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BARGAINING SET SOLUTION CONCEPTS IN REPEATED
COOPERATIVE GAMES

Ziv Hellman

The Department of Mathematics and the Centre for the Study of
Rationality, The Hebrew University of Jerusalem

Abstract. This paper is concerned with the question of extending the def-
inition of the bargaining set, a cooperative game solution, when cooperation

takes place in a repeated setting. The focus is on situations in which the

players face (finite or infinite) sequences of exogenously specified TU-games
and receive sequences of imputations against those static cooperative games in

each time period. Two alternative definitions of what a ‘sequence of coalitions’
means in such a context are considered, in respect to which the concept of a

repeated game bargaining set may be defined, and existence and non-existence

results are studied. A solution concept we term subgame-perfect bargaining
set sequences is also defined, and sufficient conditions are given for the non-

emptiness of subgame-perfect solutions in the case of a finite number of time

periods.

1. Introduction and Review of Literature

The study of repeated non-cooperative games – that is, the study of games
whose structure is given by a discrete finite or infinite temporal framework in which
at each time period a non-cooperative game is played and payoffs are determined
accordingly – is one of the most richly studied topics in game theory. It has a history
stretching back over half a century – the celebrated Folk Theorem of repeated non-
cooperative game theory, to take just one example, was proved in the 1950s – and
has influenced theories in several different disciplines, including political science,
philosophy and evolutionary theory.

In contrast to the abundance of research in repeated non-cooperative games, the
study of the analogous situation, in which the game played in each time period is a
cooperative game, has been relatively sparse, and comparatively quite recent. This
is perhaps surprising, because the study of repeated cooperative games can be moti-
vated just as readily as that of repeated non-cooperative game – many, if not most,
cooperative endeavours occur more than once, or repeatedly over time. Examples
can be easily adduced, such as multi-year profit-sharing arrangements, cost-sharing
agreements, supply relationships, labour contracts, renewable treaty negotiations,
and so forth. The insights gained from further progress in this topic should be
expected to have broad implications. To the best of our knowledge, the first papers
devoted to the systematic study of cooperative games played iteratively appeared
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in 2000, independently by [Oviedo (2000)] and [Kranich, Perea, Peters (2001)].
To those pioneering efforts have been added contributions by [Kranich, Perea, Pe-
ters (2005)], [Predtetchinski, Herings, Peters (2002), Predtetchinski, Herings, Pe-
ters (2004), Predtetchinski, Herings, Perea (2006)] and [Predtetchinski (2007)] and
[Berden (2007)].

The above papers, in the main, concentrate on extensions, to the repeated set-
ting, of the core and the Shapley value cooperative solution concepts. It is the
intention of this paper to contribute to the literature by considering the bargain-
ing set solution concept (a concept first defined in [Aumann, Maschler (1964)] and
[Davis, Maschler (1967)]) in the repeated setting, largely inspired by the frame-
works for studying the core in repeated situations appearing in [Oviedo (2000)] and
[Kranich, Perea, Peters (2005)].

In addition to the concentration on the bargaining set, as opposed to the core,
this paper also differs from these other papers in the following ways: [Oviedo (2000)]
assumes throughout that paper that the underlying stage-games are super-additive.
We study both superadditive and non-super-additive games. [Kranich, Perea, Pe-
ters (2005)] restrict their study to finite numbers of time periods, and to what is
defined in our paper as repeated coalitions, as opposed to dynamic coalitions. On
the other hand, [Kranich, Perea, Peters (2005)] work with general time-dependent
utility functions. In this paper, however, we will work with time-averaged utility.

The main motivational idea in this paper is as follows: in a standard cooperative
game, a set of players N , often along with a coalition structure R, negotiate regard-
ing a payoff imputation that is feasible relative to a characteristic function ν. We
now add the element of time, and assume that the players will be playing a different
cooperative game in each of several time periods, where the characteristic function
νt now depends on the time period t. This leads to the concept of a repeated game
(N,ννν,R), where ν = (ν1, . . . , νm). As in the one-shot game, the players negotiate
payoffs, but now prior to the repeated game they negotiate a feasible payoff im-
putation in every time period. This in turn leads to the concept of an imputation
sequence, which is a sequence of vectors xxx = (x1, . . . , xm) such that xt is an impu-
tation vector of the stage-game (N, νt,R) for each t and

∑m
t=1 x

t
i ≥

∑m
t=1 ν

t({i})
for each player i.

We then consider extending the standard bargaining set concept to the repeated
game setting. The standard bargaining set is the set of feasible imputations that
are stable, in the sense that for any objection y a player may have to a stable
imputation x, there is a counter-objection z. The extension to repeated games
then essentially defines a stable imputation sequence to be an imputation sequence
xxx such that any objection yyy a player may have (where an objection is an alternative
imputation sequence) can be met by a counter-objection zzz.

But pinning down the definition of the extension of the concept of bargaining set
requires first answering the question of what is the multi-period extension of the
coalition of a standard cooperative game. One straightforward extension reasons
as follows: if S ⊆ N is a single-period coalition, a repeated coalition in an m-period
repeated game is {S, S, . . . , S}, (S repeated m times), where the same coalition S
cooperates in every time period t, granting itself an imputation in each period that
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is feasible with respect to νt(S). The repeated coalition bargaining set for (N,ννν,R)
can then be defined, and denoted RB(N,ννν,R). One can, however, also consider a
broader definition of a coalition in the repeated setting, a sort of ‘virtual coalition’,
in which a set of players S ⊆ N sign an agreement amongst themselves to form
different sub-coalitions in each time period in order to create imputation vectors –
if some of the stage-games are not superadditive, this could be an advantage over
requiring the same coalition S to divide νt(S) in every time period. Calling this
concept a dynamic coalition, the corresponding dynamic coalition bargaining set is
denoted DB(N,ννν,R).

This leads to the questions: are RB(N,ννν,R) and DB(N,ννν,R) different sets?
Are they guaranteed to be non-empty? That DB(N,ννν,R) ⊆ RB(N,ννν,R) follows
from the definitions. We show by example that DB(N,ννν,R) may be empty. Propo-
sition 1 shows that, in contrast, RB(N,ννν,R) is non-empty, from which it further
follows that DB(N,ννν,R) is distinct from RB(N,ννν,R). If the stage-games are su-
peradditive, however, DB(N,ννν,R) = RB(N,ννν,R) (Proposition 2).

In Section 5, we look more carefully at the set of imputation sequences in
RB(N,ννν,R). Can we characterise the possible imputation sequences by establish-
ing bounds on the payoffs that can be granted to each player in each time period?
The characterisation presented in the section is based on an interpretation of impu-
tation sequences as ‘credit sequences’, in the sense that every imputation sequence
can be interpreted as some players ‘borrowing’ from other players in earlier time
periods, and returning the ‘loans’ in later periods (Proposition 3). Limits on the
extent of such ‘credit’ that can be granted against future payoff earnings is what
establishes bounds on payoffs in imputation sequences (Proposition 4).

Finally, in Section 6, we build on the interpretation of an imputation sequence
as encoding ‘inter-temporal’ borrowing, and ask what happens if a player who has
borrowed heavily in earlier rounds ‘defaults’ on his debt in later periods by defecting
to another coalition, breaking the imputation sequence contract? This motivates
the idea of a subgame perfect multi-period bargaining set imputation, which meets
the constraint that in each time period, no player can form a justified objection
to the multi-period imputation taking into account only the remaining time peri-
ods. Denoting the set of subgame perfect imputation sequences by SP(N,ννν,R),
if the number of time periods is finite, and the sequence of characteristic func-
tions ν satisifes the mild technical assumption of being sequentially essential, then
SP(N,ννν,R) is non-empty (Proposition 5).

2. Preliminaries

A (static) cooperative transferable utility (TU) game consists of a pair (N, ν)
such that N is a set of n elements, termed players, where n is a positive integer,
and ν : 2N → R, ν(∅) = 0 is termed the characteristic function of the game. A
coalition is a subset of N . For any coalition S, RS denotes the |S|-dimensional
Euclidean space in which the dimensions are indexed by the members of S. Given
any n-tuple x and coalition S ⊂ N , x(S) :=

∑
i∈S xi.
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If the characteristic function satisfies, for all coalitions S, T ⊆ N ,

ν(S ∪ T ) ≥ ν(S) + ν(T ) if S ∩ T = ∅
then the game is superadditive. Superadditivity will be assumed here only when
explicitly noted. On the other hand, it will be assumed without loss of generality
that ν(S) > 0 for all characteristic functions and all coalitions.

A coalition structure for S ⊆ N is a partition of S. We will denote the set of all
coalition structures over S, where S ⊆ N , by C(S). If R is a coalition structure for
N , we will write, by a slight abuse of notation, R(i) to stand for the element Q ∈ R
such that i ∈ Q. Given a coalition structure R for S, two players i, j ∈ S will be
said to be partners with respect to R, denoted i ∼R j, if both i ∈ P and j ∈ P
for the same P ∈ R. Given a vector x ∈ Rn and a coalition P , xP will denote the
sub-vector of x consisting of all xi ∈ x such that i ∈ P .

If (N, ν) is a game and R is a coalition structure for N , the triple (N, ν,R) is a
game with coalition structure. For any (N, ν,R),

I(N, ν,R) = {x ∈ Rn|x(S) ≤ ν(S) ∀S ∈ R, and xi ≥ ν({i}) ∀i ∈ N}
denotes the set of imputations of (N, ν,R).

Given k, l ∈ N with k 6= l, denote Tkl(N) := Tkl := {S ⊆ N \ {l}|k ∈ S}. Then
an objection of k against l at x ∈ I(N, ν,R) is a pair (P, y) satisfying

P ∈ Tkl, y ∈ RP , yi ≥ xi ∀i ∈ P, yk > xk and y(P ) ≤ ν(P ).

A counter-objection to an objection (P, y) of k against l at x is a pair (Q, z) satis-
fying

Q ∈ Tlk, z ∈ RQ, zi ≥ xi ∀i ∈ Q, zi ≥ yi ∀i ∈ P ∩Q and z(Q) ≤ ν(Q).

An imputation x ∈ I(N, ν,R) is stable if for every objection at x there exists a
counter-objection. The (static) bargaining set M(N, ν,R) is defined by

M(N, ν,R) = {x ∈ I(N, ν,R) | x is stable}.

The concept of the bargaining set was first put forward by [Aumann, Maschler
(1964)] and [Davis, Maschler (1967)]. See also [Maschler (1976)]. Variants of the
concept of the bargaining set appear in [Granot, Maschler (1997)] and [Mas-Colell
(1989)]. See also [Holzman (2000)].

When working with vectors, we adopt the following standard notation: If x, y ∈
RS , then we write x ≥ y if xi ≥ yi for all i ∈ S. Moreover, we write x > y if x ≥ y
and x 6= y. Denote RS

+ = {x ∈ RS |x ≥ 0}. Given S ⊆ Q and a vector x ∈ RS ,
xS refers to a vector whose elements are enumerated by the elements of S and the
value of xS

ij
, where ij ∈ S is equal to xij

.

A game without transferable utility (NTU game) is a pair (N,V ) where V (S) ⊆
RS for each coalition S, and V (∅) = ∅, along with the following additional condi-
tions:

(1) for all S 6= ∅, V (S) is non-empty and closed
(2) if x ∈ V (S) and yi ≤ xi for all i ∈ S, then y ∈ V (S)
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(3) for every i ∈ N there is an mi ∈ R with V ({i}) = {x ∈ R|xi ≤ mi}
(4) for each S ⊆ N , and every x ∈ RS , V (S) ∩ {x+ RS

+} is bounded.

An NTU game with coalition structure R is denoted (N,V,R). We will assume
w.l.o.g. that (N,V,R) is zero-normalised. A vector x ∈ RN is individually rational
if x ≥ 0; feasible if xP ∈ V (P ) for each P ∈ R; weakly Pareto optimal, for every
P ∈ R, if it is feasible and if for every y ∈ V (P ) there exists an i ∈ P such that
xP

i ≥ yP
i ; and an imputation if it is individually rational and weakly Pareto optimal

for every P ∈ R. Denote the set of imputations of (N,V,R) by IX(N,V,R).

The definition of bargaining set for NTU games is as follows: Let x ∈ IX(N,V,R)
and let k, l ∈ R, k 6= l, for some R ∈ R. An objection of k against l is a pair (P, y)
such that

P ∈ Tkl, y ∈ V (P ), and yi ≥ xi for all i ∈ P, with yk > xk.

A counter-objection to an objection (P, y) is a pair (Q, z) such that

Q ∈ Tlk, z ∈ V (Q), zQ\P ≥ xQ\P and zP∩Q ≥ yP∩Q.

An objection (P, y) is justified if there is no counter-objection to (P, y). A vector
x ∈ IX(N,V,R) is stable if there is no justified objection at x, and the bargaining
set of (N,V,R) is the set of stable vectors.

3. Repeated Games

Turning to the intertemporal context, assume that time is divided into discrete
time periods. Let m be either a non-negative integer or ω. If m is a finite integer,
the relevant time periods are taken from T = {1, . . . ,m}. If m is ω, T is {1, . . .}.
To enable infinite and finite sequences to be dealt with in a unified manner as far
as possible in this paper, a sequence of numbers written as (x1, . . . , xm) will be
understood to stand for the infinite sequence (x1, . . .) if m is ω.

As a general rule here, we adopt a notational convention in which upper indices
denote time, and lower indices players.

Fix N , a sequence of characteristic functions ν = (ν1, . . . , νm) and a coalition
structure R. Then (N,ννν,R) will be termed a repeated cooperative game. The
special case in which there is a single characteristic function ν such that νt = ν all
time periods t can, in analogy with what is customary in the non-cooperative case,
be called a repeated cooperative game based on the stage-game (N, ν,R). In any
case, for each integer 1 ≤ t ≤ m, (N, νt,R) will be called the stage-game played at
time t. The set of stage-game imputations at time t is defined1 by

I(N, νt,R) = {x ∈ RN |x(Q) ≤ νt(Q) for every Q ∈ R}

A sequence of vectors xxx = (x1, . . . , xm) such that xt is an imputation vector of
the stage-game (N, νt,R) for each t and

∑m
t=1 x

t
i ≥

∑m
t=1 ν

t({i}) for each player i,

1 Note that we do not demand that each stage-game imputation satisfy individual rationality in

its respective time period, thus enabling greater flexibility in the choice of stage-game imputations.
Over-all individual rationality relative to the repeated game, however, is required.
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is an imputation sequence of the repeated game (N,ννν,R). The set of imputation
sequences of the repeated game (N,ν,R) will be denoted by III(N,ννν,R). Given
xxx = (x1, . . . , xm), we will let xxxi refer to the sequence of real numbers (x1

i , . . . , x
m
i ),

where xt
i is the payoff given to player i ∈ N according to the imputation xt at time

t.

We will work with the time-average criterion, and define

x̄xxi =
{ 1

m

∑m
t=1 x

t
i when m is finite

lim infT→∞ 1
T+1

∑T
t=1 x

t
i when m is infinite

The vector of the time-average payoffs granted to the players is thus denoted
x̄xx = (x̄xx1, . . . , x̄xxn).

The special payoff in which every player receives in each period what he or she
gains in a one-person coalition will be written

sss = (s1, . . . , sm)

where sj for any time period j grants to each player i the payoff νj({i}).

Intuitively, a repeated cooperative game is intended to model a situation in which
a group of players are to play a sequence of cooperative games m times. At each
time period, a stage-game imputation determines how much each player receives
from that round of play.

Analogously to the case of static cooperative games with coalition structures, it
will be assumed here, at least intuitively, that within each coalition in the coalition
structure R the players will contend with each other regarding their shares of
the imputations, and that they will do so by presenting each other with potential
objections and counterobjections. In the repeated game, however, we assume that
each player cares only about the average total of payoffs he or she receives over
time, rather than particular imputations in each period – in other words, each
player prefers an imputation sequence yyy to xxx precisely when ȳyyi > x̄xxi.

4. Dynamic and Repeated Coalitions and Bargaining Sets

Again, in analogy with the static case, we assume that players communicate
openly with each other and sign binding and enforceable contracts specifying coali-
tion formation and accompanying imputations. But in repeated games, the con-
tracts are assumed to cover all the m time periods. In a static cooperative game,
objections and counter-objections are defined against all possible coalitions con-
taining one player but not another, but in the repeated game setting one needs to
consider sequences of coalitions, because an objection in the repeated game raised
by a player to a sequence of imputations might involve different coalitions in each
time period.

This requires new definitions. We consider here two different possibilities for
what a ‘sequence of coalitions’ may mean, and show that they have different impli-
cations for solutions of repeated games.
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Let S ⊆ N . For each time t, denote a coalition structure over S ⊆ N at time t
by Rt ∈ C(S). A dynamic coalition over S is then RRR(S) = (R1, . . . ,Rm), over the
m time periods. In the special case that Rt = {S} for all t, RRR(S) will be termed a
repeated coalition.

The repeated coalition concept is the simpler one — in the repeated coalition the
single-period coalition S is formed again and again in each and every time period.
This corresponds most closely to the näıve view of what a multi-period coalition
means — a group of players who agree in each time period to cooperate together
in the same coalition.

A dynamic coalitionRRR(S) can perhaps be thought of as a ‘virtual coalition’, or a
‘coalition of coalitions’, with different sub-coalitions forming in each time period. It
is intuitively conceived of as a group of players S who sign a multi-period contract
that determines a coalition structure in each period — i.e. it determines for each
period who partners with whom in a standard coalition in that period. Clearly,
a repeated coalition is a special case of a dynamic coalition. Mathematically, the
distinction is important because by definition a coalition S at time t divides amongst
its members the output of νt(S). In a repeated coalition, the members at each time
period produce νt(S), which they then share via an imputation. But in a dynamic
coalition RRR(S), if νt is not super-additive, the members of S might find themselves
better off not producing νt(S), but instead splitting into the sub-coalitions given
by Rt. The sequence (R1, . . . ,Rm) is precisely the determination of what sub-
coalitions are formed out of S at each time period. Examples 1 and 2 below show
that allowing dynamic coalitions to form over S, as opposed to restricting players to
repeated coalitions over S, can significantly affect bargaining powers and solutions
in repeated games.

Given k, l ∈ R ∈ R and xxx ∈ III(N,ν,R), a dynamic [respectively repeated ]
coalition objection of k against l at xxx is a triple (P,RRR(P ) = (D1, . . . ,Dm), yyy =
(y1, . . . , ym)) such that RRR(P ) is a dynamic [repeated] coalition, satisfying

P ∈ Tkl

yt ∈ RP for all t ∈ {. . . ,m}
ȳyyi ≥ x̄xxi for all i ∈ P and ȳyyk > x̄xxk

ȳyyi ≥ s̄ssi for all i ∈ P
for each t ∈ {. . . ,m}, for each D ∈ Dt, yt(D) ≤ νt(D)

A dynamic [respectively repeated ] coalition counter-objection to an objection
(P,RRR(P ), yyy) of k against l at xxx ∈ III(N,ν,R) is a triple (Q,RRR(Q) = (B1, . . . ,Bm),
zzz = (z1, . . . , zm)) such that RRR(Q) is a dynamic [repeated] coalition, satisfying

Q ∈ Tlk

zt ∈ RQ for all t ∈ {1, . . . ,m}
z̄zzi ≥ x̄xxi for all i ∈ Q

z̄zzi ≥ ȳyyi for all i ∈ P ∩Q
z̄zzi ≥ s̄ssi for all i ∈ P

for each t ∈ {1, . . . ,m}, for each B ∈ Bt, zt(B) ≤ νt(B)
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A dynamic [repeated] coalition objection of player i for which player j has no dy-
namic [repeated] coalition counter-objection is a justified dynamic [repeated] coali-
tion objection. A sequence xxx ∈ III(N,ν,R) is dynamic [repeated ] coalition stable if
for each dynamic [repeated] coalition objection at xxx there is a dynamic [repeated]
coalition counter-objection. The dynamic [repeated] coalition bargaining set, is the
set of all dynamic [repeated] coalition stable members of III(N,ν,R).

Denote the dynamic coalition bargaining set of a repeated game (N,ννν,R) by
DB(N,ννν,R), and the repeated coalition bargaining set by RB(N,ννν,R). Since a
repeated coalition is a special case of a dynamic coalition, it is immediate that
DB(N,ννν,R) ⊆ RB(N,ννν,R).

We now proceed to show by a series of examples that contemplation of co-
operative repeated games adds new and interesting considerations beyond those
encountered in static cooperative games, and that the distinction made between
DB(N,ννν,R) and RB(N,ννν,R) is justified.2

Example 1. In a village in a far-away land, a machine is made available to the
villagers for the annual harvest. No villager can afford to rent a machine by him
or herself, and it requires two individuals to operate. But if two villagers partner
in leasing and operating the machine, it can yield great rewards, with the exact
amount dependent on the joint skills of the operators. If three or more people work
together on the machine, however, it breaks down and yields nothing.

Two brothers, Tom and Yuval, have always partnered in renting a two-person
harvester. Working together, the brothers annually harvest 48 units, which they
divide equally amongst themselves. One day, two new residents arrive, Ivan and
Chang, who refrain from partnering with each other, but are willing to work with
others.

Tom wishes to take advantage of this development to gain leverage against Yuval.
He can partner with either of the new arrivals for 74 units. The most Yuval can
attain working with Ivan or Chang is 48 units.

Formally, denoting the players by T, Y, I, C, the stage-game is defined by R =
TY, I, C and ν(TY ) = ν(Y I) = ν(Y C) = 48, ν(TI) = ν(TC) = 74. The value
of every other possible coalition, including single-player coalitions and the grand-
coalition, is equal to zero. The stage-game imputation x = (24, 24; 0; 0) is in the
single-period stage-game bargaining set: any objection by T must necessarily in-
volve either the coalition T, I or T,C, but in either case, Y can form a counter-
objection by way of a coalition with whichever player was excluded in T ’s objection;
T is in an even weaker position than Y with respect to justifiable objections.

Up to here, we have a classic bargaining-set story. Although it might seem
superficially that Tom has greater leverage than Yuval, the existence of a counter-
objection in the hands of the latter means that, despite the apparent asymmetry
between them, the weaker party can in this case demand a fully equal division of
the spoils as the price for continuing the traditional partnership.

2 Note that the repeated game in each of these three examples is actually a repeated game,
because the same characteristic function is used in each time period.
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But now consider adding the element of time. Tom can tell Yuval: “I will sign a
two-year contract with Ivan and Chang. Under the terms of the contract, both of
them must remain loyal to me and not work with you. In the first year, Ivan and
I will operate a harvester, while Chang rests at home, and I will pay Ivan 49 units
and keep 25 for myself. In the second year, the roles will reverse Chang will work
with me, Ivan will be idle, and Chang will be paid 49 units for his efforts while I
again take 25. Against this, you have no counter-objection: The most you can offer
either for two years of work is 48.” Yuval indeed is out-leveraged.

Formally, the objection is the triple {S,RRR(S), yyy}: where S = (TIC), RRR(S) =
({TI, C}, {TC, I}) and yyy = {y1, y2} ∈ RS×2 is given by y1 = (25, 49, 0) with
y2 = (25, 0, 49). Any proposed counter-objection can give either player I or C at
most the sum 48.

Note that what has happened here is that adding a time factor enables Tom,
Chang, and Ivan to form a profitable three-person ‘time-staggered coalition’ which
they could not have formed in a single period, giving Chang and Ivan an average
of 24.5 units a year and Tom an average of 25 – and this changes the balance of
threats in the game. An interesting side-effect is that, in each year, Tom’s objection
calls for a player to be idle.

If the set S = {T,C, I} had been restricted to forming a repeated coalition,
instead of a dynamic coalition, then since ν1(TCI) = ν2(TCI) = 0, the result
would obviously be quite different. In fact, if only repeated coalitions are allowed,
the repeated game here has no solution other than simply repeating the single-stage
solution in every period. �

Example 2. This is an example with an empty multi-period bargaining set. Con-
tinuing the previous example, in addition to Yuval, Tom, Chang and Ivan, we now
have two new players, Ranjit and Sanelma, and the introduction of a three-person
harvester. The characteristic function in this example enables Tom and Yuval to
get two units as a partnership. Tom can work with Ivan and Ranjit to yield 5
units, but Tom working with Chang and Sanelma get only 3 units. Yuval is in the
opposite but symmetric situation: Yuval working with Chang and Sanelma yields
5, but the team of Yuval, Ivan and Ranjit get only 3.

Ivan and Rajit in a two-person harvester are a strong team, gaining 20 units
together, and Chang and Sanelma are also a great two-person team that can have
20 units. We assume Ivan and Chang cannot stand each other, Ranjit and Sanelma
have a long-running feud, and the players do not know of each others existence.

Formally, with the set of players now denoted by {1, 2, 3, 4, 5, 6} , we have a
repeated game with the stage-game defined by R = {12, 3, 4, 5, 6} and ν(12) = 2,
ν(1, 3, 4) = 5, ν(1, 5, 6) = 3, ν(2, 5, 6) = 5, ν(2, 3, 4) = 3, ν(3, 4) = ν(5, 6) = 20.
The value of every other possible coalition, including single-player coalitions and
the grand-coalition, is equal to zero.

Tom and Yuval bargain over how to divide the yields of two years of joint har-
vesting. Working as a team over two years, they divide at most 4 units between
themselves, with Tom getting xxx1, Yuval getting xxx2, and xxx1 +xxx2 ≤ 4. But whenever
the suggested payoff grants Tom xxx1 ≤ 2, Tom has an objection, in which he will
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sign two-year contract with Ranjit, Ivan, Chang and Sanelma. In Year 1, he will
work a three-person machine with Ivan and Ranjit, dividing the resulting 5 units
by giving himself 1.25 and Ivan and Ranjit 1.875 each. At the same time, Chang
and Sanelma work a two-person harvester, dividing the resulting 20 units equally
between them. In Year 2, Tom, Chang and Sanelma are in the three-seater, each
getting one unit for their efforts that year, and Ivan and Ranjit drive a two-person
harvester, getting 10 a piece. Tom’s sum total under this objection is 2.25 and Yu-
val has no counter-objection: if he works with exclusively with Chang and Sanelma
in consecutive years, he can’t come close to offering them what they receive under
Tom’s objection. So in a counter-objection he must work with Ivan and Ranjit at
least one year, but even if he gives both of them all 3 units for working with him,
taking nothing for himself, he cannot match Tom’s offer.

Formally, if xxx1 ≤ 2, player 1 has the objection {P,RRR(P ), yyy}, where:
P = (1, 3, 4, 5, 6), RRR(P ) = ({134, 56}, {156, 34}), and yyy = {y1, y2} ∈ RP×2 is given
by y1 = (1.25, 1.875, 1.875, 10, 10) with y2 = (1, 10, 10, 1, 1). Player 2 has no feasible
counter-objection.

What if the suggested payoff grants Yuval xxx2 ≤ 2? By the symmetry of the situ-
ation, Yuval can then present Tom with the same objection as the one appearing in
the previous paragraph, with the roles and payoffs of Chang and Sanelma swapped
with those of Ivan and Ranjit (the three-person teams in the objection this time,
of course, working with Yuval), and Tom is left without a counter-objection.

When xxx1 = xxx2 = 2, both Tom or Yuval can play the part of the sibling raising
an unanswerable objection, depending on which one of them speaks first. The
conclusion is that there is no possible division of two years of joint harvests by
Yuval and Tom that is in the bargaining set. Unable to conclude their bargaining
successfully, their partnership dissolves. Note in contrast that if the siblings are
‘myopic’, look ahead only one year at a time and care only about dividing the yield
of that one year, they can easily find solutions in the bargaining set each and every
year. �

Example 3. The Apex Corporation and the Zenith Company jointly run a network
of shops with annual profits of $100 million. Each year, the CEOs of Apex and
Zenith split the profits, with Apex receiving $75 million and Zenith $25m. Neither
company can run the operation without a partner. The only possible alternative
partner is Midi Ltd. An Apex-Midi coalition can attain profits of $100m, whilst a
Zenith-Midi partnership will only receive $50m. Any proposed deviation from the
traditional 75− 25 split will lead one or the other party to the negotiations to issue
a threat to work with Midi.

Formally, with the set of players denoted by {1, 2, 3}, and the the stage-game is
given by the coalition structure R = {12, 3}, with ν(1) = ν(2) = ν(3) = ν(123) = 0,
ν(12) = 100, ν(13) = 100, ν(23) = 50. The bargaining set of the one-period stage-
game consists of a single imputation, (75, 25; 0).

Apex, however, decides one year that it needs an extra infusion of money to
finance infrastructural investments. Knowing that any proposed deviation from
the single bargaining set point will be useless, Apex proposes a three-year contract.
Over three years, they will take in $300m in profits, translating into a 75−25 split of
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$225m for Apex and $75m for Zenith against which there can be no objection. But
the disposition of those sums over the time periods need not follow a strict annual
division $75m to $25m. Instead, in Year 1 Apex receive $80m, sufficient to enable
overseas investment. In Year 2, Apex will start ‘repaying’ Zenith by receiving only
$74m of that year’s $100m and in Year 3, only $71m.

The imputation sequence is thus xxx = (x1, x2, x3), where x1 = (80, 20; 0), x2 =
(74, 26; 0), and x3 = (71, 29; 0). Then it is the case that xt /∈ I(N, νt,R) for all
t = 1, 2, 3, but never the less, xxx ∈ III(N,ννν,R). �

These three examples show that, in general, the dynamic coalition bargaining
set DB(N,ννν,R) may be empty, and that even when it is non-empty it is possible
for the every element in an imputation sequence to be in the stage-game bargaining
set for its respective time period without the sequence itself being in the repeated
coalition bargaining set, while conversely, even if every element in an imputation
sequence fails to be in the stage-game bargaining set, the sequence itself might still
be in the repeated coalition bargaining set.

The reason that the dynamic coalition bargaining set may be empty stems from
the following fact (a similar observation appears in [Kranich, Perea, Peters (2005)]):
every cooperative repeated game (N,ννν,R) can be associated with a static nontrans-
ferable utility coalitional game:

Given S ⊆ N , m, and ννν as above, and a coalition structure sequence RRR(S) =
(R1, . . . ,Rm), with Rt ∈ C(S) for each time period t, define pmbI(RRR(S)) to be the
set of all {(x1, . . . , xm)} ∈ RS×m such that, for all t, for all P ∈ Rt, xt(P ) ≤ νt(P ),
and for all i ∈ N ,

∑m
t=1 x

t
i ≥

∑m
t=1 ν

t({i}).

Definition 1. The static NTU-game associated with a cooperative repeated game
(N, ν,R) is given by (N,V,R) with

V (S) = {(x̄xxi1 , x̄xxi2 , . . . , x̄xxi|S|) ∈ RS | there is a RRR(S) with xxx ∈ III(RRR(S))}

where x̄xxi =
∑

t x
t
i for each i ∈ S, and i1, . . . , i|S| is an enumeration of the set of

players in S.

The following observation is nearly immediate from the definitions:

Lemma 1. The dynamic coalition bargaining set of the repeated cooperative game
(N,ννν,R) is non-empty if and only if the bargaining set of its associated static NTU
game is non-empty.

Proof: Let xxx ∈ III(N,ννν,R) be in the dynamic coalition bargaining set of (N,ννν,R).
Unravelling definitions, the vector x̄xx = (x̄xx1, x̄xx2, . . . , x̄xx|N |) ∈ RN is contained in
IX(N,V,R) of the associated NTU game (N,V,R). Suppose there is a justified
NTU-objection (P, ŷ) of player k against player l at x̄xx in (N,V,R). Then there
is a coalition structure sequence over P , denote it RRR(P ), such that P ∈ Tkl, and
there is a yyy ∈ III(RRR(P )) corresponding to ŷ (i.e. ȳyy = ŷ), such that ȳyyi ≥ x̄xxi for
all i ∈ P , against which there is no counter-objection. But then (P,RRR(P ), yyy) is
a justified objection in the sense of the dynamic coalition bargaining set of the
TU-game (N,ννν,R), a contradiction. The proof in the other direction is similar.
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Given that NTU games in general do not have non-empty bargaining sets (see
[Peleg (1963)]), it is not surprising that the dynamic bargaining set of repeated
TU-games may also be empty.

In contrast to the dynamic coalition bargaining set, the repeated coalition bar-
gaining set RB(N,ννν,R) is guaranteed to be non-empty.

Definition 2. Given (N,ννν,R), S ⊆ N , and t ≤ m, define

qt(S) :=

{
1

(m−t)+1

∑m
l=t ν

l(S) when m is finite
lim infT→∞ 1

T+1

∑T
l=1 ν

l(S) when m is infinite

Definition 3. The static TU-game associated with a repeated game (N,ννν,R) is
given by (N, q,R), where q(S) := q0(S) for S ⊆ N .

Definition 4. Given (N, q,R) associated with (N,ννν,R) and an element x ∈
M(N, q,R), define each player i’s relative share with respect to x as αi(x) = xi

q(R(i)) .
The monotonic imputation sequence with respect to x, written aaa(x) = (a1, . . . , am),
is defined by setting at

i = αi(x)νi(R(i)).

When the context of x ∈ M(N, q,R) is clear, αi(x) will sometimes be written
here simply as αi.

Proposition 1. If I(N, q,R) is not empty, the repeated coalition bargaining set
RB(N,ννν,R) is not empty – for each element in the associated static TU-game,
x ∈ M(N, q,R), every feasible imputation sequence ccc = (c1, . . . , cm) such that
c̄cci = āaa(x)i for each player i, including aaa(x) itself, is in RB(N,ννν,R).

Proof: By well-known results (see, for example, Peleg, Sudhölter (2007)), the
associated static TU-game (N, q,R) has a non-empty bargaining set — i.e. there
exists at least one vector x = (x1, . . . , xn) ∈ M(N, q,R), such that no player k
has a justified objection against another player l at x relative to the characteristic
function q. Let x be an arbitrary such vector.

Writing αi := αi(x), trivially, for each S ∈ R,
∑

i∈S αi ≤ 1, because
∑

i∈S xi ≤
q(S). Let aaa = (a1, . . . , am) be the monotonic imputation sequence with respect to
x. The sequence is feasible for each S ∈ R, because at(S) = (

∑
i∈S αi)νt(S) ≤

qt(S). We have in addition that for each i ∈ N , āaai = αiq(R(i)) = xi, so that
aaa = (a1, . . . , am) represents a way of granting each player an amount in each time
period in such a way that the sum total over all time periods is exactly equal to
the vector (x1, . . . , xn). By definition, the same applies to any feasible imputation
sequence ccc = (c1, . . . , cm) such that c̄cci = āaai for each player i.

Suppose that (P,yyy) is a repeated coalition objection of player k against player
l at ccc. Then ȳyyi ≥ c̄cci for all i ∈ P and ȳyyk ≥ c̄cck. By the definition of repeated
coalitions, it must be the case that for each time period t, yt(P ) ≤ νt(P ), hence
ȳyy(P ) ≤ q(P ). But, because c̄cci = xi, this means that the pair (P, ȳyy) is an objection of
player k against player l at x in the static game (N, q,R). As x is in the bargaining
set of (N, q,R), there is by definition a justified counter-objection (Q, z) to (P, ȳyy)
of l against k.
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Defining the fractions βi = zi

q(R(i)) and setting bbb = (b1, . . . , bm), bti = βiν
t(R(i)),

it follows that b̄bbi = zi, so b̄bbi ≥ c̄cci for all i ∈ Q, b̄bbi ≥ ȳyyi for all i ∈ P ∩Q, and hence
(Q,bbb) is a justified repeated coalition counter-objection to (P,yyy) at aaa in (N,ννν,R).

The conclusion is that ccc is in the repeated coalition bargaining set of (N,ννν,R, ).

Corollary 1. In general, DB(N,ννν,R) may not equal RB(N,ννν,R).

Proof: It was shown by example that DB(N,ννν,R) may be empty, even if
I(N, q,R) is not empty. But the by the above proposition, RB(N,ννν,R) is guaran-
teed to be non-empty.

If the stage-games are superadditive, however, there is no need for distinguishing
between dynamic coalitions and repeated coalitions:

Proposition 2. If the stage-games of (N,ννν,R) superadditive, then DB(N,ννν,R) =
RB(N,ννν,R).

Proof: Again, form the associated single-stage TU-game (N, q,R) by setting, for
every S ⊆ N , q(S) =

∑
t ν

t(S). Assuming III(N,ννν,R) is not empty, select arbitrarily
an imputation sequence xxx = (x1, . . . , xm) in III(N,ννν,R).

Suppose that (P,RRR(P ) = (D1, . . . ,Dm), yyy = (y1, . . . , ym)) is a dynamic coalition
objection of k against l at xxx. Denote by (dt

1, d
t
2, . . . , d

t
E(t)) the partition of P given

by each Dt. For each t, super-additivity implies νt(
⋃E(t)

j=1 d
t
j) ≥

∑E(t)
j=1 ν

t(dt
j). Since

the objection imputation at each time t must be feasible, for each dt
j ∈ Dt, yt(dt

j) ≤
νt(dt

j). By definition, P =
⋃E(t)

j=1 d
t
j , so it follows that νt(P ) ≥ yt(P ) and therefore

ȳyy(P ) ≤ q(P ).

Forming the sequence aaa = (a1, . . . , am) by setting αi = yi

q(P ) and at
i = αiν

t(P )
for each i ∈ P , it follows that āaai = ȳyyi, and hence the net effect of the repeated
coalition objection (P,aaa) is equivalent to the net effect of the dynamic coalition
objection (P,RRR(P ), yyy).

Similarly, any dynamic coalition counter-objection (Q,RRR(Q), zzz) can be achieved
equally well by the repeated coalition counter-objection (Q,bbb) where bbb = (b1, . . . , bm)
is derived by setting βi = yi

q(Q) and bti = βiν
t(Q) for each i ∈ Q. The conclusion

is that under the assumptions of the proposition, any xxx ∈ III(N,ννν,R) is dynamic
coalition stable if and only if it is repeated coalition stable.

These results give a general principle: if the possible coalitions are ‘fixed’ once
and for all over all the time periods (or alternatively, if the characteristic functions
are superadditive) then the players can always identify bargaining set points by fol-
lowing a two-stage process: first play a ‘grand TU-game’ in which the characteristic
function for each coalition is the time average of the payoffs in the separate time
periods, and agree on a bargaining set solution. In the second stage, determine
payoffs in particular for each time period, subject to the constraint that the time-
average each player receives over all time equals the bargaining-set payoff agreed
upon in the first stage. This adds great flexibility, as shown in the last example: for
each grand game bargaining set point, there are an infinite number of time-stream
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payoffs that are possible, which would not be conceivable if the players were to play
a separate and isolated cooperative game in each separate period.

The reason dynamic coalitions in non-supperadditive situations can lead to re-
peated game bargaining set solutions that diverge from solutions derived directly
from stage game solutions – as in Example 1 presented above – is because in that
situation, the associated TU-game does not reflect accurately what can be attained
in the repeated game. A dynamic coalition over S ⊆ N can, in certain cases, attain
for its members a total pay-off greater than q(S) by cleverly arranging different
coalition structures over S in different time periods – but that total pay-off may
not necessarily be freely transferable between the members of S.

5. Credit Sequences

Assume in this section that in imputation sequences xxx = (x1, . . . , xm), xt(S) =
νt(S) for all time periods t. It will also be assumed in this section (and the next)
that m is always a finite number.

By Proposition 1 of the previous section, the set of bargaining set solutions for
a repeated game (N,ννν,R) is at least as large as the set of bargaining set solutions
of its associated static TU-game (N, q,R) – for each solution x ∈ M(N, q,R), the
monotonic imputation sequence aaa(x) is a solution of (N,ννν,R). But this by no means
begins to exhaust the set of solutions of the bargaining set of (N,ννν,R), as the same
proposition extends that set to any feasible imputation sequence ccc = (c1, . . . , cm)
such that c̄cci = āaa(x)i for each player i.

Consider the repeated cooperative game based on the stage-game (N, ν,R) of
Example 3 above. The associated static TU-game of that example has a single
bargaining set solution given by α1 = 3

4 , α2 = 1
4 , α3 = 0, in terms of player

share. In sharp contrast, the bargaining set of (N,ννν,R, 3) has an infinite number of
solutions. Example 3 exhibits one such solution, which deviates from the monotonic
imputation sequence in each time period. But clearly a solution in the bargaining
set of the repeated cooperative game cannot allow every feasible imputation in every
period – for example, any imputation sequence xxx = (x1, x2, x3) with x1 = (25, 75; 0)
must lie outside the bargaining set of (N,ννν,R), even if x2 and x3 are each feasible
imputations in their respective time periods.

The intention of this section is to give a finer characterisation of the possible so-
lutions of the bargaining set of a repeated cooperative game by establishing bounds
on the payoffs that can be granted to each player in each time period within the
context of a repeated coalition bargaining set solution.

Returning to Example 3, consider a solution given by xxx = (x1, x2, x3), x1 =
(80, 20; 0), x2 = (74, 26; 0) and x3 = (71, 29; 0). One way to regard this solution
is to interpret it as if player 1 ‘justifies’ the first-period imputation of (80, 20; 0),
which deviates from the static bargaining set solution of (75, 25; 0), by ‘borrowing’
5 units from player 2. The debt is then re-paid over the next two time periods.

This is, of course, an anthropomorphic story that is overlaid over a particular
solution to a mathematical construct and in fact, there are many such ‘stories’
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that can be told relative to each solution but it so enhances intuitive insight that
we present here a formalisation of the idea of players borrowing and repaying debts
over time. Within the context of studying the core in dynamic situations, [Kranich,
Perea, Peters (2001)] and [Berden (2007)] consider what they term inter-temporal
transfers, in which players receive more in some time periods at the expense of
less in other time periods. This takes the form of postulating a sequence {cti} for
each player, such that

∑m
t=1 c

t
i = 0, which changes the player’s payoff in each time

period relative to an imputation sequence xxx = (x1, . . . , xm) from xt
i to xt

i + cti. We
expand here on this idea, explicitly taking into account the need for one player to
borrow from another player in each time period in order to increase his personal
payoff, which then also imposes a requirement on the debtor to repay the creditors
in a later time period.

This motivates the following:

The players first select a ‘goal’ vector g ∈ M(N, q,R) from the bargaining set
of the associated TU-game. This is intended to be interpreted as an agreement
between them that the sum-total of the imputation sequence of the m-period game
they are to play will be the vector g. The vector g, along with the array of associated
relative shares per player αi(g), can be regarded as determining an over-all canonical
‘income distribution’. The monotonic imputation sequence given by these relative
shares with respect to g, aaa(g) = (a1, . . . , am), also serves as a ‘baseline’ against
which deviations in imputations in particular time periods are interpreted as credits
and debits.

Definition 5. A credit sequence relative to a repeated cooperative game (N,ννν,R)
and a vector g ∈ M(N, q,R) is composed of real numbers {dt

i,j}, {pt
i,j} defined

inductively at each time period t for each pair of players i, j ∈ N , subject to the
following list of constraints:

(1) dt
i,j ≥ 0; dt

i,j = 1 whenever i and j are not in the same partition of R;
dt

i,i = 0 for all i ∈ N and times t ≥ 0. We also define d0
i,j = 0 to initiate

the induction, for all i, j ∈ N .
(2) pt

i,j ≥ 0; pt
i,j = 0 whenever i and j are not in the same partition of R;

pt
i,i = 0 for all i ∈ N and times t ≥ 1. We also define p0

i,j = 0 to initiate
the induction, for all i, j ∈ N .

(3) pt
i,j ≤

∑t−1
l=1(dl

i,j − pl
i,j) for all t ≥ 0, for all i, j ∈ N .

(4) For each i ∈ N and time period t, defining cti,j := ct−1
i,j +dt

i,j−pt
i,j−dt

j,i+p
t
j,i

for each j and cti :=
∑

j∈N cti,j , constrain cti to be cti ≤
∑m

l=t+1 a
l
i (with the

understanding that
∑m

l=m+1 a
l
i = 0), where at

i is given at each t by the
monotonic imputation sequence aaa(g)

(5)
∑

j∈N dt
i,j − pt

i,j − dt
j,i + pt

j,i ≤ at
i for each time period t and each player

i ∈ N

Given a credit sequence {{dt
i,j}, {pt

i,j}} relative to g ∈M(N, q,R), a feasible im-
putation sequence xxx = (x1, . . . , xm) will be said to be derivable from {{dt

i,j}, {pt
i,j}}

if for each i ∈ N and time period t, xt
i = at

i +
∑

j∈N dt
i,j − pt

i,j − dt
j,i + pt

j,i.

These constraints are justified by intuitive interpretations. Each dt
i,j is to be

interpreted as saying that ‘i is indebted to (or borrows from) j in period t the
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amount dt
i,j ’ or equivalently that ‘j has an IOU written by i in period t for dt

i,j

units’, and each pt
i,j is intended to represent a (possibly partial) re-payment of a

debt made by player i to j in period t. Constraint 1 then says that debts are always
counted in positive units, that players only borrow from their partners relative to
the coalition structure, and that a player can never borrow from himself. Constraint
2 says much the same about debt repayments.

The term
∑t−1

l=1 d
l
i,j −pl

i,j represents ‘total outstanding debt‘ owed by player i to
player j in time period t – it sums up all IOUs given over all previous time periods
by i to j, and subtracts all repayments made against them. Constraint 3 then states
that in time period t player i can not give player j more, in debt re-payments, than
the total outstanding debt he owes to j (this does not prevent i from giving j more
than

∑t−1
l=2 d

l
i,j − pl

i,j – but any transfer from i to j greater than that sum will be
counted as a loan from i to j).

In each time period t, cti represents the ‘cumulative debt portfolio’ held by player
i, as it takes into account all loans given to other players, all loans taken and all
the respective re-payments to date. Note that although each dt

i,j is greater than or
equal to zero, cti,j may be positive or negative – if it is positive, then player i is a
net debtor with respect to j, and if it is negative, i is a net creditor with respect to
j. It also follows from the definitions that cti,j = −ctj,i, and hence that in any single
time period and for any single S ∈ R,

∑
i∈S c

t
i = 0.

Under that interpretation, constraint 4 establishes an important ‘credit limit’
for each player i, in the following sense. The vector g determines the ‘total income’
for player i as gi, which by definition equals āaai =

∑
t a

t
i. At each time period

t, therefore,
∑m

l=t+1 a
l
i represents player i’s future income stream. Constraint 4

is intuitively a ‘no-default’ condition: at no time is a player permitted to have
outstanding positive cumulative debt which is greater than his future income stream
- total debt in this system is always staked against future income.

Note, however, that because constraint 4 applies to the total debt portfolio of
a player, there is an implication under this system that a player can borrow both
against future income and against previously issued IOUs he holds. In effect, ‘debt
securities’ which are tradable and negotiable instruments arise naturally from the
system.

Constraint 5 exists to ensure that under any imputation sequence xxx = (x1, . . . , xm)
derivable from a credit sequence, no player transfers to others so much in loans and
repayments that he receives less than zero.

Proposition 3. In the context of a repeated cooperative game (N,ννν,R), each im-
putation sequence xxx = (x1, . . . , xm) derivable from a credit sequence {{dt

i,j}, {pt
i,j}}

relative to a vector g ∈M(N, q,R) is located within the repeated coalition bargain-
ing set RB(N,ννν,R). Conversely, for each xxx = (x1, . . . , xm) in RB(N,ννν,R), there
is at least one credit sequence {{dt

i,j}, {pt
i,j}} relative to g = x̄xx = (x̄xx1, . . . , x̄xxn) such

that xxx is derivable from {{dt
i,j}, {pt

i,j}}.

The proof appears in the appendix.
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Proposition 4. In a repeated cooperative game (N,ννν,R), if the players agree on
an over-all goal vector g ∈ M(N, q,R), then in any imputation sequence xxx =
(x1, . . . , xm), at time period t the largest value received by any player is bound
by xt

i ≤ min(νt(R(i)), gi) and the smallest by xt
i ≥ max(0, at

i−
∑

j 6=i(
∑m

l=1,l 6=t a
l
j)).

Proof: Obviously, player i cannot receive at time t more than the total produced
by the coalition to which he belongs, hence not more than νt(S). What he receives,
however, is also limited by the fact that xxx = (x1, . . . , xm) must be derivable from a
credit sequence {{dt

i,j}, {pt
i,j}}, as per the previous proposition. Under any credit

sequence, at time t he cannot borrow more than his ‘future income stream’, given
by
∑

j 6=i d
t
i,j ≤

∑m
l=t+1 a

l
i, and the most he can receive in debt-repayment is limited

by the most he could have lent in past periods, given by
∑t−l

l=1 a
l
i, so the most he

can pocket in time t is
∑m

l=t+1 a
l
i +
∑t−1

l=1 a
l
i + at

i = gi. The maximal value of xt
i is

then the smaller of νt(S) or gi.

For calculating the least value of xt
i, clearly player i cannot receive less than

0. Again, what he receives is also limited by the fact that xxx = (x1, . . . , xm)
must be derivable from a credit sequence {{dt

i,j}, {pt
i,j}}. As a lender, he can-

not give the other players in his coalition more than their ‘credit limit’ at time
t, which is represented by

∑
j 6=i

∑m
l=t+1 a

l
j , their ‘future income streams’. On

the other hand, as a (former) borrower the most he can now repay is limited by
the most they could have lent him, which is given by their past income streams∑

j 6=i

∑t−1
l=1 a

l
j . This means the greatest possible downward deviation from at

i is
limited by

∑
j 6=i(

∑t−1
l=1 a

l
j +

∑m
l=t+1 a

l
j).

6. Subgame Perfect Sequences

The paradigm in which the players negotiate a target goal vector g ∈M(N, q,R)
relative to a repeated cooperative game (N,ννν,R), against which they then nego-
tiate a contract establishing the detailed imputation sequence xxx = (x1, . . . , xm)
they will share ‘once and for all’, enfolds within it implicit assumptions regard-
ing enforcement. Cooperative game theory itself, of course, leans on an implicit
enforcement postulation – even in the single-stage case, the players negotiate an
imputation of the payoff they will receive for forming a coalition, with an assumed
enforcement mechanism ensuring that the agreed-upon imputation will be granted
to the players.

In the multi-stage case, the assumption of an enforcement mechanism is even
more critical, especially given the interpretation presented in the previous section of
the imputation sequence as encoding ‘inter-temporal’ borrowing from one player to
another: a player who has borrowed heavily in the earlier rounds and in later rounds
is expected to repay the loans by accepting imputations outside the bargaining set,
has a strong incentive to defect to another coalition, thus defaulting on his debt to
the detriment of the other players.

An example can further elucidate this possibility:

Example 4. Example 3 has one potential weakness: suppose the CEO of Apex is
a devious person. Then, after receiving $80m in Year 1, she can demand that the
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contract be ‘renegotiated’ in Year 2, or 3, with the previous year’s deviation from
the single-period bargaining set point ‘forgotten’. She can do this with the credible
threat to partner with Midi if Apex does not receive $75m in each year subsequent
to Year 1. �

This motivates the idea of a subgame perfect multi-period bargaining set impu-
tation, which meets the constraint that in each time period, no player can form
a justified objection to the multi-period imputation taking into account only the
remaining time periods. We re-iterate that in this section, as in the previous one,
m will always be understood to be a finite number.

The idea of players mistrusting each other when multiple rounds of a game are
being played appears in several early papers (such as [Gale (1978)] and [Becker,
Chakrabarti (1995)]) and in particular has become a theme in studies of the core
in dynamic cooperative games, where concepts such as the weak and strong se-
quential cores have been developed to analyse such situations (see [Kranich, Perea,
Peters (2005)], and [Predtetchinski (2007)]). It is in that spirit that we present the
following definition.

Definition 6. An imputation sequence xxx = (x1, . . . , xm), relative to a repeated
game (N,ννν,R), is subgame perfect if for each time period t, the sub-sequence of
vectors (xt, xt+1, . . . , xm) is in the bargaining set of the static TU-game (N, qt,R)
defined by the characteristic function qt(S) =

∑m
l=t ν

l(S) for all S ⊆ N .

Denote the set of subgame perfect imputation sequences of (N,ννν,R) by SP(N,ννν,R).
Clearly, SP(N,ννν,R) ⊆ RB(N , ννν,R).

Subgame perfect stability guards against player defection in later rounds by
replicating the stability of the bargaining set with respect to future time periods
at any point in time: any suggested defection by a player with respect to future
time periods by way of an objection can be met by a counter-objection. Example
4 shows that the set of subgame perfect sequences, if it exists, is generally strictly
smaller than the set of repeated coalition bargaining set sequences.

Definition 7. A sequence of characteristic functions vvv = (v1, . . . , vm) defined rel-
ative to a set of players N and a coalition structure R is sequentially essential if
for each time period t and each S ∈ R, νt(S) ≥

∑
i∈S ν

t(i).

Proposition 5. If m is finite, and vvv = (v1, . . . , vm) is sequentially essential relative
to N and R, the set of subgame perfect sequences SP(N,ννν,R) is not empty.

Proof: This is proved by a backwards induction argument (hence the condition
of finiteness of m). Begin the induction by selecting an arbitrary element xm in the
bargaining set of (N, qm,R).

Suppose, for t < m, the sequence (xt+1, xt+2, . . . , xm) is in the bargaining set
of (N, qt+1,R). Näıvely, it might seem that in order to define xt it would suffice
to select arbitrarily an element x̂ ∈ M(N, qt,R) and set xt

i = x̂i −
∑m

l=t+1 x
l
i for

each player i. The problem is that there is no guarantee this procedure will yield a
non-negative value for each xi.
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This potential flaw can, however, be avoided by a tweak to the procedure. Instead
of working with qt, define the characteristic function

bt(S) =


∑m

l=t+1 x
l
i + νt({i}) S = {i}, i ∈ N

0 S = ∅
qt(S) otherwise

It must now be shown that the set I(N, bt,R) is non-empty. Select arbitrarily
S ∈ R, and define r = qt(S)−

∑
i∈S b

t({i}). The assumptions that vvv = (v1, . . . , vm)
is sequentially essential and that each element of (xt+1, xt+2, . . . , xm) is a feasi-
ble vector at its respective time period implies that qt(S) = qt+1(S) + νt(S) ≥∑

i∈S(
∑m

l=t+1 x
l
i + νt({i})), but the last term is equal to

∑
i∈S b

t({i}), so that
r ≥ 0. Defining the |S|-vector x̂′ by x̂′i = bt({i}) + r

|S| , we have x̂′(S) = qt(S). As
S was selected arbitrarily, it follows that I(N, bt,R) is not-empty.

We can therefore select a vector x̂ in the bargaining set of (N, bt,R), and now set
xt

i = x̂i −
∑m

l=t+1 x
l
i, confident that this will not lead to negative values, and that

by construction (xt, xt+1, . . . , xm) is in the bargaining set of (N, qt,R). Continuing
with this backward induction to time period 1, we are done with identifying a
subgame perfect imputation sequence for (N,ννν,R).

Finally, we show by an example that the contrast between the set of repeated
coalition bargaining set sequences and the set of subgame perfect sequences goes
beyond the fact that the latter is generally a subset of the former. As shown in
Proposition 1, in seeking a repeated-coalition bargaining set sequence, the players
may first select any solution in the associated static TU-game bargaining set and
then fit a sequence to that static solution. But if the players seek a subgame perfect
sequence, they might not be able to rely on first considering the associated static
game and then finding a sequence that fits that.

Symbolically, for any set Q of imputation sequences of a repeated game (N,ννν,R),
denote T (Q) := {x̄xx | xxx ∈ Q}. Then clearly T (SP(N,ννν,R)) ⊆ T (RB(N,ννν,R)), but
as the next example shows, equality between these sets does not hold.

Example 5. Continuing the above Example 4, let us now have, in addition to Apex,
Zenith and Midi, two other companies, Generi and Anonymi. Apex and Zenith, as
before share $100m between them in Year 1. Apex can in Year 1 alternatively form
a two-company partnership with each of Midi, Generi and Anonymi, and attain
$100m in profits. The only other option open to Zenith in Year 1 is to form a
coalition that includes it and Midi and Generi and Anonymi, for a total of $200m.
In Year 2, market conditions are expected to change. Apex and Zenith can still
obtain $100m as partners in year 2, but if Apex wishes to have an alternative to
Zenith, it must partner with Midi and Generi and Anonymi, for only $50m, whilst
a coalition of Zenith, Midi, Generi and Anonymi can attain $100m.

Formally, let n = 5, with the set of players N denoted by 1, 2, 3, 4, 5. Consider
a 2-period repeated game (N,ννν,R) with coalition structure R = {12, 3, 4, 5} and
ννν = {ν1, ν2} defined by ν1(12) = ν1(13) = ν1(14) = ν1(15) = 100, ν1(2345) = 200,
ν2(12) = 100, ν2(1345) = 50, ν2(2345) = 100. The value of every other possible
coalition at all time periods is equal to zero.
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The grand-game over two time periods has a bargaining-set solution that grants
Apex $150m and Zenith $50m of the $200m they can create together over two years.
But there can be no subgame perfect sequence summing to ($150m, $50m) over two
time periods, because a division of ($25m, $75m) between Apex and Zenith is the
only possible payoff in Year 2 of any subgame perfect sequence and then Zenith is
already guaranteed a multi-period payoff greater than $50m. �

In conclusion, we can state the following about subgame perfect stability: in
the repeated game setting (in which the same characteristic function holds true in
each time period), a subgame perfect solution always exists – even when there are
an infinite number of time periods – because the canonical monotonic sequence is
always subgame perfect. In the repeated game setting, the monotonic sequence
might not be subgame perfect – as shown in Example 4. Example 5 shows that
there might not be a subgame perfect sequence summing to each solution of the
associated static game. When there are a finite number of time periods, a subgame
perfect solution can be found, even in the repeated game setting, as shown in
Proposition 5. It is unclear, as of this writing, whether that result can be extended
to the case of an infinite number of time periods.

7. Appendix

Proof of Proposition 3: Suppose xxx = (x1, . . . , xm) is a feasible imputation
sequence derivable from a credit sequence {{dt

i,j}, {pt
i,j}} relative to vector g. First

of all, for each t, xt is feasible: because dt
i,j = 0 and pt

i,j = 0 whenever i and j are
not partners in the same partition of R, we can write xt

i = at
i +
∑

j∈R(i) d
t
i,j−pt

i,j−
dt

j,i + pt
j,i. Given Q ∈ R,

∑
i∈Q

∑
j∈Q d

t
i,j − pt

i,j − dt
j,i + pt

j,i = 0, so that we arrive
at the conclusion

∑
i∈Q x

t
i =

∑
i∈Q a

t
i = νt(Q).

Recalling that we have assumed that m is finite, hence there is a last period
m. Define ∆t

i := xt
i − at

i =
∑

j∈N dt
i,j − pt

i,j − dt
j,i + pt

j,i. By condition 4, in time
period m, for each player i, cmi ≤ 0. But

∑
i∈N cti = 0, hence cmi = 0 must hold for

each i. As by definition, cmi =
∑

t

∑
j∈N dt

i,j − pt
i,j − dt

j,i + pt
j,i, we conclude that∑m

t=1 ∆t
i = 0, so

∑m
t=1 x

t
i =

∑m
t=1 a

t
i = gi.

In the other direction, suppose that xxx = (x0, x1, . . . , xm) is an imputation se-
quence, with the goal of exhibiting a credit sequence from which xxx is derivable.
This is done inductively, with a round of re-payments defined first in each time
period, followed by a round of debt allocations. Intuitively, the construction here
is rather simple: in each time period, each player strives to re-pay as much debt as
possible. After that, all other deviations from xt are ‘explained’ by way of transfers
undertaken through loans.

To decrease some of the clutter of symbols, define ot
i,j :=

∑t−1
l=1 d

l
i,j − pl

i,j and
ot

i :=
∑

j∈N ot
i,j . As before, aaa(x) = (a1, . . . , am) is the monotonic sequence defined

against g.

Suppose that {{dt
i,j}, {pt

i,j}} has been defined for all time periods less than t. In
period 0, no re-payment is effected. Otherwise, the re-payment round is defined as
follows: each player ‘re-pays as much as possible’ of outstanding debt ot

i, re-payment
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capped only by at
i, so the sum total of re-payment by player i in time period t is

given by r = min(at
i, o

t
i). Let Dt+

i be the set of players such that for each player
lj ∈ Dt+

i , ot
i,lj

> 0 and order them by decreasing ‘debt’ size, i.e. lj comes before
lk only if ot−1

i,lj
≥ ot−1

i,lk
, with arbitrary ordering when this last semi-inequality is a

strict equality. Next, set n(i) to be the smallest integer such that
∑n(i)

j=1 o
t−1
i,lj
≤ at

i

under this ordering. For 1 ≤ j ≤ n(i), let pt
i,j = ot−1

i,j , and for j = n(i) + 1, if there

exists an element ln(i)+1 in Dt+
i , let pt

i,j = at
i −
∑n(i)

k=1 o
t−1
i,k .

After the round of re-payments has been completed, we have for each player i
the value f t

i := at
i −
∑

j∈N pt
i,j +

∑
j∈N pt

j,i, and it is against these values that the
round of debt allocation is conducted. Let ∆̂t

i := f t
i − at

i =
∑

j∈N pt
i,j + pt

j,i, and,
for an arbitrary S ∈ R order the players in S as i1, . . . , ik by decreasing size of ∆̂t

i.
Further define ∆̂t

+ = {i ∈ S|∆̂t
i > 0} and ∆̂t

− = {i ∈ S|∆̂t
i < 0}. List the elements

∆̂t
+ as {j1, . . . , jk}, ordered by decreasing size of ∆̂t

j , and similarly list the elements
of ∆̂t

− as {h1, . . . , hl}, ordered by decreasing size of |∆̂t
h|.

Define for each member of ∆̂t
+ a set of ‘creditors’ in ∆̂t

− as follows. Set Cj1 :=
{h1, . . . , hm(j1)} such that

∑m(j1)
i=1 |∆̂t

hi
| ≥ ∆̂t

j1
, where m(j1) is the smallest integer

such that this inequality holds. Set dt
j1,h1

= |∆t
hi
| for i < m(j1), and dj1,hm(j1) =

∆̂t
j1
−
∑m(j1)−1

i=1 |∆t
hi
|.

For calculating Cj , for s > 1, first set

dt
js,hm(js−1)

:= |∆̂t
hm(js−1)

| − dt
js−1,hm(js−1)

and then set Cjs
:= {hm(js−1), . . . , hm(js)} such that

∆̂t
j(s) ≤ d

t
js,hm(js−1)

+
m(js)∑

i=m(js−1)+1

|∆̂t
hi
|

and m(js) is the smallest integer such that this inequality holds. Set dt
js,hi

= |∆̂t
hi
|

for m(js−1) < i < m(js), and

dt
js,hm(js)

= ∆̂t
js
−

m(js)−1∑
i=m(js−1)+1

|∆̂t
hi
|.

It remains to be shown that following these steps leads to an admissible credit
sequence {{dt

i,j}, {pt
i,j}}. Constraints 1 and 2 are trivially met by the constructed

credit sequence. Constraint 3, which limits the size of re-payments, is explicitly
guaranteed by the construction, as is constraint 5.

To see that constraint 5 is met, note that by the way {{dt
i,j}, {pt

i,j}} are con-
structed, for any player i and time period t,

∑t
l=1 x

l
i =

∑t
l=1 a

l
i + cti. On the other

hand, by assumption
∑m

l=1 x
l
i =

∑m
l=1 a

l
i. Hence, if cti >

∑m
l=t+1 a

l
i,
∑t

l=1 x
l
i =∑m

l=1 a
l
i, which would require

∑m
l=t+1 x

l
i to be a negative quantity in order to en-

sure
∑m

l=1 x
l
i = gi. This is impossible, and we conclude constraint 5 holds.
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