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Abstract

In 1995, Aumann showed that in games of perfect information,

common knowledge of rationality is consistent and entails the back-

ward induction (BI) outcome. That work has been criticized because

it uses “counterfactual” reasoning—what a player “would” do if he

reached a node that he knows he will not reach, indeed that he him-

self has excluded by one of his own previous moves.

This paper derives an epistemological characterization of BI that is

outwardly reminiscent of Aumann’s, but avoids counterfactual reason-

ing. Specifically, we say that a player strongly believes a proposition at

a node of the game tree if he believes the proposition unless it is logi-

cally inconsistent with that node having been reached. We then show

that common strong belief of rationality is consistent and entails the

BI outcome, where—as with knowledge—the word “common” signifies

strong belief, strong belief of strong belief, and so on ad infinitum.

Our result is related to—though not easily derivable from—one

obtained by Battigalli and Sinischalchi [7]. Their proof is, however,

much deeper; it uses a full-blown semantic model of probabilities, and

belief is defined as attribution of probability 1. However, we work with

a syntactic model, defining belief directly by a sound and complete set

of axioms, and the proof is relatively direct.

1 Introduction

In extensive games of perfect information (PI), backward induction (BI) is a

particularly prominent solution concept. The guiding principle behind BI is

repeated application of the principle that when a player must choose between

several options, he chooses the option that yields him the highest payoff.
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Figure 1:

Call a PI game generic if the payoffs of each player are different at differ-

ent terminal nodes. In a seminal paper, Aumann (1995) gave the following

epistemic characterization of BI in PI games:

Theorem 1.1. In a generic PI game, common knowledge1 of rationality

(CKR) is consistent and entails the BI outcome.

Here, “rationality” is defined as follows: Given a node h of the game, a

player is h-rational if it is not the case that he knows that in the subgame

starting at h, he can get a higher payoff by changing his strategy.2 He is

rational if he is h-rational at each of his nodes h.

Aumann’s work has been criticized because his definition of rationality

appears too strong; specifically, because it calls for h-rationality even when

h has been excluded at a previous node by the very same player who must

play at h. To illustrate the difficulty, consider first the game in Figure 1,

and suppose that Ann’s strategy and Bob’s strategy call for them to exit

1An assertion is commonly known if all players know it, all know that all know it, all

know that, and so on ad infinitum.
2A strategy of a player i is a function that assigns an alternative of i at v to each node

v of i.
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Figure 2:

(play “down”) at each of their moves, and both know this. By Aumann’s

definition, Ann is not rational, because at her second node, she chooses to get

0, whereas she could get 3 by playing “across.” But one might argue that it

does not matter what she does at her second node, since she herself excluded

the possibility of reaching that node by exiting at her first node; and, that

was rational. So perhaps one should use a weaker (i.e., less demanding)

definition of rationality, namely, to call a player “rational” if he is h-rational

at all h that he himself has not excluded at a previous node. Henceforth, we

call such a node unexcluded.

But as a conceptual rebuttal, this example is not fully convincing. Here

we still get the BI outcome, even though only the weakened form of rationality

obtains. Aumann could say, “OK, perhaps my definition is too strong, per-

haps a weaker—and more appropriate—definition of rationality is sufficient

to yield my result; but my result, though perhaps not the strongest possible,

still points in the right direction—that CK of rationality, however defined,

leads to the BI outcome.” For a more convincing rebuttal of Aumann, one

needs an example in which CK of the weakened version of rationality obtains,

and the BI outcome is not reached.

Such an example was indeed suggested by Robert Stalnaker [10]; see Fig-
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ure 2. Again, suppose that both Ann’s strategy and Bob’s call for them to

exit at each of their moves, and both know that. With rationality in Au-

mann’s sense, CKR does not obtain—Ann behaves irrationally at her second

node—and his theorem does not require the BI outcome to be reached; and

indeed it is not. But CK of the weakened—and apparently more appropriate—

version of rationality does obtain, and nevertheless the BI outcome is not

reached.

To make sense of this, Stalnaker tells the following story: At her first node,

Ann must choose between “down” and “across.” If she chooses “down,” she

gets 2. If she chooses “across,” then it is Bob’s turn; since he exits, she will

get 1, which is < 2. So it is indeed rational for her to exit. Moreover, if she

plays “across,” then Bob will conclude that she is irrational, and so will fear

that she would play irrationally also at her second node; and indeed, that

is what her strategy prescribes. So it appears that CK of rationality—in a

fairly natural sense of the word—does obtain here.

But one may ask, if Ann would play “across,” would Bob really necessarily

conclude that she is irrational? Might he not conclude that she is not playing

as he thought she would (to exit)—as indeed is clearly the case—and does

not expect him to exit either? Perhaps she expects him to play “across,” and

then she would play across as well! In that case he would be well-advised

indeed to play across.

It is difficult to answer this question with the above kind of verbal, impre-

cise reasoning. To reason about “counterfactuals”—what Bob “would” do if

Ann did something different from what he knows that she actually does—

one needs a formal model, which allows events to occur that are “known”

not to occur. And indeed, such a model can be constructed if we replace

“knowledge” by “belief.”
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1.1 Counterfactuals and Belief

Counterfactual reasoning underlies game theory; more fundamentally, it un-

derlies decision theory. When a decision maker chooses a over b, he must

have some idea of what would have happened had he chosen b. In Stalnaker’s

example, if Ann exits at her first move, she must have some idea of what

would have happened had she stayed in (played “across”).

That’s where belief—by which we mean attributing probability 1—comes

in. If Bob knows that Ann will go out at her first move, then it is difficult to

make sense of what he “would” have done had she stayed in. But if he only

believed that she would exit—did not entirely exclude the possibility that she

would stay in—then it makes sense to talk about what he “would” have done

had she stayed in; it is simply what he will do, if3 she stays in. Replacing

“knowledge” by “belief” enables us to replace the troublesome “would” by

“will.”

So, let’s review Stalnaker’s example, substituting “belief” for “knowl-

edge.” Suppose that at the beginning of play:

(1) Ann believes that Bob will exit if she stays in;

(2.1) Bob believes that Ann will exit;

(2.2) Bob believes that if both Ann and he stay in, Ann will exit at her

second node; and

(3) assertions (1), (2.1), and (2.2) are common belief4 between Ann and

Bob.

With this scenario, at the beginning of play there is indeed common belief

3This “if,” like all subsequent “if”s in this discussion, signifies the ordinary material

implication of mathematics; i.e., “if p, then q” means “q or not p,” no more and no less.
4That is, both believe them, both believe that both believe them, both believe that,

and so on ad infinitum.
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that both players will play rationally at all unexcluded nodes.5 So on the

face of it, it would appear that Aumann’s theorem is indeed an artifact of an

excessively strong definition of rationality.

But on closer scrutiny, the explicit setting forth of the above scenario

reveals its difficulties. Does (2.2) make sense? By (2.1), the fact that Bob’s

node was reached means that Ann did something highly unexpected. To be

sure, Bob could reach the conclusion that Ann is irrational. But why should

he? If she already did something unexpected—something that requires him

to revise his beliefs—why would he not reach the conclusion that if he plays

across, then she, too, will play across at her second node? To be sure, he

does not have to think this, but why shouldn’t he?

Well, the reader may ask, why should he? Can we formulate some ratio-

nality postulate that would enable us to reach that conclusion?

The answer is yes. The key concept is that of “strong belief.” Let’s

say that a player strongly believes an assertion, if he believes it unless it

is logically impossible. Then Stalnaker’s “story”—i.e., the above scenario—

is inconsistent with common strong belief of rationality at unexcluded nodes

(CSBRU). Indeed, (2.2) is inconsistent with CSBRU, as we now show.

Assume Bob strongly believes Ann is rational and also believes that Ann

will exit at the beginning of the game. Suppose that Ann stayed and it is

now Bob’s turn to play; can Bob revise his beliefs in a way that still supports

Ann’s rationality? The answer is yes; if Ann is rational and stayed in, it must

be because she believes that Bob will stay in, and then on her last move Ann

will stay in, and get 3 instead of 2. So if Bob strongly believes that Ann is

rational, he should deduce that if Ann stayed in on her first move, she will

also stay in on her last move.

5See Stalnaker’s “story,” set forth in the previous section.
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Now assume that Ann believes that Bob strongly believes that she is

rational; then by the above reasoning, she must believe that if she were to

stay in, Bob would also stay in. So if Bob is rational and strongly believes

that Ann is rational, he will stay in, if he gets a chance to play. And if Ann

is rational and believes that Bob strongly believes that she is rational, then

she will stay in on her first and last node. So in Stalnaker’s game, CSBRU

entails the BI outcome.

Thus in Stalnaker’s game, all three nodes can be reached without con-

tradicting the assumption of rationality. But there are games where some

nodes cannot be reached with rational players. Thus in the game of Figure

1, Bob’s node cannot be reached if Ann is rational. Nevertheless, CSBRU

is possible in this game. Indeed, Bob’s node is always unexcluded, since he

has no previous nodes; if it is reached, then it is logically impossible for Ann

to be rational, so under the definition, he still “strongly believes” that she is

rational. Thus here, too, as in Stalnaker’s game, CSBRU is consistent, and

entails the BI outcome.

It is the purpose of this paper to prove that that holds in general; i.e., we

have the following:

Main Theorem: In a generic PI game, CSBRU is consistent and entails

the BI outcome.

1.2 Syntax and Semantics

The theorem just formulated belongs to an area of mathematical game theory

called interactive epistemology. There are two parallel kinds of formalism for

formulating and proving results in this area: the semantic and the syntactic.
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A semantic formalism6 employs semantic universes—sets whose elements are

called states of the world, or simply states. On each universe are defined one

or more structures representing the players’ knowledge and beliefs (events,

partitions, probability distributions, and the like). A particular universe

represents a particular realization of epistemic principles, just as a particular

group represents a particular realization of the axioms of group theory. To

use the semantic formalism to prove a general assertion like the theorem of

Aumann cited in Section 1, one establishes the assertion at each state in an

arbitrary universe.

Syntactic formalisms are different; they work directly with sentences,

rather than with states. There is a formal language, and there are axioms,

rules of deduction, tautologies,7 and formal proofs, using the axioms and

rules.

In many contexts, a sentence is a tautology in a semantic formalism—

“holds” at each state in an arbitrary universe—if and only if it is provable

in the corresponding syntactic formalism—follows logically from the axioms

and rules of deduction. Specifically, that is so in the context of knowledge

(e.g., Aumann [3]).

Each kind of formalism has advantages. The main advantages of semantic

formalisms are practical: they are easier to visualize, and also easier to work

with. The main advantage of a syntactic formalism is conceptual: it is more

straightforward and transparent—basically it says in plain words what it is

that one wants to prove, and then proves it, logically, from explicit assump-

tions. By contrast, semantic formalisms are devious: to prove something,

6We use the indefinite article because in different contexts—like knowledge, probability,

and belief—the formalisms are somewhat different. Moreover, the actual realization of the

formalisms depends on parameters such as the number of players.
7Tautologies are sometimes called theorems
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one must first restate it in set-theoretic language, and then establish it in

an arbitrary universe. As Professor Dov Samet has put it,8 if you want to

explain it to your mother, say it syntactically; there’s no way that she’ll

understand the semantic formulation.

There is, however, one important respect in which semantic formalisms

are formally superior—one kind of task they can perform, that the syntactic

formalisms cannot. Namely, they can prove consistency. In syntactic for-

malisms, one cannot show that a sentence is consistent—that its negation

is not a tautology from the axioms. For that, one needs a model of the

sentence—a state in a semantic universe at which the sentence in question

“holds.” Indeed, throughout mathematics, all consistency proofs use models,

starting with the Bolyai-Lobachevsky proof that Euclid’s parallel postulate

does not follow from his axioms—i.e., that its negation is consistent with the

axioms.

In particular, whereas the second part of our main theorem—that CSBRU

entails the BI outcome—may be proved syntactically, its first part—that it is

consistent—requires a semantic proof. Note, however, that whereas the proof

is semantic, the formulation is purely syntactic. Indeed, the consistency of

an assertion is intrinsically a syntactic notion: it means that the negation of

the assertion does not follow from the axioms.

In practice, our proof of the main theorem combines syntactic and se-

mantic methods throughout.

In addition to its transparency, the syntactic formalism has two important

advantages in our context, both having to do with the fundamental notion

of “strong belief.” The first has to do with “belief,” the second with that of

“strong.” What we here want to convey by saying that a player “believes”

8Private communication.
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something is that he ascribes to it probability 1. The advantage of the

syntactic formalism is that to deal with this formally, one does not need the

whole gamut of numerical probabilities; rather, one axiomatizes the notion

of belief—probability 1—directly, and then works only with those axioms,

without reference to other probabilities. By contrast, semantic formalisms

for belief that have heretofore been used in game-theoretic contexts allow all

numbers between 0 and 1 as probabilities, and so are needlessly complex. In

this paper we do develop a semantic formalism for belief and belief revision,

which does not use numerical probabilities.

The second–and perhaps more fundamental–advantage of the syntactic

formalism has to do with the adjective “strong,” which calls for the notion

of “provability” to play an important formal role within the statement of

the result. Of course this paper, like all others in mathematics, is about

theorems; all tautologies are provable—what we do in mathematics is prove

theorems. But usually, the notion of “tautology” is not part of the statement

of the result; the result is stated without involving the notion of provability,

and then one simply asserts and proves the statement.

Here the situation is different. Assertions that some specific statements

are or are not tautologies become elements in more complex assertions, and

these, in turn, become elements in still more complex assertions, and so

on. Specifically, CSBRU—common strong belief of rationality at unexcluded

nodes—involves the notion of strong belief; and strong belief of a statement

means that the statement is believed unless it is logically impossible—i.e.,

unless its negation is tautology. When we talk about common strong belief,

we are iterating this kind of statement, indeed unboundedly often. Thus, in

addition to the usual logical operators and connectives like “ not,” “or”, and

“and,” we use an additional operator, t, which says that the formula following
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it is tautology; and whereas this operator is familiar in the metalanguage of

logic, it is unusual that it becomes part of the formal language itself, from

which new assertions can be formed.

Provability can be treated also within the semantic formalism, but it is

considerably more awkward to do so, as we will see presently.

1.3 Battigalli and Sinischalchi

A seminal result that is conceptually closely related to our Main Theorem was

established by Battigalli and Sinischalchi [7] (henceforth BS). But, whereas

the conceptual content of the BS result is similar to that of ours, its formal

statement is devious and round-about. In contrast, our Main Theorem for-

mulates its conceptual content in a transparent and straightforward manner.

The BS result is formulated semantically. To state it and understand its

relationship with ours, we start by describing the relationship between se-

mantic and syntactic formalisms more carefully. Each sentence in a syntactic

formalism corresponds to a set in each semantic universe—intuitively, the set

of states in that universe at which that sentence “holds.” Moreover, each log-

ical operator corresponds to a set operation: “and” to intersection, “or” to

union, and “not” to complementation (w.r.t. that particular universe); and

a sentence that is provable in the syntax corresponds to the entire universe,

since it must hold at each state. Conversely, if a sentence in the syntax

corresponds in each arbitrary universe to the entire universe, then it is a

tautology.

All that is well and good as long as the provability operator, t, is not an

element of the syntactic language itself, but only of the metalanguage. As

soon as t becomes part of the language itself, the elegant one-one correspon-

dence between syntax and semantics breaks down. Indeed, the operator t
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does not correspond to any set operation within a particular universe, since

it refers simultaneously to all universes. For a sentence to be a tautology

means that in any universe, the sentence corresponds to the entire universe;

and there is no way of saying that within a particular universe.

BS work with semantics, so that is a real obstacle for them. To describe

how they circumvent it, we must ourselves make a detour, via the epistemol-

ogy of knowledge. In that context, there exists a single universe, called the

canonical universe, such that a given sentence is provable in the syntax if and

only if the corresponding set in the canonical universe is the entire canonical

universe (see, e.g., Aumann [3]). Thus, once we have a canonical universe,

we need no longer to refer to arbitrary universes to formulate the syntax-

semantics equivalence; it is enough refer to one specific universe, namely the

canonical one. Constructing the canonical universe is not a simple matter;

and once constructed, it is not a simple matter to establish the basic property

just enunciated. But such an object does exist.

Moreover, the canonical universe enables a valid semantic representation

of syntactic sentences involving the provability operator t. Namely, the tau-

tology operator corresponds to a set operator that takes the whole canonical

universe to itself, and all its proper subsets to the empty set.

BS started by constructing a probabilistic analogue of the canonical se-

mantic knowledge universe, which they called the universal type space. This

construction is already very complex and deep, using a full-blown proba-

bilistic semantic formalism, with sigma-fields of events on which numerical

probabilities ranging between 0 and 1 are defined; and this in spite of the

fact that they, like us, are interested only in belief—i.e., probability 1. It was

published by them separately in 1999, three years before the paper with the

main result [6]. Then, in 2002, they showed that the subset of the univer-
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sal type space that corresponds to CSBRU is nonempty and entails the BI

outcome (see [7]).

This may be considered a semantic analogue of our main theorem. To

use it actually to derive our main theorem—which is syntactic—one would

need to establish a syntax-semantics equivalence similar to that to which we

alluded above in the context of knowledge. But BS did not prove, or even

formulate, such an equivalence. Thus the conceptual interpretation of their

result is like that of ours; but both its formulation and proof are far more

intricate and difficult.

Nevertheless, there is no question that their contribution is of fundamen-

tal importance.

The notion of strong belief presented here, as well as it syntactic rep-

resentation, were developed by R.J. Aumann and A. Brandenburger in the

nineties of the previous century; they also conjectured the result established

here, independently of Battigalli and Sinischalchi. However, they did not

succeed in proving it fully; specifically, they were unable to establish the

consistency of CSBRU, and so did not publish thier research on this topic.

2 Framework

2.1 Language

Start with a generic9 PI game G. A node (a.k.a. vertex, or history, ) of

Player i is one at which i is active. A strategy of i is a function that assigns

an action of i at h to each of i’s nodes h. Each strategy si of i determines

a set H(si) of nodes of i, namely, those that si allows (does not preclude by

9This means that for each player, the payoffs at different terminal nodes are different.

14



an action at a previous node). A plan of i is the restriction10 of a strategy

si to H(si).

In the sequel, we wish to refer to the beliefs of a player at each of his

nodes, and also to his prior beliefs, before he observes anything. It is therefore

convenient to add to the formalism the belief of each player at the root of

the game tree (or at the empty history). Let Hi be the set consisting of the

root and the nodes at which Player i is active.

We now construct a formal language. The building blocks are the follow-

ing:

1. Atomic sentences. These have the form “player i uses plan pi,” denoted

simply pi.

2. Left parentheses and right parentheses.

3. Connectives and operators of the propositional calculus. As is known,

it is sufficient to take just “or” (∨) and “not” (¬) as primitives, and in

terms of them to define “and” (∧) and “implies” (→).

4. Belief modalities. For each player i and node h ∈ Hi, there is a belief

modality, bhi . Informally, if g is a formula (see below), then bhi (g) means

that conditional on the players other than i choosing plans that allow h,

player i ascribes probability 1 to g at the beginning of play.11 Verbally,

we will describe bhi (g) by saying that “ i believes g at h;” but that is

only a manner of speaking—the more accurate meaning is the above.

10Plans are sometimes called “strategies.”Here we do not want a strategy to be defined

at the nodes that it excludes.
11Players are not permitted to condition on their own actions; that would bring us

uncomfortably close to counterfactual reasoning.
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Definition 2.1. A formula is a finite string obtained by applying the follow-

ing two rules, in some order, finitely often:

• Every atomic sentence is a formula.

• If f and g are formulas, so are (f) ∨ (g), ¬(f), and bhi (f), for every

non-terminal node h.

The set of all formulas (for the game under consideration) is called the

syntax of that game, and is denoted χ. Call each formula f ∈ χ a simple

formula

If h and h′ are nodes, then h � h′ means that h follows h′ in the game

tree (or that h′ is a prefix of h). If a is an action at node h ∈ Hi, the formula

that expresses “i plays a” (or simply a for short) has the form ∨pi, where the

disjunction ranges over all plans of i that call for him to play a at h. Also,

“h is reached” (or simply h) is the formula ∧d, where the conjunction ranges

over all actions d on the path to h of all players with histories on that path.

If L is a set of nodes, then “L is reached” (or simply L) is the formula ∨h,

where the disjunction ranges over all h in L.

For any node h and player i, an h-plan of i is a plan of i that allows h; de-

note by Pi(h) the set of all i’s h-plans. An opposition h-plan is a conjunction

of plans that allow h, one for each player other than i. An h-plan pi together

with an opposition h-plan p−i determine a terminal node z of the game tree

where z � h. and a payoff ui(pi, p−i) for i. The set of all opposition h-plans

is denoted P−i(h), and the formula that expresses “all players other than i

allow h” is:

ho
i =

∨
p−i∈P−i(h)

p−i.
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2.2 Logic

We now present the axioms and inference rules that govern the internal logic

of our language. The axioms are as follows:

(1) The axioms of the propositional calculus.

For every player i:

(2.1)
∨
pi, where the disjunction is over all plans of player i.

(2.2) ¬(pi ∧ qi), where pi and qi are different plans of player i.

(3.1) bhi (f → g)→ (bhi f → bhi g), where h ∈ Hi.

(3.2) bhi f → ¬bhi ¬f .

(3.3) bhi f → bĥi b
h
i f , where h, ĥ ∈ Hi.

(3.4) ¬bhi f → bĥi ¬bhi f .

(3.5) pi ↔ bhi pi for every h ∈ Hi.

(3.6) bhi h
o
i for every h ∈ Hi.

(3.7) (bhi f ∧ ¬bhi ¬ĥo
i )→ bĥi f, where h, ĥ ∈ Hi and h ≺ ĥ.

The system defined by these axioms and rules will be called AX.

The inference rules are as follows:

(4.1) From f → g and f infer g (modus ponens).

(4.2) From f infer bhi f (generalization).

Axioms (2.1) and (2.2) express the requirement that every player execute

exactly one plan. Axiom schemas (3.1) and (3.2) represent classical modal

belief axioms (see, e.g., [8]). Axiom schemas (3.3) through (3.5) combine

versions of the “truth” and “introspection” axioms. Briefly, they say that

players are sure of their own plans and beliefs. Axiom (3.6) says that at

h, player i believes that the other players played to allow h. Axiom (3.7),
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concerns belief revision; it says that if at h, i believed f and also that the

subsequent node ĥ “could” occur, then he believes f at ĥ. This reflects the

idea that players update their beliefs in a Bayesian way.

A set of formulas L is called a list.

Definition 2.2. As in [3] a list L is called logically closed if it is closed under

modus ponens:

f ∈ L and f → g ∈ L implies g ∈ L.

It is called epistemically closed if it is closed under generalization:

f ∈ L implies bhi f ∈ L ∀i, h ∈ Hi,

and closed if it is both logically and epistemically closed. The closure of a

list L is the smallest closed list that includes L.

A formula f is called tautology or of AX, denoted by `AX f , if it is

in the closure of the list of all formulas having one of the forms (1), (2) or

(3).12 f is inconsistent if its negation is tautology; otherwise it is consistent.

It entails g if the formula f → g is tautology. The formulas f1, f2, . . . are

inconsistent if the conjunction of some finite subset of them is inconsistent;

otherwise they are consistent. They entail g if the conjunction of some finite

subset of them entails g. Denote by T the set of all tautologies of AX. Call

each formula f ∈ T a simple tautology.

2.3 Tautology Calculus

To state the Main Theorem as a formula within our language, we need to

incorporate the notion of provability as a formal element of the language.

12Alternatively, f is a tautology of AX iff there exists a finite sequence of formulas whose

last formula is f , and each of which is either an axiom or follows from those preceding it

through the application of one of the two inference rules.
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So, we augment the language by adding a provability modality, denoted t;

informally, if g is a formula, then t(g) means that g is a tautology. To the

rules that define the formation of formulas (see [8]), we add the following:

• If f is a formula, so is t(f).

We denote the augmented syntax by χ′. The definition of closure (2.2 above)

extends verbatim to the augmented syntax

Definition 2.3. A list L ⊂ χ′ is called tautologically complete if

f ∈ L implies t(f) ∈ L

and

f 6∈ L implies ¬t(f) ∈ L.

Loosely speaking, we would like to extend the concept of “tautology” to

the augmented syntax in such a way so that t(f) is a tautology whenever f is a

tautology and ¬t(f) is a tautology whenever f is not a tautology. Therefore,

for every formula f in χ′, either t(f) is a tautology or ¬t(f) is a tautology.

Thus, one may expect that the list of tautologies in the augmented language

will include all the formulas of the form t(f) where f is a basic tautology

and all the formulas ¬t(f) where f is a basic formula that is not a basic

tautology. By the following Lemma, there exists a unique such list which is

strongly closed and satisfies this requirement.

Lemma 2.1. There exists a unique list T′ ⊆ χ′ with T′ ∩ χ = T that is

closed and tautologically complete.

the proof of the Lemma is relegated to an Appendix.

A formula f ∈ χ′ is a tautology in the augmented axiomatization if it is

in T′. Write `AX′ f for f ∈ T′.13

13The reason for defining two different languages and the corresponding axiomatizations

is technical; it simplifies our analysis.
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2.4 Semantics

The notion of strong belief that plays a central role in our theorem depends

crucially on that of consistency—that a formula does not contradict the ax-

ioms, that its negation cannot be proved. Proving consistency syntactically

is a tricky matter; to prove a formula, one writes down a proof, but how does

one show that something cannot be proved? On the face of it, it would seem

that one would have to write all possible proofs, and show that none of them

end with the given formula.

To cope with this difficulty we present a friendly semantic formalism

that represents a way to interpret the formal language. This will enable us

to determine whether a given formula is consistent. We start by defining

models for our language.

Definition 2.4. A model M = {Ω,p, (Ki)i∈I , ((B
h
i )h∈Hi

)i∈I} for the syntax

χ consists of,

1. A non-empty set Ω (the states of the world, or simply states;)

2. a function p from Ω to ×iPi (pi(ω) is i’s plan in state ω);

3. for each player i, a partition Ki of Ω (if ω is in an atom K of Ki, then

i knows that the true state is in K); and

4. for each player i, node h of i, and atom K of Ki, a nonempty subset

Bh
i (K) of K (if ω is in Bh(K) , then i believes that the true state is in

Bh
i (K)), where

5. if h and h′ are nodes of i with h ≺ h′, then Bh′
i (K) is either included

in Bh
i (K), or disjoint from it; and
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6. at every state ω in Bh
i (K), the plans pj(ω) of player j other than i

allow h.

To each formula f in the syntax, assign a subset ‖f‖ of Ω, representing

the set of states at which f holds (or is “true”); formally, ‖f‖ is defined

inductively over the “depth” of a formula as follows:

1. ‖pi‖ := {ω : pi(ω) = pi};

2. ‖¬f‖ := Ω\‖f‖;

3. ‖f ∨ g‖ := ‖f‖ ∪ ‖g‖;

4. ‖bhi (f)‖ := ∪{K : Bh
i (K) ⊂ ‖f‖}.

In these terms, Requirement 6 may be restated as 6’. Bh
i (K) ⊂ ‖ho‖.

An element of the set ‖f‖ will be called a model of the formula f.

Lemma 2.2. Every formula f ∈ χ, such that `AX f , is true in every state

of the world of every model.

Proof. See Theorem A.4 in the Appendix.

Corollary 2.3. Every formula that is true in some state of the world, in

some model, is consistent.

3 The Theorem

3.1 Rationality

Call a player rational if at every node allowed by his plan, he does not believe

that he has a plan that yields him a higher payoff.14 Formally, if pi and qi

14Like Aumann [2], we replace utility maximization by a weaker condition, namely, that

the player does not believe that he has a better plan. Unlike Aumann, we demand this

not at every node, but only at nodes allowed by the plan actually in use.
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are different plans of player i, set Qh
pi

(qi) =
∨
{p−i ∈ P−i(h)|ui(qi, p−i) >

ui(pi, p−i)}; in words, Qh
pi

(qi) is the disjunction of opposition h-plans in

P−i(h) for which qi yields more than pi to i (if there are no such p−i, let

Qh
pi

(qi) be a contradiction). The formula that asserts that plan pi is rational

for i is then

r(pi) :=
∧

{h|h∈H(pi)}

∧
{qi∈Pi(h)|qi 6=pi}

¬bhQh
pi

(qi).

Define player i to be rational if he uses a rational plan, that is,

ri :=
∧

pi∈Pi

(pi −→ r(pi)).

Remark. We do not claim that the above definition of “rationality” is

the only reasonable one. We do however claim that if i is “rational” in any

commonly accepted sense (such as utility maximization), then certainly ri

obtains.

The formula corresponding to all players being rational is

r :=
∧
i

ri.

3.2 Strong Belief

Say that i strongly believes a formula g (written sbi(g)) if for each node h of

i, either

(i) i believes g at h, or

(ii) g precludes h being reached (or equivalently, g is inconsistent with h).

In words, i continues to believe g no matter what happens, unless he reaches

a node that is logically impossible under g. In symbols:

sbi(g) =
∧

h∈Hi

[bh(g) ∨ t(¬(h ∧ g))].
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Say that g is strongly believed (or that there is strong belief of g, written

sb(g)) if each player strongly believes g. Mutual strong belief of g of order

n (written sbn(g)) is defined inductively as sbn−1(g) ∧ sb(sbn−1(g)); that is,

each iteration provides for the foregoing iteration and strong belief thereof

(note that the strong belief operator does not commute with conjunction).

Common strong belief of g comprises all the formulas sbn(g) for all n.

The main result of this paper states the following:

Theorem. Common strong belief of rationality is consistent and entails the

unique backward induction outcome for every generic PI game.

4 Outline of the Proof of the Main Theorem

The proof has two parts. The first describes an elimination process culmi-

nating with the BI outcome. The second identifies the result of the (k+1)’th

step of that process with (sb)k(r), i.e., k’th order strong belief of rationality.

Before each step of the elimination process, there is a set of current plans

of each player; a node is relevant at that step if it is allowed by some profile of

current plans. Before the first step, all plans are current. To go from one step

to the next, retain only those plans pi of player i that, at each relevant node

h allowed by pi, are not strictly dominated by an h-plan of i w.r.t. current

opposition h-profiles.15 The process clearly “ends” after finitely many steps,

in the sense that the set of current plans does not change thereafter. We will

show that there are plan profiles that survive the process, and all of them

lead to the BI outcome (see Lemma 5.1).

This describes the first part of the proof. The second part demonstrates

15I.e., there is no h-plan qi of i such that ui(qi, p−i) > ui(pi, p−i) for all opposition

profiles p−i consisting of relevant h-plans.
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that a plan survives the (k + 1)’th step of the process if and only if it is

consistent with k’th order strong belief of rationality (see Lemma 5.2).

The proof of the second part is by induction. Suppose the lemma true

up to and including k. To demonstrate “if,” we show that if a plan pi does

not survive the (k+ 1)’th step, then it is inconsistent with k’th order strong

belief of rationality. Indeed, in that case there is a relevant node h allowed

by pi such that pi is not a best reply to any opposition h-profile of current

plans. But then pi cannot be rational under any possible beliefs of i at h

that are consistent with k’th order strong belief of rationality.

To demonstrate “only if,” we must show that any plan surviving the

(k + 1)’th step of the process is consistent with k’th order strong belief of

rationality. Consistency is demonstrated semantically, that is, by building a

model in which it holds.

5 Proof of the Main Theorem

Before proving our Main Theorem it is helpful to link between consistency

in the language χ′ with respect to AX′ and consistency in χ with respect

to AX. The following result is essentially a restatement of the definition of

strong belief and of a tautology in χ′.

Proposition 1. A formula f ∈ χ is consistent (or a tautology) with respect

to AX iff it is consistent (or a tautology) with respect to AX′. Moreover,

`AX′ sb
i(f)↔

∧
h∈Hi(f)

bhi (f),

where Hi(f) = {h ∈ Hi : `AX′ ¬t(¬(h ∧ f))}.

Proposition 1 provides a straightforward inductive way to convert any

24



formula of the form sbn(r) to a logically equivalent formula in χ, i.e., a

formula not involving the modality t.

In the proof of the theorem we use a finite family of models that will

be helpful in proving consistency for the formulas sbn(r). This family is a

sub-family of the models introduced in Definition 2.4.

Definition 5.1. A model for the syntax χ is called simple if:

1. The set of states of the world is Ω =
∏

i∈I Pi, where Pi is the set of

plans for player i.

2. p : Ω→ P is the identity map.

3. The atoms K of Ki are determined by pi; i.e., two states belong to the

same atom of Ki iff they specify the same plan for i.

In a simple model, if I is the atom of Player i at whose states he plays

pi, and h is a node of i, we will sometimes write Bh(pi) instead of Bh
i (I).

Consider the following inductively defined sequence of plans:

For every player i, define P 0
i = Pi, P

0
−i = Πj 6=iP

0
j and P 0 = ΠjP

0
j . For

n ≥ 0, assume P n
i to be defined for every player i, and let Hn be those

non-terminal nodes that are allowed (reachable) by profiles of plans from

P n(:= ΠjP
n
j ). Now define P n+1

i as the set of all plans pi satisfying the

following requirements:

1. pi ∈ P n
i .

2. For every node h ∈ H(pi) ∩ Hn and for every qi ∈ Pi(h), pi is not

strictly dominated by qi with respect to P n
−i in the subgame starting at

h; i.e., there exists a p−i ∈ P n
−i(h) (P n

−i(h) are those opposition plans

in P n
−i that allow h) for which ui(pi, p−i) ≥ ui(qi, p−i).
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In the terminology of the above “outline,” P n
i comprises i’s “current”

plans.

Lemma 5.1. All the P n
i are nonempty. Moreover, for every generic PI game

there exists an m such that P n
i = Pm

i for every player i and every n > m.

And every profile of plans in Pm leads to the unique backward induction

outcome.

Sketch of the proof. Consider the following inductively defined elimination

process: For every i, W 0
i = P 0

i , assume W n
i is defined for every i, set W n+1

i

to be those plans in W n
i that are not (weakly) dominated by any plan from

Pi with respect to W n
−i.

16

We prove that W n = P n for every n ≥ 0. For n = 0 it trivially holds.

Now assume W n = P n and let pi ∈ W n
i \W n+1

i . So pi is weakly dominated

by some qi with respect to W n
−i(= P n

−i). So, there exists h ∈ Hn that are

allowed by both pi and qi for which pi prescribe an action a, and qi prescribe

a different action, b. But since the game is generic, h ∈ Hn, and pi is

weakly dominated by qi, one can deduce that qi strongly dominates pi in the

subgame starting at h with respect to P n
−i(h). And so, pi 6∈ P n+1

i ; therefore,

P n+1
i ⊂ W n+1

i .

For the other direction, let pi ∈ P n+1
i \ P n

i by definition there exists a

node h ∈ Hn that is allowed by pi and a plan qi ∈ Pi(h) such that qi strongly

dominates pi at h. Define a plan for player i, li as follows:

For h′ ∈ Hi, if h′ = h or h′ follows h, set li(h
′) = qi(h

′); otherwise set

li(h) = pi(h). The node h is allowed by P n; therefore by the induction

hypothesis it is allowed also by W n and so li(h) weakly dominates pi with

respect to W n
−i. Therefore W n+1

i = P n+1
i .

16Alternatively, one can retain those plans that are not dominated by any plan from

Wn
i with respect to Wn

−i. These processes are the same.
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Clearly, ∀n W n 6= ∅ and the existence of m is obvious. Moreover, in

[4] Battigalli have proved that all the profiles in Wm lead to the unique BI

outcome.

Lemma 5.2. For each n, a plan pi of player i is consistent17 with sbn(r) iff

pi ∈ P n+1
i .

Proof: By induction on n. The induction hypothesis consists of two parts,

if and only if, stated as follows:

“Only if”: If a plan pi of player i is not in P n+1
i , then pi is inconsistent

with sbn(r) (where sb0(r) := r).

“If”: There exists a simple model Mn such that whenever 0 ≤ k ≤ n,

every profile of plans in P k+1, when viewed as a point in Ω, is a model for

sbk(r) (i.e., is in ‖sbk(r)‖).

n=0 .

Only if: Suppose that pi 6∈ P 1
i ; we will show that pi is not consistent with

r. Since pi 6∈ P 1
i , there is a node h ∈ H(pi), and a plan qi ∈ Pi(h) such that

for every opposition h-plan p−i, we have ui(pi, p−i) < ui(qi, p−i). That is, qi

is better for i than pi, no matter what the opposition does; so pi cannot be

rational, no matter what i believes. Formally, by definition of rationality

`AX′ r ∧ pi → ¬bhQh
pi

(qi). But in this case, Qh
pi

(qi) = ho
i , which contradicts

axiom (3.6).

If: We construct a simple model M0, and show that r holds at every point

in P 1 (which is nonempty by Lemma 5.1). So it will follow that sb0(r) = r

is consistent.

For every player i, plan pi ∈ P 1
i and node h ∈ Hi, define Bh(pi) as the

17Since we may take sbn(r) ∈ χ by proposition 1, consistency in AX and in AX′ are

the same.
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set of all plan profiles that are consistent with h and pi; i.e.,

Bh(pi) := {(pi, p−i) : p−i ∈ P 0
−i(h)} = ‖ho

i‖

Let p ∈ P 1; by definition of P 1
i we deduce that for every h ∈ H(pi) and for

every qi ∈ Pi(h), there exists p−i ∈ P−i(h) such that ui(pi, p−i) ≥ ui(qi, p−i).

Therefore P−i(h) * Qh
pi

(qi); i.e., for every i, every node h allowed by pi,

and every qi ∈ Pi(h) other than pi, player i does not believe that qi strictly

dominates pi. Therefore,

p ∈ ‖¬bh(Qh
pi

(qi))‖ ∀i∀h ∈ H(pi) and ∀qi ∈ Pi(h),

when p is viewed as a point in Ω. So p ∈ ||r(pi)|| for all i, or alternatively,

||p ∧ r(pi)|| 6= ∅, where p is now viewed as a formula. But `AX′ r ∧ p ↔

∧i∈Ir(pi). Thus p is indeed consistent with r.

At this point we have the basis for the induction. Now assume the induc-

tion hypothesis for n− 1; we prove it for n as follows:

Only if: Let pi be a plan of player i that is not in P n+1
i . If pi 6∈ P n

i , then by

the induction hypothesis we are done. So we may take pi ∈ P n
i �P n+1

i . Then

for some node h ∈ H(pi) ∩ Hn there exists a strategy qi ∈ Pi(h) such that

ui(pi, p−i) < ui(qi, P−i) for every p−i ∈ P n
−i ∩ P−i(h). By the induction hy-

pothesis, the plans of players other than i that are consistent with sbn−1(r)

are precisely those in P n
−i, so `AX sbn−1(r) →

∨
p−i∈P n

−i
p−i. Again by the

induction hypothesis, h is consistent with sbn−1(r), so by the definition of

sbn(r),

`AX′ sb
nr → bh(sbn−1r).

Therefore by axioms (3.1) and (4.2), `AX′ sb
n(r) → bh[

∨
p−i∈P n

−i
p−i]. By

axioms (3.6), `AX′ b
hho and so `AX′ sb

n(r) → bhho. Using axioms (3.1)

and (4.2) again, one can show that (bhf ∧ bhg)→ bh(f ∧ g); therefore, `AX′
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sbn(r)→ bh[
∨

p−i∈P n
−i(h) p−i]. Since qi dominates pi in the subtree starting at

h w.r.t. P n
−i(h), we get P n

−i(h) ⊆ Qh
pi

(qi). But `AX′ r(pi) → ¬bh[
∨
Qh

pi
(qi)];

therefore `AX′ r(pi)→ ¬bh[
∨

p−i∈P n
−i(h) p−i]. Since `AX′ (sbn(r)∧pi)→ r(pi),

deduce that

`AX′ (pi ∧ sbn(r))→ bh[
∨

p−i∈P n
−i(h)

p−i] ∧ ¬bh[
∨

p−i∈P n
−i(h)

p−i].

.

If: By the induction hypothesis, in the model Mn−1, we have that for all

k < n,

p ∈ P k+1 ⇔ p ∈ ‖sbk(r)‖.

For each player i and plan pi, define the model Mn as follows:

If pi 6∈ P n+1
i , then Bh(pi) is as in Mn−1.

If pi ∈ P n+1
i and h ∈ Hi, if h 6∈ Hn, then Bh(pi) is as in Mn−1. If h ∈ Hn,

redefine

Bh(pi) := {(pi, p−i) : p−i ∈ P n
−i(h)}.

We show that if p ∈ P k+1, then p ∈ ‖sbk(r)‖ for all k ≤ n.

Note that from the definition of P n+1, for every h ∈ Hn ∩ H(pi) and qi ∈

Pi(h), there exists an opposition h-plan p−i ∈ P n
−i such that ui(pi, p

h
−i) ≥

ui(qi, p
h
−i). So P n

−i(h) \Qh
qi

(pi) 6= ∅. Therefore Bh(pi) 6⊂ ‖Qh
qi

(pi)‖, and so

pi ∈ ‖¬bh(Qh
pi

(qi))‖ ∀i∀h ∈ Hn(pi) and ∀qi ∈ Pi(h). (5.1)

By the induction hypothesis, 5.1 is true for all h ∈ H(pi). And so as in the

case n = 0, we deduce that p ∈ ‖r‖. Moreover, for every k ≤ n and node h ∈

Hk∩H(pi), we have—by the induction hypothesis and by the reconstruction

of Bh(pi)—that Bh(pi) ⊆ ‖sbk‖. And so inductively we have that p ∈ sbk(r)

for every k < n. As for k = n, one has sb(sbn−1(r)) =
∧

h∈Hk bh(sbk−1(r)).
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Since sbn(r) = sbn−1(r) ∧ sb(sbn−1(r)), one gets p ∈ sbn(r). For every other

p, the inductive construction entails p ∈ P k+1
i ⇔ p ∈ ‖sbk(r)‖. So the lemma

is proved.

Thus, a plan pi of player i is consistent with sb0(r) ∧ . . . ∧ sbn(r) iff

pi ∈ P n+1
i . By Lemma 5.1, Pm is nonempty, equal to P n for all n ≥ m, and

every profile in Pm leads to the unique BI outcome. So, Pm is consistent

with sb0(r) ∧ . . . ∧ sbn−1(r) for all n ≥ m, and the Main Theorem is proved.

6 Discussion

6.1 Battigalli and Siniscalchi

In this subsection we would like to further relate to the connection between

BS model and the presented language. Basically BS uses Harsanyi type space,

in which every type of every player comprises a conditional probability system

over the other players’ strategies and types. A natural question to ask, in this

context, is whether BS type space provides a model for our axiomatization.

There is a natural way to identify each formula in our language with a

corresponding event in BS type space. But it turns out that the connection

between our syntax and BS universal type space is much stronger. In fact

one can prove that with an additional axiom (see axiom (3.8) in the Ap-

pendix) BS type space provide a canonical model for our axiomatization.18

That is, every tautology in our language is valid in every state of the world,

when it translated to BS type space, and vice versa, every formula that is

valid in every state of the world is tautology with respect to our augmented

axiomatization.19

18See the Appendix for a precise definition of canonical model.
19The paper does not include the formal proof of this assertion; it can be supplied by
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6.2 General Extensive Games

Here we restrict the analysis to PI extensive-form games, but in fact it is

equally valid for general finite extensive games with perfect recall. The way

to adjust the framework for this case is fairly obvious. Again we use plans

rather than strategies, except that now Hi is the collection of information

sets of i; indeed, in the PI case it is identical to the set of histories of player

i.

The axiomatization stays the same but here we have a belief with a prob-

ability one modality for every player’s information set rather than for every

node. However, it turns out that our definition of rationality is too weak to

apply to general extensive games. In particular, in order to obtain BS’s or

Pearce’s [9] extensive form rationalizability one needs a stronger definition

of rationality.20

A Appendix

We present a class of models for our axiomatization, AX, that links the

syntax to the semantics. The most preferable way would be to link the

syntax to a class of models that characterize it by soundness and completeness

relation. The way to do that would be by looking at the canonical model of

the language with respect to the logic that our axiomatization defines.

We would first like to introduce some more terminology:

An axiom system is said to be sound for a language = with respect to a class

C of models if every tautology f is valid with respect to C i.e., valid in every

the author upon request.
20Again, a more detailed and formal approach for this case is beyond the scope of this

paper and can be supplied by the author upon request.
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model in C. An axiom system is said to be complete for a language = with

respect to a class of models C if every valid formula f with respect to C is

provable in the axiom system.

Throughout we fix an extensive form PI game G.

A.1 The Canonical Model

Definition A.1. A set of formulas Γ is maximally consistent with respect

to AX if it satisfies the following two conditions:

a. Γ is consistent with respect to AX.

b. Γ is maximal with respect to that property.

It can be seen that maximal sets do exist21 and satisfy the following

properties:

1. Γ is logically closed i.e., closed under modus ponens (4.1).

2. Γ contains all the theorems of AX.

3. For every formula f , f ∈ Γ or ¬f ∈ Γ.

4. For every formula f , g, f ∨ g ∈ Γ iff f ∈ Γ or g ∈ Γ.

5. For every formula f , g, f ∧ g ∈ Γ iff f ∈ Γ and g ∈ Γ.

6. Every consistent set of formulas can be extended to a maximally con-

sistent set.

Now let Ω be the set of all maximally consistent sets; we call the elements

of Ω states of the world.

21See [8] or any other modal logic textbook.
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Definition A.2. For each Γ ∈ Ω and non-terminal node h ∈ Hi, we define

Γi/h to be the set of all formulas that player i h-believes in Γ. More precisely,

Γi/h = { g | bhi g ∈ Γ}.

For every player i and non-terminal node h ∈ Hi, define the usual acces-

sibility binary relation Ri
h over Ω as follows: let Γ,Λ ∈ Ω, ΓRi

hΛ iff Γi/h ⊆ Λ.

Let Bh
i (Γ) be the set of all states of the world that player i considers possible

at h ∈ Hi, that is,

Bh
i (Γ) = { Λ ∈ Ω | ΓRi

hΛ}.

Proposition 2.

1. Γi/h is consistent (therefore Bh
i (Γ) 6= ∅).

2. Γi/h is closed under (4.1) and (4.2).

3. g ∈ Γi/h for every g such that `AX g.

If ΓRi
hΛ for some Γ,Λ ∈ Ω, then Γi/h = Λi/h.

Proof. Part 2 follows from positive introspection, while part 3 is straight-

forward from generalization. For part 1, assume by way of contradiction

that Γi/h is not consistent. Then we have g1, . . . gk ∈ Γi/h such that

AX ` ¬(g1∧ . . .∧ gk). By definition, bhi g1, . . . b
hgk ∈ Γ and so from K we get

bhi (g1 ∧ . . . ∧ gk) ∈ Γ but from part 3 bhi ¬(g1 ∧ . . . ∧ gk) ∈ Γ, a contradiction

to D.

As for part 4, let Γ,Λ ∈ Ω such that ΓRi
hΛ. By definition Γi/h ⊆ Λ and so

if for some formula f , bhi f ∈ Γ, then f ∈ Λ. Note that if bhi f ∈ Γ, then from

positive introspection (3.3), bhbhi f ∈ Γ. We therefore deduce that if bhi f ∈ Γ

then bhi f ∈ Λ. And so Γi/h ⊆ λi/h. For the other direction assume on the

contrary that bhi f ∈ Λ \ Γ, for some formula f . Then since Γ is a maximally
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consistent set ¬bhi f ∈ Γ. From negative introspection (3.4) bhi ¬bhi f ∈ Γ and

so since Γi/h ⊆ Λ we get that ¬bhi f ∈ Λ, which contradicts the consistency

of Λ.

Note that as a consequence of part 1 of the proposition, one gets in

particular that for all Γ ∈ Ω, Bh
i (Γ) 6= ∅.

For every i ∈ I, define pi : Ω → Pi as follows: pi(Γ) = pi iff pi ∈ Γ;

note that pi is well defined. We would like to define a partition Ki for every

player i. Thus one can see the canonical model as a member of the class of

models introduced in Definition 2.4. Let Γ,Λ ∈ Ω. For every player i define

an equivalence relation, ∼i as follows: Γ ∼i Λ if, for some node h ∈ Hi,

Γi/h = Λi/h. The relation ∼i defines a partition Ki over Ω. One has to

show that Bh
i (·) is measurable with respect to Ki. That is, if Γ ∼i Λ, then

Bh
i (Γ) = Bh

i (Λ). Assume that Γi/h = Λi/h for some h ∈ Hi and let h′ ∈ Hi.

If f ∈ Γi/h
′ then bh

′
f ∈ Γ and from positive introspection (i.e., axiom (3.3))

bhi b
h′
i f ∈ Γ. It follows that bhi b

h′f ∈ Λ. Therefore bh
′

i f ∈ Λ and f ∈ Λi/h
′,

and vice versa. Therefore Γi/h
′ = Λi/h

′ for every node h′ ∈ Hi, and so

Bh′
i (Γ) = Bh′

i (Λ) for every node h′ ∈ Hi.

Now according to Definition 2.4 M = {Ω,p, (Ki)i∈I , ((B
h
i )h∈Hi

)i∈I} de-

fines a model for the language χ.

At this point we have define a model as a member of the class introduced

in Definition 2.4. We need to show first that it indeed satisfies properties 1-6

stated in the definition.

Lemma A.1. The model M satisfies properties 1-6 stated in Definition 2.4.

Proof. For properties 1-3 we have nothing to prove. As for property 4 we

have to show that for every partition element K ∈ Ki B
h
i (K) ⊂ K. Let

Γ ∈ K; since Bh
i (·) is measurable with respect to Ki one has to show that
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{Λ | ΓRi
hΛ} ⊆ K for every h ∈ Hi. But by part 4 of Proposition 2 ΓRi

hΛ

entails Γi/h = Λi/h and therefore Γ ∼i Λ.

Property 5: Let h, h′ ∈ Hi with h ≺ h′ and assume Λ ∈ Bh
i (K)∩Bh′

i (K) 6=

∅. Since for every Γ ∈ K one has Γi/h
′ ⊆ Λ, deduce that h′o ∈ Λ. Also

for every Γ ∈ K one has Γi/h ⊆ Λ; therefore ¬bhi h′o ∈ Γ. And so, if for

some formula f , bhi f ∈ Γ, then because Γ is a maximally consistent set,

bhi f ∧ ¬bh¬h′o ∈ Γ; therefore by axioms (3.6) and (4.2) bh
′

i f ∈ Γ. We have

shown that for every Γ ∈ K, Γi/h ⊆ Γi/h
′ and so Bh′

i (K) ⊆ Bh
i (K).

Property 6: For Λ,Γ ∈ K if Γi/h ⊆ Λ then ho ∈ Λ. Therefore, if

Λ ∈ Bh
i (K), then ho ∈ Λ and so, if pj 6∈ Pj(h) for some player j 6= i, one has

`AX pj → ¬ho. So, if Λ ∈ Bh
i (K), pj 6∈ Λ.

Lemma A.2. For every Γ ∈ Ω and every formula f , Γ ∈ ‖f‖ iff f ∈ Γ.

Proof. We will prove the lemma using induction on the depth of the formula.

For formulas of depth zero the proof is immediate from the properties of maxi-

mal consistent sets and the truth assessment policy. We prove the proposition

first for formulas of the form f = bhi g, where g is from depth n− 1 > 0. The

general case follows from the properties of maximally consistent sets and the

truth assessment policy.

⇐: If f ∈ Γ, then by definition of Γi/h, g ∈ Γi/h; therefore g ∈ Λ for every

Λ ∈ Bh
i (Γ) by the induction hypothesis Bh

i (Γ) ⊆ ‖g‖; therefore Γ ∈ ‖f‖.

⇒: If Γ ∈ ‖f‖, then Bh
i (Γ) ⊆ ‖g‖, so g ∈ Λ for every Λ such that Γi/h ⊆ Γ;

therefore Γi/h `AX g for otherwise we could have constructed a maximally

consistent set Λ′ such that Γi/h ∪ {¬g} ⊆ Λ′. But because Γi/h contains all

the theorems of AX and is closed under 4.1 and 4.2 we get that g ∈ Γi/h

and therefore f ∈ Γ.

35



Recall that a canonical model M = {Ω,p, (Ki)i∈I , ((B
h
i )h∈Hi

)i∈I} for χ

with respect to AX is a model for which every AX-tautology formula is true

in every ω ∈ Ω and every AX-consistent formula f is valid (i.e., true in some

ω ∈ Ω). Thus Lemma A.2 leads to the following immediate corollary:

Corollary A.3. M = {Ω,p, (Ki)i∈I , ((B
h
i )h∈Hi

)i∈I} is a canonical model

with respect to AX.

Denote the class of models for our language, was introduced in Definition

2.4, by M(G). One has the following desired property of the M(G):

Theorem A.4. The class of models M(G) is sound and complete with re-

spect to AX.

Proof. It is fairly easy to see that for each axiom schema f of the form (1),

(2.1), (2.2), (3.1)-(3.7), one has ‖f‖ = Ω for every model M ∈ M(G). Let

f and g be formulas such that ‖f‖ = Ω and ‖f → g‖ = Ω; by our truth

assessment policy one can deduce that ‖g‖ = Ω, and also that for every i ∈ I

and h ∈ Hi, ‖bhi (f)‖ = Ω. Therefore, if g is a tautology in AX (i.e., `AX f),

one can easily deduce using induction on the minimal proof length of f that

‖f‖ = Ω in every model M ∈M(G).

Completeness is a straightforward consequence of Corollary A.3.

The set Bh
i (K) is the set of states that player i considers possible if the

other player plays in accordance with node h, or, equivalently, one can think

of Bh
i (K) as a support of a probability measure formed by player i. From

properties 5 and 6 one can see that the belief update is not strictly Bayesian,

that is, whenever Bĥ
i (K) ∩ ‖ĥ‖ 6= ∅, Bĥ

i (K) ⊆ Bh
i (ω) ∩ ‖ĥo‖, rather than

an equality. If we want strict Bayesian updating we must add the following

axiom:

(3.8) bĥi f → bhi (f ∨ ¬ĥo) where h ≺ ĥ.
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Denote by AX+ the axiom system AX with the addition of (3.8) and by

M+(G) the class of models which instead of property 5 of Definition 2.4 have

the following property:

5’ If h and h′ are nodes of i with h ≺ h′, then Bh′
i (K) is either equal to

Bh
i (K) ∩ ‖h′‖ or disjoint from it.

One then gets the following theorem:22

Proposition 3. M+(G) is sound and complete with respect to AX+.

In order to be able to define truth assessment in Ω for formulas in χ′ we

have to be able to interpret formulas of the form t(f). For Γ ∈ Ω define

Γ |= t(f) iff ‖f‖ = Ω.

So t(f) is true in Ω iff f is true in each Γ ∈ Ω.

Proof of Lemma 2.1. Set,

T′ = {f ∈ χ′ : ‖f‖ = Ω}.

T′ obviously satisfies T′ ∩ χ = T. The uniquness of T′ follows by a simple

induction over the construction of a formula in χ′.
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