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Abstract

A completely uncoupled dynamic is a repeated play of a game, where

each period every player knows only his action set and the history of

his own past actions and payo¤s.

One main result is that there exist no completely uncoupled dy-

namics with �nite memory that lead to pure Nash equilibria (PNE)

in almost all games possessing pure Nash equilibria. By "leading to

PNE" we mean that the frequency of time periods at which some PNE

is played converges to 1 almost surely.

Another main result is that this is not the case when PNE is re-

placed by "Nash "-equilibria": we exhibit a completely uncoupled dy-

namic with �nite memory such that from some time on a Nash "-

equilibrium is played almost surely.

�This paper is part of the Ph.D. research of the author at the Hebrew University of

Jerusalem. The author wishes to thank his supervisor, Sergiu Hart, for his support and

guidance, and Itai Arieli and Ron Peretz for useful comments and discussions.
yCenter for the Study of Rationality and Department of Mathematics, The Hebrew

University of Jerusalem, 91904 Jerusalem, Israel. E-mail: yak@math.huji.ac.il
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1 Introduction

An uncoupled dynamic, introduced by Hart and Mas-Colell [8] and [9], is

the repeated play of a one-shot game, where the strategy of each player

does not depend on the payo¤ functions of the other players. The problem

of convergence of uncoupled dynamics to equilibrium has been studied to

some extent. There are several reasonable uncoupled dynamics that lead the

play to Nash equilibrium, as, for example, the hypothesis testing of Foster

and Young [3] and the public learning process introduced by Foster and

Kakade [3].

Another class of dynamics that can lead to Nash equilibrium is exhaus-

tive search. The idea is to go through all the possible actions, whether in

some order (deterministic exhaustive search) or randomly (probabilistic ex-

haustive search), until the players reach a state where they all are sure what

the Nash equilibrium is, and they play it from then on. Hart and Mas-Colell

[9] showed that convergence to Nash equilibria (pure or "-equilibria) can be

guaranteed by using �nite-memory exhaustive search strategies.

Negative results (i.e., the impossibility of convergence to Nash equilib-

ria) for uncoupled dynamics have been studied by Hart and Mas-Colell for

continuous-time dynamics [8] and in for discrete-time dynamics [9] (see also

Foster and Young [4] and Young [10]).

A completely uncoupled dynamic1 is the repeated play of a game, where

the strategy of each player depends only on his own past payo¤s. The

assumption is that a player knows neither his payo¤ function nor the actions

played by other players; indeed, he doesn�t even know how many players

there are in the game. There are several completely uncoupled dynamics

1This concept is also called radically uncoupled dynamic, or payo¤-based dynamic.
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that lead to Nash equilibrium, including the following:

� Arslan, Marden, Shamma, and Young [1] deal with acyclic games,

and show several completely uncoupled strategies that lead to Nash

equilibrium in this class of games.

� Regret-testing strategy (Foster and Young [6], Germano and Lugosi

[7]) is based on the idea that each player chooses some mixed action,

plays it 1 � " of the time in a block of size k, and this receives block

an average payo¤ of u. In " of the time the player tests whether

the mixed action that he plays is "good." A good action is in which

u+ � is greater than a payo¤ that he would have gotten had he played

any pure action constantly, where � is the tolerance level. The test

is based on the player�s own payo¤s only (and thus there is complete

uncoupledness). If his action is indeed good, the player sticks with the

same mixed action; otherwise, he chooses a new one randomly. If we

assume that the player can record in memory any payo¤ in the game

using �nite memory, then regret-testing is a �nite-memory strategy.2

Foster and Young [6] showed that Nash "-equilibria will be played with

frequency of at least 1� ". in every two-person game, if both players

use the regret-testing strategy. Germano and Lugosi [7] generalized

the regret-testing strategy to multi-player games, but restricted the

games to generic ones.

� Interactive trial-and-error learning (Young [11]) is based on classify-

ing each player�s situation into one of four modes: content, discontent,

watchful, and hopeful. For each mode there is an appropriate behavior
2The regret testing is �nite-recall dynamic, that is even stronger than �nite-memory

(see [9]).
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of a player, for example, when a player is content he plays the same

action with high probability. Transitions between modes are caused by

the player�s own payo¤s only (and thus there is complete uncoupled-

ness). If we assume that a player can record payo¤s in �nite memory

then the interactive trial-and-error learning is a �nite-memory strat-

egy. Young [11] shows that this strategy guarantees that a pure Nash

equilibria will be played with frequency of at least 1�" in every generic

multi-person game with such an equilibrium.

Assume that f" is a �nite-memory strategy, such that for every " > 0, f"

guarantees convergence to some solution in 1 � " of the time. In addition,

assume that the solution is reached with frequency 1 � " with probability

1� p(") after t(") steps, where p(") !
"!0

0. Let "n !
n!1

0; then a player can

play the strategy f"1 for t("1) steps; afterwards he plays the strategy f"2

for t("2) steps, and so on. This procedure, called annealing, will guarantee

convergence to the solution with limit frequency 1; but it is no longer a

�nite-memory strategy.

Using annealing on regret-testing or trial-and-error learning, we can con-

struct in�nite-memory strategies that guarantee convergence to mixed Nash

or pure Nash equilibria (respectively) with limit frequency 1.

We can see that there is a gap between the uncoupled dynamics and

the completely uncoupled dynamics when we restrict the strategies to �nite

memory:

1. The convergence to either pure Nash equilibria or Nash "-equilibria

can be guaranteed for general games in the uncoupled case, whereas in the

completely uncoupled case only strategies that guarantee convergence for

generic games are known. A natural question is whether we can guarantee
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convergence for general games.

2. Convergence almost all the time to either pure Nash equilibria or

Nash "-equilibria can be guaranteed by �nite-memory strategies in the un-

coupled case, whereas in the completely uncoupled case only strategies that

guarantee the convergence in 1�" of the time are known. A natural question

is whether we can improve the convergence to almost all the time.

In this paper we answer the above questions for �nite-memory strategies.

In particular, our goal is to formulate the minimal set of necessary conditions

that guarantee convergence to Nash equilibria in a completely uncoupled

model. In trying to answer questions 1 and 2 as formulated above, we show

that for �nite-memory completely uncoupled dynamics the following is true:

For pure Nash equilibria:

1. The assumption of "generic game" is necessary for convergence to

pure Nash equilibria even for limit frequency 1� " (Theorem 11).

2. Convergence to pure Nash equilibria (with limit frequency 1) cannot

be guaranteed in generic games (Corollary 3).

For Nash "-equilibria:

1. For generic games the convergence to Nash "-equilibrium with limit

frequency 1 can be guaranteed (Theorem 13), but it cannot be guaranteed

for general games (Theorem 15).

2. Convergence to Nash "-equilibria with limit frequency 1 can be guar-

anteed in generic games (Theorem 12), but it cannot be guaranteed for

general games.

We can summarize these results in two tables:
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Established Results Optimal Results

Pure Nash

8>>><>>>:
frequency 1� "

and

generic games

9>>>=>>>;
3

8>>><>>>:
frequency 1� "

and

generic games

9>>>=>>>;
4

"-Nash

8>>><>>>:
frequency 1� "

and

generic games

9>>>=>>>;
5

8>>><>>>:
frequency 1

and

generic games

9>>>=>>>;
or8>>><>>>:
frequency 1� "

and

general games

9>>>=>>>;

6

In particular it follows that trial-and-error learning is optimal (for pure

Nash equilibria), while regret-testing is not optimal (for Nash "-equilibria).

Indeed, in the latter case we can improve the type of convergence to limit

frequency 1, or we can improve the generality of the solution to general

games. But we cannot improve both of them simultaneously.

Another way to summarize the results of the paper is indicated in the

following table, which presents those conditions where convergence to Nash

equilibrium can be guaranteed and those where it cannot.

The notations of the table are as follows:

P- pure Nash equilibrium.

A- approximated Nash equilibrium ("-equilibrium).

3Learning by trial and error.
4Theorem 11 and Corollary 3.
5Regret-testing.
6Theorems 12, 13, and 15.
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�- completely uncoupled strategies with additional information of player�s

index (see Section 4.1).

�- impossible.
p
- possible.

General Games Generic Games

Frequency 1
P: � P�: �

A: � A�:
p

P: � P�:
p

A:
p

A�:
p

Frequency 1� "
P: � P�: �

A:
p

A�:
p

P:
p

P�:
p

A:
p

A�:
p

In Section 2 we introduce the model and notations. In Section 3 we give

an impossibility theorem for Nash equilibrium (pure or mixed) in generic

games. In Section 4 we present the positive results for pure Nash equilibrium

in generic games. Section 5, concerns pure Nash equilibrium in general

games. In Section 6 we present the results for Nash "-eqilibrium. Proofs are

relegated to Section 7. Section 8 concludes.

2 The Model

In this section we mainly present our notations and de�ne the objects and

concepts that are used in the paper. Some of them are standard, but we

recall them for the convenience of the reader.

2.1 The Game

A basic static (one-shot) game � is given in strategic form as follows. There

are n � 2 players, denoted by i = 1; 2; :::; n. N = f1; 2; :::; ng is the set of all

the players. C is a countable set of all the possible actions of the players.

7



Each player i has a �nite set of pure actions Ai = fai1; ai2; :::; aimig � C where

jAij � 2; let A := A1�A2� :::�An be the set of action pro�les, which will

be called the action set for short. Let B, be the set of all action sets for a

single player, and A the set of all the action pro�le sets.

The payo¤ function (or utility function) of player i is a real-valued func-

tion ui : A ! R. u = (u1; u2; :::; un) is the payo¤ functions pro�le which

will be called a payo¤ function for short. For convenience we would like to

identify a game � with its payo¤ function u.

The set of mixed actions of player i is �(Ai), that is the probability

simplex over Ai.

The payo¤ functions ui are multilinearly extended from A to �(A):

ui : �(A1)��(A2)� :::��(An)! R

For a given A let U iA be the set of all the payo¤ functions of player i (bounded

byM), and UA = U1A�U2A�:::�UnA the set of all the payo¤ function pro�les;

i.e., UA is the set of all games with action set A. Let U be the set of all the

games (with every possible action set)

U = [
A2A

UA

and put Un for the set of all the games with n players.

The actions of all the players except player i is a�i = (a1; :::; ai�1; ai+1; :::; an).

Similarly, A�i = A1 � :::�Ai�1 �Ai+1 � :::�An is the set of actions of all

the players except player i.

An action ai 2 Ai will be called a best reply to a�i if ui(ai; a�i) �

ui(ai; a�i) for every ai 2 Ai. A pure Nash equilibrium is an action pro�le

a = (a1; a2; :::; an) 2 A, such that ai is a best reply to a�i for all i. The set

of all pure Nash equilibria is PNE. Similarly, for a mixed actions pro�le
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x = (x1; x2; :::; xn), xi 2 �(Ai), we say that xi is an "-best reply to x�i if

ui(xi; x�i) � ui(yi; x�i)�" for every yi 2 �(Ai). x = (x1; x2; :::; xn) is Nash

"-equilibrium, if for every i 2 N , xi is an "-best reply to x�i.

2.2 The Dynamic Setup

The dynamic setup consists of the repeated play, at discrete times t = 1; 2; :::,

of the static game �. Let ai(t) 2 Ai denotes the action of player i at time t,

and put a(t) = (a1(t); a2(t); :::; an(t)) 2 A for the combination of actions at

time t.

We assume that at the end of time t each player i observes the action

that he played ai(t) and his own payo¤ui(a(t)). At the time t player i knows

his previous acts and payo¤s oi(t) = ((ai(t0))tt0=1; (u
i(a(t0))tt0=1), which will

be called the observations sequence of the player. Let OAi be the set of all

the possible observations sequences of a player with action set Ai.

The history of play in a game with action pro�le setA is h(t) = (a(1); a(2); :::; a(t)),

where a(t0) 2 A for every t0 � t. Let Ht;A be the set of all the histories of

play of t steps, and H�
A :=

1
[
t=0
Ht;A.

2.3 Strategy Mappings

A completely uncoupled strategy of a player with actions set B, is a Borel

measurable7 mapping fB : O�B ! �(B) that assigns a mixed action for

every possible observations sequence of the player. Denote by FB the set of

all the completely uncoupled strategies of player with actions set B. F is

the set of all the completely uncoupled strategies (for all the actions sets).

7Borel measurability is a technical assumption that is needed to be able to talk about

some measures that the mapping induces.
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A strategy f is called a �nite-memory strategy if it can be implemented

by a �nite automaton (for formal de�nition of �nite automata strategies,

see [2]). An equivalent way to think about �nite-memory strategies is as

follows: The strategy has a �nite number of memory bits that determine

(uniquely) the action of the player in the next step. In each step the played

action and the received action change the memory state.

Before the game starts the knowledge of each player is his own action

set, so we de�ne a completely uncoupled strategy mapping ' : B ! F to be

a mapping that assigns a completely uncoupled strategy '(Ai) = fAi 2 FAi

for every actions set Ai 2 B. For every given strategy mapping ' in a game

with action pro�le set A = A1�A2�:::�An, the strategies of the players will

be (fA1 ; fA2 ; :::; fAn). Let f = (fA1 ; fA2 ; :::; fAn) denote the strategy pro�le.

The strategy pro�le de�nes a probabilistic play of the game.

A history of play h(t) will be called realizable by a strategy pro�le f if

after t steps of play, according to the strategy pro�le f; the probability that

the history will be h(t) is positive.

2.4 Types of convergences

Given a strategy pro�le f that induces a probabilistic play of the game, we

will say that f leads to PNE/Nash "-equilibria if for t!1 the frequency

of times when a pure Nash/ Nash "-equilibrium is played, converges to 1,

with probability 1. Similarly, we will say that f leads to PNE/Nash "-

equilibria 1� " of the time if for t!1 the frequency of times when a pure

Nash/Nash "-equilibrium is played, is larger than 1� ", with probability 1.

A strategy mapping ' leads to PNE/Nash "-equilibria if f = ('(Ai))ni=1

leads to PNE/ Nash "-equilibria in every game.
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2.5 Genericity

For every game u with n players and a set of actions A, we can consider ui as

an element of [�M;M ]jAj, and u as an element of [�M;M ]njAj. Therefore,

we can de�ne Lebesgue measure �(
) of game set 
 as a measure in RnjAj

8. In the same way we de�ne the measure of a set 
 � U i or 
 � U�i.

We will say that a certain property is valid in almost every game with

action pro�le set A, if the property holds for all games with action pro�le

set A except a subset of games with measure 0. We will say that a certain

property is valid in almost every game if for every A 2 A the property is

valid in almost every game with action pro�le set A.

Similarly a property is valid in all games except a set of games with a

measure smaller than ", if it is true for every action set A 2 A.

3 Impossibility Result for Nash Equilibria in Generic

Games

The following negative results shows that using �nite-memory strategies the

convergence of Nash equilibria (pure or mixed) with limit frequency 1 cannot

be guaranteed even in generic games.

Theorem 1 Let A = A1 � A2 � ::: � An be an action pro�le set such that

A1 = A2. Then there is no completely uncoupled mapping into �nite-memory

strategies leading to a pure Nash equilibrium in almost every game with

action pro�le set A that possesses at least one pure Nash equilibrium, and

also in almost every game with action pro�le set A�1 that possesses at least

one pure Nash equilibrium.

8Below measure will be understood as Lebesgue measure.
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Theorem 2 Let A = A1 � A2 � ::: � An be an action pro�le set such that

A1 = A2. Then there is no completely uncoupled mapping into �nite-memory

strategies leading to a Nash equilibria in almost every game with action

pro�le set A, and also in almost every game with action pro�le set A�1.

In the proof of the theorems we construct a set of games with a single

Nash equilibrium that is pure, where the strategy mapping fails. So the

same proof holds for both Theorems 1 and 2.

From these theorems there immediately follows:

Corollary 3 There is no completely uncoupled mapping into �nite-memory

strategies that leads to a pure Nash equilibria in almost every game where

such an equilibrium exists.

Corollary 4 There is no completely uncoupled mapping into �nite-memory

strategies that leads to a Nash equilibria in almost every game.

This theorem shows that in terms of the type of the convergence, the

trail and error learning strategy (see [11]) achieves the optimal result; i.e.,

it leads to PNE in 1� " of the time.

4 Possibility Results for Pure Nash Equilibrium

in Generic Games

If one would like to formulate a positive statement about convergence to

PNE in the case of �nite-memory strategies, then the strategies should be

able to record (remember) some relevant parameters of the game. So we

restrict the class of the games to the following:
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First, the �nite-memory strategies should be able to remember the whole

game, so we assume:

(1) The number of players is bounded by a constant P .

(2) The number of actions of every player is bounded by a constant

T .

Second, we would like the strategies to be able to record any payo¤ from

the past. Here two problems can arise. The �rst is that the payo¤ could be

too big, bigger than the memory size. To avoid it we assume:

(3) The payo¤s of the players are bounded from above by some con-

stant M .

The second problem is the impossibility of �nite-memory strategy to

record a general real number in a �nite-memory, so there could be a situation

where the strategy cannot distinguish between two di¤erent payo¤s. To

avoid this problem we assume that for some small constant � > 0,

(4) The payo¤s of a player di¤er from one another by at least �.

If (4) is valid then the strategy can record just the �rst 1� log10 � digits

after the decimal point, and still distinguish between two di¤erent payo¤s.

We consider P; T;M as given constants.

De�nition 5 For every � > 0 we de�ne the class of games D� to be all the

games that satisfy (1)-(4).

So in D� a �nite-memory strategy is able to record payo¤s.

The following lemma shows that for � small enough, D� is very close to

U .

Lemma 6 For every " > 0 there exists � > 0 such that D� is all games

except a set of games with a measure smaller than ".
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Proof. For every action set A let CA be the set of all the games that are

not in D�.

CA = fu 2 U : 9i 2 N;9a 6= a0; a; a0 2 A such that jui(a)� ui(a0)j < �g

For every player i 2 N , and for every pair of actions a; a0 2 A ,a 6= a0, let

E�;i;a;a0 = fu 2 U : jui(a)�ui(a0)j < �g. For every u 2 E�;i;a;a0 all the payo¤s

of all the players except player i at the action a0 could be any number in the

segment (�M;M), whereas the payo¤ of player i at the action a0 is in the

segment (ui(a) � �; ui(a) + �). So there exists a constant K = K(M;P; T )

such that �(E�;i;a;a0) � K�.

Clearly,

CA =
[

i2N; a;a02A a 6=a0
E�;i;a;a0

and therefore there exists another constant L = L(M;P; T ) such that

�(CA) �
X

i2N; a;a02A a 6=a0
�(E�;i;a;a0) � LK�

K and L are independent of A, and so for every " > 0 there exists small

enough � > 0 such that LK� < ". For this � holds �((DPA;�)C) < " for

every A, as required.

Remark 7 All the positive results for �nite-memory strategies in the paper,

will be proved for games in the class D�. By Lemma 6 the positive result

is proved for all the games except a set of games with measure " (for every

" > 0).

Before we formulate the positive results let us note that the negative

result of Theorem 1 and Corollary 3 remains true if we consider just games

in the class D�.
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Proposition 8 There is no completely uncoupled mapping into �nite-memory

strategies that leads to a PNE in almost every game in D� where such an

equilibrium exists.

The proof is identical to that of Theorem 1, which remains true for any

positive measure set of games, particularly for D�.

In Theorem 1, we considered games with action pro�le set A = A1 �

A2 � ::: � An, such that A1 = A2. Clearly, the theorem remains valid for

action pro�le set A with any two equal action sets (Ai = Aj for i 6= j).

We would like to show that if we restrict the class of games to those with

di¤erent action sets of the players, then the convergence to PNE can be

guaranteed.

Theorem 9 For every � > 0, there exists a completely uncoupled mapping

into �nite-memory strategies that leads to a pure Nash equilibrium in every

game in D� with di¤erent action sets ;where such an equilibrium exists.

As was mentioned in Remark 7, the theorem proves that for every " > 0

the strategy mapping leads to PNE in all games with di¤erent action sets,

except for a set of games of measure ".

4.1 Complete uncoupledness with additional information

There exists a basic information of a strategy (a player) before the game

starts, namely the domain of the strategy mapping. Beyond the basic in-

formation of the players was their action set only. Let us consider the case

where there is some additional information for every player. Such informa-

tion results in the model described above: we must now allow for strategies

of players who are dependent not only on the action set.
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Let K be the set of all the possible values of information. For example,

if the information is the index number of the player, then K = N. Let

� = (�1; �2; :::; �n) : Un ! Kn be the information function, where �i(u) is

the information of player i. In the example above �i(u) = i. An information

is called uncoupled information if the information is not about the payo¤

functions of the other players, or formally, �i(u1) = �i(u2) for every two

games u1 = (ui; u�i) and u2 = (ui; u�i).

Up to now the strategy mapping has been ' : B ! F . Now we want the

strategy mapping to be from B�K to F . Let ' : B�K ! F be a completely

uncoupled strategy mapping with additional information �. Given a strategy

mapping ', for every game u with action pro�le set A = A1�A2�:::�An, the

strategies of the players will be ('(A1; �1(u)); '(A2; �2(u)); :::; '(An; �n(u))).

In the following theorem we show two examples of additional information

(one may say reasonable information), that guarantees the convergence to a

PNE.

Theorem 10 If:

1) for every player i 2 N , �i is the index of the player, or

2) for every player i 2 N , �i is the total number of players in the game,

then for every " > 0 there exists a completely uncoupled mapping with addi-

tional information � into �nite-memory strategies that leads to a pure Nash

equilibrium in every game in D� where such an equilibrium exists.

By Remark 7, for every " > 0, this theorem guarantees to lead to PNE

in all games except a set of games of measure ".
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5 Pure Nash Equilibria and General Games

The case of non-generic games is less interesting because of the following

strong negative statement.:

Theorem 11 For every " < 1
2 there is no completely uncoupled strategy

mapping with additional uncoupled information, that leads to a pure Nash

equilibrium in 1� " of the time, in every game with more than two players,

where such an equilibrium exists.

The theorem claims that even if we require the weaker type of conver-

gence in 1� " of the time, and even if we allow some uncoupled additional

information for the players, convergence to PNE still cannot be guaranteed.

This result holds for both �nite and in�nite-memory strategies.

This theorem shows that in the terms of the generality of the solution,

the interactive trail and error learning (see [11]) achieves the optimal result:

convergence in almost all games.

6 Nash "-equilibrium

We consider separately the cases of generic games and general games.

6.1 Generic games

Unlike the case of pure Nash equilibrium (see Preposition 7), the following

theorem claims that the convergence to Nash "-equilibria can be guaranteed

by �nite-memory strategies on the class of games D�.

Theorem 12 For every " > 0 and � > 0, there exists a completely uncou-

pled mapping into �nite-memory strategies that leads to a Nash "-equilibrium
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in every game in D�.

By Remark 7 this theorem proves that for every " > 0 there exists

strategies that lead to Nash "-equilibrium in all the games except set of

games with measure ".

This theorem shows that the suggested strategie like regret-testing (see

[6] and [7]), do not achieve optimal results: the convergence in regret-testing

is with limit frequency 1� " of the time, although it is possible to guarantee

convergence with limit frequency 1.

6.2 General games

We start with the impossibility result that says that we cannot guarantee

convergence with limit frequency 1:

Theorem 13 For " � 1
8 , there is no completely uncoupled mapping into

�nite-memory strategies that leads to Nash "-equilibria in every game.

Now we would like to show that convergence in 1 � " of the time can

be guaranteed in general games. We show this result in two steps. First,

we formally prove the result for a wide class of games I�, which will be

de�ned below. Then we extend this result to general games. The proof of

the generalization is tedious, so we will present just a sketch of it.

Given � > 0, we say that player i in�uences player j if there exists

a�i 2 A�i and ai; bi 2 Ai such that juj(ai; a�i)� uj(bi; a�i)j > �.

Let I� be the set of all games such that the number of players, num-

ber of actions of every player, and the payo¤s are bounded by constants

P; T;M , correspondingly (as in D�), and for every two players i 6= j, player

i in�uences player j.
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Proposition 14 For every " > 0 and � > 0, there exists a completely

uncoupled mapping into �nite-memory strategies that leads to a Nash "-

equilibrium in 1� " of the time in every game in I�.

This can be extended to

Theorem 15 For every " > 0, there exists a completely uncoupled mapping

into �nite-memory strategies that leads to a Nash "-equilibrium in 1 � " of

the time in every game.

7 Proofs

Proof of Theorems 1 and 2. Assume, by contradiction, that such a

strategy mapping ' exists. Note that A�1 = A�2; therefore ' leads to a

pure Nash equilibrium in every generic game with action pro�le sets A;A�1

and A�2. By using the fact that ' leads to pure Nash equilibrium in generic

games with action pro�le sets A�1 and A�2, we will prove that there exists

a set of payo¤ functions P � UA with a positive measure such that:

(i) for every � 2 P , � has a unique pure Nash equilibrium;

(ii) the strategies (fAi)
n
i=1 do not lead to it.

That will complete the proof.

Let SPNA�1 � UA�1 be the set of the games with payo¤s bounded by

a constant L > 0 and with a unique Nash equilibrium that is pure. Then

�(SPNA�1) > 0; see Lemma 16. For every v 2 SPNA�1 let b(v) be the

corresponding unique pure Nash equilibrium. The strategies (fmi)ni=2 of

players 2; 3; :::; n lead to b(v) for almost every game v. Let S � SPNA�1 be

the set of games for which (fAi)
n
i=2 leads to b(v); then �(S) = �(SPNA�1) >

0. By Lemma 17 there exists t and history h 2 H�
A�1 , realizable by (fAi)

n
i=2,
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such that from the time t+1 and on, the players play b(v) with probability

1. For every h 2 H�
A�1 let Th be the subset of all the games v 2 UA�1 such

that:

- h is realizable by (fmi)ni=2.

- if h is played, then from the time t + 1 and on, the players play some

action b 2 A�1 with probability 1.

Then

[
h2H�

A�1
Th � S

For every i 2 N fAi is Borel measurable, so Th is a measurable set. There

is a countable number of histories h 2 H�
A�1 and S has positive measure;

therefore, there exists h of size t such that Th has a positive measure. Denote

it by R := Th: The action that played from the time t and on is denoted by

b := (a2; a3; :::; an).

One should note that A1 = A2, so fA1 = fA2 ; i.e., players 1 and 2 have

the same strategy. So, by same considerations, for the action pro�le set A�2

the history h 2 H�
A�2

9 and the subset of R(n�1)jAj: R := Th � UA�2
10

setisfy:

- h is realizable by (fmi)ni=1;i6=2

- if h is played, then from the time t + 1 and on the players play the

action (a1; a3; a4; :::; an) 2 A�2 with probability 1.

Let us introduce a simplifying notation. For every u 2 UA and for every
9A1 = A2 =) A�1 = A�2 =) H�

A�1 = H
�
A�2 therefore we can think of h, which is the

history of play in the game with action set A�1, as the history of play in the game with

action set A�2.
10Every game in UA�1 is a game in UA�2 , because A

1 = A2, so we can think of the

action of player 2 as the action of player 1.
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subset of actions B � A, let ujB be the payo¤ function, de�ned only on the

subset B.

Here we de�ne our P � UA as the set of all the games with payo¤

function u = (u1; u2; :::; un) such that on the "diagonal" a1 = a2 the payo¤s

u�1jfa2Aja1=a2g and u�2jfa2Aja1=a2g are some payo¤s of the subset R. O¤

the diagonal we want the payo¤s of all the players to be better than on the

diagonal. Furthermore, we want a12 to be a dominant
11 action for player 1,

and ai1 to be the dominant action of player i 6= 1.

Formally the n-player game u generates an (n � 1)-player game eu�1 as
follows:

Player 2 chooses the action for both himself and player 1 (i.e., for every

i 6= 1 eu�1(a2; a3; :::; an) := ui(a2; a2; a3; :::; an)).
We de�ne P � U to be the set of all the payo¤functions u = (u1; u2; :::; un) 2

U such that:

(a) eu�1(a2; a3; :::; an); eu�2(a1; a3; a4; :::; an) 2 R for every action a =
(a1; a2; :::; an) 2 A such that a1 = a2.

(b) L+1 < ui(a) � L+2 for every action a such that a1 6= a2, i 6= 1

and ai 6= ai1.

(c) L+1 < ui(a) � L+2 for every action a such that a1 6= a2, i = 1

and ai 6= ai2.

(d) L+3 < ui(a) � L+4 for every action a such that a1 6= a2, i 6= 1

and ai = ai1.

(e) L+3 < ui(a) � L+4 for every action a such that a1 6= a2, i = 1

and ai = ai2.

To make this construction clearer we provide the follwing example:

11Note that the action is not a dominant action in the game, but just dominant for

actions out of the diagonal.
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Let A1 = A2 = fa1; a2g; A3 = fa31; a32g. For simplicity assume L = 10.

Let

R =

8>>><>>>:
a31 a32

a1 [0; 1]; [1; 2] [2; 3]; [3; 4]

a2 [4; 5]; [5; 6] [6; 7]; [7; 8]

9>>>=>>>;
R is the set of all games such that the payo¤s of the row player satisfy:

0 � ur(a1; a
3
1) � 1; :::; 6 � ur(a2; a

3
2) � 7 and the payo¤s of the column

player (player 3) satisfy: 1 � u3(a1; a31) � 2; :::; 7 � u3(a2; a32) � 8.

So P is the following set of games:

a31

8>>><>>>:
a21 a22

a11 [0; 1]; [0; 1]; [1; 2] [11; 12]; [11; 12]; [13; 14]�

a12 [13; 14]; [13; 14]; [13; 14]� [4; 5]; [4; 5][5; 6]

a32

8>>><>>>:
a21 a21

a11 [2; 3]; [2; 3]; [3; 4] [11; 12]; [11; 12]; [11; 12]

a12 [13; 14]; [13; 14]; [11; 12] [6; 7]; [6; 7]; [7; 8]

This is a simple example where the set R can be represented as a carte-

sian product of intervals [0; 1] � [1; 2] � [2; 3] � ::: � [7; 8] as an element in

R8; in general cases it may not occur. Never the less, we de�ne the set P

by the cartesian product of the nodes on the diagonal (that are de�ned by

R) and the nodes out of the diagonal (that are intervals).

Now we continue the proof. We will show that P satis�es the following:

1. �(P ) > 0.

2. Every game u 2 P has a pure Nash equilibrium.12

12This is needed for the proof of the nonexistence of strategies leading to pure Nash

equilibria (because the condition is that the strategies lead to PNE in games where such

an equilibrium exists). For the proof of mixed Nash equilibrium it is not needed.
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3. For every game u 2 P there is a positive probability that the

strategies fA1 ; fA2 ; :::; fAn , will not lead to Nash equilibrium.

This completes the proof.

Proof of 1. For every payo¤ function u that satis�es (a)-(e), condi-

tions (b)-(e) restrict the payo¤s out of the diagonal to be in some segment

with length (or measure) 1. Let �0 be the Lebesgue measure on the space

RnjA�1j, which is the space of the diagonal actions. So

�(P ) = �0(P jfa2Aja1=a2g)| {z }
on the diagonal

� 1
n(jAj�jA�1j)| {z }

out of the diagonal a1 6=a2
= �0(P jfa2Aja1=a2g) (1)

Let B := fb = (u1; u2; u�f1;2g)j(u1; u�f1;2g) 2 R and (u2; u�f1;2g) 2

Rg. One can see that B = P jfa2Aja1=a2g. By Lemma 18 with k = jA�1j,

l = (n � 2)jA�1j, C = R we have �(P jfa2Aja1=a2g) > 0. Therefore by (1)

�(P ) > 0.

Proof of 2. For a = (a12; a
2
1; a

3
1; :::; a

n
1 ) the payo¤s of the players are

in the segment [L + 3; L + 4]. Deviation of a single player will reduce his

payo¤ to less than L+ 2.

Proof of 3. The histories h 2 H�
A�1 and h 2 H

�
A�2 are the same

histories. Denote them by (c(t0); c(t0); a3(t0); :::; an(t0))tt0=1 where c(t
0) is the

action of player 1/ player 2, if h is an element of H�
A�2/ H

�
A�1 respectively.

De�ne eh 2 H�
A by eh := (c(t0); c(t0); a3(t0); a4(t0); :::; an(t0))tt0=1.

At the beginning there is a positive probability that at the �rst step

(c(1); c(1); a3(1); a4(1); :::; an(1)) will be played, because the �rst step in h

occurs with positive probability. If at time (t0 � 1) = 1; 2; :::; t � 1 the

history of play is the �rst t0 � 1 steps in eh, then all the played actions are
on the diagonal (a1 = a2) where their payo¤s are from the set of games R.

Therefore the observations sequence of every player at step t0 � 1 is exactly
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the same as if h occurred. Therefore (c(t0); c(t0); a3(t0); a4(t0); :::; an(t0)) will

be played with a positive probability at step t0. Therefore by induction eh is
realizable by the strategies (fAi)

n
i=1.

So the history eh will occur with a positive probability. As a result, the
action (a1; a2; a3; :::; an) (note that a1 = a2) will be played with probability

1, at all the steps t + 1 and onward. But (a1; a2; a3; :::; an) is not a Nash

equilibrium in the game u (because deviation of player 1 increase his payo¤

above L+ 1). Hence the strategies do not lead to a Nash equilibrium.

Lemma 16 For every L > 0 and every action set A, the subset SPNA � UA
of the games with a single Nash equilibrium that is pure, has a positive

measure.

Proof. Consider the following n-player game:

-ui(a) = L
2 for every a such that a

i = ai1.

-ui(a) = 0 for every a such that ai 6= ai1.

The action ai = 1 is a dominant strategy for every player i, so the game

has a single Nash equilibrium (a11; a
2
1; :::; a

n
1 ) and it is pure. Also every

L
6 -

perturbation of this game has the same single pure Nash equilibrium. Since

the environment of size L6 of every game has a positive measure, we found a

subset of games with a positive measure as required.

Lemma 17 Let f = (f1; :::; fn) be a strategy pro�le, where every f i is a

�nite-memory strategy that guarantees almost sure convergence of the play

to Nash equilibria (pure or mixed) in every game. Then for a game with a

single Nash equilibrium a = (a1; :::; an) that is pure, there exists a history

H(t) = (a(1); a(2); :::; a(t)) , realizable by f , such that from time t + 1 and

on, the players play the Nash equilibrium a with probability 1.

24



Proof. Let �i be the set of all the possible memory states of player i; i.e.,

all the states of the strategy automaton. Let � = �1 � �2 � :::� �n.

The strategies f1; :::; fn induce a Markov process on the �nite Markov

chain �. Let 
 � � be the minimal reachable invariant set; then once it is

reached the Markov process stays there. In addition, for every state ! 2 


the played action is a (with probability one), because otherwise there is some

other action played with a frequency that does not converge to zero. There

exist a time t and a path (�1; �2; :::; �t) �i 2 �, which is realized with a

positive probability, such that �t 2 
. Let h be the history of play on the

path (�1; �2; :::; �t); then h is realizable by the strategy pro�le f , and from

time t+ 1 and on, the players play the Nash equilibrium a with probability

1.

Lemma 18 For every k; l 2 N and for every set C � Rk+l with a positive

measure �(C) > 0, the set

B := fb = (x; y; z) 2 Rk � Rk � Rlj(x; z) 2 C and (y; z) 2 Cg � R2k+l

has a positive measure.

Proof. Let 1C ;1B be the characteristic functions of C;B. 1B(x; y; z) =

1C(x; z)1C(y; z) by the de�nition of B. For every z 2 Rl let g(z) := �(fx 2

Rkj(x; z) 2 Cg). By Fubini�s Theorem,

0 < �(C) =

Z
Rl

0@Z
Rk

1C(x; z)dx

1A dz = Z
Rl

g(z)dz (2)
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also by Fubini�s Theorem,

�(B) =
R
Rl
(
R
Rk
(
R
Rk
1B(x; y; z)dx)dy)dz =

=
R
Rl
(
R
Rk
(
R
Rk
1C(x; z)1C(y; z)dx)dy)dz =

=
R
Rl
(
R
Rk
1C(x; z)dx)(

R
Rk
1C(y; z)dy)dz =

R
Rl
g(z)g(z)dz

(3)

By (2)
R
Rl
g(z)dz > 0, therefore by (3) �(B) =

R
Rl
g2(z)dz > 0.

Proof of Theorem 9. The set C of all possible actions for all the players

is countable; therefore the set B of all �nite subsets of C is also countable.

So there is an injective function  : B ! N. So for every game � 2 DA the

numbers (A1); (A2); :::; (An) are di¤erent.

As described in De�nition (3), in the class D� the strategies are able

to record observations in their �nite-memory, such that every two di¤erent

observations are recordd di¤erently.

Let ' be a mapping that assigns the strategy f((Ai)) for every actions

set Ai 2 B. The strategy fAi(l) for l 2 N is de�ned below.

We start from formal descriptions of strategy fAi(l), and we will explain

later why the strategies f((A1)); f((A2)); :::; f((An)) lead to a pure Nash

equilibrium.

The strategy fAi(l) is composed of �ve main steps.

Step 1 is called the identi�cation of index:

Substep 1:1: The player plays ai1, and remembers his payo¤u
i(a11; a

2
1; :::; a

n
1 ),

denoted ui(1) for short.

The player moves to the next substep 1:2.

Substep 1:2:k:1, for k 2 N: If l = k (i.e., (Ai) = k) the player plays ai1.

Otherwise he plays ai2. In each case he remembers the payo¤.
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Substep 1:2:k:2: If l > k the player plays ai2. Otherwise he plays a
i
1. If

his payo¤ is ui(1) he evaluates his index j by

j = #fkjk < l and the player gets at step1:2:k:1 di¤erent payo¤ from ui(1)g+1

and continues to step 2. If his payo¤ is not ui(1), he continues to substep

1:2:k + 1:1.

Step 2 is called the identi�cation of action pro�le set:

Below we will show that the indexes of di¤erent players are di¤erent, so

the player with index j will be called player j.

Substep 2:k for k 6= j:

Substep 2:k:1: The player plays ai1. If his payo¤ is u
i(1) he concludes

that there are k � 1 players and he continues to step 3. Otherwise he

continues to substep 2:k:2.

Substep 2:k:l, for l � 2: The player plays ai1. If his payo¤ is ui(1)

he concludes that player k has l actions and he continues to substep 2:k+1.

Otherwise he continues to substep 2:k:l + 1.

Substep 2:j:

The player plays his actions by the following order: ai2; a
i
3; :::; a

i
mi ; a

i
1

and then continues to substep 2:j + 1.

Step 3 is called the identi�cation of payo¤ function step:

Below we will show that after step 2, the player knows the pro�le action

set A.

The player goes through all the actions a 2 A in lexicographic order (the

order is de�ned by their indexes j). For every a 2 A the player plays his

action ai and remembers the payo¤.

Step 4 is called the �nding a pure Nash equilibrium:

The player knows his payo¤ function from step 3.
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Reviewing all the actions a = (ai; a�i) in lexicographic order, the player

plays ai1 if a
i is a best reply to a�i; otherwise he plays a12. If his payo¤ is

uj(1) then he remembers ai as the pure Nash equilibrium action and moves

to step 5. Otherwise he goes to the next action in the lexicographic order.

Step 5 is called playing the pure Nash equilibrium, which is just

the repeated play of his action in the pure Nash equilibrium.

Each substep can be implemented by �nite automata, so the strategies

are �nite automata strategies.

Let�s explain why the strategies f((A1)); f((A2)); :::; f((An)) lead to

a pure Nash equilibrium.

At step 1: The players will go through all the natural numbers k =

1; 2; :::;max
i2N

(Ai). For every number k the players will know at step 1:2:k:1

whether there exists a player i with (Ai) = k, or not. When they get to

k = max
i2N

(Ai), at step 1:2:k:2 they will know that there is no player i such

that (Ai) > k. f(Ai)gni=1 are di¤erent, so the indexes

j(i) = #fk 2 N j(Ak) < (Ai)g+ 1

are also di¤erent. In addition fj(1); j(2); :::; j(n)g = f1; 2; :::; ng.

At step 2: First player i with index j(i) = 1 will play his actions

ai2; a
i
3; :::; a

i
mi ; a

i
1: When he �nishes this process, all the players will know

it, because their payo¤ will be ui(1). Hence the players will know the num-

ber of actions of player 1. After that, the same will happen with player

i0whose index is j(i0) = 2, and so on up to player n. When it is the turn

of player n + 1, the players will see that player n + 1 has only one action,

which indicates that player n + 1 does not exist. At the end of step 2, the

players will know the total number of players, and the number of actions of

every player.
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At step 3: The players will play all possible actions a 2 A, in lexico-

graphic order, and so they will know their utility function.

At step 4: The players will review all possible actions a 2 A, until there

is an action a 2 A in which their payo¤s are ui(1). That is all the players

make a best-reply action at the action pro�le a. Therefore, a is a pure Nash

equilibrium, and at step 5 the players will play it all the time.

Given a game with di¤erent actions sets of the players and with a pure

Nash equilibrium, all the players will go through all the steps simultane-

ously, and eventually they will get to step 5, where they will play a Nash

equilibrium all the time, so the frequency of times that the players play a

Nash equilibrium converges to 1.

Proof of Theorem 10. As in the proof of Theorem 9, the players can

record every payo¤ in every game � 2 D� in a �nite automaton.

We shall now prove that each one of the two conditions is su¢ cient.

Condition 1: If all the players have some di¤erent indexes from f1; 2; :::; ng,

then by Theorem 9, the chain of steps

"identi�cation of action pro�le set"! "identi�cation of payo¤ function"

! "�nding of pure Nash equilibrium" ! "playing the pure Nash equilib-

rium"

guarantees convergence to a pure Nash equilibrium.

By the above assumption, the players know their index i, so these four

steps will lead to a pure Nash equilibrium.

Condition 2: The strategy mapping of every player i can depend on

n, and so we de�ne the strategy of player i as follows:

First, the player plays the following step called random identi�cation

of action pro�le set of n players:
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The player uniformly randomizes a natural number 1 � ci � n. After-

wards he plays the step "identi�cation of action pro�le set" as if his index

were j = ci. If at the end of this step he concludes that there are n players,

he remembers this action set and �nishes the step. Otherwise he repeats

the step.

Afterwards the player continues the step chain "identi�cation of pay-

o¤ function" ! "�nding of pure Nash equilibrium" ! "playing the Nash

equilibrium".

When each player has used this strategy, the following happens:

If (c1; c2; :::; cn) is a permutation of (1; 2; :::; n), then after the "identi-

�cation of action pro�le set" all the players will conclude that there are n

players, and �nally �nd a pure Nash equilibrium.

If at least two of the players have randomized the same number, let j

be the smallest number such that j =2 fc1; c2; :::; cng. At the end of step

2 all the players will conclude that there are j � 1 players, and they will

randomize their numbers again.

In every randomization the players randomize a permutation with prob-

ability n!
nn , so eventually they will randomize a permutation and will reach

a pure Nash equilibrium.

Because the nuber of options in the randomization is �nite, the strategy

is a �nite automaton strategy.

Proof of Theorem 11. Consider the following two three-player games:

�1 :

a21 a22

a11 1; 1; 1� 1; 1; 1�

a12 1; 1; 1� 1; 1; 1�| {z }
a31

a21 a22

a11 1; 0; 1 0; 1; 1

a12 0; 1; 1 1; 0; 1| {z }
a32
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�2 :

a21 a22

a11 1; 0; 1 0; 1; 1

a12 0; 1; 1 1; 0; 1| {z }
a31

a21 a22

a11 1; 1; 1� 1; 1; 1�

a12 1; 1; 1� 1; 1; 1�| {z }
a32

The pure Nash equilibria of �1 are f(i; j; 1)g2i;j=1. The pure Nash equi-

libria of �2 are f(i; j; 2)g2i;j=1.

The strategy of player 3, is the same in both games, and the histories of

player 3 are independent of the actions of players 1 and 2. So player 3 does

not play one of the actions a31 or a
3
2 with limit frequency larger than

1
2 with

probability 1. Denote this action by a3i (i = 1; 2). So at the game �i the

strategies will not lead to a pure Nash equilibrium.

For a di¤erent number of actions or a di¤erent number of players, one

can easily construct a similar example in which convergnce to pure Nash

equilibrium cannot be guaranteed.

Proof of Theorem 12. Let � = �(") be a number small enough (for

example, one can take � = "
4M ), such that for every game there exists a

Nash "
2 -equilibrium with mixed actions that are integer multiplications of

�. Such a � exists, because every game has a Nash equilibrium, and we

can approximate it by integer multiplications of �. Now we can make a

discretization of �(Ai) for all i, taking only the actions that are integer

multiplications of �. Denote this discretization by e�(Ai) which is a �nite
set. So e�(A) = e�(A1)� e�(A2)� :::� e�(An) is also a �nite set, and we can
de�ne a lexicographic order on e�(A).

We shall call the new step �nding an Nash "
2-equilibrium that will

be useful bellow.
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The player reviews all the mixed actions in e�(A) in lexicographic order.
For every action x = (xi; x�i) 2 e�(A), player i plays ai1 if xi is an "

2 -best

reply to x�i; otherwise he plays ai2. If his payo¤ is u
i(1), he remembers xi as

the Nash "
2 -equilibrium mixed action. Otherwise he goes to the next action

(in lexicographic order).

We de�ne a state of a strategy of a player:

State k:1: The player knows that there are at least k players, and he did

not �nd an "
2 -Nash equilibrium with k players.

State k:2: The player knows that there are at least k players, and he

found an "
2 -Nash equilibrium with k players and he remembers his payo¤

function and the equilibrium.

The player starts his play at state 1:1.

At state k:1, the player plays the following chain of steps: "random

identi�cation of action pro�le set of k players" (Theorem 10, condition 2)!

"identi�cation of payo¤ function" (Theorem 9)! "�nding an "
2 -Nash equilib-

rium". The player remembers the "
2 -Nash equilibrium (x1; x2; :::; xi; :::; xn),

and his payo¤ function euik in the game, where he found the equilibrium. The
player changes his state to k:2.

Let � be a number small enough13 such that for every "
2 -Nash equilibrium

x = (xi)ni=1 the mixed actions pro�le y = (y
i)ni=1 de�ned by y

i = (1� �)xi+

�( 1
mi ;

1
mi ; :::;

1
mi ), is an Nash "-equilibrium.

At state k:2, the player plays his mixed action in the "2 -Nash equilibrium

(xi) with probability 1 � �, and he plays all his actions by the uniformly

distribution �with probability �. If his payo¤ is not one of the payo¤s ineuik, he changes his state to k + 1:1. Otherwise he stays at the state k:2.
13For example, � = "

4M
(when M is the bound of the payo¤s) guarantees the require-

ment.
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The number of players is bounded by P , and the number of actions by

T , so every payo¤ function euik should be recordd in TP cells of payo¤s. So
the strategy is a �nite-memory strategy.

If the payo¤ of player i is not in euik, then the action that was played
is not one of the actions in the game euk. Therefore, the other players will
also get some payo¤ that is not in their payo¤ function. Therefore, if all

the players play by this strategy, then the updates of the states of all the

players occur simultaneously.

Let n be the actual number of players. If all the players are at state k:1

for every k � n, then there is a positive probability that they will randomize

k di¤erent numbers, and then they all will move to state k:2. If all the players

are at state k:2 for every k < n, there is a probability �n that all the players

will play all their actions with uniform distribution. Hence there is a positive

probability that the players will play some action that is not an action in euk,
and then move to the state k + 1:1. So, �nally, the players will get to state

n:2. In state n:2, the players play (yi = (1 � �)xi + �( 1
mi ;

1
mi ; :::;

1
mi ))

n
i=1,

which is a Nash "-equilibrium. The payo¤ function that every player records

in his memory is the actual payo¤ function of the game, so the players will

never get a payo¤ that is not in their payo¤ function, and they will stay at

state n:2 all the time.

Proof ot Theorem 13. Let us assume that such a strategy mapping

exists. Consider the matching pennies game where a player with actions set

fa1; a2g plays against a player with actions set fa31; a32g:

� :=

a31 a32

a1 1; 0 0; 1

a2 0; 1 1; 0
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By Lemma 19 there exists a realizable history h = ((a(t0); a3(t0))tt0=1 such

that if h happens, then both players will continue to play actions that are "

close to (12 ;
1
2) as long as their payo¤s remain 0 or 1.

Now consider the following three-player game where players 1 and 2 have

the same action set fa1; a2g and player 3 has actions set fa31; a32g:

�0 :=

a21 a22

a11 1; 1; 0 1; 0; 1�

a12 0; 1; 1� 0; 0; 1| {z }
a31

a21 a22

a11 0; 0; 1 1; 0; 1�

a12 0; 1; 1� 1; 1; 0| {z }
a32

where on the diagonal a1 = a2 players 1 and 2 play matching pennies

against player 3. Out of the diagonal player i = 1; 2 gets 1 if he plays ai1,

and 0 if he plays ai2. Player 3 gets 1 out of the diagonal in any case. Neither

((12 ;
1
2); (

1
2 ;
1
2); (

1
2 ;
1
2)) nor an "-perturbation of it is a Nash "-eqilibrium for

" � 1
8 (because a deviation of player 1 to the pure action a

1
1 increases his

payo¤ in more than 1
8).eh := ((a(t0); a(t0); a3(t0)) is a realizable history in �0, because there is a

positive probability that all the players will play the history h. If eh occurs
then all the players will continue to play actions that are " close to (12 ;

1
2)

forever, because all the payo¤s in �0 are 0 or 1.

Lemma 19 Let f = (f1; f2) be a strategy pro�le, where f1; f2 are �nite-

memory strategies that guarantee almost sure convergence of the play to Nash

"-equilibria in the matching pennies game. Then there exists a �nite history

h = (a1(t0); a2(t))tt0=1 , realizable by f , such that starting from time t+1 the

players play the Nash "-equilibrium as long as their payo¤s remain stay 0

or 1.
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This lemma claims more than the existence of a history that leads to

a play of ((12 ;
1
2); (

1
2 ;
1
2)) � " in the matching pennies game. It claims that

once the players are convinced that they should play ((12 ;
1
2); (

1
2 ;
1
2)), they

will play it forever, no matter what their payo¤s in the future will be (even

in the extreme situations where their payo¤s will be 0 forever).

Proof. Let �i be the set of all the possible memory states of player i, i.e.,

all the states of the strategy automaton. Let � = �1 � �2.

The strategies f1; f2 induce a Markov process on the �nite Markov chain

�. Let 
 � � be the minimal reachable invariant set, such that once it is

reached, the Markov process stays there. For every state ! 2 
, the played

action is an "-preturbation of ((12 ;
1
2); (

1
2 ;
1
2)); otherwise, there is a positive

frequency of steps where the Nash "-equilibrium is not played. Let � be

some realizable path that lead to 
, and h the realized actions on the path.

Assume, by contradiction, that there exists some �nite sequence of ac-

tions and payo¤s of 0 and 1 that lead player 1 not to play an "-preturbation

of (12 ;
1
2). This sequence occurs with a positive probability in the matching

pennies because for every action of player 1 there exists action of player 2

that leads to the right payo¤ (0 or 1). So there is a positive probability of

leaving 
 once it is reached, which contradicts the fact that 
 is a minimal

invariant set.

Proof of Proposition 14. For every player i that has fewer actions

mi < T we can de�ne actions ai
mi+1

; ai
mi+2

; :::; aiT to be identical to his �rst

action ai1. Denote this game by e�. Given strategies that lead to a Nash "-
equilibrium in e�, we can derive strategies that lead to a Nash "-equilibrium
in the original game, by playing ai1 each step when a

i
mi+1

; ai
mi+2

; :::; aiT are

played. In addition, note that if � 2 I�, then e� 2 I�. So we will construct
strategies that lead to a Nash "-equilibrium in every game where all the
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players have T actions.

The covergnce process of the strategies from the proof of Theorem 12

can be described as follows:

Each player randomizes for himself an index. ! Given this speci�c

con�guration of indexes, the players �nd their own payo¤ function. ! For

every discretized mixed action each player sends a bit (by playing ai1 or a
i
2)

to the other players. This bit reveals whether the player is "-best replying

or not. ! Eventually they �nd a Nash "-equilibrium and play it as long as

they conclude that this is not the real game. The conclusion made when a

player gets a payo¤ that does not exist in his payo¤ function. In this case,

they repeat the chain of steps described above.

Let us explain how each of the steps in the process can be done in the

case of game e� 2 I�.
Given a con�guration of indexes, the players �nd the payo¤ function as

follows:

The players assume that there are P players. So they know the action

set A, and they play all the actions in lexicographic order. Finally, every

player removes from his list of existing players all the players that do not

in�uence him.

When the con�guration of indexes is a permutation of N , all the players

will remove the players (N + 1; N + 2; :::; T ).

Player i can send a bit to player j in the following way:

All the players except player i will play all the actions (the actions from

A, not from A�i) in lexicographic order, while player i will play constantly

ai1 if he sends the bit 0, and he will play all the actions in lexicographic order

if he sends the bit 1. Player j 6= i will distinguish between the behaviors of

player i (when he sends 0 or 1) because player i in�uences j; i.e., player j
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receives the bit. So every player i can sends a bit to every player j in �nite

number of steps14.

Finally, how can the players conclude that the current game is not the

real one?

Assume that the procedure for �nding an equilibrium described above

takes q steps. Then the players can play the equilibrium q
" times, and after-

ward search for an equilibrium by new randomizations. If in the new search

they �nd a game with more players, they start to play the new equilibrium;

otherwise, they stay with the old one.

This procedure eventually detects the right number of players, and hence

leads to playing a Nash "-equilibrium with a limit frequency 1 � " of the

time.

Sketch of the proof of Theorem 15. Given a game, we can de�ne

a directed graph whose vertices are the players, and with an edge from i

to j if player i in�uences player j; this graph will be called the in�uence

graph. The in�uence graph induces a directed tree (or forest) of the strong

components.

The strategy is as follows. First, every player randomizes an index for

himself. Then the players try to �nd out what the in�uence graph is by

going through all the sequences of di¤erent players in lexicographic order.

For each sequence, each player sends bits 00 or 01 (by the method described

in proposition 14). For example, for the sequence 3,2,5, player 3 send bits 01

to player 2. If player 2 distinguishes between the two bits, he sends to player

5 bits 01, otherwise he sends bits 00. If player 5 receives two di¤erent bits,

he knows that player 3 in�uences player 2 and player 2 in�uences him. At

14Clearly all the players 1; 2; :::; n, even players k 6= i; j, must play as was described

above, and "waite" untill the bit will be sent.
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the end of this process each player can deduce the structure of the in�uence

graph in all the vertices that in�uence him.

Next, the players �nd a Nash "-equilibrium. First the players in the

strong component on the head of the tree �nd a Nash "-equilibrium. It can

be done by sending a bit to the other players (directly or through other

players in the component), and then by sending the information of what

their actions are in the equilibrium to all the other players15. The players

in the lower part of the tree (the sons) �nd a Nash "-equilibrium, given the

actions of the players in the head of the tree, and so on.

Denote by q the number of steps that this procedure takes. Now each

player plays q
" times the Nash "-equilibrium that he found in the random-

izations where the number of players that in�uence him was maximal.

Finally, all the players will randomize a permutation, where the number

of players that in�uence each player is maximal. Therefore, the players will

play a Nash "-equilibrium with frequency 1� ".

8 Discussion

1. The only case not discussed above is that of a Nash "-equilibrium with

additional information.

In Theorem 10 two examples of additional information were given: the

index and total number of players.

For the case of the total number of players, we can easily generalize the

impossibility result of Theorem 13. In the proof, instead of considering the

matching pennies game, we consider matching pennies with n� 2 �ctitious

players (i.e., players with a constant payo¤of 0, and not in�uence the payo¤s

15The "-equilibrium is an integer multiplication of � and so it is �nite information.
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of others), and instead of �0 we consider �0 with n� 3 �ctitious players.

Hence, additional information about the total number of players does

not improve the optimal results.

In the case of the index, we can improve the result of Theorem 15, to

convergence with frequency 1. The idea is that when the players know

their index, they do not make randomizations. They play according to the

procedure described in the proof of Theorem 15; thereafter it all the players

will know the Nash "-equilibrium and play it.

So, by using strategies with additional information of index, we can

guarantee the optimal result, namley, convergence with limit frequency 1,

that works in a general game.

2. We also did not consider the case of a mixed Nash equilibrium (ex-

cepting the impossibility result of Theorem 2). For �nite-memory strategies,

a discussion of the mixed Nash equilibrium is problematic, because even for

games with integer payo¤s the equilibrium actions can include irrational

probabilities. The cardinality of possible plays with �nite-memory strate-

gies is countable, whereas the cardinality of possible mixed equilibrium in

generic or general games is a continuum. This proves the impossibility of

convergence to mixed equilibrium.

3. On the face of it, the pure Nash equilibrium seems to be simpler

solution than the Nash "-equilibrium. Although in generic games the con-

vergence with frequency 1 can be guaranteed for a Nash "-equilibrium, this is

not the case for a pure Nash equilibrium. The reason is that even if a player

thinks that he is playing an equilibrium, there still has to be some proba-

bility of deviation. Otherwise the players may "stuck" at the point where

they think that it is an equilibrium but really it is not (this idea proved

formally in Theorems 1 and 13). The player can accept this deviation in
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the case of a Nash "-equilibrium: the player plays a Nash "
2 -equilibrium and

deviates with probability "
2 which generates a Nash "-equilibrium. A pure

Nash equilibrium is an exact solution, so this idea is not implamentable.

4. All the dynamics presented in the proofs of the theorems are very

"ugly" dynamics in many senses. For example:

- The players do not know who the participants of the game are, although

the players are fully correlated. For example, they go through some set in

lexicographic order, that requires full correlation between the players.

- Playing this dynamics is not reasonable: the strategies do not re�ect a

reasonable behavior; i.e., one that is adaptive or rationalizable, and so on...

- The dynamic in Theorem 15, requires a huge number of steps to �nd

the equilibrium even for small games.

A direction for future research is the question of �nding a reasonable

dynamics that achieves the optimal results for a Nash "-equilibrium in both

optimal cases:

- Dynamics that lead to a Nash "-equilibrium in generic games with

frequency 1.

- Dynamics that lead to a Nash "-equilibrium in general games with

frequency 1� ". For this latter case the regret-testing of Germano&Lugosi

may satisfy the requirements. It is an open question whether it converges

for general games.
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