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Abstract

We quantify the effect of Bayesian ignorance by comparing the social cost obtained in a
Bayesian game by agents with local views to the expected social cost of agents having global views.
Both benevolent agents, whose goal is to minimize the social cost, and selfish agents, aiming at
minimizing their own individual costs, are considered. When dealing with selfish agents, we
consider both best and worst equilibria outcomes. While our model is general, most of our results
concern the setting of network cost sharing (NCS) games. We provide tight asymptotic results
on the effect of Bayesian ignorance in directed and undirected NCS games with benevolent and
selfish agents. Among our findings we expose the counter-intuitive phenomenon that “ignorance
is bliss”: Bayesian ignorance may substantially improve the social cost of selfish agents. We also
prove that public random bits can replace the knowledge of the common prior in attempt to bound
the effect of Bayesian ignorance in settings with benevolent agents. Together, our work initiates
the study of the effects of local vs. global views on the social cost of agents in Bayesian contexts.
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1 Introduction

It is very common that the participants of a distributed system are required to make decisions which
are based on their own local views rather than on a global view of the system. This lack of global
view may have severe implications on the overall system’s performance. In this paper we introduce
a novel approach for quantifying these implications. Our approach relies on the notion of Bayesian
games that we now turn to describe.

Consider some k agents, where each agent i is associated with an action space Ai and a type
space Ti. Every type profile t ∈ T = T1 × · · · × Tk (a.k.a. the state of the system) induces a game
Gt defined by a cost function Ci,t, i ∈ [k], that maps each action profile a ∈ A = A1 × · · · × Ak to
the cost incurred by agent i on a under t. A Bayesian game is merely a probability distribution p,
referred to as the common prior, over the induced games or, more formally, over the type profiles.

It is assumed that some type profile t = (t1, . . . , tk) ∈ T is chosen with respect to the common
prior p. The crux of the model is that although p is common knowledge, the agents have local views
of the actual instantiation t so that each agent i knows only her own type ti within the type profile
t and should decide on her action based upon that local view alone. Therefore, a strategy of agent i
is a function si : Ti → Ai that maps each type to one of her actions. Every strategy profile admits a
social cost defined as the expected sum of the agents’ costs.

In light of the above, the main principle of Bayesian games is that the agents cannot coordinate
their actions on the global state of the system as each agent’s action is dictated by her own local
view. Obviously, the privilege of bearing global views could have dramatically affected the agent’s
behavior and in particular, improve the social cost (assuming that this is the agent’s goal). We refer
to this lack of global view as Bayesian ignorance and our goal is to quantify its effect by comparing
the social cost attained in the Bayesian game, i.e., under local views, to the expected social cost
of agents having global views, where the expectation is taken with respect to the common prior
distribution on the induced games. In particular, we will focus on the ratio of the social cost of the
optimal strategy profile in the Bayesian game to the expected optimal social cost in the induced
games.

The aforementioned discussion assumes that the agents are benevolent in the sense that their goal
is to minimize the social cost. We will also consider selfish agents whose aim is to minimize their
own individual costs. When dealing with selfish agents, we restrict attention to the set of equilibrium
profiles1. Specifically, we study the ratio of the social cost of a best equilibrium strategy profile in
the Bayesian game to the expected social cost of the best equilibrium in the induced games. Finally,
we also study the same ratio with respect to a worst equilibrium. (Refer to Section 2 for a formal
definition of the model.)

While our model and quality measures are general, most of the technical results established in the
current paper concern the setting of network cost sharing (NCS) games. An NCS game is specified
by a (directed or undirected) graph in which every edge is associated with a non-negative cost, and a
set of k agents, each associated with a source vertex and a destination vertex. Each agent should buy
a subset of the edges so as to connect her source to her destination. The cost of each edge is shared
equally among all agents who bought it; the cost incurred by an agent is merely the sum of (partial)
payments it made for the edges she bought. An NCS game is a congestion game [14], therefore it
always admits an equilibrium in pure strategies. The social cost, which by definition, equals the sum

1The assumption that selfish agents converge to an equilibrium profile (at least to a pure equilibrium profile when
one exists) is among the most fundamental concepts in game theory.
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of the agents’ costs, is just the total cost of the edges bought by all agents. In a Bayesian NCS game
each agent knows her own source and destination, but not the sources and destinations of the others.

In Section 3 we provide tight asymptotic results on the effect of Bayesian ignorance in directed
and undirected NCS games with benevolent and selfish agents. Among our results we expose two
interesting phenomena. First, while allowing benevolent agents to bear global views is clearly socially
beneficial, in selfish agent settings ignorance may be bliss. In particular, we present a Bayesian NCS
game in which the social cost of the worst Bayesian equilibrium is asymptotically smaller than the
expected social cost of the best equilibrium in the induced games. In fact, in that Bayesian game
the worst Bayesian equilibrium achieves the expected cost of the globally optimal outcome. Second,
in settings with benevolent agents we find that public random bits can replace the knowledge of the
common prior in attempt to bound the effect of Bayesian ignorance (see Section 4). In this context
it would be interesting to understand what can be achieved with private random bits.

Related work. The effect of Bayesian ignorance is closely related to the notion of the value of
information [10], defined as the amount a decision maker would be willing to pay for information
prior to making a decision. This notion has been axiomatized by Gilboa and Lehrer [8]. Another
work that is conceptually close to our study is that of Ashlagi et al. [5], which quantifies the loss
or value that can be obtained due to lack of information about the number of agents in a resource
selection game, alas not in a Bayesian setting. Similar in spirit to our observation, ignorance may
improve the social welfare in their setting as well.

The network cost sharing game has been originally introduced by Anshelevich et al. [4] and has
been extensively studied in a non-Bayesian setting in recent years. Within the context of NCS games,
a great deal of attention has been given to the price of anarchy measure [12, 13], defined as the ratio
of the cost of a worst Nash equilibrium to the social optimum and the price of stability measure [4],
defined as the ratio of the cost of a best Nash equilibrium to the social optimum [6, 3, 1]. These
measures can be thought of as quantifying the loss obtained due to selfish behavior. In contrast, the
Bayesian ignorance measures introduced in the current paper quantify the loss (or gain) obtained
due to local views (in either benevolent or selfish behaviors).

2 The model

Bayesian games. A Bayesian game a is a 5-tuple

a =
⟨
k, {Ai}i∈[k], {Ti}i∈[k], {Ci,t}i∈[k],t∈T , p

⟩
,

where k ∈ Z>0 is the number of agents, Ai is the (finite) action space of agent i, Ti is the (finite) type
space of agent i, Ci,t : A → R is the cost function of agent i under the type profile t ∈ T = T1×· · ·×Tk

that maps each action profile a ∈ A = A1 × · × Ak to the cost incurred by agent i from a under t,
and p ∈ ∆(T ) is a probability distribution over the type profiles T , referred to as the common prior.

It is assumed that a type profile t = (t1, . . . , tk) ∈ T is chosen with probability p(t). The
fundamental principle of Bayesian games is that the common prior p (in fact, the whole 5-tuple a)
is common knowledge, but each agent i knows only her own type ti out of the actual instantiation t
and should decide on her action ai ∈ Ai based on that partial knowledge. A pure strategy of agent
i in the Bayesian game a is therefore a function si : Ti → Ai that maps her type to some action.
We denote the strategy space of agent i by Si = ATi

i and the collection of all strategy profiles by
S = S1 × · · · × Sk.
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Fix some strategy profile s = (s1, . . . , sk) ∈ S. Let Xi(s) be the random variable (defined over
the probability space p) that takes on the cost incurred by agent i ∈ [k] from the strategy profile s,
i.e., Xi(s) = Ci,t({sj(tj)}j∈[k]) with probability p(t). The expected cost incurred by agent i from the
strategy profile s (a.k.a. the ex-ante cost) is then defined as

Ĉi(s) = E[Xi(s)] =
∑
t∈T

p(t) · Ci,t

(
{sj(tj)}j∈[k]

)
.

The strategy profile s is a (pure) Bayesian equilibrium of the Bayesian game a if no agent gains on
expectation from a unilateral deviation, that is, if for every i ∈ [k] and for every s′i ∈ Si, Ĉi(s) ≤
Ĉi(s−i, s

′
i). Alternatively, s is a Bayesian equilibrium if for every i ∈ [k], for every ti ∈ Ti, and for

every s′i ∈ Si that agrees with si on all types in Ti except (maybe) ti, E[Xi(s) | ti] ≤ E[Xi(s−i, s
′
i) | ti].

Potential functions. We say that a Bayesian game a is a Bayesian potential game if there exists
a function Q : S → R that satisfies Ĉi(s) − Ĉi(s−i, s

′
i) = Q(s) − Q(s−i, s

′
i) for every s ∈ S, i ∈ [k],

and s′i ∈ Si. In this case Q is referred to as a Bayesian potential function for a. Since the strategy
profile space S is finite, there must exist some s ∈ S such that the Bayesian potential function Q
is minimized at s, i.e., Q(s) ≤ Q(s′) for every s′ ∈ S; by definition, this strategy profile s is a
Bayesian equilibrium. A function qt : A → R is called a potential function for the type profile t ∈ T
if Ci,t(a)− Ci,t(a−i, a

′
i) = qt(a)− qt(a−i, a

′
i) for every i ∈ [k], a = (a1, . . . , ak) ∈ A, and a′i ∈ Ai.

Observation 2.1. If a potential function qt exists for every type profile t ∈ T , then the function
Q : S → R defined by mapping each strategy profile s = (s1, . . . , sk) ∈ S to

Q(s) =
∑
t∈T

p(t) · qt
(
{sj(tj)}j∈[k]

)
is a Bayesian potential function for the Bayesian game a.

Proof. Consider some strategy profile s = (s1, . . . , sk) ∈ S, agent i ∈ [k], and strategy s′i ∈ Si. We
have

Ĉi(s)− Ĉi(s−i, s
′
i) =

∑
t∈T

p(t) ·
[
Ci,t

(
{sj(tj)}j∈[k]

)
− Ci,t

(
{sj(tj)}j∈[k]−i, s

′
i(ti)

)]
=
∑
t∈T

p(t) ·
[
qt
(
{sj(tj)}j∈[k]

)
− qt

(
{sj(tj)}j∈[k]−i, s

′
i(ti)

)]
=Q(s)−Q(s−i, s

′
i) .

The assertion follows.

Ignorance. In a Bayesian game a =
⟨
k, {Ai}i∈[k], {Ti}i∈[k], {Ci,t}i∈[k],t∈T , p

⟩
, every type profile

t ∈ T induces a complete-information game at specified by the cost functions C1,t, . . . , Ck,t. We
restrict our attention to Bayesian games admitting pure Bayesian equilibria in which the games
induced by the type profiles admit pure Nash equilibria (e.g., when the games induced by the type
profiles have potential functions).

Fixing some type profile t ∈ T , the social cost induced on t by the action profile a ∈ A is defined
as Ct(a) =

∑
i∈[k]Ci,t(a). The social cost of the strategy profile s ∈ S is then defined as

C(s) =
∑
t∈T

p(t) · Ct

(
{si(ti)}i∈[k]

)
=

∑
i∈[k]

Ĉi(s) .
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To avoid cumbersome notation, in what follows we denote Ct({si(ti)}i∈[k]) = C(s, t). We are interested
in comparing the social cost of some strategy profiles in the Bayesian setting to the average social
cost of some action profiles in the induced games. More formally, we shall establish lower and upper
bounds on ratios in which the numerator is either

• optB(a) = mins∈S C(s),

• best-eqB(a) = minBayesian equilibrium s of a C(s), or

• worst-eqB(a) = maxBayesian equilibrium s of a C(s);

and the denominator is either

• optI(a) =
∑

t∈T p(t) ·mina∈A Ct(a),

• best-eqI(a) =
∑

t∈T p(t) ·minNash equilibrium a of at Ct(a), or

• worst-eqI(a) =
∑

t∈T p(t) ·maxNash equilibrium a of at Ct(a).

These ratios can be thought of as reflecting the effect of ignorance on behalf of the agents: the
numerator captures the social cost of a strategy profile in a setting where each agent knows only her
own type (and the common prior p), while the denominator captures the average (with respect to p)
social cost of action profiles in complete-information settings.

Observation 2.2. Every Bayesian game a admitting a pure Bayesian equilibrium satisfies

optI(a) ≤ optB(a) ≤ best-eqB(a) ≤ worst-eqB(a) .

Network cost sharing. A network cost sharing (NCS) game is specified by a graph G = (V,E)
(may be directed or undirected), a non-negative real cost c(e) associated with each edge e ∈ E, and
a vertex pair (xi, yi) ∈ V 2 associated with each agent i ∈ [k], where xi (respectively, yi) is referred
to as the source (resp., destination) of agent i. The action space of each agent is 2E ; it is convenient
to think of action ai ⊆ E of agent i as if the agent buys the edges in ai. Given some action profile
a = (a1, . . . , ak), the payment πi(e) of agent i for edge e ∈ E is

πi(e) =

{
c(e)

|{j∈[k]|e∈aj}| if e ∈ ai;

0 if e /∈ ai.

The total payment of agent i for the action profile a is defined to be πi(a) =
∑

e∈E πi(e). An NCS
game is then defined by setting the cost incurred by agent i to be its total payment if ai contains a
path from xi to yi; and ∞ otherwise.

NCS games fall into a more general family of games called congestion games. Rosenthal [14]
shows that every congestion game admits a potential function. In the context of the NCS games,
this potential function turns out to be

q(a) =
∑
e∈E

c(e) ·H (|{i ∈ [k] | e ∈ ai}|) ,

where H (n) = 1 + 1/2 + · · ·+ 1/n is the nth harmonic number (cf. [4]).
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directed graphs undirected graphs
universal existential universal existential

optB

optI
O(k) Ω(k), n = Θ(k2) O(log n) Ω(log n), k = Θ(n)
≥ 1 = 1 ≥ 1 = 1

best-eqB

best-eqI
O(k) Ω(k), n = Θ(k2) O(min{k, log k logn}) Ω(log n), k = Θ(n)

Ω(1/ log k) O(1/ log k), n = Θ(k) Ω(1/ log k) < 1, n = O(1)

worst-eqB

worst-eqI
O(k) Ω(k), n = O(1) O(k) Ω(k), n = O(1)
Ω(1/k) O(1/k), n = O(1) Ω(1/k) O(1/k), n = O(1)

Table 1: Bounds for k-agent Bayesian NCS games in n-vertex (directed or undirected) graphs. The
universal columns correspond to absolute bounds holding for all Bayesian NCS games, while the
existential columns correspond to the existence of some (infinitely many) Bayesian NCS games that

satisfy the desired bounds. For example, the best-eqB

best-eqI
ratio in directed graphs is always at most O(k)

and at least Ω(1/ log k). These bounds are tight since there exists a Bayesian NCS game defined

over a Θ(k2)-vertex (respectively, Θ(k)-vertex) directed graph for which best-eqB

best-eqI
= Ω(k) (resp.,

best-eqB

best-eqI
= O(1/ log k)).

A Bayesian NCS game is depicted by a probability distribution p over NCS games with the same
underlying graph G = (V,E) and edge costs c(e). That is, the action space of each agent i ∈ [k] is
Ai = 2E , the type space of each agent i is Ti = V × V , and the cost functions Ci,t are determined
with respect to the NCS games induced by the type profiles t ∈ T = (V × V )k. Observation 2.1

implies that the function Q : S → R defined by mapping each strategy profile s ∈ S =
((

2E
)V×V

)k

to
Q(s) =

∑
t∈T

p(t) ·
∑
e∈E

c(e) ·H (|{i ∈ [k] | e ∈ si(ti)}|)

is a Bayesian potential function for that Bayesian NCS game.

3 Bayesian ignorance in NCS games

In this section we establish various bounds regarding the effect of Bayesian ignorance on NCS games.
These bounds are summarized in Table 1. Observe that the bounds we establish are asymptotically

tight in all cases except for the best-eqB

best-eqI
ratio in undirected graphs for which logarithmic gaps still

exist. Notice that an instance for which best-eqB

best-eqI
= o(1) implies the existence of an NCS game with

o(1) price of stability. Whether or not such an NCS game exists is still an open question2.

It is also interesting to point out that the best-eqB

best-eqI
= O(1/ log k) existential bound for directed

graphs is established via a k-agent Bayesian NCS game a such that optI(a) = worst-eqB(a) = O(1),
while best-eqI(a) = Ω(log k). This demonstrates the potential usefulness of Bayesian ignorance to
the benefit of the society as it means that in some scenarios the social cost of any equilibrium of
selfish agents holding local views is (asymptotically) better than all equilibria of selfish agents with
global views.

2Albers [1] shows such an example for a variant of the NCS game in which the agents have different weights. This
variant is beyond the scope of the current paper.
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We now turn to establish the bounds exhibited in Table 1. We first observe that the universal
lower bounds on the optB

optI
ratio in directed and undirected graphs simply follow from Observation 2.2.

The matching existential bounds are trivial as every complete-information game is also a Bayesian
game. We now turn to show that the effect of Bayesian ignorance cannot be too devastating.

Lemma 3.1. Every k-agent Bayesian NCS game a satisfies worst-eqB(a)/optI(a) ≤ k.

Proof. Consider some k-agent Bayesian NCS game a on a (directed or undirected) graph G = (V,E).
For every type profile t ∈ T , an action profile a ∈ A that minimizes Ct(a) must contain a ti-path for
every i ∈ [k]. Hence Ct(a) ≥ maxi∈[k] distG(ti) and

optI(a) ≥
∑
t∈T

p(t) ·max
i∈[k]

distG(ti) ,

where distG(ti) denotes the distance in G from the source to the destination dictated by ti.

Let s ∈ S be a strategy profile that realizes worst-eqB(a) and fix some agent i ∈ [k] and type
ti = (xi, yi) ∈ Ti. Since s is a Bayesian equilibrium, we must have E[Xi(s) | ti] ≤ distG(ti) as
otherwise, agent i is better off deviating from her strategy si to a strategy s′i ∈ Si that agrees with si
on all types except ti for which s′i buys a shortest (xi, yi)-path and pays at most distG(ti). It follows
that

worst-eqB(a) =
∑
i∈[k]

E[Xi(s)] =
∑
i∈[k]

∑
ti∈Ti

P(ti) · E[Xi(s) | ti]

≤
∑
i∈[k]

∑
ti∈Ti

P(ti) · distG(ti) =
∑
i∈[k]

∑
t∈T

p(t) · distG(ti)

=
∑
t∈T

p(t) ·
∑
i∈[k]

distG(ti) ≤ k ·
∑
t∈T

p(t) ·max
i∈[k]

distG(ti) ,

which establishes the assertion.

Combined with Observation 2.2, Lemma 3.1 establishes the universal upper bounds on the optB

optI
,

best-eqB

best-eqI
, and worst-eqB

worst-eqI
ratios in directed graphs and the universal upper bound on the worst-eqB

worst-eqI

ratio in undirected graphs. Since complete-information games are a special case of Bayesian games,

Lemma 3.1 also establishes the universal lower bounds on the worst-eqB

worst-eqI
ratio in directed and undirected

graphs.

The following lemma implies the existential lower bounds on the optB

optI
and best-eqB

best-eqI
ratios in

directed graphs.

Lemma 3.2. For every k0, there exist some k ≥ k0 and a k-agent Bayesian NCS game a on a
directed Θ(k2)-vertex graph such that optB(a)/worst-eqI(a) = Ω(k).

Proof. Let m ≥ k0 be a prime power and consider a finite affine plane (X,L) of order m: X is a set
of m2 points; L ⊆ 2X is a set of m2 + m lines. The affine plane (X,L) satisfies the following four
properties.
(1) Each line in L contains exactly m points.
(2) Each point in X is contained in exactly m+ 1 lines.

6



(3) Given any two distinct points in X, there is exactly one line in L that contains both points.
(4) Given any two lines in L, there is at most one point in X which is contained in both lines.

We construct a directed graph G = (V,E) by setting V = {u} ∪ {vℓ | ℓ ∈ L} ∪ {wp | p ∈ X} and
E = {(u, vℓ) | ℓ ∈ L} ∪ {(vℓ, wp) | ℓ ∈ L, p ∈ ℓ}. That is, G consists of a source vertex u, m2 + m
intermediate vertices uℓ indexed by the lines in L, and m2 sink vertices wp indexed by the points in
X. There are edges connecting the source vertex to every intermediate vertex and edges connecting
each intermediate vertex vℓ to every sink vertex wp such that p ∈ ℓ. The cost associated with the
former type of edges is 1, while the cost associated with the latter is 0.

Fix k = m + 1. Our Bayesian NCS game a is defined over the underlying directed graph G
and includes k agents. Each type profile t ∈ T is characterized by some line ℓ ∈ L and by some
permutation π of [m]. The source of all agents is always the source vertex u. Under the type profile
t(ℓ, π), the destination of agent i ∈ [m] is wp so that p is the π(i)th point in ℓ; the destination of
agent k = m+ 1 is vℓ.

Now, consider some strategy profile s ∈ S and fix some agent i ∈ [m]. By symmetry considera-
tions, given some type profile t ∈ T , characterized by the line ℓ ∈ L, agent i buys the ’right’ edge
(u, vℓ) with probability 1/m; otherwise, she buys some edge (u, vℓ′), ℓ

′ ̸= ℓ, in which case she must
be the only agent buying this edge since by definition of the affine plane, if her destination under
t is the sink vertex up, then p is the unique point in the intersection of ℓ and ℓ′. It follows that
C(s) = m(1− 1/m) = m− 1.

On the other hand, we argue that for every type profile t ∈ T characterized by the line ℓ ∈ L,
the unique Nash equilibrium in at is the action profile a ∈ A under which all agents buy the edge
(u, vℓ); observe that Ct(a) = 1. It is easy to verify that a is indeed a Nash equilibrium. For every
action profile a′ ∈ A such that Ct(a

′) < ∞, every edge (u, vℓ′), ℓ
′ ̸= ℓ, is bought by at most one agent

i (this, once again, follows from the definition of the affine plane). Since the ’right’ edge (u, vℓ) is
already bought by agent k, such an agent i is better off deviating from her previous action, for which
the cost she incurred was 1, and switch to buying the ’right’ edge for which she would pay at most
1/2. The assertion follows.

The existential upper bound on the best-eqB

best-eqI
ratio in directed graphs is established in the next

lemma.

Lemma 3.3. For every k0, there exist some k ≥ k0 and a k-agent Bayesian NCS game a on a
directed Θ(k)-vertex graph such that worst-eqB(a)/best-eqI(a) = O(1/ log(k)).

Proof. Consider the directed graph Gk illustrated in Figure 1. This graph was first presented by
Anshelevich et al. [4] in order to establish a lower bound on the price of stability of NCS games. We
design a k-agent Bayesian NCS game a over Gk. Vertex x serves as a common source for all agents.
The destination of agent i is vertex yi for 1 ≤ i ≤ k − 1 with probability 1. Agent k has vertex z as
her destination with probability 1/2; otherwise her destination is vertex x (same as her source).

We argue that the strategy profile s = (s1, . . . , sk) ∈ S under which agent i buys the edges (x, z)
and (z, yi) for every 1 ≤ i ≤ k − 1 is the unique Bayesian equilibrium in a. Indeed, since the edge
(x, z) is bought by agent k with probability 1/2, agent 1 prefers the strategy s1 over buying the
edge (x, y1). By induction on i, agent i prefers the strategy si over buying the (x, yi). Therefore
C(s) = 1 + ϵ.

In the induced games on the other hand, when agent k’s destination is x, the unique Nash

7



Figure 1: The directed graph Gk. The cost of the edge (x, yi) is 1/i for every 1 ≤ i ≤ k− 1; the cost
of the edge (x, z) is 1 + ϵ; all edges (z, yi) cost 0.

equilibrium is the action profile a ∈ A under which each agent 1 ≤ i ≤ k − 1 buys the edge (x, yi).
It follows that best-eqI(a) > H (k − 1)/2 = Ω(log k). The assertion follows.

Next, Lemma 3.4 yields the universal upper bound on the optB

optI
ratio in undirected graphs.

Lemma 3.4. Every Bayesian NCS game a on an undirected n-vertex graph satisfies
optB(a)/optI(a) ≤ O(log n).

Proof. Let G = (V,E) be some n-vertex undirected graph with edge costs c(e). We say that a
weighted tree τ = (Vτ , Eτ ) with Vτ ⊇ V dominates G if distτ (u, v) ≥ distG(u, v) for every two vertices
u, v ∈ V , where distτ (·, ·) and distG(·, ·) stand for distances in τ and G, respectively. Fakcharoenphol
et al. [7] prove that there exists a probability distribution T over the set of dominating trees of G
such that Eτ∈T [distτ (u, v)] = O(log n) ·distG(u, v) for every two vertices u, v ∈ V . By employing the
technique of Gupta [9], we may remove from the dominating trees τ the vertices not in V without
increasing the distortion by more than a constant factor, so in what follows we assume that Vτ = V
for every dominating tree τ in the support of T (τ may still include edges that do not exist in G).

Let τ = (V,Eτ ) be a random dominating tree of G chosen according to T . For each edge
e = (u, v) ∈ Eτ , let Pe be some (designated) shortest (u, v)-path in G. This is extended to every
vertex pair x, y ∈ V by setting

P(x,y) =
∪

e∈τ(x,y)

Pe ,

where τ(x, y) denotes the unique (x, y)-path in τ . Consider the strategy profile s that instructs each
agent i ∈ [k] to buy the edges in P(xi,yi) for the type (xi, yi) ∈ Ti.

Fix some type profile t = ((x1, y1), . . . , (xk, yk)) ∈ (V × V )k. Let Ft be the (unique) minimal
Eτ subset that includes an (xi, yi)-path for every i ∈ [k] and let FG

t be an E subset of minimum
total cost among all E subsets that include an (xi, yi)-path for every i ∈ [k]. By definition, an
action profile at ∈ A that buys FG

t is optimal for the induced game at. Note that the action profile
{si(ti)}i∈[k] buys

∪
e∈Ft

Pe.

We will soon argue that ET [C(s, t)] = O(log n) ·Ct(at). This implies that for every common prior
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p ∈ ∆(T ), we have

ET [C(s)] =ET

[∑
t∈T

p(T ) · C(s, t)

]
=
∑
t∈T

p(T ) · ET [C(s, t)] = O(log n) ·
∑
t∈T

p(t) · Ct(at) .

The assertion follows since there must exist some dominating tree τ in the support of T that satisfies
the desired bound.

It remains to show that ET [C(s, t)] = O(log n) · Ct(at). The random choice of τ guarantees that
E[distτ (e)] = O(log n) · c(e) for every edge e ∈ FG

t , thus

O(log n) · Ct(at) ≥
∑
e∈at

ET [distτ (e)] = ET

[∑
e∈at

distτ (e)

]
≥ ET

[∑
e∈Ft

c(e)

]
.

Since τ dominates G, it follows that c(e) ≥
∑

e′∈Pe
c(e′) for every tree edge e ∈ Ft, hence

O(log n) · Ct(at) ≥ ET

∑
e∈Ft

∑
e′∈Pe

c(e′)

 ≥ ET [C(s, t)] ,

as promised.

The following lemma implies the existential lower bound on the optB

optI
ratio in undirected graphs.

Lemma 3.5. For every n0, there exist some n ≥ n0 and a Θ(n)-agent Bayesian NCS game a on an
undirected n-vertex graph such that optB(a)/optI(a) = Ω(log n).

Proof. Our lower bound is established via a reduction from (a probabilistic variant of) the online
Steiner tree problem. An instance of the online Steiner tree problem consists of an undirected graph
G = (V,E) with edge costs c(e), a root vertex v0, and an input sequence σ = ⟨v1, . . . , v|σ|⟩ ∈
V ≤n, where n = |V | and V ≤n = {σ ∈ V ∗ : |σ| ≤ n}. An online algorithm ALG receives the
sequence σ step by step. In each step 1 ≤ i ≤ |σ|, the algorithm must react by connecting vi to
the root vertex. This is done by buying some edge subset Fi ⊆ E so that

∪
1≤j≤i Fj includes a

path connecting vi to v0. The cost incurred by ALG on the input sequence σ is defined as ALG(σ) =∑
1≤i≤|σ|

∑
e∈Fi

c(e). A randomized online Steiner tree algorithm ALG is said to be α-competitive if
maxσ∈V ≤n E[ALG(σ)]/OPT(σ) ≤ α, where OPT(σ) is the cost of a minimum Steiner tree spanning all
vertices in σ.

Imase and Waxman [11] establish an Ω(log n) lower bound on the competitiveness of deterministic
online Steiner tree algorithms for the n-vertex diamond graph G = (V,E). Their lower bound
can be generalized to hold against randomized algorithms by designing a probability distribution
q ∈ ∆(V ≤n) so that

∑
σ∈V ≤n q(σ) · ALG(σ) = Ω(log n) for every deterministic online Steiner tree

algorithm ALG, while OPT(σ) = O(1) for all σ ∈ V ≤n.

Consider some n-vertex undirected graph G = (V,E) with edge costs c(e). We argue that for
every probability distribution q ∈ ∆(V ≤n), there exists an n-agent Bayesian NCS game aq defined
over the underlying graph G and a deterministic online Steiner tree algorithm ALGq such that

optB(aq)

optI(aq)
≥

∑
σ∈V ≤n q(σ) · ALG(σ)∑
σ∈V ≤n q(σ) · OPT(σ)

.
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By the aforementioned lower bound on the competitiveness of randomized online Steiner tree algo-
rithms, we obtain an Ω(logn) lower bound on the ratio optB(aq)/optI(aq) for n-agent Bayesian NCS
games defined over the n-vertex diamond graph.

Fix some probability distribution q ∈ ∆(V ≤n). We design the n-agent Bayesian NCS game aq

with a common prior p as follows. Each vertex sequence σ = ⟨v1, . . . , v|σ|⟩ ∈ V ≤n corresponds to
some type profile tσ = (tσ1 , . . . , t

σ
n) such that

tσi =

{
(vi, v0) if 1 ≤ i ≤ |σ|;
(v0, v0) if |σ| < i ≤ n.

The common prior of tσ is set to be p(tσ) = q(σ).

Now, suppose that optB(aq)/optI(aq) ≤ α and let s = (s1, . . . , sn) ∈ S be the strategy profile
that realizes optB(aq). We design the deterministic online Steiner tree algorithm ALGq as follows: in
step 1 ≤ i ≤ |σ|, ALGq buys all edges in si(vi, v0) that were not bought beforehand. It follows that∑

σ∈V ≤n

q(σ) · ALGq(σ) =
∑

σ∈V ≤n

p(tσ) · C(s, tσ) = C(s)

≤ α · optI(aq) = α
∑

σ∈V ≤n

p(tσ) ·min
a∈A

Ctσ(a) = α
∑

σ∈V ≤n

q(σ) · OPT(σ)

which completes the proof.

In fact, it is not difficult to show that if a is the Bayesian NCS game obtained by following the
construction described in the proof of Lemma 3.5 for the diamond graph, then the action profile that
minimizes Ct is a Nash equilibrium of the induced game at for every type profile t ∈ T . Therefore

the existential lower bound on the best-eqB

best-eqI
ratio in undirected graphs is also established. Moreover,

by applying the same line of arguments to the construction of Alon and Azar [2], we obtain an

existential Ω(log k/ log log k) lower bound on the optB

optI
ratio of k-agent Bayesian NCS games in the

Euclidean plane3.

The following two lemmata, whose proofs are deferred to the appendix, yield the existential lower

and upper bounds on the worst-eqB

worst-eqI
ratio in undirected graphs. The same bounds in directed graphs

are obtained by a trivial modification of their proofs.

Lemma 3.6. For every k0, there exist some k ≥ k0 and a k-agent Bayesian NCS game a on an
undirected O(1)-vertex graph such that worst-eqB(a)/worst-eqI(a) = Ω(k).

Lemma 3.7. For every k0, there exist some k ≥ k0 and a k-agent Bayesian NCS game a on an
undirected O(1)-vertex graph such that worst-eqB(a)/worst-eqI(a) = O(1/k).

Anshelevich et al. [4] prove a logarithmic upper bound on the price of stability in (complete-
information) NCS games. Combined with Observation 2.2, this yields the universal lower bounds

on the best-eqB

best-eqI
ratio in directed and undirected graphs. The next lemma extends the technique of

Anshelevich et al. to Bayesian games. Combined with Lemmata 3.1 and 3.4, it establishes the

universal upper bound on the best-eqB

best-eqI
ratio in undirected graphs.

3Of course, the Euclidean plane is not a finite graph, so for the sake of formality, one can replace it with a very fine
grid.
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Lemma 3.8. Every k-agent Bayesian NCS game a satisfies best-eqB(a) ≤ H (k) · optB(a).

Proof. Consider some k-agent Bayesian NCS game a on a (directed or undirected) graph G = (V,E).
Recall that the potential of a strategy profile s ∈ S is given by

Q(s) =
∑
t∈T

p(t) ·
∑
e∈E

c(e) ·H (|{i ∈ [k] | e ∈ si(ti)}|) ,

while the social cost of s is

C(s) =
∑
t∈T

p(t) ·
∑
e∈E

c(e) · 1 (∃i ∈ [k] s.t. e ∈ si(ti)) .

Thus Q(s)/H (k) ≤ C(s) ≤ Q(s) for every strategy profile s ∈ S. Let s be a strategy profile that
minimizes Q(s) and let s∗ be a strategy profile that realizes optB(a). The assertion is established by
recalling that s is a Bayesian equilibrium and observing that C(s) ≤ Q(s) ≤ Q(s∗) ≤ C(s∗)·H (k).

4 Public random bits as a substitute for the common prior

In this section we show that in the presence of public random bits, the agents can waive the knowledge

of the common prior and still guarantee the same optB

optI
ratio. Formally, consider some 4-tuple

ϕ = ⟨k, {Ai}i∈[k], {Ti}i∈[k], {Ci,t}i∈[k],t∈T ⟩, where Ci,t(a) ∈ R>0 for every i ∈ [k], t ∈ T , and a ∈ A.
Every common prior p ∈ ∆(T ) defines the Bayesian game ap = ⟨ϕ, p⟩. We write RoE(ϕ) = r if for
every p ∈ ∆(T ), there exists some strategy profile s ∈ S such that∑

t∈T p(t) · C(s, t)∑
t∈T p(t) ·mins′∈S C(s′, t)

≤ r

and this fails to hold for any r′ < r. (RoE stands for ratio of expectations.) In other words, RoE(ϕ) = r

if r is the minimum real such that optB(ap)
optI(ap)

≤ r for every p ∈ ∆(T ). We write EoR(ϕ) = r if for every

p ∈ ∆(T ), there exists some strategy profile s ∈ S such that∑
t∈T

p(t) · C(s, t)

mins′∈S C(s′, t)
≤ r

and this fails to hold for any r′ < r. (EoR stands for expectation of ratios.) We begin by showing
that RoE(ϕ) = EoR(ϕ); this turns out to be a special case of the following proposition, whose proof
is deferred to the appendix.

Proposition 4.1. Consider some matrix M ∈ Rm×n
>0 and some vector v ∈ Rn

>0. Let r∗ be the
minimum real r such that

∀p ∈ ∆(n), ∃i ∈ [m] s.t.

∑
j∈[n] p(j) ·M(i, j)∑
j∈[n] p(j) · v(j)

≤ r

and let r∗∗ be the minimum real r such that

∀p ∈ ∆(n), ∃i ∈ [m] s.t.
∑
j∈[n]

p(j) · M(i, j)

v(j)
≤ r .

Then r∗ = r∗∗.
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We conclude that public random bits can replace the knowledge of the common prior when

bounding the ratio optB

optI
by establishing the following lemma.

Lemma 4.2. There exists a probability distribution q ∈ ∆(S) such that for every p ∈ ∆(T ),∑
t∈T p(t)

∑
s∈S q(s) · C(s, t)∑

t∈T p(t) ·mins′∈S C(s′, t)
≤ r = RoE(ϕ)

and this fails to hold for any r < RoE(ϕ).

Proof. We shall establish this lemma for r = EoR(ϕ); the assertion follows due to Proposition 4.1.
Note first that it is sufficient to consider common priors p ∈ ∆(T ) which are concentrated on single
type profiles, namely, to prove that there exists a probability distribution q ∈ ∆(S) such that for
every t ∈ T , ∑

s∈S q(s) · C(s, t)
mins′∈S C(s′, t)

≤ r = EoR(ϕ)

and that this fails to hold for any r < EoR(ϕ). Fix C′(s, t) = C(s, t)/mins′∈S C(s′, t) for every s ∈ S
and t ∈ T . By the definition of EoR(ϕ), we know that for every p ∈ ∆(n), there exists some s ∈ S
such that ∑

t∈T
p(t) · C′(s, t) ≤ r = EoR(ϕ)

and that this does not hold for any r < EoR(ϕ). The assertion is then established by von Neumann’s
minimax theorem that guarantees the existence of some q ∈ ∆(S) such that for every t ∈ T ,∑

s∈S
q(s) · C′(s, t) ≤ r = EoR(ϕ) ,

where this fails to hold for any r < EoR(ϕ).

It can be easily shown that this conclusion also holds in the limit if Ci,t(a) → 0 for some i ∈ [k],
t ∈ T , and a ∈ A. That is, a probabilistic strategy profile that guarantees the best possible bound

on the optB

optI
ratio still exists if we allow some of the costs to be 0 and think of 0/0 as 1. Note that

in this case, the optB

optI
ratio is not always defined, but if it is defined, then it can be guaranteed by a

single probabilistic strategy profile.
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APPENDIX

Figure 2: The graph Gworst.

Proof of Lemma 3.6. Fix some 1
k < ϵ < 3

2k and consider the graph Gworst depicted in Figure 2. Let
a be the (k + 1)-agent Bayesian NCS game defined over the graph Gworst as follows. Agent i has
vertex u as her source and vertex w as her destination for every 1 ≤ i ≤ k. The source of agent k+1
is always vertex u; her destination is vertex v with probability 1

2 and vertex u with probability 1
2 .

Since k+1
k+1 + 1

k < 1 + ϵ, the action profile a under which agents 1, . . . , k buy the edges (u, v) and
(v, w) is a Nash equilibrium of the induced game obtained when the destination of agent k + 1 is
vertex v. Thus worst-eqI(a) ≥ 1

2(k+2). On the other hand, the strategy profile s under which agents
1, . . . , k buy the edge (u,w) and agent k + 1 buys the edges (u,w) and (w, v) if her destination is
vertex v is the unique Bayesian equilibrium of a as

1

2

(
k + 1

k + 1
+

1

k

)
+

1

2

(
k + 1

k
+

1

k

)
=

1

2

(
2 +

3

k

)
> 1 + ϵ .

The assertion follows since C(s) = 1 + ϵ+ 1
2 .

Proof of Lemma 3.7. Fix some 2
k − 1

k2
< ϵ < 2

k and consider the graph Gworst depicted in Figure 2.
Let a be the (k + 1)-agent Bayesian NCS game defined over the graph Gworst as follows. Agent i
has vertex u as her source and vertex w as her destination for every 1 ≤ i ≤ k. The source of agent
k+1 is always vertex u; her destination is vertex v with probability 1

k and vertex u with probability
1− 1

k .

Since k+1
k + 1

k > 1 + ϵ, the unique Nash equilibrium of the induced game obtained when the
destination of agent k + 1 is vertex u is the action profile under which agents 1, . . . , k buy the edge
(u, v). Thus worst-eqI(a) ≤

(
1− 1

k

)
(1 + ϵ) + 1

k (k + 3 + ϵ) = O(1). On the other hand, the strategy
profile s under which agents 1, . . . , k buy the edges (u, v) and (v, w) and agent k + 1 buys the edge
(u, v) is a Bayesian equilibrium of a as

1

k

(
k + 1

k + 1
+

1

k

)
+

(
1− 1

k

)(
k + 1

k
+

1

k

)
=

1

k
+

1

k2
+ 1− 1

k
+

2

k
− 2

k2
= 1 +

2

k
− 2

k2
< 1 + ϵ .

The assertion follows since C(s) = k + 2.

Proof of Proposition 4.1. We show that r∗∗ must be at least as large as r∗ by designing a probability
distribution p′ ∈ ∆(n) such that

∀i ∈ [m],
∑
j∈[n]

p′(j)
M(i, j)

v(j)
≥ r∗ .

i



By definition, there exists some probability distribution p ∈ ∆(n) such that

∀i ∈ [m],

∑
j∈[n] p(j) ·M(i, j)∑
j∈[n] p(j) · v(j)

≥ r∗ .

We define p′ by setting p′(j) = p(j)·v(j)
α′ for every j ∈ [n], where α′ =

∑
j∈[n] p(j) · v(j). On the

other hand, we show that r∗ must be at least as large as r∗∗ by designing a probability distribution
p′′ ∈ ∆(n) such that

∀i ∈ [m],

∑
j∈[n] p

′′(j)M(i, j)∑
j∈[n] p

′′(j)v(j)
≥ r∗∗ .

By definition, there exists some probability distribution p ∈ ∆(n) such that

∀i ∈ [m],
∑
j∈[n]

p(j)
·M(i, j)

v(j)
≥ r∗∗ .

We define p′′ by setting p′′(j) = p(j)
α′′v(j) for every j ∈ [n], where α′′ =

∑
j∈[n] p(j)/v(j).

ii


