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HOW COMMON ARE COMMON PRIORS?

ZIV HELLMAN AND DOV SAMET

Abstract. To answer the question in the title we vary agents’
beliefs against the background of a fixed knowledge space, that
is, a state space with a partition for each agent. Beliefs are the
posterior probabilities of agents, which we call type profiles. We
then ask what is the topological size of the set of consistent type
profiles, those that are derived from a common prior (or a common
improper prior in the case of an infinite state space). The answer
depends on what we term the tightness of the partition profile. A
partition profile is tight if in some state it is common knowledge
that any increase of any single agent’s knowledge results in an
increase in common knowledge. We show that for partition profiles
which are tight the set of consistent type profiles is topologically
large, while for partition profiles which are not tight this set is
topologically small.

1. Introduction

Ever since the introduction of games with incomplete information by
Harsanyi (1967-8), the assumption that players’ posterior beliefs in
models of differential information are derived from a common prior has
been ubiquitous in the literature. It plays an essential role in the no
agreements theorem of Aumann (1976) and in the no trade theorems
that followed. It is also a basic building block of the solution concept of
correlated equilibrium which was interpreted by Aumann (1987) as the
expression of common knowledge of rationality. As pointed out in that
paper, the assumption of a common prior, also known as the Harsanyi
doctrine, is pervasively “explicit or implicit in the vast majority of
the differential information literature in economics and game theory”.
Despite its pervasiveness, the justification and the use of the common
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HOW COMMON ARE COMMON PRIORS? 2

prior assumption was, and still is, debated and challenged (see Gul
(1998) and Aumann (1998)).

The special interest in the common prior assumption leads naturally
to the question how restrictive an assumption it is, or equivalently, how
common common priors are. We study this question in a general model
of differential information that has two parts, a knowledge space and
the agents’ posterior beliefs. The first is given by a finite or countably
infinite state space with a partition profile of the state space, one for
each agent, which define the agents’ knowledge. An agent’s posterior
beliefs are given by a type function which assigns to each element in
the agent’s partition a probability function on this element. A type
profile—one type function for each agent—is consistent if all the type
functions are derived from one probability on the state space—the com-
mon prior—by conditioning on the partitions’ elements. In the count-
ably infinite state space, we consider a type profile to be consistent if
it can be derived from a common improper prior via conditioning.

Against the background of a fixed knowledge space, we vary the
type profiles and study the topological size of the set of consistent type
profiles. As we show, this size depends on the partition profile of the
knowledge space, through its common knowledge structure. We say
that knowledge is tight at a state when any increase of the agents’
knowledge in this state results in increasing common knowledge. We
say that the partition profile is tight if at some state it is common
knowledge that knowledge is tight. We show that when the partition
profile is tight the set of consistent type profiles is topologically large,
and when it is not tight this set is topologically small. The characteri-
zation of tightness in the finite case is particularly simple: the tightness
of a type profile, the meet of which consists of one element, can be de-
termined solely by the total number of elements in the partition profile.
In the proofs we use another characterization of tightness, which holds
for both the finite and the infinite case, in terms of chains which are
defined in turn in terms of the accessibility relation on states. The
existence of a prior for a given type profile can be characterized by a
condition on the relation between chains and the type profile. Such a
condition was used in Harsanyi (1967-8) for Harsanyi type spaces, and
was extended by Rodrigues-Neto (2009) for general knowledge spaces.

The precise meaning of large and small depends on whether the state
space is finite or countably infinite. For finite knowledge spaces, when
the partition profile is tight each type profile is consistent, and when
it is not tight, the set of consistent type profiles is nowhere dense. For
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countably infinite knowledge spaces, we endow the set of all type pro-
files with a topology that makes it a Baire space. When the partition
profile is tight the set of consistent type profiles is big, as its comple-
ment is of first category, which in a Baire space is a small set. When
it is not tight, the set of consistent type profiles is small, being of first
category.

2. Preliminaries

2.1. Knowledge spaces.

A knowledge space for a nonempty finite set of agents I, is a couple
(Ω,Π), where Ω is a nonempty set called a state space, and Π =
(Πi)i∈I is a partition profile, where for each i, Πi is a partition of
Ω. The knowledge space is called finite or countably infinite when Ω
is finite of countably infinite, correspondingly. An event is a subset
of Ω. For a partition Π of Ω and a state ω, Π(ω) is the element of
Π that contains ω. We say that agent i knows an event E at ω if
Πi(ω) ⊆ E. We define for each i a knowledge operator Ki : 2Ω → 2Ω,
by Ki(E) = {ω | Πi(ω) ⊆ E}. Thus, Ki(E) is the event that i knows
E.

For a pair of partitions Π and Π′ and state ω, we write Π′ �ω Π when
Π′(ω) ⊆ Π(ω). For the partition profiles Π and Π′, Π′ �ω Π means
that for each i, Π′i �ω Πi. The partition Π′ is a refinement of Π,
denoted Π′ � Π, when Π′ �ω Π for each state ω. The partition profile
Π′ is a refinement of Π, denoted Π′ � Π, if for each i, Π′i � Πi. For
each of these four relations, a corresponding relation with � instead of
� is obtained by discarding the reflexive part of the relation �. The
two irreflexive relations describe an increase of knowledge, while the
two reflexive relations describe a weak increase of knowledge. Thus,
for example, if Π′ �ω Π, and K and K ′ are the knowledge operators
associated with Π and Π′ respectively, then for each event E, if ω ∈
K(E), then ω ∈ K ′(E), but for some events, for example E = Π′(ω),
ω ∈ K ′(E) but ω /∈ K(E).

The meet of Π, denoted ∧Π, is the partition which is the finest
among all the partitions Π that satisfy Π � Πi for each i. The knowl-
edge operator Kc defined by the meet partition is called the com-
mon knowledge operator (Aumann (1976)). It can be described in
terms of the knowledge operator Ki as follows. Denote by K(E) the
event that all agents know E. That is, K(E) = ∩i∈IKi(E). Then
Kc(E) = ∩∞n=1K

n(E). For M ∈ ∧Π, the elements of Πi contained in
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M form a partition of M . Thus, (M,ΠM), where ΠM is the restriction
of Π to M , is a knowledge space.

2.2. Beliefs.

The beliefs of an agent in a given state are described by a probabil-
ity distribution over the state space. These beliefs are related to the
agent’s knowledge as follows. Denote by ∆(Ω) the set of all probability
functions on Ω. A type function for Πi is a function ti : Ω× Ω→ IR
that satisfies:

(a) for each ω, ti(ω, ·) ∈ ∆(Ω),
(b) for each i and π ∈ Πi, if {ω, ω′} ⊆ π, then ti(ω

′, ·) = ti(ω, ·),
(c) for each i, π ∈ Πi, and ω ∈ π, the support of ti(ω, ·) is π, i.e.,

ti(ω, π) = 1.

We say that ti(ω, ·) is i’s type at ω. By condition (b), the type of i
is measurable with respect to Πi, i.e., the type of i is the same in all
states in π which means that i knows her type, or equivalently, knows
her beliefs. In light of (b) we sometimes write for i and π ∈ Πi, ti(π, ·)
for the type of i in all the states in π. Condition (c) implies that
whenever i knows E at ω she assigns probability 1 to it, i.e., whatever
she knows she is certain of.1

A type profile for Π is a vector of type functions, t = (ti)i∈I ,
where for each i, ti is a type function for Πi. Denote by T (Π) the set
of all type profiles for Π. A type profile assigns for each i and ω an
element ti(ω, ·) in ∆(Ω). Thus, we may consider T (Π) as a subset of
∆(Ω)Ω×I . In particular, for a finite state space we consider T (Π) as a
topological space with the topology induced by the standard topology
of the Euclidean space in which T (Π) is embedded.

A prior for a type function ti is a probability function p ∈ ∆(Ω) such
that for each π ∈ Πi, p(π)ti(π, ω) = p (ω) for all ω ∈ π. A common
prior (cp) for the type profile t is a probability function p ∈ ∆(Ω)
which is a prior for each agent i.2 A type profile t is consistent when
it has a common prior.

The model of knowledge space with beliefs used here is the same as
the model in Aumann (1976), except that in the latter the assumption
is made that there exists a common prior. Our model is also the discrete

1 Conditions (b) and (c) are part of the definition of the space of knowledge and
belief in Aumann (1976). The meaning given to them here are expressed as two
axioms on the relation between knowledge and belief in Hintikka (1962).

2 Contrasting a prior for ti with the types ti(ω, ·), the latter are referred to as
the posterior probabilities of i.
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case of the abstract S-based belief space in Mertens and Zamir (1985),
where S is Ω. Although knowledge is not introduced explicitly in their
work, the partitions of the the space into agents’ types makes it a
partition model.
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3. Main results

3.1. Tightness.

The commonness of consistent type profiles for a given knowledge space
depends on a property of the knowledge space we call tightness. In both
the finite and the infinite case, when the partition profile is not tight,
the set of consistent type profiles is topologically small. When the
partition profile is tight this set is topologically large.

We say that knowledge is tight at a state if increasing any agents’
knowledge at this state must result in increasing common knowledge.
A partition profile is tight if at some state there is common knowledge
that knowledge is tight. Formally,

Definition 1. For a partition profile Π, knowledge is tight at ω, when
for each Π′ � Π, if Π′ �ω Π then ∧Π′ � ∧Π. Let T be the event that
knowledge is tight. We say that Π is tight, if Kc(T ) 6= ∅.

In the following example we illustrate the notions of tight knowledge
and tight partition profiles.

Example 1. Let Ω = {ω1, ω2, ω3, ω4} and I = {1, 2}. Consider the
partition profile Π = (Π1,Π2), where Π1 =

{
{ω1, ω2}, {ω3, ω4}

}
and

Π2 =
{
{ω1, ω2 ω3}, {ω4}

}
. Obviously, ∧Π = {Ω}. Suppose that Π′ �

Π, and Π′ �ω4 Π. The only way that knowledge can increase at ω4

is by splitting the partition element {ω3, ω4}. Thus, Π′1(ω4) = {ω4}.
Therefore {ω4} ∈ ∧Π′ which means that ∧Π′ � ∧Π. We conclude
that knowledge at ω4 is tight. Consider now the partition profile Π′

where Π′1 = Π1 and Π′2 =
{
{ω1, ω2}, {ω3}, {ω4}

}
. Then Π′ � Π, and

Π′ �ω3 Π. Yet, ∧Π′ = ∧Π, which shows that knowledge at ω3 is not
tight. Therefore T 6= Ω, and hence Kc(T ) = ∅. We conclude that Π
is not tight. It is easy to check that for the last partition profile Π′

knowledge is tight at each state and therefore Π′ is tight.

The tightness of a partition profile can be expressed without explicit
reference to common knowledge, as follows. We say that Π is con-
nected when ∧Π = {Ω}. For each M ∈ ∧Π, ΠM , the restriction of
Π to M , is connected.

Proposition 1.

(a) A connected partition profile Π is tight if and only if for any
Π′ � Π, Π′ is not connected.

(b) A partition profile Π is tight if and only if there exists M ∈ ∧Π
such that ΠM is tight.
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A third characterization of tightness, in terms of chains, is given in
Proposition 7 below. In the finite case, there exists yet another simple
characterization of the tightness of a connected type profile, in terms
of the total number of partition elements.

Proposition 2. Let Ω be a finite state space and Π a connected par-
tition profile. Then

∑
i∈I |Πi| ≤ (|I| − 1)|Ω| + 1 and equality holds if

and only if Π is tight.

Observe, that the dimension of the set of types T (Π) is
∑

i∈I(|Ω| −
|Πi|) = |I||Ω|−

∑
i∈I |Πi| and the dimension of the set of priors ∆(Ω) is

|Ω|−1. Thus, Proposition 2 characterizes the connected tight partition
profiles Π as the ones with minimal dimension of T (Π) which equals
the dimension of ∆(Ω).3

3.2. The size of the set of consistent type profiles.

Theorem 1. Let (Ω,Π) be a finite knowledge space.

(1) If Π is tight then each type profile is consistent.
(2) If Π is not tight then the set of consistent type profiles is nowhere

dense.4

In order to prove results similar to those of Theorem 1 for countable
state spaces, we need to generalize the notion of a common prior. A
common improper prior (cip) for a type profile t is a non-negative
and non-zero function p : Ω → IR such that for each i and π ∈ Πi,
p(π) < ∞ and p(π)ti(π, ω) = p (ω) for all ω ∈ π. Note that although
for any π ∈ Πi, p(π) < ∞, the possibility that p(Ω) = ∞ is not ruled
out, so that p may not be normalizable. Obviously, a cp is in particular
a cip. Note also that if p is a cip, then for any constant γ > 0, γp is
also a cip. In particular, if p is a cip and p(Ω) <∞ then p(Ω)−1p is a
common prior. Thus, for a finite space, a profile type has a common
prior if and only if it has a common improper prior. In light of this the
following definition of consistency for countable spaces generalizes the

3This observation suggests a proof for the smallness of the set of consistent type
profiles, for partition profiles which are not tight, based on dimensional consider-
ations. We have elected instead to implement an elementary combinatorial proof,
which can be applied equally well for the infinite case. In an unpublished paper,
Nyarko (1991) states that in a finite Harsanyi type space the set of consistent pos-
teriors has measure 0. The proof requires differential geometry arguments based
on dimensionality considerations.

4 A set is nowhere dense if its closure has an empty interior. Such a set is
considered topological small.



HOW COMMON ARE COMMON PRIORS? 8

one given for finite spaces. A type profile t is consistent when it has
a common improper prior and inconsistent otherwise.

To measure the topological size of sets in the countable case we use
the notion of a set of first category (called also a meager set), namely,
a set which is a countable union of nowhere dense sets. A topological
space is a Baire space if every set of first category has an empty interior.
Therefore, in a Baire space, sets of first category are considered small.
We now proceed to define a topology on T (Π) for which it is a Baire
space.

Consider the complete normed vector space l1(Ω) of absolutely sum-
mable functions x : Ω → IR, with the norm ||x|| = Σω∈Ω|x(ω)|. The
set ∆(Ω) is closed in l1(Ω).5 Therefore, ∆(Ω) with the metric in-
duced on it from l1(Ω) is a complete metric space. Hence, the product
space ∆(Ω)Ω×I is a completely metrizable topological space (see Mukres
(1975)). Finally, the equalities in the definition of a type guarantee
that T (Π) is closed in ∆(Ω)Ω×I and therefore T (Π) is a completely
metrizable topological space. This implies that T (Π) is a Baire space.
Obviously, in the finite case the topology just described is the standard
topology on finite dimensional Euclidean spaces.

Theorem 2. Let (Ω,Π) be a countable knowledge space.

(1) If Π is tight then the set of inconsistent type profiles is of first
category.

(2) If Π is not tight then the set of consistent type profiles is of first
category.

In contrast with the finite case, here the set of inconsistent type
profiles of a tight partition profile need not be empty. Example 2 in
the next section shows that we cannot even strengthen this part by
changing “of first category” to “nowhere dense”. Example 3 shows
that similar strengthening is also impossible in the second part of the
theorem.

3.3. Harsanyi type spaces. Of special interest are Harsanyi type
spaces. In such a space Ω = ×i∈ITi, where for each i, Ti is a set of
types of player i. With each player i we associate the natural partition
of Ω, Πi, into i’s types. It is easy to see, using Proposition 1, that the
partition profile of a non-trivial Harsanyi type space (one that has more
than one state and more than one agent) is connected and not tight.

5 To see this, consider the linear functional on l1(Ω) defined by f(x) =
Σω∈Ω x(ω). Since |f(x)| ≤ ||x||, f is continuous. Now, ∆(Ω) is the intersection
of two closed sets: f−1(1) and the nonnegative orthant of l1(Ω).
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Therefore, if we vary the posterior beliefs of the types on such a finite or
countably infinite space, while keeping the sets of types fixed, the set of
consistent posterior beliefs is small. The lack of tightness of non-trivial
finite Harsanyi type spaces can be also checked using Proposition 2.
Obviously, for such a space |Πi| = |Ti|, and |Ω| = ×i∈I |Πi|. It is easy
to prove that

∑
i∈I |Πi| < (|I| − 1)×i∈I |Πi|+ 1 = (|I| − 1)|Ω|+ 1.

4. Proofs and examples

4.1. Proof of Proposition 1.

(a) Let Π be a connected partition profile. Then Ω is the only event E
such that Kc(E) 6= ∅. Thus, if Π is tight then T = Ω. If Π′ � Π, then
for some ω, Π′ �ω Π, and by tightness, ∧Π′ � ∧Π. Conversely, if
Π′ � Π implies ∧Π′ � ∧Π, then obviously, each ω is in T , and hence
T = Ω, and Kc(T ) = Ω.

(b) The partition profile Π is tight iff there exists M ∈ ∧Π such that
M ⊆ T . It is easy to see that M ⊆ T iff for the knowledge space
(M,ΠM), knowledge is tight at each ω ∈M , which is a necessary and
sufficient condition for ΠM to be tight.

4.2. Chains.

We define a chain of length n ≥ 0, for the partition profile Π, from one
state to another by induction on n. A state ω0 is a chain of length 0 from

ω0 to ω0. A chain of length n + 1, from ω0 to ω, is a sequence c
i→ ω,

where c is a chain of length n from ω0 to ω′, and ω ∈ Πi(ω
′). Thus,

a chain of positive length n is a sequence c = ω0
i0→ ω1

i1→ · · · in−1→ ωn,
such that for s = 0, . . . , n− 1, ωs+1 ∈ Πis(ωs).

Obviously, for each i, chains of length 1, ω
i→ ω′, define an equiva-

lence binary relation and Πi is the partition of Ω into its equivalence
classes. We write ω → ω′ when there is a chain from ω to ω′. The bi-
nary relation→ is the transitive closure of the union of the relations

i→,
and it is an equivalence relation. We say that ω and ω′ are connected
for Π, if there is a chain for Π from ω to ω′.

Claim 1. The meet of Π is the partition of Ω into the equivalence
classes of →.

To see this, denote by Πcon the partition of Ω into equivalence classes
of →. Since each of the partitions Πi is finer than ∧Π, it follows by
induction on the length of chains that if ω → ω′ then ω′ ∈ ∧Π(ω).
Thus, for each ω, Πcon(ω) ⊆ ∧Π(ω), i.e., Πcon is finer than ∧Π. Also,
if ω′ ∈ Πcon(ω) then for all i and ω′′ ∈ Πi(ω

′), ω′′ ∈ Πcon(ω), i.e.,
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Πi(ω
′) ⊆ Πcon(ω). Thus, each of the partitions in Π is finer than

Πcon. As ∧Π is the finest partition with this property it follows that
Πcon = ∧Π.

Thus, we conclude:

Claim 2. A partition profile Π is connected if and only if every two
states are connected.

We say that a type profile t is positive if for each i, π ∈ Πi, and
ω ∈ π, ti(π, ω) > 0. Let t be a positive type profile and (ω1, ω2) an
ordered pair of states in π ∈ Πi. The type ratio of (ω1, ω2) given i is

trit(ω1, ω2) = ti(π, ω2)/ti(π, ω1). The type ratio of a chain c = ω0
i0→

ω1
i1→ · · · in−1→ ωn of length n > 0 is trt(c) = ×n−1

k=0 trikt (ωk, ωk+1). For a

chain c of length 0, trt(c) = 1. Thus, if c = c′
i→ ω where c′ is a chain

from ω0 to ω′, trt(c) = trt(c
′)trit(ω

′, ω). When we discuss only one type
profile we omit the subscript t in trt.

Proposition 3. If a positive type profile over a connected partition
profile has a common improper prior p, then all its common improper
priors are of the form γp for some constant γ > 0. A type profile over
a connected partition profile can therefore have at most one common
prior.

Proof. If p is a cip for a positive t, then trit(ω1, ω2) = p(ω2)/p(ω1).
Substituting the right-hand side for the left-hand side in the definition
of the type ratio of chains, we conclude that for any chain c from ω0 to
ω, trt(c) = p(ω)/p(ω0). Thus, for any cip’s for t, p and p′, and for any
two states ω0 and ω, p(ω)/p(ω0) = p′(ω)/p′(ω0).

Proposition 3 was proved in Harsanyi (1967-8) for Harsanyi type
spaces. Samet (1998) noted that for finite spaces the uniqueness of
a common prior can be interpreted as the uniqueness of an invariant
probability function for an ergodic Markov chain. The simple proof
here, for countable spaces, is an extension of the proof in Harsanyi
(1967-8) to general knowledge spaces.

The following proposition is close in its content to the main result in
Rodrigues-Neto (2009).

Proposition 4. Let t be a positive type profile over a connected parti-
tion profile. Then there exists an common improper prior for t iff for
each ω0 and ω, and chains c and c′ from ω0 to ω, trt(c) = trt(c

′).

Proof. As we have shown before, if there exists a common improper
prior p for t, then all chains c connecting ω0 and ω satisfy tr(c) =
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p(ω)/p(ω0). Conversely, suppose that for each ω0 and ω, all the chains
from ω0 to ω have the same type ratio. Fix ω0 and for each ω let
p(ω) = tr(c) for some c from ω0 to ω. To see that p is a cip consider
π ∈ Πi and ω ∈ π. Let c be a chain from ω0 to ω. For ω′ ∈ π,

consider the chain c′ = c
i→ ω′. Then, by the definitions of tr and p,

p(ω′) = tr(c′) = tr(c)tri(ω, ω′) = p(ω)ti(π, ω
′)/ti(π, ω). Thus, p(π) =∑

ω′∈π p(ω
′) = [p(ω)/ti(π, ω)]

∑
ω′∈π ti(π, ω

′) = p(ω)/ti(π, ω) <∞, and
p(ω) = p(π)ti(π, ω).

4.3. Proof of the second parts of Theorems 1 and 2.

We first prove our claims for a connected partition profile Π. Let P
be the set of positive types in T (Π) and C the set of consistent type
profiles in T (Π).

We show first that C ∩P is nowhere dense, that is, that the comple-
ment of its closure is dense.

Proposition 5. If Π is connected, then cl(C ∩ P ) ⊆ (C ∩ P ) ∪ P c.

Proof. We need to show that if a sequence of type profiles tn in C ∩P
converges to t ∈ P , then t ∈ C. Let c and c′ be chains from ω0 to ω. By
Proposition 4, trtn(c) = trtn(c′) for each n. Since each chain involves
only finitely many states, it follows by continuity that trt(c) = trt(c

′).
Again, by Proposition 4, this implies that t ∈ C.

Thus, [cl(C ∩ P )]c ⊇ [(C ∩ P ) ∪ P c]c = Cc ∩ P , and it is enough to
show that Cc ∩ P is dense.

Proposition 6. If Π is connected and not tight then Cc ∩ P is dense
in T (Π).

Proof. We show that C ∩P ⊆ cl(Cc ∩P ). Thus, P ⊆ cl(Cc ∩P ), and
as P is dense, the claim of the proposition follows.

Since Π is connected but not tight, there exists, by Proposition 1
a connected partition profile Π′ which properly refines Π. We may
assume that Π′ is obtained from Π by splitting one partition element
π ∈ Πi, for some i, into π1 and π2.

For t ∈ P , define a type profile t̂ for Π which agrees with t except
on π. Formally, for each j 6= i, t̂j = tj. For each π̄ 6= π in Πi,
t̂i(π̄, ·) = ti(π̄, ·). For ω ∈ π1, t̂i(π, ω) = (1 + ε)ti(π, ω)/c, and for
ω ∈ π2, t̂i(π, ω) = (1−ε)ti(π, ω)/c, where c = 1+ε[ti(π, π

1)− ti(π, π2)]
and ε 6= 0 between −1 and 1. By choosing ε close enough to 0, t̂ can
be made arbitrarily close to t.
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For any type profile t in P , let t′ be the type profile for Π′ which
is naturally induced by t as follows. For each j 6= i, t′j = tj. For

each π̄ 6= π in Πi, t
′
i(π̄, ·) = ti(π̄, ·). Finally, for k = 1, 2, t′i(π

k, ·) =
ti(π, ·)/ti(π, πk).

Now, let t ∈ P∩C have a cip p. We show that t̂ ∈ Cc∩P . Obviously,
p is also a cip for t′. Suppose that t̂ has a cip, and denote it by p̂. Then
p̂ is also a cip for t̂′. But t̂′ = t′, and as Π′ is connected, it follows, by
Proposition 3, that p and p̂ differ by a multiplicative constant. Thus,
p is a cip for t̂ as well. Hence p must satisfy ti(π, π

1) = p(π1)/p(π) =
t̂i(π, π

1). But this does not hold as t̂i(π, π
1) = (1 + ε)ti(π, π

1)/c and
(1 + ε)/c 6= 1.

Now, C = (C ∩ P ) ∪ (C ∩ P c) ⊆ (C ∩ P ) ∪ P c, and we have shown
that (C ∩ P ) is nowhere dense. In the finite case, P is an open dense
set and thus P c is nowhere dense, so that (C ∩ P ) ∪ P c is nowhere
dense as a finite union of nowhere dense set, and C is nowhere dense
as a subset of a nowhere dense set.

For the infinite case, it suffices to show that P c is of first category.
This is indeed the case, because the set T iω of type profiles t for which
ti(Πi(ω), ω) = 0 is closed and has an empty interior, as its complement
contains P which is dense. Thus, T iω is nowhere dense. Finally, P c =
∪i ∪ω T iω.

Consider now a partition profile Π which is not connected. For
M ∈ ∧Π, denote by TM(ΠM) the set of type profiles over the knowledge
space (M,ΠM), and let CM be the set of consistent type profiles in
TM(ΠM). We can obviously identify T (Π) with ×M∈∧ΠTM(ΠM).

A type profile t for Π has a cip if and only if there exists M ∈ ∧Π
for which tM , the restriction of t to M × M , is in CM , the set of
consistent type profiles in TM(ΠM). Indeed, if tM has a cip pM , then
the function p on Ω that agrees with pM on M and vanishes outside M
is a cip for t. Conversely, if p is a cip for t, then for some M , p is not
identically 0 on M and thus the restriction of p to M is a is a cip for
tM . We conclude that C, the set of consistent type profiles in T (Π),
is ∪M∈∧Π[CM × (×M ′ 6=MTM ′(ΠM ′))].

Since Π is not tight, it follows by Proposition 1 that for each M ∈
∧Π, ΠM is not tight. In the finite case, this implies that CM is nowhere
dense in TM(ΠM) and therefore each of the sets in the union is nowhere
dense in T (Π). Hence, C is nowhere dense as a finite union of nowhere
dense sets.
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In the infinite case, CM is of first category and therefore each of
the sets in the union is of first category in T (Π). Hence, C is of first
category as a countable union of sets of first category.

4.4. Proof of the first part of Theorems 1 and 2.

We say that a chain c is alternating if no two consecutive states, ωs
and ωs+1, in c, are the same, and no two consecutive agents, is and is+1,
in c, are the same. In particular, any chain of length 0 is alternating
and any chain of length 1 from ω0 to ω 6= ω0 is alternating.

Given a connected partition profile Π, define a distance function d
on Ω×Ω such that for each ω and ω′, d(ω, ω′) is the minimal length of
a chain from ω to ω′. It is easy to see that d is a metric. A chain from
ω0 to ω of the minimal length d(ω, ω0) is called a minimal chain. It
is easy to see that if ω0 . . . ωn is minimal then ω0 . . . ωs is a minimal
chain for each s = 0, . . . , n, and therefore d(ωs, ω0) = s. Moreover, the
chain must be alternating, because if either ωs = ωs+1 or is = is+1 we

get a shorter chain from ω0 to ωn by omitting
is→ ωs+1.

Clearly, if for some i, ω′ ∈ Πi(ω), then d(ω, ω′) ≤ 1. Thus, by
the triangle inequality, if for some i, ω′ ∈ Πi(ω), then for any ω0,
|d(ω, ω0) − d(ω′, ω0)| ≤ 1. Thus, on each partition element π, d(·, ω0)

can have at most two values. In particular, for any chain c = ω0
i0→

ω1
i1→ · · · in−1→ ωn, |d(ωs+1, ω0)− d(ωs, ω0)| ≤ 1 for s = 0, . . . , n− 1.

Proposition 7. A connected partition profile Π is tight if and only if
for any states ω and ω′ there exists a unique alternating chain for Π
from ω to ω′.

Proof. Assume that Π is not tight. Then, there exists a connected
partition profile Π′ such that Π′ � Π. Let ω, ω′ and i be such that
ω′ ∈ Πi(ω) but ω′ /∈ Π′i(ω). Since Π′ is connected, there exists a
minimal chain c for Π′ from ω to ω′, which, as we have shown, is
alternating. Since Π′ is a refinement of Π, c is also a chain for Π and

it is alternating. But as ω 6= ω′, c′ = ω
i→ ω′ is also an alternating

chain for Π which is different from c, since ω′ /∈ Π′i(ω).

Assume now that Π is tight. To show that the condition in the
proposition holds we use the following two lemmas.

Lemma 1. If Π is tight then for each ω0 and ω there exists a unique
minimal chain from ω0 to ω.

We show that if there are two distinct minimal chains from one state

to another then Π is not tight. Let c = ω0
i0→ ω1

i1→ · · · in−1→ ωn and
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c′ = ω0

i′0→ ω′1
i′1→ · · ·

i′n−1→ ωn be distinct minimal chains, and assume
that n is the minimal number for which such a pair exists. Obviously,
n > 0. It is impossible that both i0 = i′0 and ω1 = ω′1, because either

n = 1 in which case c = c′, or else n > 1 in which case ω1
i1→ · · · in−1→ ωn

and ω′1
i′1→ · · ·

i′n−1→ ωn are distinct minimal chains of length n−1 contrary
to the minimality of n. Thus, either i0 6= i′0 or ω1 6= ω′1.

Consider the refinement Π′ of Π obtained by splitting Πi(ω0) into
{ω1} and Πi(ω0)\{ω1}. The latter set is not empty since being minimal,
c is alternating and thus, ω0 6= ω1. We will prove that Π is not tight
by showing that Π′ is connected. To do so, it suffices to prove that
every ω̂ ∈ Πi(ω0) \ {ω1} is connected to ω1 for Π′. As ω̂ is connected
to ω0 for for Π′, it suffices to show that ω0 is connected to ω1 for Π′.

Assume first that ω1 = ω′1. Thus, i0 6= i′0 and therefore ω0

i′0→ ω1, is
a chain for Π′. Now assume that ω1 6= ω′1, which implies that n > 1.
Note that all states in Πi(ω0) are of distance not greater than 1 from
ω0 and thus each of the states ω2, . . . ωn−1, ωn and ω′2, . . . ω

′
n−1, ωn are

not in this set, as their distance from ω0 is greater than 1. Thus,

ω1
i1→ · · · im−1→ ωm and ω′1

i′1→ · · ·
i′m−1→ ωm are chains for Π′ too. Also,

because ω1 6= ω′1, ω0

i′0→ ω′1 is a chain for Π′ (even if i0 = i′0). Thus, we
have shown that the following relations hold for Π′: ω0 → ω′1 ω

′
1 → ωn,

and ωn → ω1, which amounts to saying that ω0 and ω1 are connected
in Π′.

Lemma 2. If Π is tight then every alternating chain for Π is minimal.

The proof is by induction on n, the length of the chain. The claim is
obvious for alternating chains of lengths n = 0 and n = 1. Suppose the
claim holds for alternating chains of length n = k ≥ 1, and assume that

c is an alternating chain c = ω0
i0→ ω1

i1→ . . . ωk
ik→ ω of length k + 1.

By the induction hypothesis the alternating chain ω0 . . . ωk is minimal
and thus for all s ≤ k, d(ωs, ω0) = s. In particular d(ωk, ω0) = k and
thus d(ω, ω0) is either k + 1, or k, or k − 1. We only need to prove
that the last two values are impossible. Suppose that d(ω, ω0) < k+ 1.

Let c′ = ω0

i′0→ ω′1 . . . ω be a minimal chain from ω0 to ω. Then it is of
length k − 1 or k.

Consider the refinement Π′ obtained by splitting Πik(ωk) into {ωk}
and Πik(ωk)\{ωk}. The latter set is not empty, since by the alternation
of c, ωk 6= ω. We show that for each ω̂ ∈ Πik(ωk)\{ωk} there is a chain
for Π′ from ωk to ω̂. Note, first, that the chain ω0 . . . ωk is a chain for Π′.
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To see this, observe that by alternation ik−1 6= ik. Thus, ωk−1
ik−1→ ωk

is a chain for Π′. Also the states ω0, . . . , ωk−2 are of distance less than
k − 1 from ω0 while all states in Πik(ωk) are of distance k − 1 at least.
Thus, ω0 . . . ωk−2 is also a chain for Π′. We conclude that there is a
chain for Π′ from ωk to ω0. We end the proof by showing that there

is a chain in Π′ from ω̂ to ω0. First, ω̂
ik→ ω is a chain for Π′ by the

construction of the latter. Moreover, none of the states in c′ is ωk,
which implies that c′ is also a chain for Π′. Indeed, ω 6= ωk by the
alternation of c, and the distance from ω0 to all of the states in c′ that
precede ω is less than k, while ωk is of distance k from ω0.

The characterization of tightness in terms of alternating chains is
used to prove the following.

Proposition 8. If Π is connected and tight then every positive type
profile has a common improper prior.

Proof. We show that the condition in Proposition 4 holds. By Propo-
sition 7 for any states ω0 and ω there exists a unique alternating chain
c(ω0, ω) from ω0 to ω. We show that for any ω0 and ω and any chain
c from ω0 to ω, tr(c) = tr(c(ω0, ω)). The proof is by induction on
the length of c. The claim trivially holds for chains of length 0. As-
sume that it holds for all chains of length n − 1 for n > 0 and let

c = c′
i→ ω be a chain from ω0 to ω of length n, where c′ is a chain

from ω0 to ω′. By the induction hypothesis, tr(c′) = tr(c(ω0, ω
′)). Con-

sider the chain ĉ = c(ω0, ω
′)

i→ ω. Then, tr(c) = tr(c′)tri(ω′, ω) =
tr(c(ω0, ω

′))tri(ω′, ω) = tr(ĉ), and therefore it suffices to show that
tr(ĉ) = tr(c(ω0, ω)). If ĉ is alternating then ĉ = c(ω0, ω), and we
are done. If ĉ is is not alternating, then, since c(ω0, ω

′) is alter-
nating, one of the following two cases holds. Case 1: ω′ = ω. In
this case tr(ĉ) = tr(c(ω0, ω))tri(ω, ω) = tr(c(ω0, ω)). Case 2: ω 6=
ω′, and for c(ω0, ω

′) = ω0 . . . ωn−2
in−2→ ω′, in−2 = i. Here, tr(ĉ) =

tr(ω0 . . . ωn−2)tri(ωn−2, ω
′)tri(ω′, ω) = tr(ω0 . . . ωn−2)tri(ωn−2, ω). But

the latter is the type ratio of the chain ω0 . . . ωn−2
i→ ω, which, being

alternating is c(ω0, ω).

The proof of part 1 in Theorems 1 and 2 follows readily in case Π is
connected. As before, P is the set of positive type profiles and C the
set of type profiles that have a cip. By Proposition 8, Cc ⊆ P c.

In the infinite case, we have shown that P c is of first category, and
thus, Cc is of first category. In the finite case, C is closed. Indeed,
let tn be a sequence of type profiles in C that converges to t. For
each n, tn has a common prior pn that satisfies for each i and π ∈ Πi,
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pn(π)tni (π, ·) = pn(·). By the compactness of ∆(Ω), a subsequence of pn

converges to a probability function p. By continuity, p(π)ti(π, ·) = p(·)
for each i and π ∈ Πi. Thus, p is a common prior for t and t ∈ C. By
Proposition 8, P ⊂ C and thus, T (Π) = cl(P ) ⊆ cl(C) = C.

Suppose that Π is not connected, then Cc = ×M∈∧ΠC
c
M . As Π is

tight, there is an M̂ ∈ ∧Π such that ΠM̂ is tight. In the finite case,
Cc
M̂

= ∅ and therefore Cc = ∅. In the infinite case, Cc
M̂
⊆ P c

M̂
, and as

P c
M̂

is of first category, so is Cc.

4.5. Proof of Proposition 2:

Let Π be a connected tight partition profile. The proof is by induction
on the size on Ω. If Ω is a singleton the equality in the proposition is
obvious. Suppose the equality is proved for all state spaces smaller than
n > 1 and let |Ω| = n. Since n ≥ 2 and Π is connected, there must be
i and ω0 such that Πi(ω0) is not a singleton. Consider the refinement

of Π, Π̂, obtained by splitting Πi(ω0) into {ω0} and Πi(ω0) \ {ω0}. By

the tightness of Π, Π̂ is not connected.

Let Ω0 consist of all states ω such that there is a chain for Π̂ from
ω0 to ω. Fix ω1 in the set Πi(ω0) \ {ω0} and let Ω1 be the set of all

ω such that there is a chain for Π̂ from ω1 to ω. Each of Ω0 and
Ω1 is an element of the meet of Π̂. They are disjoint because if they
shared a state then ω0 would be connected to ω1 which would make
Π̂ connected. Each state ω is in either Ω0 or Ω1. Indeed, let c be a
minimal chain for Π from ω0 to an arbitrary ω. If c does not contain
a state ω̂ ∈ Πi(ω0) \ {ω0}, then c is a chain for Π̂ and ω ∈ Ω0. If c
does contain such a ω̂, then no state that follows ω̂ in c is ω0 (because
the distance of each state in c to ω0, other than ω0 itself, is positive).

Thus, there is a chain for Π̂ from ω̂ to ω, and trivially there is a chain
for Π̂ from ω̂ to ω1, so that ω ∈ Ω1. Thus, the meet of Π̂ is exactly
the set {Ω0,Ω1}, and each of Π̂0 and Π̂1, respectively the restriction

of Π̂ to Ω0 and Ω1, is connected.

By the induction hypothesis, for k = 0, 1,
∑

i∈I |Π̂k
i | = (|I|−1)|Ωk|+

1. By adding the two equations and noting that
∑

i∈I |Π̂0
i |+
∑

i∈I |Π̂1
i | =∑

i∈I |Πi|+ 1 we get the desired equality.

If Π is not tight, then it must have a refinement which is tight, and
therefore it satisfies the inequality of the proposition.

4.6. Examples.

Example 2. We construct an infinite knowledge space with a tight
partition profile, such that the set of inconsistent type profiles is dense.
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Therefore it is not nowhere dense, since the complement of a nowhere
dense set contains a nonempty open set. To show that the set of in-
consistent type profiles is dense, it is enough to show that it is dense
in the set of positive type profiles, since the latter is dense.

Consider a knowledge space for two agents, where Ω is the set of
integers Z, and the partitions are Π1 = {πn1 | n ∈ Z}, where πn1 =
{2n, 2n + 1}, and Π2 = {πn2 | n ∈ Z}, where πn2 = {2n − 1, 2n}. The
partition profile Π = (Π1,Π2) is tight, since it is connected and any
proper refinement of Π is not. Let t = (t1, t2) be a positive type profile
over Π. We construct a sequence of inconsistent type profiles tk such
that tk converges to t as k → −∞. For n ≤ k, tk1(πn1 , 2n) = 1 and
tk2(πn2 , 2n) = 0. For n > k, tk1(πn1 , ·) = t1(πn1 , ·) and tk2(πn2 , ·) = t2(πn2 , ·).
Obviously, tk converges to t as k → −∞.

To show that tk is inconsistent we prove that if p is a cip for tk,
then it must be identically 0, which is impossible for a cip. By the
definition of cip whenever for some i, π ∈ Πi and ω ∈ π, ti(π, ω) = 0,
then p(ω) = 0. Now, tk1(πk1 , 2k + 1) = 0 and therefore p(2k + 1) = 0.
Also, for each m ≤ 2k, either tk1(Π1(m),m) = 0 or tk2(Π2(m),m) = 0.
Thus, p(m) = 0 for all m ≤ 2k + 1. We prove now by induction on
m that p(m) = 0 for all m ≥ 2k + 1. This holds as we have shown
for m = 2k + 1. Suppose that for m = 2n + 1, p(m) = 0. Since
tk2(π2n+1

2 , 2n+ 1) = t2(π2n+1
2 , 2n+ 1) > 0 it follows by the definition of

cip that p(π2n+1
2 ) = 0. This implies that p(2n+ 2) = 0. The induction

step when m = 2n is similar.

Example 3. We construct an infinite knowledge space for two agents
with a partition profile which is not tight, such that the set of consistent
type profiles is dense, which shows that it is not nowhere dense. To
show this we prove that the set of consistent type profiles is dense in
the set of positive type profiles.

Let Ω be the set N×N. Player 1’s partition consists of the rows and
2’s the columns. That is, Π1 = {πi1 | i ∈ N}, where πi1 = {(i, j) | j ∈
N}, and Π2 = {πj2 | j ∈ N}, where πj2 = {(i, j) | i ∈ N}.

Let t be a positive type profile for this partition profile. We de-
fine a sequence of consistent type profiles tn that converge to t as
n → ∞. Fix a consistent type profile t̂ with cip p. For each i ≤
n and j ≤ n, let tn1 (πi1, (i, j)) = t1(πi1, (i, j))/

∑n
k=1 t1(πi1, (i, k)) and

tn2 (πj2, (i, j)) = t2(πj2, (i, j))/
∑n

k=1 t2(πj2, (k, j)). For i ≥ n + 1 and

j ≥ n + 1, tn1 (πi1, (i, j)) = t̂1(πi−n1 , (i − n, j − n)), and tn2 (πj2, (i, j)) =
t̂2(πj−n2 , (i − n, j − n)). For i ≤ n and j ≥ n + 1, or i ≥ n = 1 and
j ≤ n, ti1(πi1, (i, j)) = tj2(πj2, (i, j)) = 0.
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It is easy to check that for each i, ||tn1 (πi1, ·) − t1(πi1, ·)|| → 0 when
n → ∞, and a similar convergence holds for agent 2. Thus, tn → t.
To see that tn is consistent, we define pn by pn(i, j) = p(i − n, j − n)
for i ≥ n+ 1 and j ≥ n+ 1 and pn(i, j) = 0 otherwise. It is easy to see
that pn is a cip for tn.
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