
 האוניברסיטה העברית בירושלים
THE HEBREW UNIVERSITY OF JERUSALEM

ENVY-FREE MAKESPAN APPROXIMATION

By

EDITH COHEN, MICHAL FELDMAN, AMOS FIAT,
HAIM KAPLAN and SVETLANA OLONETSKY

Discussion Paper # 539 February 2010

 מרכז לחקר הרציונליות

CENTER FOR THE STUDY
OF RATIONALITY

Feldman Building, Givat-Ram, 91904 Jerusalem, Israel
PHONE: [972]-2-6584135 FAX: [972]-2-6513681

E-MAIL: ratio@math.huji.ac.il
 URL: http://www.ratio.huji.ac.il/

Envy-Free Makespan Approximation

Edith Cohen∗ Michal Feldman† Amos Fiat‡ Haim Kaplan § Svetlana Olonetsky¶

February 23, 2010

“It is better to be envied than pitied”

— Herodotus (484 BC - 430 BC)

Abstract

We study envy-free mechanisms for scheduling tasks on unrelated machines (agents) that approxi-
mately minimize the makespan. For indivisible tasks, we put forward an envy-free poly-time mechanism
that approximates the minimal makespan to within a factor of O(logm), where m is the number of ma-
chines. We also show a lower bound of Ω(logm/ log logm). This improves the recent result of Mu’alem
[22] who give an upper bound of (m + 1)/2, and a lower bound of 2 − 1/m. For divisible tasks, we
show that there always exists an envy-free poly-time mechanism with optimal makespan. Finally, we
demonstrate how our mechanism for envy free makespan minimization can be interpreted as a market
clearing problem.

1 Introduction

Imagine a set of n household chores, and m kids in the family. Every chore may take a different amount of
time to be performed by each child. A single chore cannot be performed by more than one child (indivisible),
but multiple chores can be assigned to a single child. The parents want to allocate chores fairly, and may
offer inducements to the children so as to ensure fairness. The parents have an additional goal which is to
get all the chores out of the way as soon as possible. This problem is our main focus. In job scheduling
terminology, we study mechanisms for the fair allocation of tasks to machines (agents), each of which may
take a different length of time to complete every task, subject to the added goal of minimizing the makespan;
i.e., getting all tasks done as soon as possible.

The problem of fair division, often modeled as that of partitioning a cake fairly, goes back at least to
1947 and is attributed to Jerzy Neyman, Hugo Steinhaus, Stefan Banach and Bronislaw Knaster ([26, 27]).
There are several books on fair division, and hundreds of references, both mathematical and philosophical,
a small sampling of books is [28, 4, 21, 16, 25]. Martin Gardner (1978, [12]) is credited with asking about
fair division of household chores.

∗AT&T Labs-Research, 180 Park Avenue, Florham Park, NJ.
†School of Business Administration and Center for the Study of Rationality, The Hebrew University of Jerusalem.
‡The Blavatnik School of Computer Science, Tel Aviv University.
§The Blavatnik School of Computer Science, Tel Aviv University.
¶The Blavatnik School of Computer Science, Tel Aviv University.

In order to devise a fair division, one should first define the precise notion of fairness desired. One com-
mon notion of fairness is that of “envy-freeness”, an allocation where no one seeks to switch her outcome
with that of another (Dubins and Spanier, 1961, [10], Foley, 1967, [11]).

Tasks may be divisible or indivisible. It is always possible to divide a divisible task equally between all
agents. This is envy-free, but infinite task times (e.g., a task too demanding for a four year old) may make
this assignment impossible or ill-defined.

For indivisible tasks, it is less obvious that one can achieve envy-freeness. This can be achieved if one
allows for the design of a mechanism that determines both an allocation and payments (to or from the agents,
to the mechanism or between themselves). We assume that an agent’s utility is quasi-linear, i.e., equal to
the payment from the mechanism from which we subtract the cost of tasks assigned by the mechanism. In
particular, assigning task j to the agent requiring minimal time for j (maximizing social welfare) and using
VCG payments makes this task assignment envy-free.

Within the range of possible envy-free allocations, one may seek out an envy-free allocation that achieves
additional goals, such as economic efficiency, revenue maximization and incentive compatibility.1

Mu’alem studied the additional goal of makespan minimization. In particular, they seek envy-free mech-
anisms for scheduling (indivisible) tasks on unrelated machines (agents) that approximately minimize the
makespan. Consider an instance of indivisible task scheduling for m agents (without envy-free require-
ments), and without loss of generality assume that the assignment of minimal makespan has makespan 1.
Mu’alem show that there is no envy-free mechanism that guarantees a makespan less than 2 − 1/m. They
also give an algorithm that always produces a schedule with makespan at most (m+ 1)/2.

Mu’alem also define locally efficient allocations, and prove that this is a necessary and sufficient condi-
tion that such an allocation has associated payments that make it envy-free. (The locally efficient condition
is more general than the context of task scheduling). In [17], Kempe et al. study the problem of envy-free
allocations for bidders with budget constraints.

Nisan and Ronen [24] considered the above setting of job scheduling on unrelated machines in a game
theoretic context, where agents are machines that seek to minimize their utility. Nisan and Ronen were not
concerned with the fairness of the allocation, rather they looked for an incentive compatible mechanism that
approximates the minimal makespan. The problem posed by Nisan and Ronen has led to a great deal of
work [19, 8, 18, 1], yet the main question is still open. For the general case, all that known is a lower bound
of 2.61 and an upper bound of m (similar to the gap obtained by Mu’alem for envy-free mechanisms)2. For
divisible tasks, Christodoulou et al. [7] demonstrated an upper bound of 1 + (m− 1)/2 and a lower bound
of 2 − 1/m (while for the class of “task independent” algorithms, the bound of 1 + (m − 1)/2 holds as a
lower bound as well).

1.1 Our Contributions

• We give an envy-free mechanism for scheduling indivisible tasks on m unrelated machines, that ap-
proximates the minimal makespan to within a factor of O(logm), improving the (m + 1)/2 of [22].
Our mechanism is polynomial time. (Section 3)

• We give a lower bound of Ω(logm/ log logm) on the makespan approximation of any envy-free

1 Several papers consider envy-free item pricing (in various scenarios) with the goal of maximizing revenue [14, 6, 5, 2],
hardness results for revenue maximization envy-free item pricing appear in [9].

2The bounds given above hold for deterministic mechanism, but randomization can reduce the approximation ratio. In particular,
Mualem and Schapira [23] advocated a randomized truthful mechanism with an upper bound of 7m/8 and showed a lower bound
of 2− 1/m for randomized mechanisms.

1

indivisible tasks scheduling mechanism, polynomial time, or not. This improves on the previous
2− 1/m of [22]. (Section 4)

• For machine scheduling with divisible tasks, we show that there always exists an envy-free polynomial-
time mechanism with optimal makespan (Section 5).

• We demonstrate how our mechanism for envy free makespan minimization can be interpreted as a
market clearing problem.

2 Preliminaries

In the scheduling notation of [13], the input to the problem (R||Cmax) is defined as follows: there are m
machines, n tasks, and a matrix (cij)1≤i≤m,1≤j≤n such that cij is the time (load or cost) of running task j
on machine i.

Machine scheduling can have either divisible or indivisible tasks. An assignment of tasks to machines
is specified by an m× n matrix a = (aij), where aij is the fraction of job j assigned to machine i. A valid
assignment must have

∑
j∈[m] aij = 1 for all jobs i ∈ [n]. If tasks are divisible then 0 ≤ aij ≤ 1, for

indivisible tasks aij ∈ {0, 1}.
Let c̄i = (ci1, . . . , cin) be the i’th row of the cost matrix c = (cij) and let āi be the i’th row of the

assignment matrix a = (aij). The load (cost) of machine i under assignment (aij) is the inner product
c̄i · āi =

∑n
j=1 cijaij . The makespan of the assignment matrix a is max1≤i≤m c̄i · āi.

The problem of finding an assignment with a minimum makespan can be formulated as an integer
program (IP) for indivisible jobs (aij ∈ {0, 1}) and as a linear program (LP) for divisible jobs (0 ≤ aij ≤
1). Lenstra, Shmoys and Tardos ([20]) give a polynomial time 2-approximation algorithm for scheduling
indivisible tasks, and an inapproximability result, stating that unless P = NP , for ρ < 3/2 there is no
polynomial time ρ-approximation algorithm for minimizing makespan of indivisible tasks.

Following [24, 22], we consider the setting where the m machines are selfish agents. An allocation
function a maps the cost matrix c = (cij) into an m × n assignment matrix a(c) = (aij). Let c̄i and ā(c)i
be the i’th row of the matrices c and a(c), respectively. A payment function p is a mapping from the m× n
cost matrix c to a real vector p(c) = (p1, p2, . . . , pm), pi ∈ ℜ. Let p(c)i be the i’th coordinate of p(c).

A mechanism is a pair of functions, M =< a, p >, where a is an allocation function, and p is a payment
function. For mechanism < a, p > with cost matrix c = (cij), the utility to agent i is p(c)i− c̄i · ā(c)i. Such
a utility function is known as quasi-linear.

A mechanism < a, p > is envy-free if no agent seeks to switch her allocation and payment with another.
I.e., if for all 1 ≤ i, j ≤ m and all cost matrices c:

p(c)i − c̄i · ā(c)i ≥ p(c)j − c̄i · ā(c)j .

Based on [15], we say that an allocation function a is envy-free implementable (EF -implementable) if
there exists a payment function p such that the mechanism M =< a, p > is envy-free.

Characterization

We make use of the following definition and theorem from Haake et. al. [15]:
An allocation function a is said to be locally efficient if for all cost matrices c and all permutations π of

1, . . . ,m,
m∑
i=1

c̄i · ā(c)i ≤
m∑
i=1

c̄i · ā(c)π(i).

2

Theorem 2.1. ([15]) A necessary and sufficient condition for an allocation function a to be EF -implementable
is that assignment a is locally efficient.

3 An Upper Bound for Indivisible Jobs

In this section we present a polynomial algorithm that produces a locally efficient, and hence, envy-free
allocation of indivisible jobs whose makespan is at most O(logm) times the optimal makespan without
envy-freeness constraints. In particular, our algorithm approximates the minimum makespan with envy-
freeness constraints to within a factor of O(logm).

To simplify the description we assume that the algorithm starts with an allocation OPT that minimizes
the makespan. If we were to start with an α approximation to the minimal makespan, ([20]), the final
approximation would be 2α · e(lnm+1) = O(logm). The allocation, which we start with, fixes a partition
of the jobs into bundles3 B = {b1, . . . , bm} where bi is the set of jobs running on machine i. In addition to
set notation (ai is a set of tasks) we use vector notation (āi is a 0/1 vector of length n, the j’th coordinate
of which is one iff task j belongs to ai).

We use OPT to denote both the allocation and its makespan when no confusion can arise. For set
of bundles D = {dj}kj=1, k ≤ m, we denote by LE(D) a locally efficient assignment of D (this is an
assignment of bundles to machines, no more than one bundle per machine, such that the sum of the loads is
minimized).

The algorithm works in phases. We start each phase with a subset of the bundles that have not been
assigned to machines yet. We compute a locally efficient assignment of these bundles. Then if this locally
efficient assignment contains a machine with load larger than 2OPT we discard all bundles assigned to such
machines (these bundles will be considered again only in the next iteration), and repeat the process with the
remaining bundles until the makespan of the locally efficient allocation is at most 2OPT. Thus, each phase
produces an assignment of some subset of the bundles. The final assignment is the union of the assignments
obtained in the different phases. Specifically, we assign to each machine the union of the bundles assigned
to it in the different phases. See Algorithm FIND-APPROX.

We now prove the following theorem.

Theorem 3.1. The allocation computed in Algorithm FIND-APPROX is locally efficient and its makespan is
O(logm · OPT).

The following lemma shows that in each phase the number of bundles which we discard is at most half
the number of bundles we start out with.

Lemma 3.2. During a phase of Algorithm FIND-APPROX (lines 5-20) that starts with k bundles, no more
than k/2 bundles are discarded.

Proof. Consider the set of bundles Bactive = {bi1 , · · · , bik}, k = |Bactive|, at the beginning of a phase. Let
ai be the bundle assigned to machine i by the locally efficient assignment LE(Bactive). It follows that the
sum of loads in LE(Bactive) is smaller than the sum of loads of the same bundles when placed on OPT,
which is smaller than k · OPT; i.e.,

m∑
i=1

c̄i · āi ≤
k∑

j=1

c̄ij · b̄ij ≤ k · OPT .

3In this paper, bundles consist of jobs or other objects, and do not include payments which are dealt with separately.

3

Algorithm 1 Compute Envy-Free (O(logm))-Approximation
1: procedure FIND-APPROX(B, c) ◃ B – set of OPT bundles, c – cost matrix
2: q ← 0
3: Bout ← ∅
4: Bactive ← B
5: while Bactive ̸= ∅ do
6: q ← q + 1
7: a← LE(Bactive)
8: while makespan(a) > 2 · OPT do
9: for all i do

10: if c̄i · āi > 2 · OPT then
11: Bout ← Bout ∪ ai
12: Bactive ← Bactive \ ai
13: end if
14: end for
15: a← LE(Bactive)
16: end while
17: aq ← a
18: Bactive ← Bout

19: Bout ← ∅
20: end while
21: ai = ∪qj=1a

j
i

22: return a
23: end procedure

Every time we throw out bundles in the inner loop (lines 8-16 of Algorithm FIND-APPROX) and re-
compute the assignment of the remaining bundles

∑
i c̄i · āi decreases by at least 2 · OPT. Since

∑
i c̄i · āi

never increases during a phase, the inner loop can repeat at most k·OPT
2·OPT = k

2 times, implying that at most k
2

bundles can join the set Bout.

The following lemma follows directly from Lemma 3.2.

Lemma 3.3. When Algorithm FIND-APPROX terminates q ≤ logm+ 1.

It follows from the definition of the algorithm that the makespan of the assignment aj produced by
phase j is at most 2OPT. The final assignment assigns to each machine the union of the bundles assigned
to it by the different phases. Since we have at most logm + 1 phases we obtain that the makespan of the
final assignment is O(logm ·OPT). To finish the proof of Theorem 3.1 we have to show that the assignment
which we produce is locally efficient. This follows from a more general observation that any union of locally
efficient assignments is locally efficient as established by the following lemma.

Lemma 3.4. Let c be a cost matrix, and let b and b′ be two assignments of different sets of jobs to the same
set of machines. Let a be the assignment such that for every i, ai = bi ∪ b′i. If b and b′ are locally efficient
then so is a.

Proof. Assume that a is not locally efficient then there is a permutation π of 1, 2, . . . ,m such that
∑

c̄i ·
āπ(i) <

∑
c̄i · āi. By the definition of a, this implies that

∑
(c̄i · b̄π(i)+ c̄i · b̄′π(i)) <

∑
(c̄i · b̄i+ c̄i · b̄′i) and,

4

Table 1: Valuation matrix for lower bound

c =

1 ∞ ∞ ∞ . . . ∞ ∞
1− 1

2(n−1) 1 ∞ ∞ . . . ∞ ∞
1− 2

2(n−1) 1− 1
2(n−2) 1 ∞ . . . ∞ ∞

1− 3
2(n−1) 1− 2

2(n−2) 1− 1
2(n−3) 1 . . . ∞ ∞

...
...

...
...

1/2 + 1
2(n−1) 1/2 + 1

2(n−2) 1/2 + 1
2(n−3) 1/2 + 1

2(n−4) . . . 1 ∞
1/2 1/2 1/2 1/2 . . . 1/2 1

2 2 2 2 . . . 2 2
4 4 4 4 . . . 4 4
...

...
...

...
2ℓ 2ℓ 2ℓ 2ℓ . . . 2ℓ 2ℓ

therefore, either
∑

c̄i · b̄π(i) <
∑

c̄i · b̄i or
∑

c̄i · b̄′π(i) <
∑

c̄i · b̄′i, which either contradicts the assumption
that b is locally efficient or contradicts the assumption that b′ is locally efficient.

Remark1: We can replace the constant 2 in lines 8 and 10 of Algorithm FIND-APPROX by the constant
e. Then the number of iterations is at most lnm and the makespan would be at most e(lnm+ 1). Note that
e lnm < 2 log2m.

Remark2: In order to get polynomial running time for Algorithm FIND-APPROX we can start with any
constant approximation to makespan. Locally efficient assignment given bundles can be calculated using
weighted matching in polynomial time.

4 A Lower Bound for Indivisible Jobs

We give a lower bound of Ω(logm/ log logm) on the makespan approximation achievable by any locally
efficient allocation of indivisible jobs.

Let n be the number of jobs. For every n we define the cost matrix c = (cij) with m = n+ ℓ machines
where 2ℓ = log n/(4 log log n) as follows.

Row i, 1 ≤ i ≤ n+ ℓ, of the cost matrix c corresponds to the ith machine and cij is the cost of running
job j on machine i. The horizontal line lies between machine n and n + 1. For 1 ≤ i ≤ n, machine i has
cost 1 for job i, costs 1− (i− j)/(2(n− j)) for jobs j < i, and cost of∞ for the rest of jobs (j > i). For
n + 1 ≤ i ≤ n + ℓ, all costs of machine i are equal to 2i. Observe that cij − ci+1,j = 1/(2(n − j)) for
1 ≤ i < n and j ≤ i.

The optimal makespan of all these matrices is 1. We can achieve makespan 1 by running job i on
machine i for every 1 ≤ i ≤ n, and we cannot do better since job n has load ≥ 1 on all machines.

We establish a lower bound of 2ℓ = log n/(4 log logn) on the makespan of any envy-free allocation for
this instance. This shows that we cannot have an algorithm that always produces an envy-free allocation
whose makespan approximates the optimal makespan to within a factor smaller than log n/(4 log log n).

Specifically, we show that for any partition of the jobs into ≤ n + ℓ bundles, any locally efficient

5

assignment of these bundles to the machines has makespan at least 2ℓ. Our first lemma makes few easy
observations regarding allocations with makespan < 2ℓ.

Lemma 4.1. For cost matrix (cij) above, any allocation with makespan < 2ℓ satisfies the following.

1. There are fewer than 2ℓ+1 jobs on each machine.

2. There are fewer than 2ℓ/2(i−n) jobs on machine n < i ≤ n+ ℓ.

3. There are fewer than 2ℓ jobs running on machines n+ 1, . . . , n+ ℓ.

Proof. (1) follows since cij ≥ 1/2 for all i and j. (2) follows since for n < i ≤ n + ℓ, cij ≥ 2i−n.
(3) follows by summing the upper bound on the number of jobs on each of these machines, this sum is
≤

∑(n+ℓ)
i=n+1(2

ℓ/2(i−n) − 1) = 2ℓ − ℓ < 2ℓ.

We can now conclude with the proof of the lower bound:

Theorem 4.2. For any partition of jobs into bundles, the makespan of any locally efficient assignment of the
bundles is at least 2ℓ = log n/(4 log logn).

Proof. Fix an arbitrary partition into bundles and suppose that there is an envy-free assignment of the bun-
dles with makespan < 2ℓ. We will derive a contradiction by showing that the assignment is not locally
efficient.

Since the makespan is < 2ℓ no bundle is assigned to machine n + ℓ. So we derive the contradiction by
showing that if we move the bundle assigned to machine i to machine i+ 1 for 1 ≤ i < n+ ℓ we decrease
the total load.

By Lemma 4.1(1), there are≤ 2ℓ+1−1 jobs in the bundle assigned to machine n. So moving this bundle
to machine n+ 1 increases the load of this bundle by at most 3/2 · 2ℓ+1.

Since ci+1,j = 2cij for n+ 1 ≤ i < n+ ℓ and all j, moving a bundle from machine i to machine i+ 1
for n + 1 ≤ i < n + ℓ increases the load of this bundle exactly by a factor of 2. Since the load on each
of these machines is < 2ℓ, the total increase in load caused by moving each of these bundles one machine
down is < ℓ · 2ℓ.

Summing up we obtain that the increase in the load due to moving bundles on machines n, . . . , n+ ℓ is
at most (3/2)2ℓ+1 + ℓ2ℓ = (ℓ+ 3)2ℓ. Substituting 2ℓ = log n/(4 log log n) we obtain that this increase for
large n is smaller than log n/4 which is smaller than, say, lnn/2.5.

By Lemma 4.1(3), at most 2ℓ jobs are in bundles assigned to machine n+ 1, . . . , n+ ℓ and, by Lemma
4.1(1), at most 2ℓ+1 jobs are in the bundle assigned to machine n. Therefore, at least n − 3 · 2ℓ jobs are
in bundles assigned to machines 1, . . . , n − 1. If job j is in one of these bundles then after we move these
bundles the contribution of job j to the load decreases by 1/(2(n− j)). So the total decrease in load due to
moving bundles assigned to machines 1, . . . , n−1 is at least (1/2)(Hn−H3·2ℓ) ≈ (1/2)(lnn−ln(3·2ℓ)) ≥
(1/2− ϵ) lnn for large enough n.

Since the decrease in the load caused by moving bundles on machines 1, . . . , n − 1 is larger than the
increase in the load caused by moving bundles on machines n, . . . , n+ ℓ we obtain a contradiction.

Since m = n+ ℓ = O(n), we get that it is Ω(logm/ log logm) approximation.

6

5 Unrelated Machine Scheduling with Divisible Jobs

The existence of an envy-free assignment for divisible tasks is trivial, even without payments. For example,
simply assigning each machine a 1/m fraction of every job is trivially envy-free. However, it is certainly
not optimal with respect to makespan minimization. In the previous section we showed a lower bound of
Ω(logm/ log logm) for indivisible tasks.

In this section we prove that when tasks are divisible, there always exists an envy-free allocation that
achieves the minimum makespan. To find such an allocation: solve the linear program that minimizes
makespan subject to the constraints of a valid assignment including envy-free constraints. The main issue is
to prove that this LP formulation has a solution, which follows from the following theorem.

Theorem 5.1. For any instance of machine scheduling with divisible jobs, there is a locally efficient assign-
ment with minimum makespan.

Consider an instance of the machine scheduling problem, specified by the cost matrix c = (cij). We use
the notation c̄i for the i’th row of the cost matrix. As we deal with divisible assignments, bundles are sets of
fractions of tasks. An assignment itself is represented as a real valued matrix, (aij), where aij is the fraction
of task j assigned to machine i. We use the terminology of sets (ai is the set of fractional tasks assigned to
agent i) as well as vector notation (āi is the i’th row of this assignment matrix (aij)).
Warm up (two machines with finite valuations): Consider an instance with two machines i ∈ [2] such
that all entries in c are finite. We show that any assignment with minimum makespan must be locally
efficient. Let o be an optimal assignment and assume on the contrary that o is not locally efficient. Without
loss of generality, we can assume that the makespan of o is 1 and both machines have the same load c̄1 · ō1 =
c̄2 · ō2 = 1, where oi is the bundle assigned to machine i (i ∈ [2]). (Otherwise, we can transfer (fractional)
jobs from the machine with load 1 to the other machine and get an assignment a with a strictly lower
makespan than o, which contradicts optimality of o.)

Consider a locally efficient solution ℓ with bundles ℓ1 and ℓ2. Since o ̸= ℓ, ℓ1 = o2 and ℓ2 = o1.
The sum of the loads under ℓ must be strictly smaller than 2, which is the sum of the loads under o (this is
because o is not locally efficient). The makespan of ℓ must be at least 1 (otherwise, ℓ has smaller makespan
than o which contradicts optimality). Therefore, under ℓ, exactly one of the machines must have load strictly
smaller than 1. Without loss of generality, we assume it is machine 1 and let c̄2 · ℓ̄2 = c̄2 · ō1 = 1 + x and
c̄1 · ℓ̄1 = c̄1 · ō2 = 1− y, where x ≥ 0 and 0 ≤ y ≤ 1. The sum of the loads under ℓ is 1 + x+ 1− y < 2.
Hence, y > x.

We now construct a new assignment a such that ā1 = ō2+(y−ϵ)ō1 and ā2 = (1−y+ϵ)ō1. It is easy to
see that a is well defined for any 0 < ϵ < y. We show that a has makespan max{c̄1 · ā1, c̄2 · ā2} < 1, which
contradicts optimality of o. Using ϵ = (y−x)/2, the load of a on machine 1 is c̄1 · ā1 = (1−y)+(y− ϵ) =
1−ϵ < 1 and on machine 2 is c̄2 ·ā2 = (1−y+ϵ)(1+x) = 1−y+x−yx+ϵ+ϵx ≤ 1−(y−x)+ϵ(1+x) <
1− (y − x) + 2ϵ = 1.
General instance: Consider a cost matrix c = (cij) of the machine scheduling problem with m ≥ 2
machines which may include +∞ entries. We first define a lexicographic order on assignments.

Definition 5.2. A vector (l1, . . . , lm) is smaller than (l′1, . . . , l
′
m) lexicographically if for some i, li < l′i and

lk = l′k for all k < i. An assignment a is smaller than a′ lexicographically if the vector of machine loads
l(a) = (l1(a), . . . , lm(a)), sorted in non-increasing order, is lexicographically smaller than l(a′), sorted in
non increasing order.

Clearly, every lexicographically minimal assignment has minimum makespan. When all entries are
finite, any assignment with minimum makespan has equal loads on all machines and therefore minimum

7

makespan implies a lexicographically minimal assignment.4 In either case (with all entries finite or not),
there exists some lexicographically minimal schedule with minimal makespan. In order to prove Theo-
rem 5.1, it suffices for us to prove that a lexicographically minimal schedule is also locally efficient.

Lemma 5.3. Every lexicographically minimal assignment is locally efficient.

Proof. Assume on the contrary that o is a lexicographically minimal assignment that is not locally efficient
and let ℓ be a locally efficient assignment of the bundles of o. Consider a directed graph G between machines
where arcs correspond to a reassignment of bundles between o and ℓ. We also include empty bundles and
hence this reassignment is a permutation. Each machine has either no incoming and outgoing arcs or exactly
one incoming and exactly one outgoing arc. The graph G is therefore a collection of singletons and cycles.

Since ℓ ̸= o, and there are no paths, G must contain a cycle. Moreover, because ℓ is locally efficient and
o is not, G must contain a cycle X such that∑

i∈X
c̄i · ōi >

∑
i∈X

c̄i · ℓ̄i . (1)

Consider such a cycle X with |X| = k ≥ 2 nodes (machines). We (re-)number machines such that machines
along the cycle are indexed [0, . . . , k − 1] in cyclic order. We also accordingly renumber bundles such that
the bundles of machine i are oi, ℓi. By definition, ℓi+1 = oi (all addition operations through this section are
modulo k).

We claim that all machines on the cycle X must be equally loaded under o, that is, c̄i · ōi are equal for
0 ≤ i ≤ k − 1.5 Assume on the contrary that there are two consecutive machines on X , i and i + 1, such
that c̄i · ōi > c̄i+1 · ōi+1. We construct an assignment a from o by shifting a fraction f of the bundle oi from
machine i to machine i + 1 such that both machines have equal loads, that is, f such that (1 − f)c̄i · ōi =
c̄i+1 · (ōi+1 + fōi) or explicitly f = c̄i·ōi−c̄i+1·ōi+1

(c̄i+c̄i+1)·ōi . Since ℓi+1 = oi and c̄i+1 · ℓ̄i+1 < ∞, c̄i+1 · ōi < ∞
and therefore f > 0. The assignment a is strictly lexicographically smaller than o, which is a contradiction.

By scaling, we can assume that c̄i · ōi = 1 for all 0 ≤ i ≤ k− 1. Let c̄i+1 · ℓ̄i+1 = 1+∆i be the load of
machine i+ 1 under ℓ (∆i ≥ −1.) From (1),

k−1∑
i=0

∆i < 0 . (2)

We conclude the proof by constructing an assignment a that is identical to o outside the cycle, has∑k−1
i=0 āi =

∑k−1
i=0 ōi, that is, same total allocation as o on cycle machines, has load c̄i · āi = 1 on machines

i = 1, . . . , k − 1 and load c̄0 · ā0 < 1 on machine 0. The assignment a is strictly lexicographically smaller
than o, which contradicts the assumption that o is the lexicographically minimum.

The assignment a is such that for i = 0, . . . , k − 1, an 0 ≤ αi ≤ 1 fraction of oi is assigned to machine
i and the remaining (1− αi) is assigned to machine i+ 1. Define

µ = max{1, max
i=0...k−1

i∏
j=0

(1 + ∆i)} , (3)

4To see this, suppose on the contrary that this is not the case. Consider an assignment with minimum makespan. Let M′ ⊂ [m]
be machines with load strictly lower than the makespan. We can transfer (fractional) jobs from [m]\M′ machines to M′ machines
and obtain an assignment with strictly lower makespan, which contradicts optimality.

5This is immediate if there are no +∞ entries in v.

8

α0 = 1− 1
2µ , and for i = 1, . . . , k − 1:

(1− αi) = (1− αi−1)(1 + ∆i−1) . (4)

It follows that for i = 1, . . . , k − 1,

(1− αi) = (1− α0)

i−1∏
j=0

(1 + ∆j) . (5)

We show that all αi are well defined (are in [0, 1]): Since ∞ > µ ≥ 1, α0 ∈ [1/2, 1). For i =
1, . . . , k − 1, using (5) and (3)

(1− αi) =
1

2µ

i−1∏
j=0

(1 + ∆j) ≤
1

2
< 1 . (6)

As a product of positive quantities, (1− αi) ≥ 0.
The load ai takes on machine i (i = 1, . . . , k − 1) is (using (4)):

c̄i · āi = αi + (1 +∆i−1)(1− αi−1) = αi + (1− αi) = 1 . (7)

The load a0 takes on machine 0 is (using (5)):

c̄0 · ā0 = α0 + (1 +∆k−1)(1− αk−1)

= α0 + (1− α0)

k−1∏
j=0

(1 + ∆j)

< α0 + (1− α0) = 1 .

The strict inequality follows from (1 − α0) = 1/(2µ) > 0 and from
∏k−1

j=0(1 + ∆j) < 1 (which follows
from (2)).

6 Market prices for makespan minimization

We first argue that any envy free mechanism can be modified so that agents assigned the empty bundle
receive payment zero and that all payments are non-negative. Given an envy-free mechanism < a, p >, fix
a cost matrix c and consider the allocation a(c) and the payments p(c). We can add an arbitrary constant to
the payments of every agent and the mechanism remains envy-free.

Let the minimal payment to any agent be d. We replace the payment function p with p′ where p′(c)i =
p(c)i − d for all agents i. If the mechanism < a, p > was envy-free then so is < a, p′ > but the minimal
payment to any agent under < a, p′ > is zero. In particular, any agent i allocated nothing must receive the
minimal payment under p (otherwise any agent receiving less than p(c)i will envy agent i). Thus, agents
allocated nothing receive zero payment under p′.

We can reinterpret our mechanism for envy free makespan minimization as a market clearing problem
as follows:

A central authority has a large set of tasks that must be performed in parallel by a set of agents, each
of which has different capabilities. The agents report their costs for the tasks, and the authority computes

9

Lower bound Upper bound
(Divisible+EF)/Divisible 1 1 (Thm. 5.1)
(Indivisible+EF)/Indivisible Ω(logm

log logm) (Thm. 4.2) O(logm) (Thm. 3.1)

Table 2: Summary of our results on the cost of envy-freeness. The rows correspond to divisible or indivisible
tasks. The columns correspond to upper bounds on the ratio and lower bounds on the worst-case ratio. The
number of machines is m.

payment offers for (all) bundles where payments are non-negative and the payment for the empty bundle is
zero. Moreover, agents can choose bundles that maximize their utility (payment - costs) such that all tasks
are performed, no task is assigned to more than one agent, and the makespan is within a logarithmic factor
of the minimal makespan.

Consider an envy-free mechanism < a, p > such that payments are non negative and the payment
is zero for agents receiving the empty bundle. Consider the bundles assigned to agents 1, . . . , n, namely
a(c)1, a(c)2, . . . , a(c)n, and their associated payments p(c)1, p(c)2, . . . , p(c)n. The authority implicitly of-
fers payments for all possible bundles of tasks as follows; for every bundle B let SB be the set of agents i
such that a(c)i ⊂ B. The payment offered by the authority for bundle B is maxj∈SB

p(c)j . If SB = ∅ then
the payment offered for B is zero.

If agent i were to choose the bundle a(c)i, then — due to envy-freeness — the utility of agent i from
this bundle and associated payment is ≥ than the utility of agent i from any other bundle and associated
payment. Thus, the market will clear (all tasks will be assigned), and the resulting makespan is no worse
than logm times the minimal makespan.

7 Summary and Open Problems

Table 2 summarizes upper and lower bounds on the ratio of the optimal makespan of machine scheduling
with envy-freeness constraints and the optimal makespan without envy-freeness constraints. The upper
bounds correspond to polynomial time algorithms. An obvious challenge is to close the gap between the
upper and lower bounds for indivisible tasks.

An intriguing issue is to understand the interaction of envy-freeness and incentive compatibility. What
can we say about the makespan approximation for mechanisms that are both envy-free and incentive com-
patible? Clearly, any o(m) approximation that is both incentive compatible and envy-free would be a major
breakthrough, even without envy-freeness. Recently, Ashlagi, Dobzinski, and Lavi [1] gave a lower bound
of Ω(m) on makespan approximation for incentive compatible and anonymous mechanisms. What if we
discard the anonymous assumption but require that the mechanism also be envy-free?

Minimum makespan machine scheduling is classically formulated as a linear program (for divisible jobs)
or an integer program (for indivisible jobs), both with the same set of linear constraints. The requirement of
envy-freeness can be captured by adding payment variables (that are not required to be integral) as additional
linear constraints. Accordingly, for a cost matrix (cij), we denote the optimal makespan with or without in-
tegrality or envy-freeness by TLP(cij), TIP(cij), TLP+EF(cij), and TIP+EF(cij). Using this notation,
Table 2 lists bounds on the ratios TIP+EF(cij)/TIP(cij) (indivisible) and TLP+EF(cij)/TLP(cij) (divis-
ible).

Starting with divisible tasks without envy-freeness constraints (TLP(cij)) we consider the impact on
the optimal makespan of integrality and envy-freeness. Envy-freeness requirement alone does not result
in an increase of the optimal makespan (Thm. 5.1). There are instances (the instances in our lower bound

10

construction in Thm. 4.2) where the integrality requirement (indivisible tasks) results in at most a factor
2 increase while, curiously, the combination of both requirements results in Ω(logm/ log logm) factor
increase.

Considering the approximability of the optimal makespan under the different types of constraints, TLP
and TLP+EF are linear programs and hence solvable in polynomial time and TIP has a 2 approximation
algorithm and an inapproximability result of 1.5 [20].

As for TIP+EF, we provided an O(logm) approximation algorithm and we know the problem is NP-
hard because integral machine scheduling with identical machines is known to be NP-hard (Garey & John-
son, reduction to partition) and any assignment on identical machines is trivially locally efficient and hence
EF. This leaves a wide gap as for the (in)approximability of TIP+EF. Closing this gap seems challenging:

• A 2-approximation algorithm for TIP(cij) was constructed using the relation to TLP(cij) [20]. This
approximation algorithm is based on taking a fractional schedule a and rounding it to an integral one
with a makespan larger by at most an additive term of maxi,j|aij>0 cij over that of a, where cij is the
time required by machine i to run job j. This approach does not immediately carry over, when starting
from a fractional envy-free schedule, because the EF constraints might be violated when rounding.

• The inapproximability result of 1.5 for TIP(cij) [20] was for makespan minimization. However, the
instance used is in fact envy-free. Thus, [20] further implies that one cannot approximate the minimal
makespan and envy-free assignment to within a factor of 1.5 in polynomial time.

• Lastly, our lower bound on the ratio TIP+EF(cij)/TIP(cij) precludes obtaining a tighter approxi-
mation using a better rearrangement of the bundles of a solution to TIP(M) to achieve envy-freeness.

References

[1] Itai Ashlagi, Shahar Dobzinski, and Ron Lavi. An optimal lower bound for anonymous scheduling
mechanisms. In Proceedings of the ACM Conference on Electronic Commerce, 2009.

[2] Nikhil Bansal, Ning Chen, Neva Cherniavsky, Atri Rudra, Baruch Schieber, and Maxim Sviridenko.
Dynamic pricing for impatient bidders. In Bansal et al. [3], pages 726–735.

[3] Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors. Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9,
2007. SIAM, 2007.

[4] S. J. Brams and A. D. Taylor. Fair Division: From Cake-Cutting to Dispute Resolution. Cambridge
University Press, 1996.

[5] Patrick Briest. Uniform budgets and the envy-free pricing problem. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors,
ICALP (1), volume 5125 of Lecture Notes in Computer Science, pages 808–819. Springer, 2008.

[6] Ning Chen, Arpita Ghosh, and Sergei Vassilvitskii. Optimal envy-free pricing with metric substitutabil-
ity. In Lance Fortnow, John Riedl, and Tuomas Sandholm, editors, ACM Conference on Electronic
Commerce, pages 60–69. ACM, 2008.

11

[7] George Christodoulou, Elias Koutsoupias, and Annamária Kovács. Mechanism design for fractional
scheduling on unrelated machines. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej
Tarlecki, editors, ICALP, volume 4596 of Lecture Notes in Computer Science, pages 40–52. Springer,
2007.

[8] George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A characterization of 2-player mech-
anisms for scheduling. In Proceedings of the 16th annual European symposium on Algorithms, pages
297 – 307, 2008. Comment: 20 pages, 4 figures, ESA’08.

[9] Erik D. Demaine, Mohammad Taghi Hajiaghayi, Uriel Feige, and Mohammad R. Salavatipour. Com-
bination can be hard: approximability of the unique coverage problem. In SODA, pages 162–171.
ACM Press, 2006.

[10] L.E. Dubins and E.H. Spanier. How to cut a cake fairly. American Mathematical Monthly, 68:1–17,
1961.

[11] D. Foley. Resource allocation and the public sector. Yale Economic Essays, 7:45–98, 1967.

[12] Martin Gardner. aha! Insight. W.H. Freeman & Company, 1978.

[13] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and approximation
in deterministic sequencing and scheduling: A survey. Ann. Discrete Math., 5:287–326, 1979.

[14] Venkatesan Guruswami, Jason D. Hartline, Anna R. Karlin, David Kempe, Claire Kenyon, and Frank
McSherry. On profit-maximizing envy-free pricing. In SODA, pages 1164–1173. SIAM, 2005.

[15] Claus-Jochen Haake, Matthias G. Raith, and Francis Edward Su. Bidding for envyfreeness: A proce-
dural approach to n-player fair-division problems. Social Choice and Welfare, 19:723–749, 2002.

[16] Alan D. Taylor Julius B. Barbanel. The Geometry of Efficient Fair Division. Cambridge University
Press, 2005.

[17] David Kempe, Ahuva Mu’alem, and Mahyar Salek. Envy-free allocations for budgeted bidders. In
Workshop on Internet and Network Economics.

[18] Elias Koutsoupias and Angelina Vidali. A lower bound of 1+ϕ for truthful scheduling mechanisms.
In Ludek Kucera and Antonı́n Kucera, editors, MFCS, volume 4708 of Lecture Notes in Computer
Science, pages 454–464. Springer, 2007.

[19] Ron Lavi and Chaitanya Swamy. Truthful mechanism design for multi-dimensional scheduling via
cycle monotonicity. In Jeffrey K. MacKie-Mason, David C. Parkes, and Paul Resnick, editors, Pro-
ceedings 8th ACM Conference on Electronic Commerce (EC-2007), San Diego, California, USA, June
11-15, 2007, pages 252–261. ACM, 2007.

[20] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Math. Program., 46:259–271, 1990.

[21] Herve Moulin. Fair Division and Collective Welfare. MIT Press, 2004.

[22] Ahuva Mu’alem. On multi-dimensional envy-free mechanisms. In First International Conference on
Algorithmic Decision Theory.

12

[23] Ahuva Mu’alem and Michael Schapira. Setting lower bounds on truthfulness: extended abstract. In
Bansal et al. [3], pages 1143–1152.

[24] Noam Nisan and Amir Ronen. Algorithmic mechanism design (extended abstract). In STOC, pages
129–140, 1999.

[25] John Rawls. A Theory of Justice. Harvard University Press, 2005.

[26] H. Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.

[27] H. Steinhaus. Mathematical Snapshots. Oxford University Press, 1951.

[28] H. Peyton Young. Equity: In Theory and Practice. Princeton University Press, 1995.

13

