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Abstract

The notion of a strict equilibrium set is introduced as a natural extension of
the notion of a strict equilibrium point. The evolutionarily stable sets of a truly
asymmetric contest are shown to be behaviorally equivalent to the strict equilibrium
sets of an “agent representation” of the contest. Using variants of the replicator
dynamic we provide dynamic characterizations of strict equilibrium sets. We do this
both for truly asymmetric contests and for arbitrary normal form games modelling

conflicts between several distinct species.
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1. Introduction

We introduce the notion of a strict equilibrium set and study its relation to the notion
of an evolutionarily stable set due to Thomas [32]. One relation appears in the case of
so-called truly asymmetric contests. These are games modelling a conflict between the
animals of a single species. With every truly asymmetric contest two normal form games
are associated: There is the standard normal form of the contest, which describes the
conflict ex ante, before the animals are born. This normal form game is symmetric. In
addition we introduce the “agent representation” of the contest. The agent representation
describes the conflict from an interim perspective, after the animals have been assigned
different roles in the conflict and before the conflict actually occurs. This normal form
game is typically not symmetric. We show that the evolutionarily stable sets of the normal
form of a truly asymmetric contest are “behaviorally equivalent” to the strict equilibrium
sets of its agent representation. This result extends a result of Selten [25] on evolutionarily
stable strategies and strict equilibrium points in truly asymmetric contests.

A second relation between strict equilibrium sets and evolutionarily stable strategies
appears in a dynamic context. A symmetric normal form game can model a conflict
between the animals of a single species. One can define for such a game a replicator
dynamic in continuous time where mixed strategies can be inherited. We characterize
evolutionarily stable sets in terms of stability properties with respect to this dynamic.

Every symmetric or non-symmetric normal form game can also be interpreted as a
model of a conflict between the animals of several distinct species where each player rep-
resents a different species. One can define a corresponding second replicator dynamic in
continuous time where mixed strategies can be inherited. We characterize strict equi-
librium sets in terms of stability properties with respect to this second dynamic. The
stability properties used are the same as for evolutionarily stable sets, but they refer to a

different dynamic with a different biological interpretation.

In the following we try to motivate the relevant concepts and the results in more detail:
The notion of an evolutionarily stable strategy by Maynard Smith and Price [18] has been
one of the most important conceptual innovations in non-cooperative game theory. It
provided an unexpected link between normative game theoretic analysis and evolutionary
biology where conscious rational behavior cannot be assumed. More recently evolutionary
stability has been used by economists to discuss bounded rational behavior of economic
agents.

Sometimes, e.g., for certain games in extensive form, it is desirable not to require only
single strategies to be evolutionarily stable. Rather one would like to attribute evolution-

ary stability to a class of strategies inducing the same observed outcome. Thomas’ [32]



notion of an evolutionarily stable set of strategies allows for this possibility. An evolution-
arily stable set is a set of strategies characterized by two conditions. These conditions refer
to a symmetric conflict between a population of animals belonging to the same species.
Roughly speaking, the first condition requires that a population using a strategy in the
set cannot be invaded by a small group of mutants using a different strategy (i.e., all
strategies in the set are neutral evolutionarily stable). The second condition states that
the population can only drift from the use of one strategy in the set to the use of another

strategy in the set.

A strict equilibrium point is a Nash equilibrium where each player has a unique best reply.
This concept has been used for a long time in non-cooperative game theory. By definition
strict equilibrium points do not suffer — in contrast to Nash equilibria in mixed strategies
— from what Harsanyi and Selten [13] call the instability problem: In an equilibrium
where one player has several best replies this player has no intrinsic self-interest to stick
to his equilibrium strategy. If he chooses an alternative best reply he might upset the
equilibrium. The instability problem may be less severe in those cases where a deviation
with an alternative best reply leads again to equilibrium play. Thus we introduce strict
equilibrium sets as sets of Nash equilibria with the following property: If a single player
deviates from a Nash equilibrium in the set by using an alternative best reply then this
leads to the play of a different Nash equilibrium in the set.

Both strict equilibrium points and strict equilibrium sets have an obvious evolutionary
stability property: Consider a normal form game as a model of a conflict between several
distinct species. Suppose that all animals of the same species use the same strategy.
Suppose that this yields a strategy combination which is either a strict equilibrium point
or an element of a strict equilibrium set. Consider now the situation where a few animals
which belong to the same species mutate and use a different strategy. Since the animals
of the other species do not mutate they will not change their behavior. Therefore the
mutant strategy will die out if the mutants do not play a best reply against the strategy
choices of the opponents. In case of a strict equilibrium point the mutant strategy must
therefore die out. In case of a strict equilibrium set the mutant strategy can survive only
if it is an alternative best reply. In the latter case drift might lead to a different strategy

combination which is however again an element of the strict equilibrium set.

A strict equilibrium set is defined for an arbitrary normal form game. It is a set of strategy
combinations. An evolutionarily stable set is defined only for a symmetric normal form
game. It is a set of strategies. A link between the two concepts is provided by models of
animal conflicts with role asymmetry (Selten [25], see also Selten and Hammerstein [9])
or, as they are called in van Damme [34], by truly asymmetric contests. As indicated, such

games can be viewed from two perspectives: A view ex ante which yields a symmetric



normal form game and a view from an interim perspective which yields a normal form
game that is not necessarily symmetric. Formally a truly asymmetric contest is itself not
a normal form game. It resembles more a Bayesian game or a game in extensive form.

As an example for a truly asymmetric contest we can take a conflict between two
animals of the same species, one being the owner of a territory and the other being an
intruder. The owner can either defend his territory or he can flee from his territory. The
intruder can either attack or also flee. We can model the conflict as a 2 x 2-game between
the owner and the intruder that may or may not be symmetric, depending on how we
specify the payoffs. In the example this is the agent representation which describes the
conflict from an interim perspective.

The standard normal form of the truly asymmetric contest describes the conflict ex
ante: Since the animals are not rational they will follow the behavior encoded in their
genes. This code (the ex ante “strategy”) is determined before the animal is born. The
“role” of being the owner or being the intruder is somehow assigned randomly to the two
animals during their lifetime. The gene code must hence specify the behavior in both
potential roles, for instance to defend if being an owner and to flee if being an intruder.
Ex ante the conflict can hence be modelled as a 4 x 4 game. This game is symmetric
since the animals have equal chances of being an owner or an intruder when the conflict
occurs.

The agent representation can also be constructed if the number of roles exceeds the
number of players: The two animals could differ in the conflict in more than two charac-
teristics, for instance the owner could be strong or weak without the intruder being able
to observe this. In that case there are three possible roles: intruder, weak and strong
owner. A strategy ex ante must prescribe the behavior for all three roles. This leads us
to a symmetric 8 X 8 game. Since there are only two players one of the three roles will
remain vacant in the actual conflict. But we can write down a non-symmetric 2 x 2 x 2
game where there is one player (called “agent” to distinguish) for each role. This agent
representation describes, conditional on the information each animal has, the conflict at
the interim stage. Its construction relies on the assumption of role asymmetry which dis-
tinguishes truly asymmetric contests from the more general class of asymmetric contests.
The assumption of role asymmetry requires that in an actual conflict two animals will
never find themselves in the same role.

A pure strategy in the symmetric normal form of a truly asymmetric contest assigns
an action to each role. It is hence formally the same object as a pure strategy combination
of the agent representation which assigns an action to each agent. This relation extends
to a projection p; from the set of mixed strategies ® of the normal form to the set of

mixed strategy combinations ¥ of the agent representation. p, is the first mapping in the



diagram (1.1).

® L. v
6 6
D2 b3
A(P) —5=— A (D) (1.1)

Our central result relates to this mapping. Results concerning the other mappings in di-
agram (1.1) are discussed below. Our central result states that this projection induces a
bijection between the evolutionarily stable sets of the normal form and the strict equilib-
rium sets of the agent representation. It follows by an argument as in Selten [25] that p;
maps every evolutionarily stable set onto a strict equilibrium set. But different arguments
are needed to show that the evolutionarily stable sets are exactly the preimages of strict

equilibrium sets.

The truly asymmetric contest describes a conflict within a single species. If we assume
that each member of the species can use and inherit mixed strategies, then the state of
the population at a given point in time is described by a probability measure over mixed
strategies. Such a probability measure tells us what fraction of the population is using
what strategy. Each state determines an expected mixed strategy used by the population.
This yields the projection p, in diagram (1.1) from the state space A (®) to the set of
mixed strategies P.

For the state space A (®) we write down a first replicator dynamic describing how
the use of mixed strategies in the population evolves over time. We consider the
and locally asymptotically stable sets of this dynamic which consist of locally stable fixed
points. For brevity we call these sets stationary attractors of the dynamic. We show that
the projection py induces a bijection between the stationary attractors of the dynamic
and the evolutionarily stable sets. This result holds more generally for any symmetric
normal form game. Cressman [7] obtained a very similar result.

We can formally view the agent representation of a truly asymmetric contest just
isolated as some normal form game. It can then also describe a conflict between several
distinct species. Assuming again that each animal can use and inherit mixed strategies
we obtain as state space where each state describes for each species the distribution of
strategies used. For each player i of the game we have hence a probability measure over
the set of mixed strategies of this player. If this set of probability measures is denoted
by A (3;) then the state space is the Cartesian product A* (X) := [Tien A (2;). The
replicator dynamic for asymmetric normal form games, as it is for instance discussed
by Samuelson and Zhang [23], can be extended to this state space. This is the second
replicator dynamic which we consider. As indicated in diagram (1.1) there is a projection

p3 that maps a state to the combination of expected mixed strategies. We show that this



projection identifies stationary attractors of the second dynamic with strict equilibrium
sets.
In addition, there is directly a projection p, from A (®) to A* (X) identifying the

stationary attractors of the two dynamics.

For normal form games modelling a conflict between several distinct species a related
result has been obtained by Ritzberger and Weibull [19]. They consider sets that are
Cartesian products of faces of the player’s strategy simplices.! They show that such sets
are closed under pure better replies if and only if they are locally asymptotically stable
under the pure strategy replicator dynamic. (They actually study a more general class of
dynamics.) In contrast we work here with the mixed-strategy replicator dynamic. They
assume a certain geometric structure of a locally asymptotically stable set. We assume
in essence that the set is a set of Nash equilibria. This assumption implies a certain
geometric structure. Namely, we show that every strict equilibrium set is a finite union
of Cartesian products of faces.

We also have a result on the geometric structure of evolutionarily stable sets: Every
evolutionarily stable set is a finite union of linear subspaces intersected with the strategy
simplex. We extend here a result of Cressman [7].

Furthermore we show that every strict equilibrium set of a bimatrix game contains a
strategically stable set as defined by Kohlberg and Mertens [16].

As one example where the notion of strict equilibrium points does not apply while
strict equilibrium sets do we will discuss Ben Porath and Dekel’s [2] “burning-money”
example. Using strict equilibrium sets we will obtain the same outcomes as they do
using quite different arguments. Hurkens [15] obtains these outcomes by using the closely
related concept of curb sets. The sequel to this paper (Balkenborg [1]) considers strict
equilibrium sets in finitely repeated games and obtains a surprising relation to common
interest games. We think that these examples show that our extension of Selten’s [25]

result to the set-valued concepts is useful.

In the paper we will have to distinguish carefully between several classes of games and
study the relations between them. We will introduce them in separate sections and
discuss the relevant solution concepts as we go along. The first “algebraic” part of the
paper proceeds in a fashion resembling Escher’s staircases: We start with arbitrary normal
form games in Section 2, move down and down to more special games until we are back
to arbitrary normal form games in Section 6 (see Figure 1.1). The last two sections,
Section 7 and Section 8, deal with dynamic interpretations. In contrast to the biological

literature we consider throughout games with an arbitrary finite number of players, not

1 Using learning dynamics Hurkens [14] studies the stability proporties of set-valued solution concepts

that are also Cartesian products of faces.
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Figure 1.1: Types of games and solution concepts considered; (SESet = strict equilibrium

set, ESSet = evolutionarily stable set)

just bimatrix games.

In Section 2 we introduce strict equilibrium sets for arbitrary normal form games.
We describe the geometric structure of these sets. We show for bimatrix games that
every strict equilibrium set contains a strategically stable set as defined by Kohlberg and
Mertens [16]. This result holds even when the strict equilibrium set is a cycle. It is hence
very different from the results obtained by Swinkels [29] and [30]. It does, however, not
extend to games with more than two players.

In Section 3 we turn to the subclass of symmetric normal form games and discuss
Thomas’ [32] notion of evolutionarily stable sets. For n-player games we discuss a lexico-
graphic condition for evolutionary stability which coincides with the familiar equilibrium-
and stability conditions in bimatrix games. We generalize a result on the geometric
structure of evolutionarily stable sets that Cressman [7] obtained for symmetric bimatrix
games. Moreover we establish a first link between strict equilibrium sets and evolution-
arily stable sets (Proposition 3.6): In a symmetric game the set of strategies that yield
symmetric Nash equilibria in a strict equilibrium set is either void or is an evolutionarily

stable set. This generalizes the well-known observation that in every symmetric game
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every symmetric strict equilibrium point defines an evolutionarily stable strategy.

In Section 4 we consider asymmetric contests, but we do not yet require role asym-
metry. For such games one has to distinguish between mixed and behavioral strategies
and one has to make appropriate distinctions for the solution concepts. The direct evo-
lutionarily stable strategies introduced by Selten [25] are defined just like evolutionarily
stable strategies except that mixed strategies are replaced by behavioral strategies in the
definition. Similarly direct evolutionarily stable sets can be defined. As is well known (see
for instance van Damme [34]) there is a “spurious duplication problem” for evolutionarily
stable strategies in asymmetric contests because many mixed strategies may correspond
to the same behavioral strategy: An asymmetric contest may have a direct evolutionarily
stable strategy but not an evolutionarily stable strategy. There are at least three ways
out of this problem: Either one restricts attention to behavioral strategies as in Selten
[25]. Or one can take the view that evolutionary stability should refer to sets of strategies.
One can then define evolutionary stability for classes of payoff-equivalent strategies as in
Schlag [24]. Or one can use a set valued concept based on internal and external stability
requirements that imply invariance. This is what we do when we use Thomas’ concept.

In Section 5 we turn to truly asymmetric contests and construct the agent represen-
tation. Then we can state our central result (Proposition 5.1) about the equivalence
of evolutionarily stable sets and strict equilibrium sets. We prove one direction of the
equivalence.

In Section 6 we construct for every normal form game a My m This is a
truly asymmetric contest that has the given normal form as agent representation. The
symmetrization has as many players as roles. We will show that every strict equilibrium
set of the given normal form game can be “extended” to a strict equilibrium set of the
symmetrization. As indicated in Figure 1.1 we can take any truly asymmetric contest,
construct its agent representation and for the latter the Ty This yields again
a truly asymmetric contest, but possibly a different one. We will see that both contests
have the same evolutionarily stable sets. We can then complete the proof of our central
result.

In Section 7 we consider symmetric normal form games and the corresponding first
replicator dynamic over mixed strategies for a conflict within a single species. We show
that the stationary attractors of this dynamic correspond to the evolutionarily stable sets.

In Section 8 we consider arbitrary normal form games and the corresponding second
replicator dynamic over mixed strategies for a conflict between several distinct species. If
the normal form game appears as the agent representation of a truly asymmetric contest
then we also have the first dynamic for a conflict within one species. We show how

the second dynamic for several distinct species is embedded in the first dynamic for one



species. Thus stability requirements on the latter dynamic are a priori more stringent.
But as indicated above, the stationary attractors of both dynamics are essentially the
same.

An appendix contains the proofs.

2. Strictness in Normal Form Games

We will introduce the notion of a strict equilibrium set and discuss some of its properties.
To do so, some notations are needed.

A finite normal form game T for the set of players N = {1,---,n} consists of finite
sets S; of pure strategies and payoff functions u; : S — R for each player 1 € N, where
S = [l;en S is the set of pure strategy combinations. A mized strategy for player i is
a probability measure o; on his set of pure strategies S;. We write X; := A (S;) for his
set of mixed strategies and ¥ := [[I'; ¥, for the set of all mized strategy combinations
of the players. (A () will be used to denote the set of probability measures over a set.)
By calculating the ezxpected payoffs the payoff functions extend to multilinear functions
u; 22— R.

For © € N we will write ¥_; := [];4 X; with typical element o_; for the set of i-
incomplete strategy combinations. For ¢ € ¥ and 7; € ¥; o\7; denotes the strategy
combination which is in all components equal to o except that player i’s strategy is

replaced by 7;.

Definition 2.1. A non-empty set of mixed strategy combinations R C ¥ is a strict
equilibrium set (SESet) if for every strategy combination o € R in the set and an

arbitrary strategy T; € ¥; of some player i € N
u; (o\73) < u; (0) (2.1)
whereby equality in (2.1) implies o\7; € R.

Consider a strategy combination ¢ in a strict equilibrium set R. Then for each player
i and each of his strategies 7; we have u; (o\7;) < u; (0\0;), i.e., 0; is a best reply against
0.2 Since this must hold for every player, o is a Nash equilibrium. Against a Nash

equilibrium a player might have several best replies. The self-interest of a player alone

2The term “best reply” is used here in three ways: A strategy of a player i can be a best reply against
an i-incomplete strategy combination of the opponents or against a strategy combination of all players
including a strategy for player i since the latter information is redundant for the definition. A strategy
combination is a best reply against another strategy combination, if each of its components is a best reply

against the other strategy combination.



does then not force him to use his equilibrium strategy if he believes that his opponents
use their equilibrium strategies. If he uses an alternative best reply, then no equilibrium
play might result. This cannot happen for a Nash equilibrium in a strict equilibrium set:
If a single player deviates by choosing an alternative best reply, then we obtain again
a Nash equilibrium which like the old one is stable against deviations by a player using
alternative best replies. The notion of a strict equilibrium set expresses this requirement
in a circular manner.

Suppose a strict equilibrium set consists of a single strategy combination o. Then it is
a Nash equilibrium and furthermore the best reply of every player against this equilibrium

must be unique. For every strategy 7; # o; of a player the strict inequality
ui (0\1;) < w; (0) (2.2)

is therefore satisfied, i.e., o is a strict equilibrium point (Harsanyi [12], Harsanyi and
Selten [13]3, van Damme [35]). In particular o must be a Nash equilibrium in pure
strategies. This follows because in a best reply a player will mix only between different
pure strategies that yield him the same expected payoff and are hence also best replies
against the strategy combination of the opponents.

A set of strict equilibrium points is a strict equilibrium set while not every strict

equilibrium set is a set of strict equilibrium points, as the examples below show.

The argument that showed that every strict equilibrium point is in pure strategies also
implies that every strict equilibrium set must contain a Nash equilibrium in pure strate-
gies: Take any o in a SESet. Take any pure strategy s; that player 1 chooses with positive
probability when he plays o1. Then s; is a best reply against o and hence o\s; is in the
SESet. Now take a pure strategy s, that player 2 chooses with positive probability when
he plays o2. 02 and hence s, are best replies against o\s;. Therefore (o\s1) \s2 is also in
the SESet. Proceeding inductively we find a pure strategy combination in the SESet.

To describe the structure of SESets more sharply some more notations and terminology
are needed.

For a mixed strategy o; € 3; we define the support
supp (o) = {s; € Si|oi(s;) > 0}

as the set of pure strategies that are chosen with positive probability by o;. A face
A (T;) of the mixed strategy simplex ¥; is a set of all mixed strategies whose supports are
contained in a given set T; C S; of pure strategies. A commutative set  Nash equilibria

is a set of strategy combinations such that each strategy combination in the set is a best

3Harsanyi and Selten use the term “strong equilibrium point”.
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reply (i.e., is in each component a best reply) to every other strategy combination in the

set.

Proposition 2.2. A strict equilibrium set is a union of Cartesian products of faces for

each player. FEach of these Cartesian products is a commutative set of Nash equilibria.

Since each player has only finitely many strategies a SESet is a finite union of Cartesian
products of faces and hence a closed set.

Let us call for a mixed strategy o; the set A (supp (o;)) the face generated by o; and
for a strategy combination o the set [[;cy A (supp (0;)) the Cartesian product  faces
generated by o. If an SESet contains o then it contains the Cartesian product of faces
generated by o.

The relative interior of a face A (T;) is the set of all strategies o; with support equal
to T;. The relative interior of a Cartesian product of faces is then the Cartesian product
of the relative interiors of its components. Let me call a Cartesian product of faces Il
an interior Nash equilibrium set if II is a commutative set of Nash equilibria with the
property that a strategy combination belongs to II if and only if it is a best reply against
a strategy combination in the relative interior of II. Let us finally call a Cartesian product

of faces contained in an SESet mazimal if no strictly larger product of faces is contained
in the SESet.

Proposition 2.3. A Cartesian products of faces is maximal in the strict equilibrium set

if and only if it is an interior Nash equilibrium set.

Interior Nash equilibrium sets may be of interest on there own. For instance Borgers
and Samuelson [4] (see also Samuelson [22]) introduce consistent pairs as sets of strategy
combinations consistent with common knowledge of admissibility. Interior Nash equilib-

rium sets yield examples of consistent pairs.

l r L R l r
1 171 1 KU |5 1[0 0 BU |3 1|0 0
D1 1|0 0 KD |0 0|1 5 BD|0o 0|-1 5
Keep Burn

Figure 2.1: SESet with domi-
nated strategies Figure 2.2: Burning Money

We use three examples to illustrate strict equilibrium sets. In the first example, Figure

2.1, the unique strict equilibrium set is the set of strategy combinations where both players
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receive the payoff 1. It is the union of the two interior Nash equilibrium sets A (U, D) x
{l} and {U} x A(l,r). We observe that strict equilibrium sets can contain strategy
combinations where one player is using a weakly dominated strategy. The example is
taken from Samuelson and Zhang [23], who observed that such strategy combination may
be locally stable under evolutionary processes.

The second example is due to Ben-Porath and Dekel [2] (see also van Damme [34]).
Two players have to play the 2 x 2-game on the left of Figure 2.2. But before the play
player 1 has the opportunity to burn $2 in front of his opponent. If he does so and then
the 2 x 2-game is played, the net-payoffs will be the ones in the right 2 x 2-game of Figure
2.2 (in the example we identify payoffs with dollar values). In the reduced normal form
of the game with the additional option to burn money both players have four strategies:
Player 1’s pure strategy set is { KU, KD, BU, BD}, where for instance BU is the strategy
to burn the money and then to play “up” in the 2 x 2-game and K D is the strategy where
he keeps, does not burn, the money and then plays “down” in the 2 X 2-game. Player 2’s
strategy set can be denoted by {Ll, Lr, Rl, Rr} where for instance Lr is the strategy to
choose “left” in the 2 x 2-game if player 1 does not burn the money and to choose “right”
otherwise. The set { KU} x A (LI, Lr) is a strict equilibrium set: If player 2 chooses left
with probability 1 when no money is burned the only optimal response for player 1 is
not to burn money and to play “up” in the 2 x 2-game. Provided player 1 does not burn
money and chooses “up” in the 2 x 2-game only those strategies of player 2 can be optimal
where he chooses “left” with probability one after he observed that the opponent did not
burn money. It is important here that the strategies of player 2 in the SESet can assign
arbitrary behavior in the 2 x 2-game after money was burnt. A single-valued solution
concept would not capture the robustness of this solution.

The game has no other strict equilibrium sets: We know that a strict equilibrium
set must contain a pure Nash equilibrium. The game has four pure Nash equilibria:
(KU, Ll) and (KU, Lr), which generate the strict equilibrium set we discussed, (KD, Rr)
and (BU, Rl). (KD, Rr) does not belong to a strict equilibrium set: Since RI is also
a best reply to KD, (KD, Rl) would have to be in the strict equilibrium set, but BU
yields a strictly higher payoff against Rl than K D. If (BU, Rl) would belong to a strict
equilibrium set, then also (BU, Ll) would have to be in it but KU yields a higher payoff
against Ll than BU *

4Ben-Porath and Dekel consider any model where player 1 may burn multiples of a smallest money
unit before a bimatrix game is played. They show: Under the condition that the bimatrix game has
a unique strict equilibrium point that yields for player 1 the highest payoff he could achieve from any
strategy combination in the bimatrix game and if the money unit is sufficiently small, then a specific
procedure of iterated elimination of weakly dominated strategies leads to the outcome where no money
is burned and player 1 receives the highest feasible payoff from the stage game. Under the conditions
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The preceding example shows a crucial property of strict equilibrium sets when applied to
the (reduced) normal form of a game in extensive form: Take a pure strategy combination
s contained in an SESet of such a game. Consider the path it induces in the extensive
game and an information set of a player that does not contain a node on this path. Then
one can replace in the player’s strategy s; his choice at the information set by an arbitrary
choice to obtain a new best reply s, against s. Therefore s\s; must also be in the SESet.

In this sense, what a player does off the path must be irrelevant in an SESet.

One might expect that strict equilibrium sets are like strict equilibrium points consistent
with most equilibrium refinements. The third example in Figure 2.3 shows however that
strict equilibrium sets may not contain strategically stable sets as defined in Kohlberg and
Mertens [16]:° In this 3 x 3 x 3 normal form game the unique strict equilibrium set is a
cycle. It consists of all strategy combinations where each player gets the payoff 2. It is the
union of six line segments. In each of these segments one player uses his r-strategy, one
uses his s-strategy and the third one mixes arbitrarily between his r- and his s-strategy.
The t-strategy is a strictly dominated strategy for each player.

There is no Nash equilibrium near to the cycle in the trembling-hand perturbation
where each player makes with small probability an error and then mixes with equal

probabilities between his three strategies.

T S92 to T S92 to T S to
ry(1 11122 2|10 2 ry|2 22222201 ry(210/120{000
$11222|1222(201 $11222|111]10 2 $1/120(210{000
t1/02 1|01 2000 t1/012/021/00 0 t1/0 0 0/]0 00|00 O

T3 S3 t3

Figure 2.3: An SESet forming a cycle

Let us consider for example the segment of the cycle where player 1 mixes arbitrarily
between his r- and his s-strategy while player 2 uses his s-strategy and player 3 his -
strategy. Against any strategy combination in this segment the unique best reply of player

1 is to use his s-strategy: If he uses his r- or his s-strategy he gets the payoff 2 with a

stated the set of strategy combinations inducing this outcome is also the unique strict equilibrium set of

the model.
>The unique strategically stable set in the example consists of the strategy combination where each

player mixes between his - and his s-strategy with equal probabilities.
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high probability. But with small probability player 2 makes an error and switches to ro
or to. In both cases player 1 will get the payoff 1 with r; while he gets the payoff 2 with
s1 and is hence strictly better off with s;. Also player 3 will make errors and switch with
small but equal probabilities to sy or t3. In these cases player 1 will get the payoffs 2 or
1 if he uses ry and the payoffs 1 or 2 with s,. Both strategies are then equally good for
player 1. If the error probabilities are sufficiently small we can neglect the cases where
both opponents simultaneously make an error. We can interpret the perturbed game as
a game with the same strategy spaces, but with perturbed payoff functions. Player 1
strictly prefers s; to r; against (07 s2,73) in this perturbed game.

Thus the unique best reply of the players against (ry ss,73) is (S1,82,73). Symmet-
ric calculations show that the unique best reply against (sq s2,73) is (s1,72,73), against
(s1,12,73) it is (81,12, S3), against (s1,72, 83) it is (r1,72, s3), against (71,72, s3) it is (ry,s2, S3)
and against (7 g, s3) it is (r1,s2,73). It follows that there is no Nash equilibrium in the
perturbed game on or near the cycle.

While the property of containing Nash equilibria gets lost for the cycle due to the
perturbation, its strictness property remains: The cycle is the unique minimal set of
strategy combinations for the perturbed game with the property that for each strategy
combination ¢ in the set and for each strategy 7; of a player that yields him at least
weakly a higher payoff, i.e., u; (6\7;) > u; (0), o\7; is also in the set.

Strict equilibrium sets are often special cases of the equilibrium evolutionarily stable
sets discussed in Swinkels [28], [29] and [30]. Swinkels shows that equilibrium evolution-
arily stable sets contain strategically stable sets if certain conditions are met that exclude
cycles as above. It may be worthwhile to note that in the case of bimatriz games, i.e.,
normal form games with two players, strict equilibrium sets must contain strategically

stable sets even if they form cycles.

Proposition 2.4. A strict equilibrium set of a bimatrix game contains a strategically
stable set as defined by Kohlberg and Mertens [16].

3. Evolutionary Stability in Symmetric Games

Evolutionarily stable sets are defined for symmetric normal form games. A game is
symmetric if all players have the same strategies available and if the payoffs depend
only on the strategy a player uses and on those used by his opponents, but not on the
identity of the players.

More precisely: A symmetric normal form game G for the set of players M =

{1,---,m} is defined by a finite set F' of pure strategies and payoff functions E; : '™ — R
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for each player j € {1,---,m} which are order independent in the sense that

Exy (fs s Fm) = E5 (fra), - Friom))

holds for all permutations = € II (M) of the names {1,---,m} of the players. Because
of this order independence it suffices to know the payoff function £ := FE; and we can
interpret E (fi,..., fm) as the payoff some player gets if he uses the first strategy f; in
the strategy combination and his opponents use the strategies fs,..., fi.

We denote by & := A (F) the mixed strategy space. Furthermore we denote by
©F € ®* the k-tuple where all components are equal to ¢ and by ¢* x ¢! € ®*+ the
(k + 1)-tuple where the first k£ components are equal to ¢ and the last [ components are
equal to 1.5 Instead of E (,4™ 1) we can also briefly write E (1)™).

Definition 3.1. i) (Maynard-Smith and Price [18]) A mixed strategy ¢ € ® of a
symmetric normal form game is an evolutionarily stable strategy (ESS) if there
exists a neighborhood U (¢) C ® such that for all strategies v € U (@) \ {¢} the strict
inequality
E($,ym ) < E (o 9™, (3.1)

holds.

ii) (Maynard-Smith [17]) A mixed strategy ¢ € ® is a neutral evolutionarily
stable strategy if there exists a neighborhood U (¢) C ® such that for all strategies
¥ € U (p) the weak inequality

E (v, 0™ ") < E(p,0™"). (3.2)

holds.

iii) (Thomas [32]) A non-empty closed set of mixed strategies R C ® is an evo-
lutionarily stable set (ESSet) if for every strategy ¢ € R in the set there exists a
neighborhood U () C ® such that for all strategies 1) € U () the weak inequality (3.2)
holds whereby equality implies that v is an element of R.

The following Lemma describes a basis of neighborhoods that is often convenient to
use.

Lemma 3.2. The sets
Voo (@) = {the]tp € ©,0 < e < g}

where 1. := (1 — &) + e form for varying €q > 0 a basis of neighborhoods of a strategy
@ in the simplex P.

SE (p,9™! ) defines a particular playing-the-field model with state substitubility (see Hammerstein
and Selten [9]).
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Since E (Y., v™ 1) = (1 —e)E (p,v™ ') + eE (v, ™ ') a strategy ¢ is hence evolu-
tionarily stable if and only if

E(,407") < E(p,00") (3.3)

holds for all ¢ € ® and all sufficiently small €. “Sufficiently small” means here that we
can take any ¢ with 0 < ¢ < gg for some fixed ¢y > 0 that does not depend on . ¢ is a
so-called uniform invasion barrier.”

The definition of an evolutionarily stable strategies is motivated by the following mo-
nomorphic scenario: Consider a large population playing the symmetric game in an anony-
mous random matching environment where each member of the population is matched
with equal probabilities with m — 1 of the other members of the population to play the
symmetric game. Suppose that initially all members of the population play the same
strategy ¢ but that a small fraction € of the population switches to using a “mutant
strategy” 1. Then each player will face with a high probability only opponents who use
the “regular” strategy, but with a small probability he will meet some opponents using
the mutant strategy. In expectation an opponent will use the strategy ¥, := (1—¢)p+c.
The condition for an evolutionarily stable strategy (3.3) expresses that in this situation
the original strategy fares better (has a higher fitness) against the expected strategy com-
bination of the opponents than the mutant strategy and this has to hold for all possible
mutant strategies. If in a dynamic framework the difference in the fitness of a mutant
strategy and the average fitness measures how fast the use of a mutant strategy will grow
or decline in the population, then the ESS condition expresses the idea that the use of
any mutant strategy will die out over time. In the above definitions we assume that there

exists for each ¢ an gy such that the stability conditions hold for each

For a neutral evolutionarily stable strategy the strict inequality (3.1) is replaced by the
weak inequality (3.2). This can be equivalently expressed as: A strategy ¢ is neutral

evolutionarily stable if the weak inequality

E (p, v ) < E (007 (3.4)

is satisfied for all ¢ € ® and sufficiently small . If a small part of the population switches
in the scenario sketched above to a mutant strategy v satisfying (3.4) with equality then
the use of this strategy would not spread, but would also not decrease. If every once in
a while a part of the population would “mutate” to use this mutant strategy then there

might be a drift towards a distribution of strategies where a large majority of players use

"Evolutionarily stable sets are often defined without assuming a unifom invasion barrier. In the cases

we study the two definitions are equivalent.
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the mutant strategy. This could lead to a distribution of strategies that would no longer
be stable.

An evolutionarily stable set is by definition a set of neutral evolutionarily stable strate-
gies. However, the population could “drift” only from one strategy in the evolutionarily
stable set to another strategy that is again neutral evolutionarily stable. The definition
of an evolutionarily stable set expresses this property in a circular manner.

The neighborhoods appearing in the definition of an evolutionarily stable set may
vary in size with the strategies in the set. If the set would not be required to be
it could happen that the neighborhoods could shrink in size along the set and vanish to
a point at a limit point which would no longer have to be neutral evolutionarily stable.
The closedness requirement excludes the possibility that there are strategies arbitrarily

nearby to the set from which the evolutionary process would lead away from the set.

For symmetric bimatrix games the notion of an ESS ¢ is often introduced using an
equilibrium and a stability condition (see, e.g., van Damme [35], Definition 9.1.1). For
games with arbitrary numbers of players one is led to a chain of conditions that will now
be described. We will however see that these lexicographic conditions are only necessary,
not sufficient for evolutionarily stable sets in games with more than three players because
they do not yield uniform invasion barriers.

For ¢, 1, x € ® let n(x, ¢,v) denote the vector of payoffs

n06e¥) = (E (6™ ) E(x¢™ 2 xv),..., E(x,¥" ")) e R™ (3.5)

These are the payoffs from using the strategy y when all opponents play ¢, when one of
them uses the “mutant strategy” 1, when two opponents switch to the “mutant strategy”
etc. In the above monomorphic scenario the case where all opponents use the original
strategy is most likely and the resulting payoff the most important one, the case where one
opponent uses the mutant strategy is less likely and the resulting payoff is less important
and so on. To express this we can use the lexicographic ordering “>;” on R™ defined by
(1, Zm) >1 (W1, Ym) f 21 =y1, ..., k1 = yr_1 and zy, > y;, for some 1 < k < m.
The following lexicographic condition is useful when determining evolutionarily stable
strategies. As is well known, the lexicographic condtions imply evolutionary stability in

symmetric bimatrix games.

Proposition 3.3. If strategy ¢ of a symmetric game is evolutionarily stable then

n (W, @, ) <pn (e, e,v) (3.6)

for all strategies ¢ # 1 € ®.
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For neutral evolutionarily stable strategies and for ESSets we obtain similar necessary

conditions. For bimatrix games the following result is in essence due to Thomas [32]:

Proposition 3.4. i) If a strategy ¢ € ® is neutral evolutionarily stable then

n W, 0,0) < n(p, e, ¥) (3.7)

holds for every v € ®. For a bimatrix game also the converse is true.
ii) If a set R C ® is evolutionarily stable then (3.7) holds for all p € R and ¢ € ®
whereby equality implies that 1» € R. In a bimatrix game also the converse statement is

true.

The results implies in particular that every neutral evolutionarily stable strategy ¢ is
a symmetric Nash equilibrium strategy, i.e., ™ is a Nash equilibrium.

The converse in Proposition 3.4 does not have to hold for games with more than two
players, as the following symmetric 3 x 3 x 3-game shows: The payoff is defined by the

tri-linear form

E (1,92, v%3) := p1p2qs + p1@2ps — ¢1(q2 + ¢3)(p1 + 1 + 71)

for ¢; := (pj,q;,7;) with p;,q;,7; > 0 and p; +¢;+r; = 1. (p1+¢1+r1 = 1 appears in the
payoff function only to make it tri-linear.) ¢ = (1,0,0) satisfies (¢, p,¥) <r n(p, @, 1)
for all ¢»: We have E (¢, 1,13) = 0 for all 45, 13. For all ) = (p, q,r) we have E (1, p?) =
0, E (v, p,7v) = —¢* which is strictly negative for ¢ > 0, and E (¢,%?) = 2(p* — q)q,
which is 0 for ¢ = 0. But ¢ is not neutral evolutionarily stable. We can find strategies
¥ = (p, q,r) arbitrary close to ¢ with p? = 2¢ and hence E (¢, 1?) = 0 < 4¢*> = E (¢, 9?).
The “trick” is here that the quadric curve ¢ = p? is tangential in ¢ to the line ¢ = 0.
One can similarly construct a game with five players where the line ¢ = 0 satisfies the

conditions in part ii) of Proposition 3.4 but is not an evolutionarily stable set because
E (4, 4" =2(00* = 9)(p* — 2q)q.

To describe the geometric structure of ESSets we call a subset L C & a linear subset if
it is the intersection of ® with the set of solutions to a linear system of equations. We

obtain the following generalization of a result by Cressman [6] (see also Cressman [8]):
Proposition 3.5. An evolutionarily stable set is a finite union of linear subsets.

Cressman shows for the bimatrix case that an ESSet can intersect the interior of a
face in at most one linear subset. This is no longer true for games with more than two

players.
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We will finally describe a first relation between strictness and eyglutionarv stability. In
the example most often used to illustrate evolutionary stability, the hawk- and dove game
(Maynard-Smith and Price [18]), the unique evolutionarily stable strategy ¢ is completely
mixed and hence ¢ is not a symmetric strict equilibrium strategy, i.e., ¢™ is not a strict
equilibrium point. But conversely, if ¢ is a symmetric strict equilibrium strategy then ¢

is an evolutionarily stable strategy. More generally we have:

Proposition 3.6. The set of symmetric equilibrium strategies in a strict equilibrium set

of a symmetric game is either empty or an evolutionarily stable set.

For symmetric bimatrix games the result is easy to prove since we can use the lexi-
cographic conditions: Suppose ¢ is a strategy for which (¢, ¢) is in a strict equilibrium
set. The equilibrium condition, E (¢, ¢) < E (¢, ) for all ¥ € &, is then automatically
satisfied. If equality holds here then (1), ) is in the given strict equilibrium set and there-
fore ¢ is a best reply to ¢. Hence the stability condition E (¢,v) < E (p,) is satisfied.
If we have equality also here, then (¢,%) is in the given SESet, i.e., ¥ is a symmetric
equilibrium strategy.

Since the lexicographic condition is not sufficient for games with more than two players

the general proof is quite tedious and based on the Taylor expansion of the payoff difference

E (djaw;n_l) - E(@’¢;n_1)

4. Asymmetric Contests

In many conflicts between two or more animals of the same species the animals may
have different information available on which they can condition their behavior. For
instance one animal might be the owner of a territory and one may be an intruder. The
animals might behave differently in the two roles. Still we can think of the conflict as
a symmetric game with additional structure insofar as ex ante both animals might have
the same probability of being assigned one of the two roles. The framework discussed
here to describe asymmetric contests is — apart from some minor modifications — the one
introduced in Selten [25]. It is not the most general model because the information on
which the players can condition their behavior may not concern past strategic choices of
an opponent. To allow for this possibility one would have to consider — as in Selten [26],

[27] — symmetric games in extensive form.

An asymmetric contest A consists of a list

<M7 Na (Si)ieN ) Hapv (%) jEM>

heH

satisfying certain symmetry conditions to be introduced below. Hereby
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— M :={1,...,m} is a finite set of players.
— N :={1,---,n} is a finite set of roles or information situations for the players.
— S; describes the finite set of actions available to a player if he is assigned role i € N.®
— H C NM is a set of possible role assignments. A role assignment is a map h: M — N
that assigns to each player 5 € M his role ¢ € N in the contest. When convenient we
will denote a role assignment also as a m-tuple (i, --,4,,). We assume that each role i is
assigned by at least one role assignment, i.e., there exist j € M and h € H with h (j) = i.
— p is a probability measure on the set of possible role assignments H describing the
probability by which an initial chance move will select an assignment. We assume p (h) > 0
for each h € H.
— r{l is a conditional payoff function

r{l : H Swiin — R

j'eM

that specifies for player 5 € M his payoff if the chance move selects the role assignment

h € H and each player j' chooses then, conditional on his role, an action sp(jry € Sh(jr).

The following symmetry conditions must hold for each permutation = € II (M) of the
players:

— If h € H then also how € H and p(h) = p(h o). In particular, if the chance move
assigns with a certain probability player j; to the role ¢; and player js to the role i5 then
the chance move assigns with equal probability player j; to the role i3 and player j, to
the role ;.

— For j € N, h € H and (sh(l), e ,sh(m)> € ILjen Sh(j) We require

T’;{(j) <8h(1)’ e ,Sh(m)> = rioﬂ (zsh(7r(1))7 . Sh(n(m))) .

This condition ensures that the payoff of a player depends only on his and his opponents

conditional choices of actions and not on the identity of the players.

A pure strategy of a player in the asymmetric contest selects one action for each possible
role. Thus the set of pure strategies for each player j € M is

iEN

Let § = <(sj >,€N> be a pure strategy combination. We define the total (expected)
v JEM
payoff for player j € M as

Ej (g) = Z p (h) ) r{L (Slll(l)’ e ,SZl(m)) :
heH

8] use these notation because they will not lead to confusion with the one introduced for normal form
games.
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By construction the asymmetric contest A defines a symmetric normal form game G (A)
with strategy set S and payoff functions Fi, ..., E,. As usual we will denote the set of
mixed strategies by ® := A(S) and set £ := E;. When we talk about an evolution-
arily stable set of the asymmetric contest we mean an evolutionarily stable set of the

corresponding normal form game G (A) etc.

In addition behavioral strategies can be introduced. A behavioral strategy assigns to each
possible role a probability mixture over the set of actions available in that role, called a
local strategy. If we denote by ¥; := A (S;) the set of local strategies for role i € N, then
a behavioral strategy is an element of X := [];,cy ;. By calculating expected payoffs the
payoff functions extend to E; : ¥ —RR.

With each mixed strategy ¢ € ® we can associate a local strategy for each role i € N

by calculating the marginal probabilities

proj; (¢) (s;) := Z ¢ (s_4,8;) for s; € S;.
5_i€8_;
Hence we obtain a linear, surjective mapping from the set of mixed strategies to the set of
behavioral strategies defined by proj (¢) := (proj; (¢)),cn- We denote the projection from
mixed strategy combinations to behavioral strategy combinations by proj™ : ™ — ¥™.
Instead of using mixed strategies one can define evolutionarily stable strategies etc.
directly in terms of behavioral strategies. To distinguish, the resulting concepts are called

direct evolutionarily stable strategies and so on. For instance:

Definition 4.1. A direct evolutionarily stable set P is a closed non-empty set of

behavioral strategies ¢ € ¥ for which there is a neighborhood U (o) such that

E (T, O'm_1> <FE (a, O'm_l) (4.1)

holds for all T € U (o) whereby equality in (4.1) implies T € P.
A direct strict equilibrium set R is a non-empty set of behavioral strategy combi-
nations ¢ € X™ such that for all T € 3

E(#\r) < E () (42)
whereby equality in (2.1) implies G\7 € R.

If there are at least two actions available for each role and there are at least two players
then the set of mixed strategies has a higher dimension than the set of behavioral strate-
gies. van Damme [35] discusses an example where the additional information available to

the players is redundant for the strategic conflict (all players know whether the weather
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is good or bad) and where a unique direct evolutionarily stable strategy o exists while no
evolutionarily stable strategy exists (see Schlag [24] for further discussions on this issue).
No such “spurious duplication problem” occurs for evolutionarily stable sets, neutral evo-
lutionarily stable strategies or strict equilibrium sets. In van Damme’s example proj ~(o)

is a continuum of payoff-equivalent strategies forming an evolutionarily stable set.

To compare sets of solutions in one set with those of another set we will use the following
terminology: Let f : X — Y be a function between two sets. Let A be a set of subsets in
X and let B be a set of subsets of Y. We say that the sets in A correspond via f to the
sets in B if f induces a bijection between the sets, i.e., if the image of each set in A is a
set in B and if conversely every set in A is the preimage of a set in B.

We obtain the following invariance results:

Proposition 4.2. For an asymmetric conflict the following holds: A mixed strategy is
neutral evolutionarily stable if and only if it is mapped by the projection proj onto a
direct neutral evolutionarily stable strategy. Evolutionarily stable sets correspond via
the projection proj to the direct evolutionarily stable sets. The strict equilibrium sets

correspond via proj™ to the direct strict equilibrium sets.

5. Truly Asymmetric Contests

A truly asymmetric contest is a contest satisfying the condition of role asymmetry, i.e.,
a player never meets in the contest an opponent in the same role. Under this condition
we can associate a new normal form game with the asymmetric contest describing the
conflict from an interim perspective. It turns out that the direct evolutionarily stable sets
of the truly asymmetric contest are identical with the strict equilibrium sets of this new
game.

Thus an asymmetric contest A as defined in the previous section is truly asymmetric if
it holds for any two different players 71, jo € M and every possible role assignment h € H
that h(j1) # h(j2). The number of roles must then be at least as large as the number of
players.

With a truly asymmetric contest A we associate now a new normal form game I" (A),
called the agent representation of the truly asymmetric contest, where the set of players
— called agents to distinguish — is identified with the set of roles N = {1,---,n}.° The

set of strategies for each agent ¢ is the set of choices S;. His payoff function u; : S —R is

9This game is not the agent normal form because we do not have an agent for each information

situation and each player.
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defined by
Uj (S) = Z p (h) : Irfll <8h(1)7 SR Sh(m)) (51)

h()i
for a strategy combination s € S. Thus the payoff of agent ¢ is the payoff player 1 expects
from being in role i. Since the contest is truly asymmetric the identity (5.1) also yields
the expected payoffs for an agent when mixed strategies in the agent representation (=

local strategies in the asymmetric contest) are used, i.e., for all 0 € ¥

u; (o) := Z p(h) -1} <0h(1), . ,O'h(m)> )

heH
h(1)=i

For 0,7 € ¥ we obtain the following relation between the payoff functions for the truly

asymmetric contest and the payoff functions for its agent representation:

E(r,0™ 1)

_ 1
= zg\/ h;q b (h) “Th (Th(l)’ah(2)’ T ’Uh(m)) (5'2)
h(1)=4

=Y u;(o\r).

1EN

The central result in this paper is:

Proposition 5.1. A set of behavioral strategies in a truly asymmetric contest is a direct
evolutionarily stable set if and only if it is a strict equilibrium set in the corresponding

agent representation.

The relation (5.2) is easily seen to imply that a pure strategy is a symmetric equilib-
rium strategy if and only if it is a strict equilibrium point in the agent representation.

Proposition 5.1 implies therefore:

Proposition 5.2. (Selten [25]) A behavioral strategy in a truly asymmetric contest is
a direct evolutionarily stable strategy if and only if it is a strict symmetric equilibrium

strategy.

Let me show why a direct evolutionarily stable set P C X of the truly asymmetric
contest is a strict equilibrium set of the agent representation. Let o € P and let 7;, be
a strategy of an agent 7y in the agent representation. Suppose in a population originally
playing o a small fraction of players switches to playing the mutant strategy o\7;,. We
know that o\7;, can make at most the same payoff against the average strategy combi-
nation of the population as ¢ and if it makes the same payoff then o\7;, belongs to the

evolutionarily stable set. To compare the payoffs a player makes with these two strategies
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we only have to compare the payoffs if the player is given role i since the two strategies
o and o\7;, agree for all other roles. But if the player is in role iy, then all opponents
will be in other roles where the two strategies agree. Therefore both strategies will make
the same payoff against the average strategy combination if and only if they make the
same payoff against c™~! which can happen only if 7;, is a best reply to ¢ in the agent

representation. Formally: We have for all sufficiently small ¢ > 0:

E(0\Tiy, (1 =)o +e(0\7,))" ") < E(0, (1 — €)o + e(o\73,))™ )
& uip(0\7) + z’e]z\f:\io ui(o\((1 = €)ai, + (7))
< uip(0) + ie%\i ui(o\((1 — €)oi, + (7))

< U, (U\Tio) < Usg (O’)

Thus w;,(0\7;,) < u;,(0) whereby equality implies o\7;, € P.
For the converse we need two more results. The proof must therefore be deferred to
the end of Section 6.

6. Normal Form Games as Truly Asymmetric Contests

We started out by considering arbitrary normal form games. Then we considered as special
cases symmetric normal form games, asymmetric and truly asymmetric contests. In this
section we return to arbitrary normal form games. Via a symmetrization we construct
for each normal form a truly asymmetric contest who’s agent representation is the given
normal form game.

Consider for example the game of chess as a normal form game. Chess is an asymmetric
game because the player with the white figures moves first. But if we add a random move
in the beginning deciding which player has to move which figures we obtain a symmetric
game where a strategy of a player has to describe what he will do if he has to move the
white figures and what he will do if he has to move the black figures.

So we consider a normal form game I' with the set of players N := {1,---,n}, sets
of pure strategies S; and payoff functions u; : S — IR for each player ¢ € N. The
symmetrization of T is an asymmetric contest A with the same set of players. Each player
can be in one of the roles 7 = 1, -, n where he has the set S; of actions available. The set
of possible role assignments is the set of all permutations II (N) where each permutation

has equal probabilities. The conditional payoffs are

Ti;'(s'/r(l)v S Sw(n)) =N Ug(y) (317 S Sn) :
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One checks immediately that the agent representation of the symmetrization is indeed

the given normal form game I'.

We had seen in Section 3 that in a symmetric normal form game the set of strategies
that yield symmetric Nash equilibria in a strict equilibrium set is either empty or an
evolutionarily stable set. The results in Sections 4 and 5 imply that in a truly asymmetric
contest the evolutionarily stable sets are behaviorally equivalent to the strict equilibrium
sets of the agent representation. But this is not the converse to the previous statement
and indeed for arbitrary truly asymmetric contests the converse is not true. If, however, a
symmetric normal form game is obtained via the symmetrization of an arbitrary normal
form game, then the converse holds.

A counter-example is provided in Figure 6.1: The game has two players, three roles and
three actions for each role. If a player is chosen to be in a certain role he only knows that
his opponent is in a different role but not which of the two remaining roles are assigned
to his opponent. Thus the role assignment is H = {(i1,j2) 1,5 € {1,2,3},7 # j} where
each assignment has equal probabilities. The payoffs for the different roles are defined
symmetrically. Figure 6.1 yields the payoffs for role ¢+ when the opponent is in role j or k
({i,j.k} = {1,2,3}).

One checks immediately that the set of behavioral strategies where a player chooses
the r-action in two roles and mixes arbitrarily between the r- and the s-choice in the
remaining role is a strict equilibrium set in the agent representation and hence — as we
are going to prove — a direct evolutionarily stable set in the asymmetric contest. But
((r1,72,73), (r1,72,73)) cannot be in a direct strict equilibrium set for the asymmetric con-
test: (s1, S2, 83) is a best reply to (11, 72, r3) because the s-action is optimal if the opponent
chooses in both possible opposing roles the r-action. Hence ((r1,72,73), (81, S2, $3)) would
have to be in the set. But the latter would not be a Nash equilibrium: The t-action yields
in each given role a higher payoff than the r- or s-action if the opponent uses in both
possible opposing roles the s-action.

In the example there were more roles than players. If the number of roles equals the

number of players we have:

Proposition 6.1. Every strict equilibrium set of a normal form game is the set of sym-

metric equilibrium strategies of some direct strict equilibrium set of the symmetrization.

To prove the result we will take a strict equilibrium set P C X in a normal form game

and show that those strategies
((69)y) e
iEN jJEN
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Role j Role £

T; S; t; Tk Sk i

ri | 2 2 0 2 2 0

Role#: s; | 2 ] 0 | 0 2 [ 0] 0
t; 0 3 0 0 3 0

Figure 6.1: A truly asymmetric contest where the strategies in an evolutionarily stable

set are not the symmetric Nash equilibrium strategies of a strict equilibrium set

in the symmetrization which satisfy

(afrl()l), .. ,a(n))) eP

m(n

for all permutations m € I (N) form a direct strict equilibrium set (see Appendix).

Suppose A is a truly asymmetric contest with the set of players M = {1,---,m} and roles
N = {1,---,n} and let T'(A) be its agent representation as defined in Section 5. The
symmetrization A’ of the agent representation I" (A) yields a new truly asymmetric contest
with payoff function denoted by E’. Both A and A’ have the same sets of behavioral
strategies X, which is also the set of strategy combinations of I' (A). For all behavioral
strategies o, 7 € ¥ we have
E' (7’, a"*1> => ui(o\n)=F (T, 0’"71)
iEN

which immediately implies:

Lemma 6.2. The direct evolutionarily stable sets of A and A’ are the same.

Proof of Proposition 5.1, second part Now let P be a strict equilibrium set of the
agent representation I' (A). By Proposition 6.1 P is the set of symmetric equilibrium
strategies in some direct strict equilibrium set R of the symmetrization A’. Propositions
4.2 and 3.6 imply that the set of symmetric equilibrium strategies in R — which is P — is
a direct evolutionarily stable set of the symmetrization A’. By the previous lemma P is
also a direct evolutionarily stable set of the original truly asymmetric contest A, which
had to be shown.

26



7. The Replicator Dynamic with Inheritance of Mixed Strategies

in Continuous Time

Taylor and Jonker [31] introduced for a symmetric normal form game G the (pure strategy)
replicator dynamic in continuous time. This is the vectorfield ¢ defined on the simplex

of mixed strategies ® by
() =0 () [E(f.em ") = E (o™ )] (7.1)

¢ (f) is interpreted here as the fraction of players in a very large population playing the
pure strategy f. It is assumed that the use of a strategy grows in proportion to the fitness
of this strategy (i.e., in proportion to the difference between the expected payoff of a player
using this strategy when playing against randomly selected members of the population and
the average expected payoff E (¢, ™™ 1) for the population). Taylor and Jonker [31] and
Zeeman [37] showed that an evolutionarily stable strategy is an asymptotically stable fixed
point of this dynamic. Thomas [32] gave an extension of this result for evolutionarily stable
sets. In both cases evolutionary stability is only sufficient, not necessary for asymptotic
stability. The situation changes if one allows for mixed strategies to be inherited. Then
the asymptotic stability implies evolutionary stability. This will be made precise here
for evolutionarily stable sets (for evolutionarily stable strategies see, e.g., Weissing [36],
Robson [20] or Cressman [8]). Our result for evolutionarily stable sets differs from the
one in Cressman [7] insofar as we discuss the asymptotic stability directly on the space
of probability measures over mixed strategies and not via the induced trajectories for the

mean strategies. Another difference is of course that we allow for more than two players.

Let G be a symmetric game.
We denote by d, the Dirac distribution, i.e, the probability measure on ® with é, (B) =
1 & ¢ € B for every (measurable) set B C ®. A probability measure on ® with finite

support can then be written as

m = ZM(‘P)&&

ped
with only finitely many coefficients i () being different from 0. () is interpreted as
the proportion of players using the mixed strategy in an infinite population.
Let A (®) denote the set of all probability measures on ® with finite support. We

have a surjective projection
pr: A (D) — P
Ypca b (9) 0 = Tpca () @

When p describes the distribution of strategies in the population, then proj (u) describes
the “average strategy” used by the population. The payoff function extends for ji =
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B = Y (f[wf)(so(“))E(@)=E(pr<m><m)

F=(eM),...,p(m))e@m

(m) () := (4)
where pr "™ (fi) := (pr <,u J ))jGM.
The replicator dynamic with inheritance of mixed strategies in continuos

time can now be defined as the vectorfield

() = () [E (dpn™ ) = B (u™)]. (7.2)

For given u the vectorfield can be thought of as being defined on the finite dimensional
simplex A (T') where T is the support of . This holds because the vectorfield induced on
A (T') coincides with the replicator dynamic where only pure strategies can be inherited
for the symmetric game with pure strategy set 1" and the payoff function Ejrm : T™ —IR.
In particular there is a unique solution p; (—oo < t < 00) to the differential equation (7.2)
with gy = p describing how the use of strategies evolves over time. Furthermore the sup-
port of each p; of the trajectory through pg is T'. The replicator dynamic in pure strategies
coincides with the dynamic induced by (7.2) on the set A (T) = A ({55f|f € F}) It is
important that also the “monomorphic” situation underlying the motivation in Section
3, where most players use a strategy ¢ and a small proportion switches to using a mu-
tant strategy v, is covered. This case emerges when we consider the dynamic on the set
A(T) = A ({6,,50}).

A (®) can be thought of as the “collection” of all mixed strategy models that can be
constructed from G. In contrast to , e.g., Thomas [33] we will discuss stability not for any
particular mixed strategy model generated by finitely many mixed strategies but allow
for mutations from “outside” any such set. This avoids the problems due to non-generic
choices of mixed strategy models discussed in Thomas [33].

In order to discuss stability properties we have to fix a topology on A (®). We will
work here with the topology defined by the norm

[l = w|| = max|u () — 1’ () |-
ped

pu € A(P) is a locally stable fixed point of the replicator dynamic if every neigh-
borhood of p contains some neighborhood V' () such that every trajectory {u;} starting
inp €V (n (ie., po = ') remains in V (p) (i.e., uy € V (u) for t > 0).

A subset P C A (®) is locally asymptotically stable if there exists a neighborhood
U (P) of the set such that for every neighborhood V (P) of P all trajectories starting in
U (P) arrive in V (P) in finite time and then remain in V (P).
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Let me call for brevity a subset P’ C A (®) a stationary attractor if P’ is a non-
cpmtin closed and locally asymptotically stable set and each p € P’ is a locally stable
fixed point.

We obtain the following dynamic interpretation of evolutionarily stable sets:

Proposition 7.1. The stationary attractors of the replicator dynamic in continuous time
with inheritance of mixed strategies correspond via the projection pr to the evolutionarily

stable sets of the symmetric game.

That the preimage of an ESSet is a stationary attractor is proved using the arguments
by which Thomas [32] showed that an ESSet is a stationary attractor of the replicator
dynamic with pure strategies. It is crucial that Zeeman’s Lyapunov function used in the
proof defines open neighborhoods in the norm topology of A (®). For the converse we
show first that with any probability distribution in the stationary attractor also the Dirac
distribution of its average strategy is in the stationary attractor. We can then use the

monomorphic scenarios to show the evolutionary stability of the image of the attractor.

8. The Replicator Dynamic for Conflicts Between Several Dis-

tinct Species.

In the previous section we gave a dynamic interpretation of evolutionarily stable sets
in symmetric games. This implies indirectly, via truly asymmetric contests, a dynamic
interpretation of strict equilibrium sets for arbitrary normal form games.

For any normal form game I' (we continue use the notations of the previous sections)
we can also study directly a replicator dynamic for conflicts between different species
represented by the different players of the normal form game as, e.g., in Samuelson and
Zhang [23]. For the case of pure strategies this is the vectorfield defined for (oy,...,0,) €

Y. by 6 = (d1,...,0,) where

Gi(si) == 0i (si) - [ui (0\5:) — wi (0)] (8.1)

for s; € S; and 2 € N.
Suppose now that I' = I' (A) is the agent representation of some truly asymmetric

contest A. Then we have the replicator dynamic for a single species of the symmetric
normal form G (A). It is defined for p € & = A (S) by

p(s)=@(s) [E(s,0™") = E(¢™)] (8.2)
for s € S.
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To obtain a link between these two dynamics we consider strategy combinations in X

as uncorrelated probability distributions on S, i.e., we look at the embedding

L:E:HA(S,-)—HI):A(HS,-)

iEN ieN
where ¢ = ¢ (04,...,0,) is defined by
@ (s1,...82) == [[ o (s0)
ieN

for (s1,...,8,) € S. Consider as an example a 2 X 2-normal form game. Here the set
of mixed strategies of each player correponds to the unit interval and hence the set of
strategy combinations is a square. If we symmetrize the game we obtain a 4 x 4-game
where the set of mixed strategies of a player is described by a tetrahedron. ¢ maps the
square onto a non-linear surface in the tetrahedron. We claim now that a trajectory of
(8.1) in the square is mapped onto a trajectory of (8.2) in the tetrahedron. In particular

we claim that a trajectory of (8.2) which starts on the surface remains on this surface.

Proposition 8.1. The image of a trajectory of the dynamic (8.1) under the embedding
L is a trajectory of the dynamic (8.2).

Since the image of ¢ is a proper submanifold of ® there are many trajectories of the
dynamic (8.2) we do not consider when looking at the dynamic (8.1). We will see, however,
that as far as the stability properties of strict equilibrium sets are concerned this difference

does not matter.

To compare the corresponding dynamics for distributions with finite support over mixed

strategies we distinguish:

1. The set of distributions over mized strategies A (®) in the symmetric normal form

G (A) with the dynamic (7.2) specified in the preceding section.

2. The set of distributions over behavioral strategies A (X) of the truly asymmetric
contest A with the dynamic defined for each p € A (X) and o0 € ¥ by

p(o) = p(o) [E(0,nm ") = E (um )] (8.3)
3. The set of combinations of distributions over mixed strategies

A (Z) =[] A(Z)
ieN
for the normal form game I'(A) with the dynamic defined for p = (p);cn €
[Tien A (%) by
fii (03) = pi(04) - [ui (1\0g) — ws ()] - (8.4)
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Here the payoff functions are canonically extended.
If we denote by ¢/ : A*(X) — A(X) the embedding that maps (u1,..., u,) onto
V=>4,V (0) -6, with

v(oy,...,0n) = H i (o)

iEN
the above proposition extends to:

Proposition 8.2. The image of a trajectory of the dynamic (8.4) under the embedding
/' is a trajectory of the dynamic (8.3).

To compare the various stationary attractors (defined using norm topologies as in the

previous section) we use projections as indicated in the commutative diagram

P proj 3 id >

6 6 6
pr pr' pr”
A@)——=— A(Z)———= AX(Y) (8.5)

proj’ proj"

Here proj : ® — ¥ maps onto the marginal distributions (see Section 4). It induces the
projection
proj’ : A (D) — A(X)
Ypca 1t (0) 0y > Eoea 1(#)0proj(e)

for which we have:

Proposition 8.3. The image of a trajectory of the dynamic (7.2) under the projection
proj’ is a trajectory of the dynamic (8.3).

proj” is also obtained by taking the marginal distribution. The mappings pr’ and pr”
onto (combinations of) average strategies are constructed in analogy to pr in the previous

section. We summarize our findings in:

Proposition 8.4. The stationary attractors of the dynamic (7.2) correspond via pr to
the evolutionarily stable sets in .

The stationary attractors of the dynamic (8.3) and (8.4) correspond via pr' respectively
pr” to the strict equilibrium sets in 3.

The stationary attractors of the dynamic (7.2) correspond via proj’ to those of the

dynamic (8.3) and the latter via proj” to those of the dynamic (8.4).

The first statement in the proposition restates our result from the previous section.
Then the invariance (Proposition 4.2) and Proposition 8.3 imply that the stationary at-

tractors of the dynamic (8.3) correspond to the direct evolutionarily stable sets. Our main
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result, Proposition 5.1, together with Proposition 8.1 yields then that the preimage of an
SESet under pr” is a stationary attractor of the dynamic (8.4). The converse follows as
in the previous section: It is first shown that with every combination of probability distri-
butions in a stationary attractor of (8.4) also the combination of the Dirac distributions
of the mean strategies belong to the attractor. Then one can use monomorphic scenarios
where only one population mutates to deduce that the preimage of the attractor is an
SESet (see Appendix).

A. Proofs

Proofs for Section 2

Proof of Proposition 2.2 Let o be a strategy combination in the SESet and hence a Nash
equilibrium. Then every strategy combination 7 with supp (7;) C supp (o;) for i € N is first of
all a best reply against o. It is also contained in the SESet: Suppose (11,...,7i—1,0,...0p)
with 1 < ¢ < n is in the SESet (which is true for i = 1). Because supp (7;) C supp (o;) the
strategy 7; is a best reply to this strategy combination and hence (71,...,Ti—1, Ti, Oit1, .. .0n) s
also in the SESet. It follows by induction that 7 is in the SESet. To prove that o is a best reply
against 7 we take a sequence (Tk> with supp (7’{“) = supp (0;) converging to 7. Because o is a
best reply to each 7% (which is an element of the SESet) and the best reply correspondence is
upper-hemi continuous it is also a best reply against 7. Thus with every strategy combination
o in the SESet the Cartesian product [];cn A (supp (0;)) is a commuting set of Nash equilibria
contained in the SESet. W

Proof of Proposition 2.3 Let IT = [[;,cy A (P;) be a maximal Cartesian product of faces
in the SESet. We have just seen that for any o, 7 € II with supp (0;) = P; for i € N 7 is a best
reply to o. Suppose that p is an arbitrary best reply to 0. Let 7; (i € N) be a mixed strategy
whose support is the union of the support of o; and p;. Since every pure strategy contained in
the support of o; and p; is a best reply to o, 7; is a also a best reply to o. Therefore o\7; is
in the SESet and the Cartesian product of faces generated by o\7; is contained in the SESet.
Since we have chosen IT maximal we obtain supp (p;) C supp (7;) = supp (0;) = P; for each ¢
and hence p € II.

Suppose II and II' are Cartesian products of faces contained in the SESet and that II is a
proper subset of II'. Let o be a strategy combination generating II and let ¢’ be a strategy

combination generating IT'. Then ¢’ is a best reply to ¢ but not contained in IT. B

Proof of Proposition 2.4 A trembling-hand perturbed game can be modelled either as a
game with restricted mixed strategy sets or as a game with the original strategy sets and special

perturbed payoff functions. We work here with the latter interpretation.
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A trembling-hand perturbation of the bimatrix game is specified by a vector

((e1,m1), (€2, 72))

where 0 < g; < 1 is the probability of a player ¢ € {1,2} to make an error and 7; € X; the strategy
chosen if he makes an error. We can assume that the error probabilities are so small that all
strategies of a player that are optimal against a pure strategy of his opponent in the perturbed
game are also best replies in the unperturbed game. Consider a pure strategy combination
(s1,82) in a strict equilibrium set R for which the payoff vector (uj (s1,72),u2 (71, s2)) is Pareto

efficient within the set
{(u1 (t1,72),u2 (T1,t2)) | (t1,t2) is a pure strategy combination in R} .

Then (s1,s2) is a Nash equilibrium in the perturbed game:

Otherwise we could find a pure strategy, say, t; of player 1 against se with
U1 (tl, (1 — 62)82 + 627’2) > uq (81, (1 — 62)82 + 627‘2) .

By the choice of the error probabilities ¢; is a best reply against ss in the unperturbed game.
Therefore the pure strategy combination (¢1,s2) is in the SESet and wj (t1,72) > uq (81, 72).
Consequently (u1 (s1,72),u2 (71, s2)) is not Pareto-efficient in the set mentioned above in con-
tradiction to the choice of (s1, s2). The claim follows because strict equilibrium sets depend only

on the reduced form of a normal form game. l

Proofs for Section 3

Proof of Lemma 3.2 For the norm ||¢) — ¢|| := maxscp [¢(f) — ¢(f)| the sets

Us={ye®|l[Y—oll <d}

form for vaying § > 0 a basis of neighborhoods of ¢. We have ||¢p. — ¢|| = €|[v — ¢|| < &
for all ¢ and hence V5 C Us. To prove that every Uy is for sufficiently small § contained in a
given V,, we note that every x € ® can be written in a unique way as a convex combination
X = ¥ = (1 — €)p + ey where 9 is on a face of ® that does not contain ¢. The union of
these faces is a compact set and the continuous function ||¢) — ¢|| is strictly positive on this set.
Hence there exists a constant a > 0 with ||t — ¢|| > « for all ¥ in this union. For ¢ := &g - a,
e = (1—¢)p+ep with ¢ in the union and |[¢). — || < d we obtain || —¢|| = ¢|| —¢|| < €0-a,
hence € < gg. Therefore Us C V,,. B

Proof of Proposition 3.3 Fix v € ®\{}. For fixed ¢ and 9 the inequality E(¢,%™!) <
E(p,™ 1) with 1. := (1 — &) + &9 is equivalent to
m—1

> (Z:f) (1= * 1 (B (00" x ) — B (0" xgF)) <0 (A1)

k=1
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Suppose for some k we have E(p, o™ I x )~ E(y, o™ Ixypl) =0forall1 <1 < k< m—1.
(This condition is void and hence true for k = 1.) If E(¢p, ™ =1 x k) — E(2h, o™ F=1 x op*) is
strictly positive, then the left hand side of (A.1) is strictly positive for all small €. If the difference
is strictly negative, the left hand side is strictly negative for all small . If the difference is equal
to 0, then we have to look at the difference E(yp, o™ * =2 x k1) — E(2p, o™ F=2 x op*+1) provided
E<m—1.Ifk=m—1then E(¢,((1 —€)p+ep)™ 1) = E(p, ((1 — &) + ep)™ 1) for all ¢.
Thus (3.6) is equivalent to (3.3) being true for all sufficiently small . Therefore an ESS has to
satisfy (3.6) for all p. W

Proof of Proposition 3.4 The first part of i) follows as in Proposition 3.3. The converse
for bimatrix games is Lemma 1 in Thomas [32].

To prove the first part of ii) let ¥ € ® and ¢ € R with n(1, p,%) = n(p, ¢,1). Hence
E(, ™ 1) = E(p,9™ 1) for all € > 0, where 1. := (1 — &) + e1p. Since R is evolutionarily
stable, 1. € R for all sufficiently small e. Let ¢’ be the supremum of all " satisfying 9. € R
for all ¢ < &”. Since R is closed 1. € R. Hence there exists a small neighborhood of 1. such
that for all x in this neighborhood E(x,x™ ') = E(¢,x™ !) implies x € R. If &’ < 1 we
would have for all € > &’ sufficiently close to &’ E(¢)., ™ 1) = E(3p.,4™ ). This would imply
E(, ™ 1) = E(be,%™ ') and hence 9. € R, contradicting our choice of ¢’. Therefore ¢ € R.

For the converse in bimatrix games we use first Lemma 1 in Thomas [32] to conclude that
R is a set of neutral evolutionarily stable strategies with the property that for all ¢ € R any %
is in R which lies in a sufficiently small neighborhood of ¢ and satisfies E(¢, 1) = E(p,%). To
show that R is a closed set let {¢} be a sequence in R converging to the strategy ¢. Selecting if
necessary a subsequence, we can assume that all strategies in the sequence have equal support.
Therefore ¢ is a best reply whenever one element in the sequence is. Since each element in the
sequence is a symmetric Nash equilibrium strategy we obtain E(g, ¢x) = E(pg, ¢k) for all ¢y.
Because each ¢y, is neutral evolutionarily stable E (g, ¢) > E(p, ¢) by part i) above. For every
1 € ® and every k we have E(¢, vi) < E(pk, ¢x) and, by taking the limit, E(¢, ) < E(p, ¢).
In particular we have for every k E(¢k, ¢) < E(p,¢). Therefore n(ek, ¢, ox) = n(e, ¢, ¢i) for
all £ which implies ¢ € R. Thus R is closed. W

Proof of Proposition 3.5 Let P C ® denote the ESSet.

i) By definition we can find for every ¢ € P an open neighborhood U (¢) such that for all
Y € U(p) E(p,9™ 1Y) > E(¥™) whereby equality implies 99 € P. It actually follows that
equality holds here if and only if ¢ is in the ESSet: We know that each ¢ € U(p)N P is a
symmetric Nash equilibrium strategy. Hence E (¢,9™ 1) > E (¢™) for such 9 and therefore

E (o, 9™ 1) = E (™).
ii) Suppose E (¢,9™!) = E (yy™) for some ¢ # 1) € U (¢). Then all strategies

Xe=(1—-¢€)-p+e-y (A.2)

in ® with € €RR belong to the ESSet:
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Since 9 is in the ESSet we have for all 0 < £ < 1 sufficiently close to 1 :

B (5 ) - B () =~ (-2 (B o) - B () <0

Since x. € U (¢) we obtain for all such e

E(ex2™) = B (xex? ) = (B (o) — B (p:x071)) <0

and therefore E (p, xX™ ') — E (x,x™ ') = 0. Thus the polynomial E (¢, x™ 1) — E (x,x™})
in ¢ is the 0-polynomial. Consequently, all x. that are in U (¢) are in the ESSet. Let £¢ be the
infimum of all € > 0 with x. ¢ ® or x. ¢ P. Since P is closed xg, is in the ESSet. Our argument
yields for all € slightly larger than ¢ that either x. € P, contradicting our assumption, or that
Xe ¢ ®. The symmetric argument for negative € proves the claim.

iii) The set of points in the ESSet P where P is locally an analytic submanifold is a dense
open subset of P consisting of finitely many path-connected components P, ..., P,.

To prove this we check first that P is a closed semi-algebraic set: Since P is compact there
exist finitely many ¢1,...,¢r € P with semi-algebraic neighborhoods U (¢,) covering P such
that by 1)

PNU (px) = {¢ €U (¢x) |E (cp,d)m‘l) = E(W)}-

Each PN U (pg) is therefore semi-algebraic. Hence P is as a finite union of semi-algebraic sets
itself semi-algebraic. It is well known (see, e.g., Hardt [10]) that every semi-algebraic set can
be described as a finite union of disjoint, pathwise connected analytic manifolds with nowhere
dense boundaries such that the following is satisfied: If one of these manifolds intersects the
closure of another one of these manifolds, then it is contained in the boundary of the latter. We
choose the Py as those manifolds not contained in any boundary.

iv) Let Py be one of the analytic submanifolds mentioned in the preceding paragraph and
denote by k) its dimension. We are going to construct inductively sequences of affine independent
points @g, ¥1, ..., Pk, k < k), and convex open neighborhoods ¢, € U (¢x) such that
— U (pr—1) 2 U (pg) for 0 < k <k,

— each U (p) satisfies

U(pe) NP =U () N Py = {9 €U (px) | B (s, 9™ ") = B (™) }. (A.3)

— the affine span Lof these points in ® is contained in P and its intersection with U (%)
equals the intersection of Py with U (py).

We start the sequence with an arbitrary point ¢g € P\ and a convex open neighborhood
U (o) satisfying (A.3). Suppose we have found a sequence g, ¢1,...,pr as desired. Suppose
U (pr) N P contains some point ¢k41 not in L’}\. By ii) P contains the line segment through ¢y
and ¢gy1. Since this line segment is contained in U (¢_1) P contains by ii) the triangle with
the vertices pg_1, pr and pg11. Proceeding inductively we find that Py contains the convex
hull of ¢g,..., ¢k, Yr+1. Now we take a point in the relative interior of this convex hull and

a sufficiently small neighborhood of this point. By ii) P contains the intersection of the line
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through this point and any sufficiently nearby point in the convex hull with ®. Hence the affine
hull of ¢, ..., @k, 1 intersected with ® is contained in P. Finally we choose a convex open
neighborhood U (¢k+1) of ¢rr1 in U (¢y) satisfying (A.3).

In this manner we extend our sequence until k equals the dimension k) of P\. Now we
cannot find a point in U (¢, ) N Py that is not in the affine hull Ly := L’;* of g, ..., ¢k, because
otherwise we could continue our construction in contradiction to Py having dimension k). Thus
U (¢r,) NPy =U (¢pr,) N Ly. Since Py is a path-connected analytic manifold we obtain, using
the identity theorem for analytic functions, U (@) N Px = U () N Ly and then Py C Ly N ®.
Furthermore Ly N ® C P. Since P is the closure of J,_; ;P and

U nc U Lxnecp
A=1,...,l A=1,...,0

we obtain P =Uy_; ;LyxN®. W

Proof of Proposition 3.6 Let R be a strict equilibrium set of the symmetric game.

We consider first special combinations of strategies: I will call a combination with k strategies
P®) = (4y,...,9) € B (1 < k < m) admissible (with respect to ) if for all subcombinations
™) of ) (ie., the combinations (Yr(1),...,¥xq) With 1 < 1 < k and 7 : {1,...,1 }—

{1,...,m} injective)

E(n(n), ™ x U0 ) = B, ™ x T ) (A4)

forall1 < A</

If (%) is admissible then it follows inductively that for every subcombination of 1™ of ¢(*)
of length 1 < ! < k the combination ¢™ ¢ x (t™) is in R: If ¢/(b™) contains only one component
,i.e., ™) = (¢h) for some 1 < k < k then (A.4) implies ¢! x (4™ € R. If we know for the
subcombination 1/1(1’”) of length 1 <[ < k that gom*l“ X uﬁ;’:&) € R for every 1 < X <[ then
(A.4) implies o™ ¢ x (&™) € R.

A combination ¥*) = (4y,... 1) € ®F is called critical (with respect to @) if every sub-

combination with strictly less components is admissible while for at least some 1 < k < k

E(e, " x ) £ E(p, 0™ x &),

If 4(¥) is a critical combination of length k, then we have for all 1 < k < k

E(, o™ x &)y < B(p, 0™ * x y*)). (A.5)

This follows because for all x ™ *+1 x ¢(_k,2 € R and hence

B, 0™ x ®)) < B(p, 0™ x ). (A.6)

If we had equality in (A.6) for some x then @™ % x ¥»*) € R and therefore we would have
equality in (A.6) for all k.
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Let T* C F* denote the set of all critical combinations in pure strategies of length k. Since

there are only finitely many critical k-tuples there exists a constant A > 0 such that
E(fur o™ x f8) < Blo, o™ F x £5)) - A (A7)

holds simultaneously for all 1 < k < m, all f*) = (fy,..., fr) € TF and all 1 < k < k.

It follows: Any k-tupel f(*) € F* of length at most m belongs to one of the following disjoint
categories: Either f(*) is admissible or f(*) is critical or f *) contains a critical subcombination
of strictly smaller length.

We have to show that for all ¢ € P there exists an g > 0 such that for all 0 < € < gg and
for all ¥ € ® the inequality E(¢, %™ 1) < E(p, 9™ 1) holds with 1. := (1 — &) + e whereby
equality implies ¢ € P.

I claim that the inequality

E(y, ¢ ) — E(p, 9 1) <

k
> ekl < r_llib(fK)) (-=™ kAt e pip,(e) - C)

1 (f1yeerfk)ETR

(A.8)

3

k

holds where T}, is the set of critical combinations in pure strategies of length k, A > 0 is the
constant we found above, C' > 0 is an upper bound on the difference between the payoffs resulting
from any two strategy combinations in the game and the p(s, fk)(s) are polynomials in € with
real coeflicients.

To prove the inequality we observe that

E(, ) — E(p, 9 71)
m—1

— (1 _ E)mfk:flek (E(’lﬁ, (pmfkfl X ’l/)k) _ E(QO, SOmfkfl x wk))

° k
S 3 (Lmgrhek <KT_[1¢(fn)) -

1 (f1yeesfre)EFF k=1

(E(fnagom_k—i_l X (fla .- 'afk)*.‘i) - E(‘P’(Pm_k—i_l X (fla- . -afk)fn)) .

(A.9)

NgER

k

For any admissible combination (fi, ..., fx) € F* the equalities (A.4) imply that all differences
in the payoffs and hence the whole sum for (fi,..., fx) vanishes in the last term of (A.9). If
(f1,---, fx) is critical, then each payoff difference appearing in the summand for (fi,..., fx) is

at most —A and hence the whole summand is at most

gk=1. <ﬁ 1p(fn)> (— (1—e)™* kA) .
k=1

If (f1,..., fr) belongs to none of these cases, then (fi, ..., fx) contains some critical combination
of smaller length, say (f1,..., f;) with [ < k. The payoff differences appearing in the summand

for (f1,..., fr) can be at most C. The summand can be at most

(1—g)mkekt (ﬁ @b(f,i)) k-C<el.e (ﬁ @b(f,i)) k-(1—eg)m k. C. (A.10)
k=1

k=1
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k-(1—¢&)™ " is a polynomial in & because m > k > 2. The expression on the right of (A.10)
is hence captured in the inequality (A.8) by the expression

k
gk-1. (H ¢(fn)> "€ D(frnfi)(€) - C
k=1

for the critical subcombination we picked. This proves the inequality (A.8).

We can choose finally €9 > 0 such that
—(1- s)mfk kA+e-p,.. 1)) C <0

holds for all 0 < ¢ < &g and for all critical combinations (f1, ..., fx). Consequently E (2,9 1) <
E(p,9™ 1) holds and equality implies that qu:l ¥(fx) # 0 only when (fi,..., fx) is admissible.
Therefore, if equality holds, we obtain for all 0 < k <m — 1

B, ™% x 9F) — B(p, o™ F x y¥)
k
(f1yee fr)EFE \K=1

(B (fur o™ % (froeeos fi)=n) = B (0,0™ 1 x (f1,, fi)=) ) = 0.

Hence it follows inductively that 1 x ™1 4% x ™72, ... 4™ are admissible with respect to
. We obtain in particular that ™ € R and therefore v € P. R

Proofs for Section 4

Proof of Proposition 4.2 The proof follows immediately from the following facts: i) For

each strategy combination ¢ € ®™ we have

E(¢) = E (proj™ (¢)).-

ii) The projection proj : & — ¥ is linear and continuous. It is open because it maps each
neighborhood {(1—¢)p+ep|p € €,0 < e < ep} of p € ® onto the neighborhood {(1—¢)o+eT|o €
Y,0<e<gp}of c =proj(p)ex. W

Proofs for Section 6

Proof of Proposition 6.1 Let P C X be a strict equilibrium set. We define R as the set of
all behavioral strategy combinations & = ((O’Zj )ieN)jen of the symmetrization with the property
that (Uf(l), e ,U;{(n)) is in P for all m# € II(N). P is clearly the set of symmetric equilibrium
strategies in R. Suppose for 7 € ¥ and ¢ = ((Uz(j))ieN)jeN €R

E(@G\7) > E(3).

Then

> (uw—l(j)((af(l), OB\ 1) — uw—l(]’)(af“), oo m)) > 0.
well(n)
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(n))

But since for each permutation 7 each (af(l), e, On is a Nash equilibrium in the original
game it follows that the above inequality can only be satisfied if 7;) is a best reply to the Nash
equilibrium (Jf(l), ... ,02(")) for each permutation 7w and hence (Uf(l), el a,’{("))\nr(j) eP. It

follows that &\7 € R. W

Proofs for Section 7

Some technical problems can be avoided in the following proof because for most arguments we

can restrict attention to finite dimensional subsets of A ().

Proof of Proposition 7.1 i) Let P C ® be an evolutionarily stable set and P’ = pr—! (P).
Since pr is continuous P’ is closed. For each p € P’ we can find a neighborhood U (pr (1))
such that E (™) < E (pr(u),¥™ ') for all ¢ € U (pr (u)), whereby equality implies ¢ € P.
U (1) == pr—! (U (pr(p))) is then a neighborhood of p with E (v™) < E (u,v™!) for all v €
U (1) whereby equality implies v € P’.

For € P’ denote by T' the support of yr. We define a function L, : A (®) =R by

L) =1-— H <1/(<p)>#(so)‘

ot K (9)

L,, depends only on the probabilities a probability measure assigns to the strategies in 7" and
is hence continuous in the norm topology. Straightforward computations show that L, satisfies
0<L,(v) <1forall v € A(®), that p is the unique minimum of the function with value 0
and that L, (v) = 1 if and only if v does not contain T in its support. Furthermore we can find
for each 6 > 0 an € > 0 such that L, () < e implies ||u — v|| < §: Otherwise one could find a
sequence e* > 0 converging to 0 and p* with ||u* — u|| > 6 and L, (uk) < gk, Since L, depends
only on the probabilities assigned to strategies in T, we can assume that each p* assigns positive
probability to at most one strategy not in 7' and that this strategy is the same for all ;*. Hence
all ¥ lie in the same compact subset of A(®). We can therefore find a subsequence converging
to some [ with ||z — p|| > 6. Continuity implies L, () = 0 in contradiction to p being the
unique minimum of L.

Thus the sets V; (1) := {Ly (v) < €} (¢ > 0) form a basis of neighborhoods of .

Each p € P’ is locally stable: Let U (i) be a neighborhood of p with E (v™) < E (u, ™ 1)
for all v € U (u) whereby equality implies v € P’. For every sufficiently small £ > 0 we have
Ve(p) € U (p) and T is contained in the support of each v € V. (u). For each v € V. () it
suffices to consider the restriction of the vectorfield (7.2) to the finite dimensional simplex A (T”),
where T is the support of v. The proof of Theorem 1 ii) in Thomas [32] — where L, (v) is used
as a Lyapunov function — shows that the trajectory starting in v remains in V; (u) N A (7).

It also follows from the proofs of Theorem 2 and Corollary 3 in Thomas [32] that each tra-
jectory starting in V (1) N A (T”) converges to a probability measure in V; (u) N P'. Selecting
for each p € P’ a neighborhood V; (i) as just described and taking the union of these neighbor-

hoods we obtain a neighborhood of P’ such that every trajectory starting in this neighborhood
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converges to a probability measure in P’. In particular P’ is locally asymptotically stable.

ii) Suppose P’ C A(®) is a local stationary attractor of the replicator dynamics (7.2).
Observe that every fixed point in a sufficiently small neighborhood of P’ must belong to P’
since P’ is locally asymptotically stable.

Fix any p € P’. Then also d, € P’ for ¢ := pr(u): We have for every 0 < ¢ < 1 and
pe := (1 — &)+ €dy,

E (8,4 7") = E(¢™) = E (u™).

Furthermore we obtain for each v in the support of u
E (6,107") = B (v,¢™1) = B(¢™) = B (uZ")

since  is a fixed point of (7.2). Hence . is also a fixed point of (7.2) for all 0 < e < 1. Since P’
is locally asymptotically stable u. € P’ for all sufficiently small €. Let & be the supremum of all
¢’ for which p. € P’ for all € < /. Since P’ is closed pus € P'. We obtain & = 1 since otherwise
there would be fixed points arbitrarily close to us not in P’, in contradiction to P’ being locally
asymptotically stable.

Hence P := pr (P') = pr (P') N {dy | € ®}.

We show next that every ¢ € P is a neutral evolutionarily stable strategy. Let

Veo (8p) = {n € A(®)] || = d,|| < eo}

be a neighborhood of §, such that every trajectory of (7.2) starting in this neighborhood remains
in this neighborhood and has only w-limit points in P’. For the neighborhood

UEO(W)={¢EE¢|¢E¢aOSESEO}

with 9. = (1 — €)p + €9 we have U, (¢) C pr(Vs, (0,)): We obtain for any ¢ # ¢ and
e 1= (1 _ 6)680 + 65#’ pr (/Jg) = ws and ||'u6 — 6&p|| = €||5¢ — 590” = ¢. Therefore

€< eg & e € Veo(0p) & Ve € Ugy ().

Now suppose that for some ¥. € U, () E (¥™) = E (¢,9™!). Then also E (¢, 1) =
E (p,™ 1) = E (p™). Therefore p, is a fixed point of (7.2) and hence in P’.

Suppose next that E (¥™) > E (p,9p™ 1) for some 9. € U, (¢) or equivalently that
E (¥, y™ 1) > E(p,y™ ). We note that the payoff difference E (¢,9™ 1) — E (p, 9™ 1)
is a polynomial in e for fixed ¢ and 1 with a zero at ¢ = 0. The assumption implies
that the polynomial is not the 0-polynomial and that there is a smallest £ < gg such that
E (¢, ™) — E (o, 1) <0forall 0 <e <¢and E (¢, 1) — E (p, ™ 1) > 0 for all
£ < e <¢ <egy Again g is a fixed point and hence in P’. But this leads to a contradiction
because pz cannot be locally stable: for all £ < ¢ < &’ < gq the trajectory starting in p. remains
on the line {y|0 < e < 1} and moves away from i in the direction of é,. Any e-neighborhood
of uz with 0 < ¢ < ¢’ — & contains therefore points from which the trajectory starting in this

point leaves the neighborhood.
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Thus every ¢ € P is a neutral evolutionarily stable strategy and furthermore E (¢) =
E (p,4™1) implies ¢ € P for all ¢ in a sufficiently small neighborhood of ¢.

It follows from the proof of part i) that pr=! (¢) is a set of locally stable fixed points of the
replicator dynamics. For any u € pr—! () the set

{(1—e)dp+eul0<e <1}

is therefore a set of fixed points of the replicator dynamics and hence pr=!(¢) C P’. Thus
P' =pr 1 (P).

pr maps the simplex A ({55 f e F}) generated by the pure strategies with the topology
induced from A (®) homeomorphically onto ® and maps the intersection of the two closed sets
P'n ({55f |f € F}) onto P. Hence P is closed, which completes the proof. W

Proofs for Section 7

Proofs of Propositions 8.1 and 8.2 A straightforward computation yields for y € A* (X)

and a tangential vector v = (v1,...,vy):

wNwwzzﬁm»Hmm)

ieN ji

For the tangential vector i = (fi1, ..., fin) of the vectorfield (8.4) it follows with v = ¢/ (i)

(dbiﬂ ('u')> ()= % <Mi (i) - [wi (p\Sar;) — wi (1)) - HZ Wi (O’j))

iEN j#
= I pi(o3) - (Z [ui (1\d;) — us (M)])
i€EN ieEN
—0(0) - [E (3, - B (v
=v (o)

where v is defined by the vectorfield (8.3). (8.3) satisfies as ordinary differential equation the
Lipschitz condition and hence our claim for ¢/ follows. The claim holds for ¢ since we can identify
¢ with ¢/ restricted to the convex hull of all (ds,,...,ds,) with (s1,...,s,) €S. R

Proofs of Proposition 8.3 Since proj’ is linear we have for u € A (®), v = proj (i) and £
defined by (7.2)

(dproji, () (¢) = proj’ (1) (o)

= .(Z): p(p) - [E(0p,n™ ") = E (u™)]
=v(0) [E (0o, v ™) = E(™)] =7

where 2 is given by the vectorfield (8.3). W
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Proofs of Proposition 8.4 Consider a stationary attractor R* C A* (X) of the dynamic
(8.4). It follows as in the proof of Proposition 7.1 (but inductively on the number of roles) that
Oprr(ny € R for all p € R'. Fix 0 € R:=pr" (R') and 7; € %;. For all sufficiently small ¢ > 0 we
must have for p° with pf = (1 —¢€) - do, + ¢ - 05, and p§ = 5, for j # i:

[1—ele - [ui(0) = ui (0\7i)] = i (o) < 0.

If u; (o\7i) = u; (o) then all 1 are fixed points of the dynamics for all ¢ > 0 and it follows 0, ,, €
R'. Thus R is a strict equilibrium set. As was discussed in Section 8 (pr”) ' (R) is therefore a

stationary attractor and it follows as in the proof of Proposition 7.1 that R’ = (pr”)~' (R). W
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