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Abstract

Should an auctioneer start a rising auction from some starting price
or set it as a reservation price? Under what circumstances might a
bidder find it rational to raise the current offer by a substantial factor
instead of making just a small increase above the highest bid? This
paper aims to answer both of these questions by exploring the im-
plications of jump bidding over the information sets available to the
bidders. Our motivation is to find whether hiding the information
about other players’ signals might be beneficial for one of the bidders.
We first show that it is better for the auctioneer to set a reservation
price rather than “jump” to the starting price. We then prove that
in a very general setting and when bidders are risk-neutral there exist
no equilibrium with jump bidding (in non-weakly dominated strate-
gies). Finally, we demonstrate that jump bidding might be a rational
consequence of risk aversion, and analyze the different effects at work.

∗Both authors are at the Center for the Study of Rationality and Department of Eco-
nomics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel. email for corre-
spondence: assafr@gmail.com
†The authors wish to thank Elchanan Ben Porath, Déborah Marciano, Motty Perry and

the participants of Economics Theory seminar 2007 in the Hebrew University for helpful
comments and suggestions.
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1 Introduction

For years now the field of auctions has served as an unlimited source for
behavioral phenomena which seemingly contradicted the theoretical predic-
tions. The current paper focuses on a specific type of behavior which was ob-
served both in controlled test environments and in real-life auctions, namely
jump bidding in English auctions. A jump bid consists of raising the bid by
an increment larger than the minimal required. Considering the standard
model of English auctions, this seems to be quite an odd behavior. When
jump bidding, a bidder might bid above the other bidders’ valuations and
pay more than she would have, had she not jumped. Moreover, if the jump
does not pass the others’ valuations, there is no reason to suspect they would
change their behavior and drop out before they reach their valuation. While
peculiar from a game-theoretic point of view, this behavior appears to be
quite widespread. Isaac, Salmon, and Zillante (2007) have gathered data
from over 40 auctions performed in the United States and the UK, and show
that most of them contain jump bids of different sorts. The jump bids occur
both at the beginning of the auction and during the bidding process. Some
of the jump bids are by a relatively small fraction of the final price, while
others are much more substantial. More indications that jump bids are com-
mon are provided in McAfee and McMillan (1996), Daniel and Hirshleifer
(1997), Wang and Gunderson (1998) and Avery (1998).

Most of the jump bidding literature is concerned with proving existence
and non-existence of equilibria that contain jump bids. Related papers
which prove non-existence assume the auctioneer has the right to reject bids
(Dodonova and Khoroshilov, 2006), or independent values and separable sig-
nals support for one of the bidders (Wang and Gunderson, 1998). Not sur-
prisingly, while most non-existence results in the literature are quite robust,
the existence results are loosely based on rather implausible assumptions
about the auction design or the bidders behavior. Avery (1998) suggests
that jump bidding can be used to signal one has a high valuation for the auc-
tioned item. While this approach indeed explains collusion well in repeated
auctions, Avery’s equilibrium is drawing on weakly-dominated strategies (the
other player does not continue bidding after the jump, even if her expected
value exceeds the jump bid) and thus is not convincing when considering
“one-shot” auctions. Other researchers try to add an external cost mecha-
nism such as time-dependent utility (Kwasnica and Katok, 2005), transaction
costs (Easley and Tenorio, 2001), research costs (Fishman, 1988; Hirshleifer
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and Png, 1989), and costs incurred by auctioning multiple objects (Zheng,
2008). Finally there have also been some attempts to explain jump bidding
by assuming some discontinuity in the auction design (Isaac, Salmon, and
Zillante, 2007), or in the bidders’ preferences (Wang and Gunderson, 1998).

Our approach is largely motivated by the results of Milgrom and Weber
(1982) which show that the information provided by the losing bidders in
an English auction, as opposed to a second-price sealed-bid auction, causes a
raise in the expected final price paid by the winner. This result obtains due to
the information passed by the “low-signaled” bidders to the “high-signaled”
bidders, hence the price-setters. Therefore, disallowing the “low-signaled”
bidders to reveal their values might have the opposite effect. Obviously, this
idea can only be applied in an interdependent values environment, in order
for this information to have any significance for the bidders. We use similar
arguments to show that an auctioneer is better off setting a reservation price,
rather than starting the auction from this price.

Even though this result motivates the research of information hiding as a
strong incentive for jump bidding, we continue by showing non-existence of
jump bidding equilibria in a symmetric interdependent values and affiliated
signals environment with risk-neutral bidders. For this purpose the deletion
of weakly-dominated strategies suffices, and is much more economical than
the assumptions made in previous studies. Moreover, our approach demon-
strates intrinsic qualities of the bidders’ strategies and reveals that the main
reason for non-existence is the information revealed by the jump bid. We
proceed by removing some of our earlier restrictions, and show that when
bidders are risk-averse there are two good reasons why they should jump
bid: to induce lotteries on other players and to avoid lotteries for them-
selves. The analysis provides both with tools to evaluate the different effects
of information hiding, as well as a simple and reasonable intuition as to what
might drive bidders to jump bid.

The rest of the paper is organized as follows. Section 2 contains a model
of English auction, which also permits jump bidding. We continue in Section
3 by providing the initial intuition for information hiding, and comparing
starting prices with reservation prices. An inexistence result for the case of
risk-neutrality is then presented in Section 4, and we proceed in Section 5 by
demonstrating how the introduction of risk-averison affects the jump bidding
decision. Section 6 concludes.
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2 The Model

We use the classical framework of English auction with interdependent-values
and affiliated signals, as described by Milgrom and Weber (1982):

[. . . ] the price is posted using an electronic display. The price is
raised continuously, and a bidder who wishes to be active at the
current price depresses a button. When he releases the button,
he has withdrawn from the auction.1

Formally, N bidders compete for a single indivisible object, auctioned by
the auctioneer. The (von Neumann-Morgenstern) utility of the auctioneer is
defined by:

us =

{
p if object is sold

s if object is not sold

where p is the price in which the object was sold, and S is the value of the
object for the auctioneer. Each bidder receives a private signal xi, where the
signals are drawn from a given joint cumulative distribution function F , with
the respective joint density function f . Define vi : RN → R, the value of the
object for player i as a function of the N signals. Define

ui =

{
vi − si if si > maxj 6=i {sj}
0 else

(2.1)

a quasi-linear utility function, where sj is the last bid of player j. It is
assumed that vi is non-negative, continuous and non-decreasing in all its pa-
rameters. Also, for each i, vi satisfies the single crossing condition: ∀j 6= i :
∂vi

∂xi
> ∂vi

∂xj
. It is further assumed that the signals induced by F are affiliated,

i.e.: let z and z′ be points in RN , let z ∨ z′ denote the component-wise max-
imum of z and z′, and let z ∧ z′ denote the component-wise minimum, then:
f(z∨z′)f(z∧z′) ≥ f(z)f(z′). The environment is assumed to be symmetric,
meaning that for each i: vi = v(xi, x−i), the function v is symmetric with
respect to components of the vector x−i, and f is symmetric with respects to
all its N arguments. Finally, We relax the model’s assumptions by allowing

1Milgrom and Weber (1982, page 1104). This model is based on a description in:
Cassady R. Jr., Auctions and Auctioneering, Berkeley, University of California Press,
1967.
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jump bid upon the first bid, either by the auctioneer (Section 3) or by one
of the bidders (Section 4).

Throughout this paper it will be convenient to denote by wi:j the vector
(wi, wi+1, . . . , wj−1, wj) for any vector w and every i ≤ j.

3 Starting Prices vs. Reservation Prices

Definition 3.1. A “Cut-T auction” is an English auction which starts
with the value of T , i.e. the lowest bid possible is T . Following the English
auction’s description quoted above, in a Cut-T auction the electronic display
will begin at T . Obviously, a Cut-T auction with T = 0 is equivalent to a
standard English auction.

In order to describe an equilibrium in a Cut-T auction, we shall now
explicitly define what a player’s strategy consists of. A strategy in a Cut-T

auction is a pair
(
yT , {bm}Nm=1

)
. The first element is a cut-off point, and

defines the lowest signal that the player must receive in order to enter the
auction. The second element is a set of functions, which will be used by the
player in the case she enters the auction. Each function corresponds to the
m bidders which are currently active in the auction. Each bm is a function
from the player’s signal and the entire history of the auction to the player’s
drop-out price.

Lemma 3.1. In a symmetric equilibrium of a Cut-T auction, which consists
of strictly monotonically rising (in the players’ respective signals) bidding
functions, yT is defined uniquely by the implicit expression:

E
(
vj|Xj = yT , Xj ≥ max

k
{Xk}

)
− T = 0 (3.1)

Proof. See Appendix.

Once a bidder decides to participate in the auction, a symmetric equilib-
rium strategy must resemble the strategies of the English auction symmetric
equilibrium as constructed in Milgrom and Weber (1982). In an English
auction the bidders are able to deduce the other bidders’ signals from their
drop-out prices. Milgrom and Webber show that the unique symmetric equi-
librium is defined iteratively by the following strategies (the strategies written
here are for player 1):

bN(x1) = E (v1 |∀1 ≤ i ≤ N : Xi = x1 )
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bk (x1|pk+1, . . . , pN) = E

(
v1

∣∣∣∣∣ ∀1 ≤ i ≤ k : Xi = x1,

∀k < i ≤ N : bi (Xi|pi+1, . . . , pN) = pi

)
Where pi is the drop-out price of player i, and the buyers are sorted according
to their signals. k represents the number of buyers still active in the auction.
Note that using these strategies, the drop out price of player 2 (and therefore
the final price) is:

E (v2 |X1 = x2, X2 = x2, b3 (X3|p4, . . . , pN) = p3, . . . , bN(XN) = pN )

In the Cut-T auction the equilibrium strategies are almost identical but since
the buyers that decide not to participate do not reveal their signals, the
participating buyers will only be able to use the information that their signal
level is below yT . Therefore, in a Cut-T auction where only the firstm bidders
decided to participate, the strategies for player 1 are defined iteratively by:

bm(x1) = E
(
v1

∣∣∀1 ≤ i ≤ m : Xi = x1,∀m < i ≤ N : Xi < yT
)

bk (x1|p1, . . . , pk) = E

v1

∣∣∣∣∣∣∣
∀1 ≤ i ≤ k : Xi = x1

∀k < i ≤ m : bi (Xi|pi+1, . . . , pm) = pi

∀m < i ≤ N : Xi < yT


Proposition 3.1. Considering the symmetric equilibrium with strictly mono-
tonically increasing strategies, and T = S (S is the object value for the auc-
tioneer) the expected revenue from a Cut-T auction is lower than the revenue
from a Standard English auction with a concealed reservation price of T .

Proof. See Appendix.

Put in simple words, Milgrom and Weber (1982) prove that revealing
information raises the price, and the above proof relates this to the observa-
tion that starting the auction at price T obscures the information provided
by the low-bidders’ signals (which are affiliated with the high-bidders’ sig-
nals). Proposition 3.1 can be applied to the scenario in which an auctioneer
would like to auction an object and set a reservation price which equals to
her private utility from the object.2 It implies that even though the reserva-
tion price is known in advance, it is still better to let the buyers start from

2It appears that setting a starting price instead of using a reservation price is quite com-
mon in some online auctions sites, such as eBay (However, eBay’s online guide specifically
warns that setting the starting price too high might discourage potential bidders).
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zero, thus revealing their private information. Note that in order for the low-
bidders to have an incentive to play the equilibrium strategies it is important
for the reservation price to be concealed. Nevertheless, even if the reservation
price is known and some of the low-bidders play a different strategy, still as
long as information can be extracted from their actions it is better for the
auctioneer to select an English auction with a known reservation price over
a Cut-T auction.

4 Inexistence of Jump Bidding Equilibria

Section 3 reinforces our basic intuition that by hiding information, starting
at a higher price can reduce the revenue for the auctioneer. If so, every
bidder would prefer (ex-ante) to participate in a Cut-T auction rather than
a standard English auction. The question remains whether a bidder can
mimic this result by independently applying a jump bid at the beginning of
an English auction. In order to explore the ramifications of a jump bid made
by the bidder we alter the basic model to allow a jump bid by a single player.
We distinguish player 1 from the rest by allowing her, upon the first move,
to jump to any positive bid. If a jump occurred then every player (other
than player 1) decides whether or not to continue. If no player continues
then player 1 wins the object and pays her bid.

In what follows we show that it is not profitable for player 1 to jump.
The idea behind the proofs is that the player with the highest signal besides
player 1 will always be able to deduce the correct probability distribution
for the signals of the players which were “jumped upon”, and moreover, will
be able to use the information implied in the jump bid to her advantage.
Proposition 4.1 handles the easier case of a strictly monotonically increasing
jumping strategy and the result is later extended through proposition 4.2 to
weakly increasing jumping strategy.

Definition 4.1. A natural equilibrium is a Bayesian equilibrium in non-
weakly dominated strategies in which players 2 to N play a symmetric and
strictly monotonically increasing (in their respective signals) strategies.

Proposition 4.1. There is no natural equilibrium in which player 1 uses a
jumping strategy which is strictly monotonically increasing in her signal.

Proof. The intuition that guides the proof is quite simple. When player 1
jumps she reveals her signal, and since information hiding is only useful to
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obscure the highest signal, it becomes redundant and in some cases even
harmful for her to jump. For the complete proof see Appendix.

Lemma 4.1. There is no natural equilibrium in which player 1 uses a weakly
monotonically increasing (in her signal) jumping strategy s : R → R, and
there exists 0 < t ∈ R, such that s−1(t) has a least element.

Proof. The proof relies on the observation that for a bidder who receives the
signal min {s−1(t)}, jumping is strictly dominated. For the complete proof
see Appendix.

Proposition 4.2. If the probability distribution F has no singleton atoms,
then there is no natural equilibrium in which player 1 uses a non-zero weakly
monotonically increasing (in her signal) jumping strategy.

Proof. See Appendix.

5 The Effects of Risk Aversion on the Jump

Bidding Decision

Our comparison of starting prices and reservation prices in section 3 had
focused on the effect caused by the affiliation between the players’ signals,
which makes the second-highest bidder’s expected valuation lower when the
information provided by the affiliated variables remained unobserved. The
current section deals with a completely independent outcome of information
hiding, namely the risk implications of the jump. We shall now drop our
earlier assumption of risk-neutrality, and demonstrate that when bidders are
risk-averse, jump bidding can indeed be profitable. The intuition gained in
our previous analysis should give us insight as to what changes might be
needed in order for the jump bid to be successful. Our first two examples
might seem somewhat peculiar, as two of the bidders have an extremely
low valuation of the bidded object, and their actions follow only from the
assumption of using non-weakly dominated strategies. Moreover, for the sake
of simplicity and to illustrate the independence between the current results
and the previous, we shall even drop the affiliation between the jumper and
the rest of the players.
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Example 5.1 (Risk-averse second-highest bidder). Let X3 be either 0 or 1
with equal probabilities. The rest of the signals bear no information, X1 =
X2 = 0. The values are given by:

v1(X1, X2, X3) = 1000

v2(X1, X2, X3) = 100 + 10X3

v3(X1, X2, X3) = X3

bidders 1 and 3 are risk-neutral, while bidder 2 (the second-highest bidder) is
risk-averse:

u2 =

{
u(v2 − s2) if s2 > maxj 6=2 {sj}
u(0) else

(5.1)

where u satisfies u′ > 0 and u′′ < 0. Note that the non-weakly dominated
strategies are fairly simple: bidder 1 stays until the price-clock reaches 1000,
bidder 3 stays until the price-clock reaches X3. If bidder 2 does not know X3

she stays only until the price-clock reaches s, where s is implicitly defined by:

1

2
· (u(110− s)) +

1

2
· (u(100− s)) = u(0)

But as u is convex we get:

u(105− s) = u(
1

2
· (110− s) +

1

2
· (100− s)) > u(0)

And so s < 105. Now note that:

UNo-Jump
1 =

1

2
·(1000−110)+

1

2
·(1000−110) = 1000−105 < 1000−s = EJump

1

Bidder 1 is better off if she jumps above bidder 3. The effect stems from the
fact bidder 2 prefers the expected utility over the utility from the lottery she
is facing when the signal of bidder 3 is unknown.

Our first example was fairly intuitive and suggested that if the first bidder
is risk-neutral and knows that another bidder is risk-averse, she should exploit
this to get a reduced price by exposing the other bidder to the lottery induced
by the jump bid. The next example is somewhat more surprising as it claims
that a risk-averse bidder who knows that other bidders are risk-neutral should
also jump and hide information.
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Example 5.2 (Risk-averse jumper). Let Xi and vi be as before, but now
assume bidders 2 and 3 are risk-neutral and it is bidder 1 (the jumper) who
is risk-averse (using the same form of utility as in (5.1)). Again, bidder
1 stays until the price-clock reaches 1000, bidder 3 stays until the price-
clock reaches X3, and bidder 2 stays until the price-clock reaches 100 + 10X3

if she deduced X3 from bidder 3 actions, or until the price-clock reaches
E (v2(X1, X2, X3)) = 105 if she did not deduce X3. Considering the strat-
egy of no-jump by bidder 1 versus the strategy of jumping the price 1 + ε we
get:

UNo-Jump
1 =

1

2
· (u(1000− 110)) +

1

2
· (u(1000− 110)) <

u

(
1

2
· (1000− 110) +

1

2
· (1000− 100)

)
= u(1000− 105) = UJump

1

And that means bidder 1 is better off if she jumps above the low-valued player.
Intuitively, bidder 1 is risk-averse and so she prefers the certainty of the
expected value over the lottery caused by the price uncertainty induced by
bidder 3’s signal.

It is important to spell out the difference between these two examples
and the former discussed aspect of information hiding. The propositions
in section 4 prove that a bidder who tries to hide the affiliated signals is
doing so in vain, as her signal (or at least, its affiliated properties) will be
revealed through the jump bid. Even breaking the symmetry and separating
the bidders’ valuations (as we did in the above examples) could not have
made the jump bidding profitable in the case of risk-neutrality, due to the
same argument. However, risk aversion does not work that way and the
motivation for the jump is practically uncorrelated with the jumper’s signal.
The jumper either tries to avoid the “lottery” induced by the (unobserved)
signals of bidders with low-valuations or to conceal the results of the same
lottery from other risk-averse bidders in order to lower their expected utility
from winning the auction.

Let us consider a more general and symmetric model and observe the
different effects at work. Assume that there arem “high” bidders and (N−m)
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“low” bidders whose utilities are given by:3

∀1 ≤ i ≤ m : ui =

{
u(vH − si) if si > maxj 6=i {sj}
u(0) else

∀m < i ≤ N : ui =

{
u(vL − si) if si > maxj 6=i {sj}
u(0) else

Where vH : RN → R and vL : RN → R are functions from the players’
signals (which are again drawn from a joint distribution F , which should be
symmetric only with regard to the “high” bidders). vH is symmetric with
regard to the other “high” bidders’ signals, and to simplify notation, also
with regard to the other “low” bidders’ signals (as in section 2), and both
value functions are “separated” such that:

inf {supp(vH)} > sup {supp(vL)}

We shall now try to find when does a strategy which always starts with a
jump to sup {supp(vL)} + ε dominate the strategy which never start with a
jump (the deterministic property of the jump is to eliminate the possibility
that the other players learn anything from the jump). Given a certain vector
of signals x2:m for (m − 1) high players, let us denote by p̄(x2:m) the price
that the player with the highest signal of those (we shall assume throughout
that players 2, . . . ,m are sorted by their signals) would be willing to pay in
equilibrium after a jump was performed. p̄(x2:m) is given implicitly by the
formula:4

E
X1:N

(u [v (X1:N)− p̄ (X2:m)] |X1 = x2, X2:m = x2:m ) = 0

Now let us define three expressions that represent the revenues gained from
information hiding through jump bidding:

Inducing lotteries effect - creating a value-lottery for player 2

A(x1) ≡ E
X1:N

(u [v(X1:N)− p̄(X2:m)] |X1 = x1, X1 > X2 )−

E
X1:N

(
u

[
v(X1:N)− E

Y1:N

(
v(Y1:N)

∣∣∣∣∣Y1 = X2,

Y2:m = X2:m

)] ∣∣∣∣X1 = x1,

X1 > X2

)
3Note that the risk-aversion property of the low bidders is immaterial to the analysis,

and is only used to make the separation property simpler.
4In what follows we shall assume that every expectation operator is also conditional on

the signals of players 3, . . . ,m being sorted, and so are the signals of players m+ 1, . . . , N .
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Avoiding lotteries effect - eliminating a price-lottery for player 1

B(x1) ≡ E
X1:N

(
u

[
v(X1:N)− E

Y1:N

(
v(Y1:N)

∣∣∣∣∣Y1 = X2,

Y2:m = X2:m

)] ∣∣∣∣∣X1 = x1,

X1 > X2

)
−

E
X1:N

(
E

Y1:N

(
u [v(X1:N)− v(Y1:N)]

∣∣∣∣∣Y1 = X2,

Y2:m = X2:m

)∣∣∣∣∣X1 = x1,

X1 > X2

)

Hidden affiliation effect - Disrupting information flow to player 2

C(x1) ≡ E
X1:N

(
E

Y1:N

(
u [v(X1:N)− v(Y1:N)]

∣∣∣∣∣Y1 = X2,

Y2:m = X2:m

)∣∣∣∣∣X1 = x1,

X1 > X2

)
−

E
X1:N

(
E

Y1:N

(u [v(X1:N)− v(Y1:N)] |Y1:m = X1:m ) |X1 = x1, X1 > X2

)
The next expression we introduce represents the lose that a bidder might
encounter due to a jump bid:

Values correlation effect - Breaking the connection between

the first bidder’s gains and losses

D(x1) ≡ E
X1:N

(
u [v(X1:N)− v(X1:N)]

∣∣∣∣∣X1 = x1, X1 > X2

)
−

E
X1:N

(
E

Y1:N

(u [v(X1:N)− v(Y1:N)] |Y1:m = X1:m )

∣∣∣∣∣X1 = x1, X1 > X2

)

Observation 5.1. A(x1), B(x1), and C(x1) are non-negative for any x1,
and jumping over the low bidders dominates non-jumping iff:

∀x1 : A(x1) +B(x1) + C(x1) ≥ D(x1)

Proof. See Appendix.

The meaning of observation 5.1 is that in a general environment, the first
bidder (as are all other bidders) benefits from jump bidding in three different
ways. First, the risk aversion of the other bidders causes a decrease in the
expected price. Second, the bidder enjoys a more “stable” result, as there is
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no perceived variation in the lower signals. Third, the hiding of the affiliated
signals causes yet another decrease in the final auction price. It is important
to note the possible “counter-effect” which appears in observation 5.1. This
effect is the reason we cannot provide a “clean-cut” result. As the first bidder
cannot consider her value to be uncorrelated with the others’ values, the dif-
ferentiation between the two expectations might lower the expected revenue
from jumping. It is quite straightforward that for low values of X(m+1):N the
expected value of v(X1:m, Y(m+1):N) will be higher than v(X1:N), while the
opposite holds for high values of X(m+1):N . The expected value over all the
possible values cannot be predicted without making further assumptions on
the behavior of u and v. Finally, similarly to the two preceding examples,
it is the separation property that allows the first bidder to jump without
revealing anything about her private value. When bidders are risk-neutral
we get A(x1) = B(x1) = C(x1) = D(x1) = 0, and this shows that even when
separation is possible, affiliation by itself does not provide enough motives
for a bidder to jump.

6 Discussion

In this paper we have examined the possibility of explaining the jump bidding
phenomenon as a rational attempt made by a player to lower the expected
final price of the object through information hiding. The motivation arose
from the important result by Milgrom and Weber (1982), showing that gen-
erally revealing information raises the expected revenue for the auctioneer,
hence the payment made by the winning bidder, and a jump bid is one
way the players might prevent the spreading of information. By comparing
starting prices to reservation prices we have shown that the basic idea of
information hiding indeed works for the benefit of the bidders. However, we
have also proved that such course of action, when attempted by the bidders
themselves, is useless under very reasonable assumptions on the behavior and
the strategies employed by risk-neutral players.

The other effect of the jump bid, which is the inducing and removing
of lotteries, causes a similar raise in utility when bidders are risk averse.
Two simplified examples were provided to demonstrate the new incentives
for the bidders to perform a jump bid. First, knowing that another bidder
is risk-averse creates an opportunity to hide information from her and enjoy
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a less competitive bidding environment (on the average). Second, a risk-
averse bidder might want to jump in order to avoid uncertainty in the price
(caused by the low-range of the values). We continued by analyzing the
different effects of information hiding in a more general environment. Our
results suggest that more research might be needed in order to generalize
our findings and to better understand the effects of risk aversion in general
games with incomplete information.

That being said, we suspect that jump bidding might also be profitable
in other more complex environments. The current paper assumed that only
one bidder can perform a jump bid, and only as the auction begins. While
later jumps can mostly be explained by similar arguments (the only differ-
ence lies in the probability distributions of the remaining bidders), jumps by
multiple players are definitely a completely different matter. One very spe-
cific yet interesting case is the game “Contract Bridge”, in which jump bids
are very common and come to serve the end of disrupting information flow
between the rival players. A more detailed inspection of the game reveals
that this is caused by the inapplicability of the monotonicity assumption,
namely that the zero-sum nature of the game implies that the utility of a
player is negatively correlated to the signal of her rival.5
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A Proofs

A.1 Lemma 3.1

In a symmetric and monotonic equilibrium, a bidder does not win the object
unless she receives the highest signal. Focusing on a bidder of type yT , it
follows from continuity of the value function that she should be indifferent
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between participating or not in the auction. Therefore her average profit can
be expressed as:

P
(
Xj < max

k
{Xk}

)
· 0+ (A.1.1)

P
(
Xj ≥ max

k
{Xk}

)
· E
(
vj − p

∣∣∣Xj = yT , Xj ≥ max
k
{Xk}

)
Since the rightmost condition in (A.1.1) implies that all the players but player
j have lower signal than yT , it follows that the price that player j will pay in
that case is exactly T . The uniqueness of yT is straightforward from (3.1) and
the strict monotonicity of the value function. Intuitively, each player regards
herself as having the highest signal, and in order for a player to participate
in the auction she must be willing to pay at least T .

A.2 Proposition 3.1

Assume (without loss of generality) that the buyers are sorted according to
their signals, where player 1 has the highest signal. If x1 < yT then in the
Cut-T auction the object is not sold, us = T , which is the minimal utility
for the auctioneer in both auction types, which renders the claim trivial. If
x1 ≥ yT and x2 < yT , then again the object is sold at price T , and again
us = T . Finally, if more than one player participate in the Cut-T auction,
then according to the strategies listed above, the revenue for the auctioneer
is:

E
X1:N

[
E

Y1:N

(
v (Y2, Y2:N)

∣∣∣∣Y1 = X2, Y2:m = X2:m,

yT > Y(m+1):N

)∣∣∣∣X1 ≥ . . . ≥ Xm ≥ yT ,

yT > X(m+1):N

]
Because the signals are affiliated, this is strictly smaller than:

E
X1:N

[
E

Y1:N

(
v (Y2, Y2:N)

∣∣∣∣Y1:m = X1:m,

yT > X(m+1):N

)∣∣∣∣X1 ≥ . . . ≥ Xm ≥ yT ,

yT > X(m+1):N

]
And using the law of iterated expectation the last expression equals:

E
X1:N

[
v (X2, X2:N)

∣∣X1 ≥ . . . ≥ Xm ≥ yT , yT > X(m+1):N

]
(A.2.1)

Expression (A.2.1) is exactly the expected revenue in a standard English
auction, given that only m players have signals exceeding yT . Note that
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(A.2.1) is smaller or equals to:

E
X1:N

[
max {T, v (X2, X2:N)}

∣∣X1 ≥ . . . ≥ Xm ≥ yT , yT > X(m+1):N

]
(A.2.2)

Expression (A.2.2) is the revenue in an English auction with a reservation
price of T , again, given that only m players have signals exceeding yT . This
is true for every m ≥ 2 and therefore we get that the revenue in a Cut-
T auction is always smaller than the revenue in an English auction with a
reservation price of T .6

A.3 Proposition 4.1

Splitting the probability space into two classes, we shall see that in each of
these classes player 1 has no incentive to jump bid. Assume, without lose
of generality, that players 2, . . . , N are sorted according to their signals, i.e.
player 2 is the one with the highest signal among players 2, . . . , N and so
forth. Denote s(x1) as the jump bidding function, and since s is strictly
monotonic then it is invertible. s(t) is part of player 1’s strategy, and there-
fore s−1(t) can be treated as known to the other players. Also, note that for
every jump t there exist a boundary value yt for the other players’ signals,
under which the players will not continue to bid after the jump. This value
is implicitly defined by:

E

(
vj

∣∣∣∣Xj = yt, X1 = s−1(t), Xj ≥ max
k≥2

Xk

)
− t = 0 (A.3.1)

Case 1: player 2 has a higher signal than player 1. Assume player 1
jumps to the bid of t, and player 2 is the only player to continue bidding af-
ter the jump. In that case player 2 continues to bid until the auction reaches
her expected value of E

(
v (x2, s

−1(t), X3, X4, . . . , XN)
∣∣∀k ≥ 3 : Xk ≤ yT

)
.

Because player 1 reveals her value (s−1(t)), player 2 makes the correct calcu-
lation of her expected value. Thus, if player 1 exceeds that bid then due to
the fact that x1 < x2, and using the single-crossing condition she loses on the
average. If more than one player remains after the jump bid, then eventually
(because of monotonicity of strategies) only two players will remain, and if
player 1 happens to be one of those, then the above analysis holds. However,

6This proposition is a slightly extended and specialized form of theorem 21 in Milgrom
and Weber (1982, pp. 1116-1117). It can be restated and proved in terms of information.
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one might argue that player 1 can profit (on the average) if x2 < yt, but this
does not help. Under this condition, the expected value for player 1 is:

EV1 = E
(
v1

∣∣X1 = x1, X2 < yT
)

= E
(
v1

∣∣X1 = s−1(t), X2 < yT
)

And from strict monotonicity of value function we get:

EV1 < E
(
v1

∣∣X1 = s−1(t), X2 = yT
)

Using the single crossing condition we now have:

EV1 < E
(
v1

∣∣X1 = yT , X2 = s−1(t)
)

(A.3.2)

Finally, using symmetry of value between bidders (ex-ante) and combining
(A.3.1) and (A.3.2) we get that EV1 < t, hence jump bidding causes player
1 to lose on average.

Case 2: player 2 has a lower signal than player 1. Given a specific highest
signal of x1, the expected highest bid in the symmetric equilibrium of a
regular English auction is (Milgrom and Weber, 1982):

EV EA
2 = E

X1:N

(v (X2, X2:N) |X1 = x1, X1 > X2 > . . . > XN )

Player 1’s jump bid has two effects: it exposes player 1’s high signal, but
hides the signal information provided by the players who now decide to stop
bidding after the jump bid. Assuming k players continue bidding after the
jump bid, the expected highest bid is now:

EV JB
2 = E

X1:N

(
E

Y1:N

[
v (Y2, Y1, Y3:N)

∣∣∣∣∣Y1:k = X1:k,

Yk > Yk+1 > . . . > YN

]∣∣∣∣∣ (A.3.3)

X1 = x1, X1 > X2 > . . . > XN

)
Using the law of iterated expectations:

EV JB
2 = E

X1:N

(
E
[
v (X2, X1, X3:N)

]∣∣∣∣X1 = x1, X1 > X2 > . . . > XN

)
The middle expectation operator is redundant, and so we get:

EV JB
2 = E

X1:N

(v (X2, x1, X3:N) |X1 = x1, X1 > X2 > . . . > XN )
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Because of monotonicity of value function we get that the average highest
bid in a regular English auction (EV EA

2 ) is smaller than the average highest
bid in an English auction with a jump bid (EV JB

2 ), and therefore the jump
bidding strategy is dominated (ex-ante) by “normal” bidding. Joining to-
gether the two cases, it is clear player 1 has no incentive to jump bid under
the aforementioned conditions.

A.4 Lemma 4.1

Let us examine a player receiving the signal x1 = min {s−1(t)}, we shall see
that jumping to t is strictly dominated for this player. Assume, without lose
of generality, that player 2 receives the highest signal among players 2, . . . , N
and denote by G(· |x2 ) the probability distribution induced on s−1(t) from
F (·, x2, ·, . . . , ·), meaning the probability distribution perceived by player 2
when receiving a signal x2 and observing a jump of t by player 1. From
proposition 1 in Milgrom (1981) it follows that for every x > y, G(· |x) dom-
inates G(· |y ) in the sense of first-order stochastic dominance.7 Therefore,
for each jump t there exists (again) a boundary value yt under which players
do not continue bidding after the jump:

E
(
v2

∣∣X2 = yt, X1 ∼ G(·
∣∣yt )

)
− t = 0

That point being taken care of, and following the lines of proposition 3.1, we
now deal with the two cases as before.

Case 1: player 2 has a higher signal than player 1. Similar to the previous
proof, if player 2 continues to bid after the jump, then from symmetry and
monotonicity (of the non-jumping bidders) she will remain until only two
bidders are left, and will reach her expected value, which is strictly higher
than:

E
(
v (X2, X1, X3:N)

∣∣X1 = x1, X2 > X1, X3:N ≤ yt
)

(If some bidders continued and then quit the auction, then their values are
exactly known to player 2 due to the monotonicity). Now, if x2 < yt, then
in the same manner as described above (using monotonicity):

EV1 = E
(
v1

∣∣X1 = x1, X2 < yt
)
< E

(
v1

∣∣X1 = x1, X2 = yt
)

7Milgrom shows that this holds when the affiliation inequality is strict. We therefore
either make our definition of affiliation stronger, or better yet, make use of non-strict
first-order stochastic dominance which suffices for our purposes here.
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Applying then the single crossing condition:

EV1 < E
(
v1

∣∣X1 = yt, X2 = x1

)
And finally using symmetry and the definition of x1 and yt we get:

EV1 < E
(
v2

∣∣X2 = yt, X1 = x1

)
< E

(
v2

∣∣X2 = yt, X1 ∼ G(·|yt)
)

= t

Case 2: player 2 has a lower signal than player 1. The second part of
proposition 4.1 holds with only minor changes. Specifically, we change:

EV JB
2 = E

X1:N

(
E

Y1:N

[
v (Y2, Y1, Y3:N)

∣∣∣∣∣Y1 ∼ G(·|X2), Y2:k = X2:k,

Yk > Yk+1 > . . . > YN

]∣∣∣∣∣
X1 = x1, x1 > X2 > . . . > XN

)

and then (from definition of G(·|x2)) we change the equality in (A.3.3) to an
inequality:

EV JB
2 ≥ E

X1:N

(
E

Y1:N

[
v (Y2, Y1, Y3:N)

∣∣Y1:k = X1:k, Yk > Yk+1 > . . . > YN

]∣∣∣∣
X1 = x1, X1 > X2 > . . . > XN

)
And the rest of the proof follows.

A.5 Proposition 4.2

Let s : R → R be a weakly monotonically increasing jumping strategy dif-
ferent than zero, and let t 6= 0 be an arbitrary number such that s−1(t) is
non-empty. s−1(t) is an interval (could be a point, which is a degenerated
interval), and if s−1(t) has a least element then by lemma 4.1 we are done.
If not, let x1 = inf {s−1(t)}, and define a new jumping function h:

h(x1) =

{
t if x1 = x1

s(x1) else

h now satisfies the conditions in lemma 4.1, and notice that since F has no
singleton atoms the payoffs to the other players do not change, and their
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previous strategies are therefore best response to h. Applying the same
argument presented in lemma 4.1, the expected utility of a player receiving
the signal x1 and jumping to t is strictly negative. From continuity of the
value function, there exists a small enough ε > 0 such that x1 + ε ∈ s−1(t)
and the payoff to a player receiving that signal is also strictly negative, which
contradicts that her strategy is a best response.

A.6 Observation 5.1

Since u is convex, then by Jensen’s inequality it is true that for every x2:m:

u

[
E

X1:N

(v (X1:N) |X1 = x2, X2:m = x2:m )− p̄ (x2:m)

]
=

u

[
E

X1:N

(v (X1:N)− p̄ (X2:m) |X1 = x2, X2:m = x2:m )

]
>

E
X1:N

(u [v (X1:N)− p̄ (X2:m)] |X1 = x2, X2:m = x2:m )

= 0 = u(0)

Where the equality to zero comes from p̄ definition. Since u is monotically
increasing we get:

p̄(x2:m) < E
X1:N

(v (X1:N) |X1 = x2, X2:m = x2:m )

It follows immediately that A(x1) ≥ 0 for any x1.
Similarly, using Jensen’s inequality again we get for every x1:N :

u

[
v (x1:n)− E

Y1:N

(v (Y1:N) |Y1 = x2, Y2:m = x2:m )

]
>

E
Y1:N

(u [v (x1:n)− v (Y1:N)] |Y1 = x2, Y2:m = x2:m )

And therefore B(x1) ≥ 0 for any x1.
The non-negativity of C follows from an argument exactly like the one

appearing in proposition 3.1, and is therefore omitted.
Finally, note that:

E
(
UNon−Jump

1 |X1 = x1

)
= E

X1:N

(u [v(X1:N)− v(X1:N)] |X1 = x1, X1 > X2 )
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E
(
UJump

1 |X1 = x1

)
= E

X1:N

(u [v(X1:N)− p̄(X2:m)] |X1 = x1, X1 > X2 )

And as A(x1), B(x1) and C(x1) form a (small) telescopic sum, we get

E
(
UJump

1 |X1 = x1

)
−E

(
UNon−Jump

1 |X1 = x1

)
≥ 0⇔ A(x1)+B(x1)+C(x1) ≥ D(x1)
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