. We elaborate upon this problem and show that VCG with Clarke
Pivot payments is envy free if agent capacities are all equal. When agent capacities are not identical, we
show that there is no truthful and envy free mechanism that maximizes social welfare if one disallows
positive transfers.

For the case of two agents (and arbitrary capacities) we show a VCG mechanism that is truthful, envy
free, and individually rational, but has positive transfers. We conclude with a host of open problems that
arise from our work.

1 Introduction

We consider allocation problems where a set of objects is to be allocated amongst m agents, where every
agent has an additive and non negative valuation function. We study mechanisms that are truthful, envy free,
and maximize the social welfare (sum of valuations). The utility of an agent i is the valuation of the bundle
assigned to i, vi(OPT), minus any payment, pi.

A mechanism is incentive compatible (or truthful) if it is a dominant strategy for every agent to report
her private information truthfully [4]. A mechanism is envy-free if no agent wishes to switch her outcome
with that of another [1, 2, 9, 6, 7, 10].

Any allocation that maximizes the social welfare has payments that make it truthful — in particular —
any payment of the form

pi = hi(t
−i)−

∑
j ̸=i

vj(OPT) (1)

∗With credit to Fear and Loathing in Las Vegas by Hunter S. Thompson.
†AT&T Labs-Research, 180 Park Avenue, Florham Park, NJ.
‡School of Business Administration and Center for the Study of Rationality, The Hebrew University of Jerusalem.
§The Blavatnik School of Computer Science, Tel Aviv University.
¶The Blavatnik School of Computer Science, Tel Aviv University.
∥The Blavatnik School of Computer Science, Tel Aviv University.
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where OPT is an allocation maximizing the social welfare and t−i are the types of all agents but agent i.
Similarly, any allocation that maximizes the social welfare has payments that make it envy free, this follows
from a characterization of envy free allocations (see [3]). Unfortunately, the set of payments that make the
mechanism truthful, and the set of payments that make the mechanism envy free, need not intersect. In this
paper we seek such payments, i.e., payments that make the mechanism simultaneously truthful and envy
free.

An example of a mechanism that is simultaneously truthful and envy free is the Vickrey 2nd price
auction. Applying the 2nd price auction to an allocation problem assigns items successively, every item
going to the agent with the highest valuation to the item at a price equal to the 2nd highest valuation. If, for
example, for all items, agent i has maximal valuation, then agent i will receive all items.

Leonard [5] considered the problem of assigning people to jobs, n people to n positions, and called
this problem the permutation game. The Vickrey 2nd price auction is irrelevant in this setting because no
person can be assigned to more than one position. Leonard showed that VCG with Clarke Pivot payments is
simultaneously truthful and envy free. Under Clarke Pivot payments, agents internalize their externalities,
i.e.,

hi(t
−i) =

∑
j ̸=i

vj(OPT−i) (2)

where OPT−i is the optimal allocation if there was no agent i. By substituting
∑

j ̸=i vj(OPT−i) for hi(t−i)
in Equation 1 one can interpret Clarke Pivot payments as though an agent pays for how much others lose by
her presence, i.e., the agent internalizes her externalities.

Motivated by the permutation game, we consider a more general capacitated allocation problem where
agents have associated capacities. Agent i has capacity Ui and cannot be assigned more than Ui items.
Like Leonard, we seek a mechanism that is simultaneously truthful and envy free. The private types we
consider may include both the valuation and the capacity (private valuations and private capacities) or only
the valuation (private valuations, public capacity). Leonard’s proof uses LP duality and it is not obvious
how to extend it to more general settings.

Before we address this question, one needs to ask what does it mean for one agent to envy another when
they have different capacities? A lower capacity agent may be unable to switch allocations with a higher
capacity agent. To deal with this issue, we allow agent i, with capacity less than that of agent i′ to choose
whatever items she desires from the i′ bundle, up to her capacity. I.e., we say that agent i envies agent i′

if agent i prefers a subset of the allocation to agent i′, along with the price set for agent i′, over her own
allocation and price.

The VCG mechanism (obey Equation 1) is always truthful. In fact, any truthful mechanisms that choose
the socially optimal allocation in capacitated allocation problems must be VCG [8]. We obtain the following:

1. For agents with private valuations and either private or public capacities, under the VCG mechanism
with Clarke Pivot payments, a higher capacity agent will never envy a lower capacity agent. In
particular, if all capacities are equal then the mechanism is envy free. (See Section 3).

2. For agents with private valuations, and either private or public capacities, any envy free VCG payment
must allow positive transfers. (See Section 4).

3. For two agents with private valuations and arbitrary public capacities, there exist VCG payments such
that the mechanism is envy free. It follows that such payments must allow positive transfers. (See
Section 5).
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4. For two agents with private valuations and private capacities, and for two items, there exist VCG
payments such that the mechanism is envy free. (See Section 6).

2 Preliminaries

Let U be a set of objects, and let vi be a valuation function associated with agent i, 1 ≤ i ≤ m, that maps
sets of objects into ℜ. We denote by v a sequence < v1, v2, . . . , vm > of valuation functions one for each
agent.

An allocation function1 a maps a sequence of valuation functions v =< v1, v2, . . . , vm > into a partition
of U consisting of m parts, one for each agent. I.e.,

a(v) =< a1(v), a2(v), . . . , am(v) >,

where ∪iai(v) ⊆ U and ai(v) ∩ aj(v) = ∅ for i ̸= j. A payment function2 is a mapping from v to ℜm,
p(v) =< p1(v), p2(v), . . . , pm(v) >, pi(v) ∈ ℜ. We assume that payments are from the agent to the
mechanism (if the payment is negative then this means that the transfer is from the mechanism to the agent).

A mechanism is a pair of functions, M = ⟨a, p⟩, where a is an allocation function, and p is a payment
function. For a sequence of valuation functions v = ⟨v1, v2, . . . , vm⟩, the utility to agent i is defined as
vi(ai(v))− pi(v). Such a utility function is known as quasi-linear.

Let v =< v1, v2, . . . , vm > be a sequence of valuations, we define (v′i, v
−i) to be the sequence of

valuation functions arrived by substituting vi by v′i, i.e.,

(v′i, v
−i) =< v1, . . . , vi−1, v

′
i, vi+1, . . . , vm > .

We next define mechanisms that are incentive compatible, envy-free, and both incentive compatible and
envy-free.

• A mechanism is incentive compatible (IC) if it is a dominant strategy for every agent to reveal her
true valuation function to the mechanism. I.e., if for all i, v, and v′i:

vi(ai(v))− pi(v) ≥ vi(ai(v
′
i, v

−i))− pi(v
′
i, v

−i);

⇔ pi(v) ≤ pi(v
′, v−i) +

(
vi(ai(v))− vi(ai(v

′
i, v

−i))
)
. (3)

• A mechanism is envy-free (EF ) if no agent seeks to switch her allocation and payment with another.
I.e., if for all 1 ≤ i, j ≤ m and all v:

vi(ai(v))− pi(v) ≥ vi(aj(v))− pj(v);

⇔ pi(v) ≤ pj(v) +
(
vi(ai(v))− vi(aj(v))

)
. (4)

• A mechanism (a, p) is incentive compatible and envy-free (IC ∩ EF ) if (a, p) is both incentive
compatible and envy-free.

1Here we deal with indivisible allocations, although our results also extend to divisible allocations with appropriate modifica-
tions.

2In this paper we consider only deterministic mechanisms and can therefore omit the allocation as an argument to the payment
function.
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Vickrey-Clarke-Groves (VCG) mechanism: A mechanism M = ⟨a, p⟩ is called a VCG mechanism if:

• a(v) ∈ argmaxa∈A
∑m

i=1 vi(ai(v)), and

• pi(v) = hi(v
−i)−

∑
j ̸=i vj(aj(v)), where hi does not depend on vi, i = 1, . . . ,m.

It is known that any mechanism whose allocation function a maximizes
∑m

i=1 vi(ai(v)) (social welfare)
is incentive compatible if and only if it is a VCG mechanism (See, e.g., [8], Theorem 9.37). In the following
we will denote by opt an allocation a which maximizes

∑m
i=1 vi(ai(v)).

The Clarke-pivot payment for a VCG mechanism is defined by

hi(v
−i) = max

a′∈A

∑
j ̸=i

vj(a
′).

3 VCG with Clarke-pivot payments

A capacitated allocation game has m agents and n items that need to be assigned to the agents. Agent i
is associated with a capacity Ui ≥ 0, denoting the limit on the number of items she can be assigned, and
each item j is associated with a capacity Qj ≥ 0, denoting the number of available copies of item j. The
valuation vi(j) denotes how much agent i values item j, and

∑
j∈S vi(j) is the valuation of agent i to the

bundle S.
A capacitated allocation game has a corresponding bipartite graph G, where every agent 1 ≤ i ≤ m has

a vertex i associated with it on the left side, and every item 1 ≤ j ≤ n has a vertex j associated with it on
the right side. The weight of the edge (i, j) is vi(j). An assignment is a subgraph of G that satisfies the
capacity constraints, i.e. agent i is assigned at most Ui items and item j is assigned to at most Qj agents.
Recall that we denote by opt an assignment of maximum value. We describe opt by a matrix M where Mij

is the number of copies of item j allocated to agent i in opt.
For player i, the graph G−i is constructed by removing the vertex associated with agent i and its incident

edges from G. The assignment with maximum value in G−i is defined by a matrix M−i.
Let M be an assignment (either in G or in G−i for some i.). We denote by Mi r the i’th row of M ,

(Mi1,Mi2, . . . ,Min) which gives the bundle that agent i gets. We define vk(Mi) =
∑n

j=1Mijvk(j) and
v(M) =

∑m
i=1 vi(Mi).

The Clarke-pivot payment of agent k is

pk = v(M−k)− v(M) + vk(Mk) . (5)

The main result of this section is that in a VCG mechanism with Clarke-pivot payments, no agent will
ever envy a lower-capacity agent. In particular, this says that if all agents have the same capacity, the VCG
mechanism with Clarke-pivot payments is both incentive compatible and envy-free.

The proof of our main result (Theorem 3.1) is given in terms of a factional assignment but also holds for
integral assignments.

Special case of capacitated allocation games, in which there are n items and n agents, and each agent
can get at most a single item was first introduced in a paper by Leonard [5], and was called a permutation
game. Leonard proved Theorem 3.1 for this special case only, and its proof technique does not seem to
generalize for larger capacities. Our proof is different.

Here is our main theorem.
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Theorem 3.1. Consider a VCG mechanism consisting of an optimal allocation M and Clarke-pivot pay-
ments (5). Then if Ui ≥ Uj , agent i does not envy agent j.

Let agent 1 and agent 2 be arbitrary two agents such that the capacity of agent 1 is ≥ that of agent 2,
that is U1 ≥ U2.

Let M be an optimal assignment, M−1 an optimal assignment without agent 1, and M−2 some optimal
assignment without agent 2. Agent 1 does not envy agent 2 iff

v1(M1)− p1 ≥ v1(M2)− p2

Based on Equation 5, this is true when:

v1(M1)− (v(M−1)− v(M) + v1(M1)) =

v(M)− v(M−1) ≥
v1(M2)− (v(M−2)− v(M) + v2(M2)) =

v1(M2) + v(M)− v(M−2)− v2(M2)

Rearranging we obtain that agent 1 does not envy agent 2 iff

v(M−2) ≥ v(M−1) + v1(M2)− v2(M2). (6)

We prove the theorem by establishing (6). We use the assignments M and M−1 to construct an assign-
ment D−2 on G−2 such that

v(D−2) ≥ v(M−1) + v1(M2)− v2(M2) . (7)

From the optimality of M−2, v(M−2) ≥ v(D−2), which combined with (7) implies (6).
Given assignments M and M−1, we construct a flow f on an associated bipartite digraph, Gf , with

vertices for every agent and item. We define arcs and flows on arcs in Gf for every agent i and item j:

• If Mij −M−1
ij > 0 then Gf includes an arc i → j with flow fi→j = Mij −M−1

ij .

• If Mij −M−1
ij < 0 then Gf includes an arc j → i with flow fj→i = M−1

ij −Mij .

• If Mij = M−1
ij then Gf contains neither i → j not j → i.

We define the excess of an agent i in Gf , and the excess of an item j in Gf , to be

exi =
∑

(i→j)∈Gf

fi→j −
∑

(j→i)∈Gf

fj→i =
∑
j

(
Mij −M−1

ij

)
,

exj =
∑

(j→i)∈Gf

fj→i −
∑

(i→j)∈Gf

fi→j =
∑
i

(
M−1

ij −Mij

)
,

respectively.
In other words the excess is the difference between the amount flowing out of the vertex and the amount

flowing into the vertex. Clearly the sum of all excesses is zero. We say that a node is a source if its excess
is positive and we say that a node is a target if its excess is negative.
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Observation 3.2. To summarize,

i is an agent and a source ⇒
0 ≤

∑
j

M−1
ij + |exi| =

∑
j

Mij ≤ Ui; (8)

i is an agent and a target ⇒
0 ≤

∑
j

Mij + |exi| =
∑
j

M−1
ij ≤ Ui; (9)

j is an item and a source ⇒
0 ≤

∑
i

Mij + |exj | =
∑
i

M−1
ij ≤ Qj ; (10)

j is an item and a target ⇒
0 ≤

∑
i

M−1
ij + |exj | =

∑
i

Mij ≤ Qj . (11)

By the standard flow decomposition theorem we can decompose f into simple paths and cycles where
each path connects a source to a target. Each path and cycle T has a positive flow value f(T ) > 0 associated
with it. Given an arc x → y, if we sum the values f(T ) of all paths and cycles T including x → y then we
obtain fx→y.

Notice that M−1
1j = 0 for all j and therefore f1→j ≥ 0 for all j. It follows that there are no arcs of the

form j → 1 in Gf .

Observation 3.3. For each path P = u1, u2, . . . , ut in flow decomposition Gf , where u1 is a source and ut
is a target, we have f(P ) ≤ min{exu1 , |exut |}.

We define the value of a path or a cycle T = u1, u2, . . . , ut in Gf , to be

v(P ) =
∑

agent ui,
item ui+1

vui(ui+1)−
∑

item ui,
agent ui+1

vui+1(ui).

It is easy to verify that the
∑

T f(T )·v(T ) over all paths and cycles in our decomposition is v(M)−v(M−1).

Lemma 3.4. Without loss of generality, we can assume that M−1 is such that

1. There are no cycles of zero value in Gf .

2. There is no path P = u1, u2, . . . , ut of zero value such that u1 ̸= 1 is a source and ut is a target.

Proof. Assume that there is a cycle or a path T in the flow decomposition of Gf such that v(T ) = 0. Let x
be the smallest flow along an arc e of T . We modify M−1 as follows: For every agent to item arc i → j ∈ T
we increase M−1

ij by x and for every item to agent arc j → i ∈ T we decrease M−1
ij by x. Let the resulting

flow be M̃−1.
If T is a cycle then the capacity constraints are clearly preserved. If T is not a cycle, then the capacity

constraints are trivially preserved for all nodes other than u1 and ut. From Equation (8) we know that∑
j

M−1
u1j

≤ Uu1 − |exu1 | ≤ Uu1 − x if u1 is an agent.
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Ergo, if u1 is an agent we can increase the allocation of M−1
u1u2

by x, while not exceeding the capacity of
agent u1 (Uu1). If u1 is an item, agent u2 can release x units of item u1 without violating any capacity
constraints.

We can similarly see that the capacities constraints of ut are not violated (Equation (11)).
Furthermore v(M̃−1) = v(M−1)−xv(T ) = v(M−1) and if we replace M−1 by M̃−1 then Gf changes

by decreasing the flow along every arc of T by x, and removing arcs whose flow becomes zero (in particular
at least one arc will be removed). This process does not introduce any new edges to Gf .

We repeat the process until Gf does not contain zero cycles or paths as defined.

From now on we assume that M−1 is chosen according to Lemma 3.4 3.

Lemma 3.5. The flow f in Gf does not contain cycles.

Proof. Assume that f contains a cycle C which carries ϵ > 0 flow. Clearly C does not contain agent 1 since
there is not any arc entering agent 1 in Gf .

Assume first that v(C) < 0. Create an assignment M̂ from M by decreasing Mij by ϵ for each agent
to item arc i → j ∈ C and increasing Mij by ϵ for each item to agent arc j → i ∈ C. This can be done
because M −M−1 has a flow of ϵ along the agent to item arc i → j, so, it must be that Mij ≥ ϵ. Similarly,
M −M−1 has a flow of ϵ along item to agent arcs j → i so it must be the Mij ≤ Ui − ϵ. Since C is a cycle
the assignment M̂ still satisfies the capacity constraints. Furthermore v(M̂) = v(M) − ϵv(C) > v(M)
which contradicts the maximality of M .

If v(C) > 0 we create assignment M̂−1 from M−1 as follows. For every item to agent arc j → i ∈ C
we decrease M−1

ij by ϵ and for every agent to item arc i → j ∈ C we increase M−1
ij by ϵ. This can be done

because M−1 −M has a flow of ϵ along the item to agent arc j → i, so, it must be that M−1
ij ≥ ϵ. Since C

is a cycle M̂−1 still satisfies the capacity constraints. Furthermore v(M̂−1) = v(M−1)+ ϵv(C) > v(M−1)
which contradicts the maximality of M−1.

We need to argue that M̂−1 makes no assignment to agent 1, this follows because agent 1 has no
incoming flow in Gf and cannot lie on any cycle.

By assumption, there no cycles of value zero in Gf .

In particular Lemma 3.5 implies that there are no cycles in our flow decomposition.

Lemma 3.6. Agent 1 is the only source node.

Proof. We give a proof by contradiction, assume some other node, u1 ̸= 1, is a source. Then, there is a flow
path P = u1, u2, . . . ut from that node to a target node ut. Since there are no arcs incoming into vertex 1,
the path P cannot include agent 1.

Let ϵ be the flow along the path P in the flow decomposition.
If v(P ) > 0 define M̂−1

ij = M−1
ij + ϵ for each agent to item arc i → j in P and M̂−1

ij = M−1
ij − ϵ for

each item to agent arc j → i in P . For all other item/agent pairs (i, j), let M̂−1
ij = M−1

ij . We have that

v(M̂−1) = v(M−1) + ϵv(P ) > v(M−1)

this would contradict the maximality of M−1 if M̂−1 is a legal assignment.
3Since Equation (7) depends only on the value of M−1 it does not matter which M−1 we work with
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If v(P ) < 0 define M̂ij = Mij − ϵ for each agent to item arc i → j in P and M̂ij = Mij + ϵ for each
item to agent arc j → i in P . For all other item/agent pairs (i, j), let M̂ij = Mij . We have that

v(M̂) = v(M)− ϵv(P ) > v(M)

which contradicts the maximality of M .
We still need to argue that the assignment M̂−1 (if v(P ) > 0) and the assignment M̂ (if v(P ) < 0) are

legal. Because P has a flow of ϵ, M−1
ij ≥ ϵ for each item to agent arc j → i along P , and Mij ≥ ϵ for each

agent to item arc i → j along P .
We also worry about exceeding capacities at the endpoints of P , since the size of assignments of

agents/items that are internal to the path do not change.
We increase the capacity of u1 while constructing M−1 only if u1 is an agent, and increase the capacity

of ut while constructing M−1 only if it is an item. By Observation 3.2 this is legal. A similar argument
shows that in M̂ the assignment of u1 and ut is smaller than their capacities.

According to the way we choose M−1, it cannot be that v(P ) = 0 and that P carries a flow in Gf .

In particular Lemma 3.6 implies that all the paths in our flow decomposition start at agent 1.
We construct D−2 from M−1 as follows.

1. Stage I: Initially, D−2 := M−1.

2. Stage II: For each item j let x = min{M2j ,M
−1
2j }. Set D−2

2j := M−1
2j − x and D−2

1j := x.

3. Stage III: For each flow path P in the flow decomposition of Gf that contains agent 2 we consider
the prefix of the path up to agent 2. For each agent to item arc i → j in this prefix we set D−2

ij :=

D−2
ij + f(P ), and for each item to agent arc j → i in this prefix we set D−2

ij := D−2
ij − f(P ).

It is easy to verify that D−2 indeed does not assign any item to agent 2. Also, the assignment to agent 1 in
D−2 is of the same size as the assignment to agent 2 in M−1. Since U1 ≥ U2, D−2 is a legal assignment.

Lemma 3.7. The assignment D−2 satisfies Equation (7).

Proof. Rearranging Equation (7)

v(D−2) ≥ v(M−1) (12)

+

n∑
j=1

(v1(j)− v2(j)) ·min(M2j ,M
−1
2j ) (13)

+
∑

j|M2j>M−1
2j

(v1(j)− v2(j)) · (M2j −M−1
2j ). (14)

At the end of stage I, we have D−2 = M−1 and so the inequality above at line (12) (without adding (13)
and (14)) holds trivially. It is also easy to verify that at the end of stage II, the inequality above that spans
(12) and (13) but without (14) holds. Finally, at the end of stage III, the full inequality in (12), (13) and (14)
will hold as we explain next.

Consider an item j such that M2j > M−1
2j . In Gf we have an arc 2 → j such that f2→j = M2j −M−1

2j .
Therefore in the flow decomposition we must have paths P1, . . . , Pℓ all containing 2 → j such that

ℓ∑
k=1

f(Pk) = f2→j = M2j −M−1
2j (15)
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Let P̂k be the prefix of Pk up to agent 2. Consider the cycle C consisting of P̂k followed by 2 → j and
j → 1. It has to be that that value of this cycle is non-negative. (Otherwise, construct M̂ by decreasing each
agent to item arc i → j on the cycle M̂ij = Mij − ϵ and increasing each item to agent arc j → i on the
cycle M̂ij = Mij + ϵ. It follows, that v(M̂) = v(M) − ϵv(C) > v(M) in contradiction of maximality of
M. The matching v(M̂) is legal since it preserves capacities and decreases assignment associated with arcs
with flow on them.)

Therefore,

v(P̂k) + v2(j)− v1(j) ≥ 0;

⇒ v(P̂k) ≥ (v1(j)− v2(j));

⇒ f(Pk)v(P̂k) ≥ f(Pk)(v1(j)− v2(j));

⇒
ℓ∑

k=1

(
f(Pk)v(P̂k)

)
≥ (v1(j)− v2(j))

ℓ∑
k=1

f(Pk).

Substituting Equation (15) into the above gives us that

ℓ∑
k=1

(
f(Pk)v(P̂k)

)
≥

(
v1(j)− v2(j)

)(
M2j −M−1

2j

)
. (16)

The left hand side of equation (16) is exactly the gain in value of the matching when applying stage III
to the paths P̂1, . . . , P̂ℓ during the construction of D−2 above. The right hand side is the term which we add
in Equation (14).

To conclude the proof of Lemma 3.7, we note that stage III may also deal with other paths that start at
agent 1 and terminate at agent 2. Such paths must have value ≥ 0 and thus can only increase the value of
the matching D−2. (Otherwise we can build assignment M̂ , such that v(M̂) > v(M) by decreasing Mij by
ϵ for each arc i → j ∈ P and increasing Mij by ϵ for each arc j → i ∈ P as we did before. The matching
M̂ is legal since it preserves capacities on inner nodes of the path, decreases only arcs with flow on them,
Mij > ϵ. Capacity of a source agent node can be increased according to Observation 3.2.)

Corollary 3.8. If all agent capacities are equal then the VCG allocation with Clarke-pivot payments is
envy-free.

Do Clarke-pivot payments work also under heterogeneous capacities? The answer is no. This follows
since in the next section we show that any mechanism that is both incentive compatible and envy-free must
have positive transfers, and Clarke-pivot payments do not.

4 Heterogeneous capacities: IC∩EF payments imply positive transfers

Consider an arbitrary VCG mechanism. Let

opt =< opt1, opt2, . . . , optn >

denote the allocation and let
pi = hi(v

−i)− v−i(opt) (17)
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be the payments, where
v−i(opt) =

∑
1 ≤ j ≤ n

j ̸= i

vj(optj).

Let v(opt) =
∑n

j=1 vj(optj) and let

opt−i =< opt−1
1 , opt−1

2 , . . . , opt−i
i−1, ∅, opt

−i
i+1, . . . , optn >,

be the allocation maximizing
v−i(opt−i) =

∑
1 ≤ j ≤ n

j ̸= i

vj(opt
−i
j ).

We substitute the VCG payments (17) into the envy-free conditions (4) and obtain that i does not envy
j if and only if

vi(optj)− pj ≤ vi(opti)− pi

⇔ pi − pj ≤ vi(opti)− vi(optj)

⇔ hi(v
−i)− v−i(opt)−

(
hj(v

−j)− v−j(opt)
)

≤ vi(opti)− vi(optj)

⇔ hi(v
−i)− hj(v

−j)

≤ v−i(opt)− v−j(opt) + vi(opti)− vi(optj)

⇔ hi(v
−i)− hj(v

−j)

≤ v(opt)− (v(opt)− vj(optj))− vi(optj)

⇔ hi(v
−i)− hj(v

−j) ≤ vj(optj)− vi(optj). (18)

Theorem 4.1. Consider a capacitated allocation game with heterogeneous capacities such that the number
of items exceeds the smallest agent capacity. There is no mechanism that simultaneously optimizes the social
welfare, is IC∩EF, and has no positive transfers (the mechanism never pays the agents). That is, any IC∩EF
mechanism has some valuations v for which the mechanism pays an agent.

Note that the conditions on the capacities of the agents and the number of items are necessary – If capac-
ities are homogeneous or the total supply of items is at most the minimum agent capacity then Clarke-pivot
payments, that are known to be incentive compatible, individually rational, and have no positive transfers,
are also envy-free.

In the rest of this section we prove Theorem 4.1. We start with a capacitated allocation game with two
agents and two items where agent i has capacity i (i = 1, 2). We then generalize the proof to arbitrary
heterogeneous games.

To ease the notation we abbreviate in the rest of the paper vi(j) to vij .
We partition the valuations into three sets A, B1, and B2 as follows (we omit cases with ties).4

4The optimal allocation that maximizes social welfare is uniquely defined when there are no ties. Valuations v’s with ties form
a lower dimensional measure 0 set. It suffices to consider valuations without ties for both existence or non-existence claims of IC
or EF payments. This is clear for non-existence, for existence, the payments for a v with ties is defined as the limit when we
approach this point through v’s without ties that result in the same allocation. Clearly IC and EF properties carry over, also IR and
nonnegativity of payments.
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• (A) v21 > v11 and v22 > v12. For these valuations in an optimal allocation agent 2 obtains the bundle
{1, 2} and agent 1 obtains the empty bundle.

• (B1) v11 − v21 > max{0, v12 − v22}. For these valuations in an optimal allocation item 1 is assigned
to agent 1 and item 2 to agent 2.

• (B2) v12 − v22 > max{0, v11 − v21}. For these valuations in an optimal allocation item 1 is assigned
to agent 2 and item 2 to agent 1.

Substituting the above in (18) we obtain that for v ∈ B1, agent 1 does not envy agent 2 if and only if

h1(v2)− h2(v1) ≤ v2(opt2)− v1(opt2) = v22 − v12 .

Agent 2 does not envy agent 1 if and only if

h2(v1)− h1(v2) ≤ v1(opt1)− v2(opt1) = v11 − v21 .

Combining we obtain that there is no envy for v ∈ B1, if and only if

v21 − v11 ≤ h1(v2)− h2(v1) ≤ v22 − v12 . (19)

For a fixed ϵ > 0, and x > 5ϵ, the valuation v such that v11 = x + 3ϵ, v12 = x + ϵ, v21 = v22 = 0 is
clearly in B1. Substituting in (19) we obtain

− (x+ 3ϵ) ≤ h1(0, 0)− h2(x+ 3ϵ, x+ ϵ) ≤ −(x+ ϵ) (20)

.
The valuation v such that v11 = x+3ϵ, v12 = x+ ϵ, v21 = x+ ϵ, and v22 = x is also clearly in B1 and

from (19) we obtain

x+ ϵ− (x+ 3ϵ) ≤ h1(x+ ϵ, x)− h2(x+ 3ϵ, x+ ϵ) ≤ x− (x+ ϵ)

hence
− 2ϵ ≤ h1(x+ ϵ, x)− h2(x+ 3ϵ, x+ ϵ) ≤ −ϵ . (21)

Combining (20) and (21) we obtain

h1(x+ ϵ, x) ≤ h2(x+ 3ϵ, x+ ϵ)− ϵ ≤ h1(0, 0) + x+ 3ϵ (22)

The no positive transfers requirement is that for any v,

h1(v2) ≥ v2(opt2) . (23)

Consider now the valuations v such that v21 = x+ϵ, v22 = x, v11 = v12 = x−ϵ. Clearly, v ∈ A (agent 2 gets
both items), hence v2(opt2) = 2x−ϵ. Substituting this and (22) in (23) we obtain 2x−ϵ ≤ h1(0, 0)+x+3ϵ,
hence h1(0, 0) ≥ x−4ϵ. Clearly, for valuations with large enough x we obtain a contradiction, that is, there
exist valuations where the mechanism pays an agent.
Heterogeneous capacities, multiple agents and items: Let c be the smallest agent capacity and assume it
is the capacity of agent 1. Let agent 2 be any agent with capacity > c. There are ≥ c + 1 items. It suffices
to consider restricted valuation matrices v where vij = 0 when i > 2 or when j > c + 1 and vij ≡ vi2 for
i = 1, 2 and 2 ≤ j ≤ c+1. We partition these valuations into four sets A, B1, B+

1 , B2, as follows (we omit
cases with ties and only define the assignment of items 1, . . . , c+ 1):
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• (A) v21 > v11 and v22 > v12. For these valuations in an optimal allocation agent 2 obtains the bundle
{1, . . . , c+ 1}.

• (B1) v11 > v21 and v12 < v22. For these valuations in an optimal allocation items 1 is assigned to
agent 1 and items 2, . . . , c+ 1 to agent 2.

• (B+
1 ) v11−v21 > v12−v22 and v12 > v22. For these valuations in an optimal allocation items 1, . . . , c

are assigned to agent 1 and item c+ 1 is assigned to agent 2.

• (B2) v12 − v22 > max{0, v11 − v21}. For these valuations in an optimal allocation item 1 is assigned
to agent 2 and items 2, . . . , c+ 1 to agent 1.

Substituting the above in (18) we obtain that for v ∈ B+
1 , agent 1 does not envy agent 2 if and only if

h1(v2)− h2(v1) ≤ v2(opt2)− v1(opt2) = v22 − v12 .

Agent 2 does not envy agent 1 if and only if

h2(v1)− h1(v2) ≤ v1(opt1)− v2(opt1)

= v11 + (c− 1)v12 − v21 − (c− 1)v22 .

Combining we obtain that there is no envy for v ∈ B+
1 , if and only if

v21 + (c− 1)v22 − v11 − (c− 1)v12 ≤ h1(v2)− h2(v1) ≤ v22 − v12 . (24)

For a fixed ϵ > 0 and for x > ϵ, the valuation v such that v11 = x+ 3ϵ, v12 = x+ ϵ, v21 = v22 = 0 is
clearly in B+

1 . For such v the left hand side of (24) is

v21 + (c− 1)v22 − v11 − (c− 1)v12

= −(x+ 3ϵ)− (c− 1)(x+ ϵ)

= −cx− (c+ 2)ϵ

Substituting in (24) we obtain

− cx− (c+ 2)ϵ ≤ h1(0, 0)− h2(x+ 3ϵ, x+ ϵ) ≤ −(x+ ϵ) . (25)

The valuation v such that v11 = x + 3ϵ, v12 = x + ϵ, v21 = x + ϵ, and v22 = x is also clearly in B+
1 .

For such v the left hand side of (24) is

v21 + (c− 1)v22 − v11 − (c− 1)v12

= x+ ϵ+ (c− 1)x− (x+ 3ϵ)− (c− 1)(x+ ϵ)

= −(c+ 1)ϵ

From (24) we obtain
− (c+ 1)ϵ ≤ h1(x+ ϵ, x)− h2(x+ 3ϵ, x+ ϵ) ≤ −ϵ. (26)

Combining (25) and (26) we obtain,

h1(x+ ϵ, x) ≤ h2(x+ 3ϵ, x+ ϵ)− ϵ

≤ h1(0, 0) + cx+ (c+ 2)ϵ− ϵ

= h1(0, 0) + cx+ (c+ 1)ϵ

For valuations v21 = x+ ϵ, v22 = x, v11 = v12 = x− ϵ, we clearly have v ∈ A (agent 2 gets all items),
hence v2(opt2) = (c+ 1)x− (c+ 1)ϵ.

For a sufficiently large x (relative to ϵ and h1(0, 0)), h1(v2) = h1(x+ϵ, x) ≤ h1(0, 0)+cx+(c+1)ϵ <
(c+ 1)x− (c+ 1)ϵ = v2(opt2), which contradicts the no positive transfers requirement (23).
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5 2 agents, Public Capacities

In this section we assume that capacities are public and derive IC ∩ EF payments for any game with two
players.

Lemma 5.1. Any 2-player capacitated allocation game with public capacities has an IC∩EF individually
rational mechanism.

Proof. Let ci be the capacity of player i and assume without loss of generality that c1 ≤ c2. For a vector
(x1, x2 . . .) let topb{x} be the set of the b largest entries in x. We show that

h1(v2) =
∑

j∈topc1{v2}

v2j

and
h2(v1) =

∑
j∈topc1{v1}

v1j

give VCG payments which are envy-free.
It suffices to show that for {i, j} = {1, 2},

hi(v
−i)− hj(v

−j) ≤ vj(optj)− vi(optj) .

That is, ∑
j∈topc1{v2}

v2j −
∑

j∈topc1{v1}

v1j ≤ v2(opt2)− v1(opt2) (27)

and ∑
j∈topc1{v1}

v1j −
∑

j∈topc1{v2}

v2j ≤ v1(opt1)− v2(opt1). (28)

Assume first that the number of items is exactly c1 + c2. In the optimal solution, player 1 will get the c1
items that maximize v1j − v2j and player 2 will get the c2 items that minimize this difference.

We establish (28) as follows ∑
j∈topc1{v1}

v1j −
∑

j∈topc1{v2}

v2j

≤
∑

j∈topc1{v1}

(v1j − v2j)

≤
∑

j∈topc1{v1−v2}

(v1j − v2j)

=
∑

j∈opt1

(v1j − v2j) = v1(opt1)− v2(opt1) .
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We establish (27) as follows ∑
j∈topc1{v2}

v2j −
∑

j∈topc1{v1}

v1j

≤
∑

j∈topc1{v2}

(v2j − v1j)

≤
∑

j∈topc1{v2−v1}

(v2j − v1j)

≤
∑

j∈opt2

v2j −
∑

j∈topc1{v1(opt2)}

v1j

where v1(opt2) is the vector of the values of player 1 to the items player 2 gets in the optimal solution.
If there are fewer than c1 + c2 items, we add “dummy” items with valuations v1j = v2j = 0 and the

lemma follows from the previous argument for the case with c1 + c2 items.
If there are more than c1 + c2 items then consider the set of c1 + c2 items than participate in the optimal

solution. We now observe that (27) and (28) only involve items that participate in the optimal solution
(topc2{v2} and topc1{v1} must both be included in the optimal solution).

6 2 agents, 2 items, Private Capacities

In this section, valuations and capacities are private. We give VCG payments which are envy-free and
individually rational for any game with two agents and two items. We specify the payments by giving the
functions h1(v2, c2) and h2(v1, c1). Note that with two items, all ci ≥ 2 are equivalent, therefore we only
need to consider capacities ∈ {0, 1, 2}.

We show that the following give envy-free payments

h1(v2, c2) =

{
max(v21, v22) c2 ∈ {1, 2}
0 c2 = 0

h2(v1, c1) =

{
max(v11, v12) c1 ∈ {1, 2}
0 c1 = 0

The payments are envy-free if and only if

δ12 = h1(v2, c2)− h2(v1, c1) ≤ v2(opt2)− v1(opt2),

δ21 = h2(v1, c1)− h1(v2, c2) ≤ v1(opt1)− v2(opt1).

The conditions when {c1, c2} = {1, 2} were worked out in the previous section and the correctness for
h1(v2, 2) and h2(v1, 1) carries over (and symmetrically, if we switch capacities of the agents). Consider the
following remaining cases.

• c1 = c2 = 2: agent 1 does not envy agent 2 if and only if:

h1(v2, 2)− h2(v1, 2) ≤
v21 + v22 − v11 − v12 if v21 > v11, v22 > v12
v22 − v12 if v21 < v11, v22 > v12
v21 − v11 if v21 > v11, v22 < v12
0 if v21 < v11, v22 < v12
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Symmetrically, agent 2 does not envy agent 1 if and only if:

h2(v1, 2)− h1(v2, 2) ≤
v11 + v12 − v21 − v22 if v11 > v21, v12 > v22
v12 − v22 if v11 < v21, v12 > v22
v11 − v21 if v11 > v21, v12 < v22
0 if v11 < v21, v12 < v22

Combining, we obtain the condition

min{v21 − v11, 0}+min{v22 − v12, 0}
≤ h1(v2, 2)− h2(v1, 2)

≤ max{v21 − v11, 0}+max{v22 − v12, 0}. (29)

We now show that our particular h’s satisfy (29). It suffices to establish one of the inequalities: We have

v21 ≤ max{v11, v12}+max{v21 − v11, 0}
v22 ≤ max{v11, v12}+max{v22 − v12, 0}

Combining, we obtain the desired relation:

max{v21, v22}
≤ max{v11, v12}+max{v21 − v11, 0}+max{v22 − v12, 0} .

• c1 = c2 = 1: agent 1 does not envy agent 2 if and only if:

h1(v2, 1)− h2(v1, 1)

≤
{

v22 − v12 v11 + v22 > v12 + v21
v21 − v11 v11 + v22 < v12 + v21

Symmetrically, agent 2 does not envy agent 1 if and only if:

h2(v1, 1)− h1(v2, 1)

≤
{

v12 − v22 v21 + v12 > v22 + v11
v11 − v21 v21 + v12 < v22 + v11

Combining, we obtain

min{v22 − v12, v21 − v11}
≤ h1(v2, 1)− h2(v1, 1)

≤ max{v22 − v12, v21 − v11} (30)

We now show that our particular h’s satisfy (30). It suffices to establish one of the inequalities: We have

v21 ≤ max{v11, v12}+ v21 − v11

v22 ≤ max{v11, v12}+ v22 − v12}
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Combining, we obtain the desired relation:

max{v21, v22} ≤ max{v11, v12}+max{v21 − v11, v22 − v12} .

• c1 = 1, c2 = 0: No agent envies the other if and only if

h1(v2, 0)− h2(v1, 1) ≤ 0

h2(v1, 1)− h1(v2, 0) ≤ max{v11, v12}

Combining, we obtain

−max{v11, v12} ≤ h1(v2, 0)− h2(v1, 1) ≤ 0 (31)

Symmetrically, when c1 = 0, c2 = 1:

−max{v21, v22} ≤ h2(v1, 0)− h1(v2, 1) ≤ 0 (32)

Our particular h’s trivially satisfy (31) and (32).

• c1 = 2, c2 = 0: No agent envies the other if and only if

h1(v2, 0)− h2(v1, 2) ≤ 0

h2(v1, 2)− h1(v2, 0) ≤ v11 + v12

Combining, we obtain
− v11 − v12 ≤ h1(v2, 0)− h2(v1, 2) ≤ 0 (33)

Symmetrically, when c1 = 0, c2 = 2:

− v21 − v22 ≤ h2(v1, 0)− h1(v2, 2) ≤ 0 (34)

Our particular h’s trivially satisfy (33) and (34).

7 Conclusion and open problems

We have begun to study truthful and envy free mechanisms for maximizing social welfare for the capacitated
allocation problem.

There is much left open, for example:

1. Is there a truthful and envy free mechanism (with positive transfers) for the capacitated allocation
problem (arbitrary capacities):

(a) With public capacities and more than two agents.
(b) With private capacities for more than 2 agents and 2 items?

2. How well can we approximate the social welfare by a mechanism that is incentive-compatible, envy-
free, invidually rational, and without positive transfers for capacitated allocations ?

3. Noam Nisan has observed that for superadditive valuations, there may be no mechanism that is both
truthful and envy free. We conjecture that one can obtain mechanisms that are both truthful and envy
free for subadditive valuations.
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