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Abstract

It is known that the value of a zero-sum infinitely repeated game
with incomplete information on both sides need not exist [1]. It is
proved that any number between the minmax and the maxmin of
the zero-sum infinitely repeated game with incomplete information on
both sides is the value of the long finitely repeated game where players’
information about the uncertain number of repetitions is asymmetric.

1 Introduction

Two-player repeated games with incomplete information (RGII), introduced
by Aumann and Maschler [1]1, model long-term interactions in which players
have asymmetric information about the actual one-shot game that is repeat-
edly played. Modeling the long-term interactions was focused initially on the

∗Institute of Mathematics, and Center for the Study of Rationality, The Hebrew Univer-
sity of Jerusalem, Givat Ram, Jerusalem 91904, Israel. e-mail: aneyman@math.huji.ac.il
This research was supported in part by Israel Science Foundation grants 382/98, 263/03,
and 1123/06.

1This book is based on reports by Robert J. Aumann and Michael Maschler which
appeared in the sixties in Report of the U.S. Arms Control and Disarmament Agency.
See “Game theoretic aspects of gradual disarmament” (1966, ST–80, Chapter V, pp. V1–
V55), “Repeated games with incomplete information: a survey of recent results” (1967,
ST–116, Chapter III, pp. 287–403), and “Repeated games with incomplete information:
the zero-sum extensive case” (1968, ST–143, Chapter III, pp. 37–116).
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infinitely repeated game Γ∞ and the finitely repeated game Γn. Studying the
repeated game Γn assumes that the number of repetitions n is known to both
players, and moreover that n is common knowledge. These assumptions are
difficult to justify in many applications of long-term interactions. [10] stud-
ies two-player repeated games where the players have symmetric information
about the uncertain number of repetitions. The present paper studies the
model of the zero-sum RGII where the players have asymmetric information
about the number of repetitions.

In the zero-sum infinitely repeated game Γ∞, Player 1 (P1) can guarantee
v if for every ε > 0 he has a strategy σ such that for any sufficiently large
number of repetitions n, for each strategy τ of Player 2 (P2) the expected
average per-stage payoff is at least v − ε. Similarly, P2 can guarantee v
in Γ∞ if for every ε > 0 he has a strategy τ such that for any sufficiently
large number of repetitions n, for each strategy σ of P1 the expected average
per-stage payoff is at most v + ε. The game Γ∞ has a uniform value v if
each player can guarantee v. The definition of the uniform value implies that
whenever the uniform value exists, e.g., RGII on one side (RGIIOS) [1] or
stochastic games [4], the limit of the values of the finitely repeated games
(where payoffs are the average per-stage payoffs) converge to the uniform
value as the number (or the expected number in the model with uncertain
duration) of repetitions goes to infinity.

The uniform value need not exist in RGII on both sides (RGIIBS) [1,
Section 4.3]. Nonetheless, vn, the value of the n-stage RGIIBS (with state-
independent signaling) converges to a limit as n →∞ [6, 3], and more gener-
ally, vθ, the value of the finitely RGIIBS (with state-independent signaling)
with a random number of repetitions θ and where the players have symmetric
information about θ, converges to a limit as the expectation of the number θ
of repetitions goes to infinity [10]. The present paper characterizes the limit
points of vθ as E(θ) → ∞ and players’ information about the number of
repetitions θ is asymmetric.

In RGII, one of finitely many one-shot games is repeatedly played and
each player has only partial information about the one-shot game that is be-
ing repeated. The RGII (denoted Γ) is described as follows. There is a finite
set of normal form games Gm, m ∈ M , with finite action sets I for P1 and J
for P2. The state m ∈ M is chosen at random according to a publicly known
probability p, and each player receives partial information about m. The par-
tial information of the players is defined by two functions, c : M → C and
d : M → D; P1 observes c = c(m) and P2 observes d = d(m). In addition, af-
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ter each stage the players obtain some further information about the previous
choice of moves.2 This is represented by a map Q from I×J to probabilities
on A×B. At stage t, given the state m and the moves (it, jt), a pair (at, bt) is
chosen at random according to the distribution Q(it, jt).

3 A play of the game
is thus a sequence m, i1, j1, a1, b1, . . . , it, jt, at, bt, . . ., while the information to
P1 before his play at stage t is c(m), i1, a1, . . . , it−1, at−1, and the information
to P2 before his play at stage t is d(m), i1, b1, . . . , jt−1, bt−1. The repeated
game is thus represented by the tuple Γ = 〈M, p, M1, M2, I, J,G,Q, A,B〉,
where M1 is the partition of M defined by the values of c and M2 is the
partition of M defined by the values of d.

The payoff at stage t of the repeated game, gt := Gm
it,jt

, depends on the
chosen state m and the action pair (it, jt) at stage t. A pair of strategies σ
of P1 and τ of P2 in the repeated game Γ defines a probability distribution
Pσ,τ on the space of plays, and thus a probability distribution on the stream
of payoffs g1, g2, . . .. The value of the n-stage zero-sum game, vn, where P1
maximizes the (expectation of the) average ḡn := (g1 + . . . + gn)/n of the
payoffs in the first n stages, exists and equals maxσ minτ Eσ,τ ḡn (where the
max is over all strategies σ of P1 and the min is over all strategies τ of P2,
and Eσ,τ stands for the expectation w.r.t. the probability Pσ,τ ), which by the
minmax theorem is equal to minτ maxσ Eσ,τ ḡn.

Special subclasses of RGII are defined by the signaling structure and the
initial information about the state. The classical case of standard signaling
corresponds to A = J , B = I, and to Q(i, j) being the Dirac measure on
(j, i), or equivalently, to A = B = I × J and to Q(i, j) being the Dirac
measure on ((i, j), (i, j)). RGIIOS corresponds to the case where c(m) = m
and d(m) is a constant, or equivalently, only P1 receives a signal about m.
Deterministic signaling corresponds to Q(i, j) (respectively, Q(m, i, j) in the
state-dependent signaling) being a Dirac measure; in this case we can think
of the signal to a player as a deterministic function of (i, j) (respectively,
(m, i, j)).

The independent case corresponds to an initial probability p such that
the probability defined on C ×D by p(c, d) = p({m : c(m) = c and d(m) =
d}) is a product probability. In this case we may assume without loss of

2This is called state-independent signaling. In more general state-dependent signaling,
the players obtain further information about the previous choice of moves and the state.

3In state-dependent signaling, Q is a map from I×J×M to probabilities on A×B, and
at stage t, given the state m and the moves (it, jt), the pair (at, bt) is chosen at random
according to the distribution Q(m, it, jt).
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generality that M = C ×D and that the initial probability distribution is a
product probability p⊗ q where p is a probability on C and q is a probability
distribution on D. [1, Section 4.2] shows that each game with incomplete
information in the dependent case is equivalent to a game with incomplete
information in the independent case. Therefore, it is sufficient for our main
result to handle the independent case, where the statement and the proof of
the main result are simplified.

In this paper we study the asymptotic behavior of the value of zero-
sum repeated games with an uncertain number of repetitions θ. θ is an
integer-valued random variable on a probability space (Ω,B, µ) with finite
expectation and each player observing partial information about θ. The
normalized value is denoted vθ. We prove that any value between the max min
(the maximal payoff that P1 can guarantee) and the min max (the minimal
payoff that P2 can guarantee) of Γ∞ can be obtained as the value vθ for an
asymmetric uncertainty about the number of repetitions θ with arbitrarily
large expected duration E(θ). As any limit point of vθ as E(θ) →∞ is in the
interval [max min Γ∞, min max Γ∞], the result characterizes the set of limit
points of vθ as E(θ) →∞.

2 The Game Model

RGIIBS is defined in the standard signaling and the independent case by
the tuple 〈C, D, p, q, I, J, G〉, where C, D, I, J are finite sets, p and q are
probability distributions on C and D respectively, and G is a list of I × J
two-person zero-sum games Gc,d, c ∈ C and d ∈ D. The repeated game
proceeds in stages. In stage 0, nature chooses a pair (c, d) with probability
p(c)q(d). P1 is informed of c and P2 is informed of d. At stage t ≥ 1, P1
is first informed of jt−1 and then chooses it ∈ I, and simultaneously P2 is
first informed of it−1 and then chooses jt ∈ J . The payoff (from P2 to P1)
in stage t is gt = Gc,d

it,jt
.

The repeated game is denoted Γ for short, or Γ(p, q) to emphasize the
dependence on the probability distributions p and q and the fixing of the
other parameters C, D, I, J,G that define the repeated game.

A behavioral strategy of P1 in Γ is a map σ : C × (I × J)∗ → ∆(I),
where (I × J)∗ stands for all finite strings of I × J elements, namely, (I ×
J)∗ = ∪t≥0(I × J)t, and ∆(X) stands for all probability distributions on
X, and a behavioral strategy of P2 is a map τ : D × (I × J)∗ → ∆(J).
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A pair of behavioral strategies, σ of P1 and τ of P2, defines a probability
distribution Pσ,τ on the space of plays (c, d, i1, j1, i2, j2, . . .) by Pσ,τ (c, d) =
p(c)q(d), Pσ,τ (c, d, i1, j1) = p(c)q(d)σ(c)[i1]τ(d)[j1], and by induction on t

Pσ,τ (c, d, ht, it, jt) = Pσ,τ (c, d, ht) σ(c, ht)[i1] τ(d, ht)[j1]

for ht = (i1, j1, . . . , it−1, jt−1) ∈ (I × J)t−1.
The uncertainty of the number of repetitions θ is modeled as follows. The

number of repetitions θ is an integer-valued random variable θ defined on a
probability space (Ω,B, µ) and with finite expectation. Before the start of
the repeated game the players receive partial information about the value of
θ; P1 observes s1(ω) ∈ S1 and P2 observes s2(ω) ∈ S2, where S1 and S2

are finite sets. The interpretation is that at stage 0, nature chooses ω ∈ Ω
according to the probability µ, and independently of the choices of nature in
the repeated game Γ, the number of repetitions is θ(ω), and P1 and P2 are
informed of s1(ω) and s2(ω) respectively. The joint distribution of (θ, s1, s2)
is assumed to be independent4 of the state (c, d).

The repeated game with uncertain duration Γθ is the repeated game Γ,
where the choice of P1’s (respectively, P2’s) action at stage t, it (respectively,
jt), may depend in addition on s1(ω) (respectively, s2(ω)). Therefore a strat-
egy σ of P1 in Γθ is in fact a list of strategies σs (s ∈ S1) in Γ, and a strategy
τ of P2 in Γθ is in fact a list of strategies τ s (s ∈ S2) in Γ.

The un-normalized payoff in Γθ is
∑θ

t=1 gt (:=
∑

t≥1 gtI(t ≤ θ) where

I stands for the indicator function) and the normalized one is 1
E(θ)

∑θ
t=1 gt.

The value of Γθ (with the normalized payoff) exists, is denoted vθ, and equals
maxσ minτ Eσ,τ,µ

1
E(θ)

∑θ
t=1 gt (where the max is over all strategies σ of P1 in

Γθ, the min is over all strategies τ of P1 in Γ, and Eσ,τ,µ stands for the expec-
tation with respect to the probability Pσ,τ,µ induced on the joint probability
of the number of repetitions θ and the play by σ, τ, µ). We are interested in
the asymptotic behavior of vθ as the expected duration E(θ) goes to ∞.

Given p ∈ ∆(C) and q ∈ ∆(D) we denote by Gp,q the I × J stage-payoff
matrix

∑
c,d p(c)q(d)Gc,d and by u(p, q) its minmax value. For x ∈ ∆(I), y ∈

∆(J), and an I×J matrix G we denote by xGy the sum
∑

i

∑
j x(i)Gi,jy(j).

This is the classical notation that corresponds to matrix multiplication, view-
ing x as an I row vector and y as a J column vector.

4The more general model, where the duration depends on the state, is obviously of
interest. However, restrictive assumptions on the uncertain duration make our main result
stronger.
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Given a compact convex set Y and a bounded function u : Y → R we
denote by cavyu the smallest concave function from Y to R that is ≥ u
and by vexyu the largest convex function from Y to R that is ≤ u. If u :
∆(C)×∆(D) → R we denote by cavpu the smallest function on ∆(C)×∆(D)
that is concave in p and is not smaller than u at each point (p, q). Similarly,
vexq u is the largest function on ∆(C)×∆(D) that is convex in q and is not
larger than u at each point (p, q). Note that cavp and vexq are operators on
bounded functions on ∆(C)×∆(D), and thus can be iterated. The value of
the function vexqcavpu, respectively cavpvexqu, at the point (p, q) is denoted
vexqcavpu (p, q), respectively cavpvexqu (p, q).

P2 can guarantee v in Γ∞(p, q) if for every ε > 0 there is a strategy τ of
P2 and a positive integer N such that for every n ≥ N and every strategy σ
of P1 we have

Eσ,τ
1

n

n∑
t=1

gt ≤ v + ε

Similarly, P1 can guarantee v in Γ∞(p, q) if for every ε > 0 there is a strategy
σ of P1 and a positive integer N such that for every n ≥ N and every strategy
τ of P2 we have

Eσ,τ
1

n

n∑
t=1

gt ≥ v − ε

It follows that if P2, respectively P1, can guarantee v in Γ∞(p, q), then for
every ε > 0 there is N such that for every uncertain duration with E(θ) > N
we have vθ ≤ v + ε, respectively vθ ≥ v− ε. If each player can guarantee v in
Γ∞(p, q), then v is called the uniform value, or for short a value, of Γ∞(p, q),
and is denoted v∞(p, q).

Aumann and Maschler [1], respectively Stearns [1, Theorem 4.11], proved
that P1 can guarantee, respectively cannot guarantee more than, cavpvexqu (p, q)
and that P2 can guarantee, respectively cannot guarantee more than, vexqcavp u(p, q),
and therefore Γ∞(p, q) has a uniform value iff

cavpvexqu (p, q) = vexqcavpu (p, q)

There are games for which

cavpvexqu (p, q) > vexqcavpu (p, q);

see [1].
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3 Preliminary results

3.1 The Posteriors and Conditional Payoffs

In this section we review a few classical tools used in the analysis of RGII.
The space of plays of a RGIIBS with standard signaling is the space of se-
quences (c, d, i1, j1, i2, j2, . . .) with the minimal σ-algebra for which all func-
tions (c, d, i1, j1, i2, j2, . . .) 7→ (c, d, i1, j1, i2, j2, . . . , it, jt), t ≥ 0, are measur-
able. Ht denotes the minimal σ-algebra (in fact, an algebra) for which the
function (c, d, i1, j1, i2, j2, . . .) 7→ ht := (i1, j1, i2, j2, . . . , it−1, jt−1) is measur-
able.

In the following notations and observations we assume the independent
case. Let τ be a behavioral strategy of P2 in Γ. We define the functions qt,
t ≥ 1, from plays to ∆(D) (called posteriors) by induction on t as follows.
q1 = q, and

qt+1(d) =
qt(d)τ(d, ht)[jt]∑
d qt(d)τ(d, ht)[jt]

(1)

Note that qt is Ht-measurable.

Lemma 1 For every strategy σ of P1 and every c, ht such that Pσ,τ (c, ht) >
0, the conditional probability

Pσ,τ (d | c, ht) = qt(ht)[d] (2)

and thus (= Pσ,τ (d | ht) and) is independent of the strategy σ of P1.

The next lemma is a classical tool in the study of games with incomplete
information. It is presented here for completeness. Note that if P is the
joint distribution of (d, j) ∈ D × J , then

∑
j P (j)

∑
d |P (d | j) − P (d)| =∑

d,j |P (d, j) − P (d)P (j)| =
∑

d P (d)
∑

j |P (j | d) − P (j)|. Therefore, if we
set

yd
t (ht) = τ(d, ht), yt(ht) =

∑
d

qt(d)τ(d, ht) and ‖yd
t−yt‖ =

∑
j

|yd
t (j)−yt(j)|

and apply the above equalities to the conditional distribution of (d, jt) given
H1

t – the algebra spanned by (c, ht) – we have

Lemma 2

Eσ,τ (‖qt+1 − qt‖ | H1
t ) = Eσ,τ (‖qt+1 − qt‖ | Ht) =

∑
d

qt(d)‖yd
t − yt‖
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3.2 Information-theoretic tools

Given two probabilities P and Q on a finite set A, we have5 ‖P − Q‖2 ≤
2D(P‖Q), where ‖P−Q‖ =

∑
a |P (a)−Q(a)| and D(P‖Q) =

∑
a P (a) log P (a)

Q(a)

(where log denotes the natural logarithm and 0 log 0 = 0), e.g., [2, p. 300].
Let P be a probability distribution on the product of two sets A1 and A2, de-
note the marginal of P on Ai by Pi, and let (x, y) be a random variable having
distribution P (x ∼ P1 and y ∼ P2). Then (a straightforward computation
yields) D(P‖P1 × P2) = H(x)−H(x | y) and thus

‖P − P1 ⊗ P2‖ ≤
√

2
√

H(x)−H(x | y) (3)

where H is the entropy function (H(x) = −
∑

a∈A1
P1(a) log P1(a), and H(x |

y) = H(x, y) − H(y) = −
∑

(a,b)∈A1×A2
P (a, b) log P (a, b) − H(y)). As the

square root is a concave function we have

Lemma 3 Let P be a probability distribution on A1×A2×A3 and let (x, y, z)
be a random variable with distribution P . Then if P z denotes the conditional
distribution of (x, y) given z and P z

i denotes its marginal on Ai, then

EP‖P z − P z
1 ⊗ P z

2 ‖ ≤
√

2
√

H(x | z)−H(x | y, z)

3.3 The Variation of Martingales of Probabilities

Lemma 4 Let qt, t = 1, . . . , K + 1 be a martingale with values in ∆(D)
where D is a finite set. Then

E
K∑

t=1

‖qt+1 − qt‖ ≤
√

K min(
√

2 log |D|,
√
|D| − 1) (4)

where ‖qt+1 − qt‖ =
∑

d∈D |qt+1(d)− qt(d)| and |D| stands for the number of
elements of D.

Proof. The bound
√

K
√
|D| − 1 is classical (see, e.g., [1]), and the bound√

2k log d is proved in [9]. For completeness we here reproduce the proofs.

5This inequality is often called Pinsker’s inequality. The constant 2 appearing in the
equality is actually an improvement on the one obtained by Pinsker.
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W.l.o.g. we assume that q1 is a constant. For every d ∈ D, qt(d), t =
1, . . . , K + 1, is a real-valued martingale. By the Cauchy-Schwarz inequality
we have

K∑
t=1

|qt+1(d)− qt(d)| ≤
√

K

(
K∑

t=1

(qt+1(d)− qt(d))2

)1/2

and as the square root is a concave function we have by Jensen’s inequality

E

(
K∑

t=1

(qt+1(d)− qt(d))2

)1/2

≤

(
E

K∑
t=1

(qt+1(d)− qt(d))2

)1/2

As qt is a martingale, E(qt+1(d)− qt(d))2 = E(qt+1(d))2 − E(qt(d))2, thus

E
K∑

t=1

(qt+1(d)− qt(d))2 ≤ E(qK+1(d))2 − (q1(d))2 ≤ q1(d)− (q1(d))2

where the last inequality uses the inequality x ≥ x2 for 0 ≤ x ≤ 1 and the
martingale property that implies EqK+1(d) = q1(d). Therefore

E
K∑

t=1

‖qt+1 − qt‖ ≤
√

K
∑

d

√
q1(d)− (q1(d))2

As the square root and the function x 7→ x − x2 are concave functions and∑
d q1(d) = 1, we deduce from Jensen’s inequality that

E

K∑
t=1

‖qt+1 − qt‖ ≤
√

K|D|

√
1

|D|
(1− 1

|D|
) ≤

√
K(|D| − 1)

We now present a proof of the bound
√

2K
√

log |D| (which is sharper for
|D| > 4, and significantly sharper for large |D|; log|D| = o(|D| − 1) as
|D| → ∞), using information-theoretic tools. Let (qt) be (Ht)t-adapted,
that is, qt is measurable w.r.t. Ht. W.l.o.g. we can assume6 that Ht are
finite (namely, algebras). In this case we can assume that P is a probability

6If qt is measurable w.r.t. the σ-algebra Ht ⊂ Ht+1, one replaces Ht with an algebra
H∗

t ⊂ H∗
t+1 and so that ‖E(qt | H∗

t ) − qt‖ ≤ ε/K, and replaces qt with q̂t := E(qt | H∗
t )

(= E(qK+1 | H∗
t ). Note that

∑K
t=1 ‖q̂t+1 − q̂t‖+ 2ε ≥

∑K
t+1 ‖qt+1 − qt‖.
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on the product D × (×K
t=1At), where At are finite sets (e.g., the atoms of

the algebra Ht), that (d, x1, . . . , xK) is a vector of random variables having
distribution P , and that qt+1 is the posterior of d given x1, . . . , xt. Let Pt be
the conditional (joint) distribution of (d, xt) given ht := x1, . . . , xt−1, PtD its
marginal on D, and PtAt its marginal on At. By Lemma 3 we have

EP‖Pt − PtD ⊗ PtAt‖ ≤
√

2
√

H(d | x1, . . . , xt−1)−H(d | x1, . . . , xt)

As E(‖qt+1−qt‖ | ht) =
∑

a∈At
PtAt(a)

∑
d |

Pt(d,a)
PtAt (a)

−PtD(d)| =
∑

a∈At

∑
d |Pt(d, a)−

PtAt(a)PtD(d)| = ‖Pt − PtD ⊗ PtAt‖ we have

EP‖Pt − PtD ⊗ PtAt‖ = EP‖qt+1 − qt‖

As the square root is a concave function, we have (using Jensen’s inequality
and the inequality

∑K
t=1(H(d | x1, . . . , xt−1) − H(d | x1, . . . , xt) = H(d) −

H(d | x1, . . . , xK) ≤ H(d))

E
K∑

t=1

‖qt+1 − qt‖ ≤
√

2K
√

H(d) ≤
√

2K
√

log |D|

�

The tightness of the order of magnitude of the bound
√

2K
√

log |D| is
demonstrated in [9], by proving that there is a constant C > 0 such that 1)
for every d and K there is a martingale p0, . . . , pK of probabilities on a set D
with d elements with total variation E

∑K
t=1 ‖pt − pt−1‖ ≥ C

√
K log d, and

moreover, 2) for every d there is a RGIIOS Γ = 〈M, p, I, J, G〉 with |M | = d
with vk ≥ v∞ + C

√
log d/

√
k for every k.

3.4 A Strategy of the Informed Player in RGIIOS

We present here a result of [1] that is used in the proof of our main result.

Lemma 5 ([1]) There is a strategy σ in Γ(p) such that for every t and every
strategy τ we have

Eσ,τ (G
m
it,jt

| Ht) ≥ cavpu (p)

The following implication of this result is used in our analysis of RGIIBS
with uncertain duration. Fix a sequence n1 < n2 < . . . < nK and a vector of
independent random variables −→c = c1, . . . , cK , each ck distributed according
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to pk (e.g., as in our application pk = p), whose realization is private infor-
mation of P1, e.g., generated by a secret lottery performed by P1. Then,
for every strategy τ of P2 in Γ(p, q) and every sequence q̂k ∈ ∆(D) where q̂k

is measurable w.r.t. Hnk−1+1 (e.g., as in our application, the posteriors of d
before the play at stage nk−1 + 1), there is a strategy σ of P1 such that for
every nk−1 < t ≤ nk we have

Eσ,τG
ck,q̂k
it,jt

≥ cavpu (pk, q̂k)

3.5 Mixing Uncertain Durations

Lemma 6 For every two uncertain durations Θ1 and Θ2 and 0 ≤ β ≤ 1
there is an uncertain duration Θ such that E(θ) ≥ min(E(θ1), E(θ2)) and

vθ = βvθ1 + (1− β)vθ2

Proof. Let Θ1 = 〈(Ω1,B1, µ1), θ1, s
1
1, s

2
1〉 and Θ2 = 〈(Ω2,B2, µ2), θ2, s

1
2, s

2
2〉 be

two uncertain durations. W.l.o.g. we can assume that Ω1 and Ω2 are disjoint
and that Si

1 = si(Ω1) and Si
2 = si(Ω2) are disjoint. For every 0 ≤ α ≤ 1, we

define the uncertain duration αΘ1 +(1−α)Θ2 as the uncertain duration Θ =
〈(Ω,B, µ), θ, s1, s2〉, where Ω is the disjoint union of Ω1 and Ω2, the restriction
of sj (j = 1, 2), respectively θ, to Ωi (i = 1, 2) is sj

i , respectively θi, B consists
of all unions B1∪B2 where Bi ∈ Bi, and µ(B1∪B2) = αµ1(B1)+(1−α)µ2(B2).
Then

E(θ) = αEµ1(θ1) + (1− α)Eµ2(θ2) ≥ min(Eµ1(θ1), Eµ2(θ2))

and

vθ =
αE(θ1)vθ1 + (1− α)E(θ2)vθ2

E(θ)
= βvθ1 + (1− β)vθ2

and note that as α ranges over [0,1] so does β = β(α). �

4 The main result

Theorem 1 For every repeated game with incomplete information on both
sides, every ε > 0, and every vexqcavpu (p, q) ≥ v ≥ cavpvexqu (p, q), there is
an uncertain duration Θ with E(θ) > 1/ε and such that

|vθ − v| < ε

11



Proof. It suffices to prove that

∀ε > 0 ∃Θ with E(θ) > 1/ε and vθ ≥ vexqcavpu (p, q)− ε (5)

Explicitly, for every ε > 0 there is an uncertain duration Θ = 〈(Ω,B, µ), θ, s1, s2〉
such that E(θ) > 1/ε and vθ ≥ vexqcavpu (p, q) − ε. Indeed, (5) implies by
duality7 that

∀ε > 0 ∃Θ with E(θ) > 1/ε and vθ ≤ cavpvexqu (p, q) + ε (6)

The conclusion of the theorem follows from Lemma 6 together with (5) and
(6).

We now turn to the proof of (5). Without loss of generality assume that
maxc,d,i,j |Gc,d

i,j | ≤ 1. Fix ε > 0.

Let K be sufficiently large so that B := min(
√

2 log |D|,
√
|D| − 1) ≤

ε
√

K/3. Fix a sequence n0 = 0 < n1 < n2 < . . . < nK with nk−1 ≤ εnk/2.
Set `k = nk − nk−1. Let µ(θ = nk) = 1

nk
∑K

k=1 1/nk
, k = 1, . . . , K. P1 is

informed of the value of θ, P2 is not informed of θ. Note that

∀k ≤ K, nkµ(θ = nk) =
1∑K

k=1 1/nk

=
Eµ(θ)

K
(7)

We prove that for every strategy τ in Γθ(p, q) (p ∈ ∆(C) and q ∈ ∆(D))
there is a strategy σ = σ(τ) such that

gθ(σ, τ) ≥ vexqcavpu(p, q)− 3ε

Let τ be a strategy of P2 in Γθ. As P2 has no information about the
realized value of θ, τ is a strategy in Γ. Let qt be the posterior of d before
the play at stage t. Let q̂k := qnk−1+1 (the posterior of d before the play at
stage nk−1 +1). Note that q̂k is a function of the strategy τ and the sequence
of actions ĥk := hnk−1+1 = (i1, j1, . . . , ink−1

, jnk−1
).

We now define a strategy σ of player 1. Let −→c = c1, c2, . . . , cK be a
sequence of C-valued random variables such that conditional on the value of
θ they are independent, ck has distribution p, and for k such that θ = nk we
have ck = c.

7Namely, by reversing the roles of P1 and P2 so that P2 is the maximizer and P1 the
minimizer with stage payoff −g.
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The strategy σ will collate a sequence of strategies σk, k = 1, . . . , K,
by following σk in stages nk−1 < t ≤ nk. The strategy σk will depend on
ĥk := hnk−1+1 by being a function of q̂k. By Lemma 5, we can select σk to be
a strategy of P1 in the repeated game Γq̂k(p) such that for every strategy τ̄
of P2 in Γq̂k(p), and every 1 ≤ t ≤ `k, we have

Eσk,τ̄ (gt | Ht) ≥ cavp u(p, q̂k) (8)

In stage nk−1 + t ≤ nk of the repeated game Γ(p, q), the behavioral strategy
σ of P1 plays the mixed action

σk(ck, ink−1+1, jnk−1+1, . . . , ink−1+t−1, jnk−1+t−1)

We define the auxiliary stage payoffs g∗t as follows. For nk−1 < t ≤ nk we
set

g∗t = Gck,d
it,jt

Recall that 2nk−1 ≤ εnk, and note that on θ = nk we have g∗t = gt := Gc,d
it,jt

for nk−1 < t ≤ nk. Therefore,∑
t

gtI(t ≤ θ) ≥
∑

t

g∗t I(t ≤ θ)− εθ

and thus

Eσ,τ,µ

∑
t

gtI(t ≤ θ) ≥ Eσ,τ,µ

∑
t

g∗t I(t ≤ θ)− εE(θ) (9)

The definition of σ implies that the conditional distribution of g∗1, g
∗
2, . . .,

given θ, is independent of θ.
The definition of σ implies that for every nk−1 < t ≤ nk we have

Eσ,τ (Gck,q̂k
it,jt

| Ht) ≥ cavpu (p, q̂k) (10)

For every 1 ≤ t we set

yd
t = τ(d, ht) and yt =

∑
d

qt(d)yd
t

Recall that yd
t = τ(d, ht) and that yt =

∑
d qt(d)yd

t is measurable w.r.t.
Ht. The play of the strategy σ depends on the realization of −→c . Its play in

13



stages nk−1 < t ≤ nk depends only on the value of ck (which need not be
equal to the actual value of c) and therefore (by abuse of notation) we denote

xck
t = σ(ck, ht)

and for every nk−1 < t ≤ nk we denote by pt the posterior given ht of ck.
The definitions of σ, pt, qt, yd

t , and yt (all as a function of the given
strategy τ of P2), together with property (8), imply that for every nk−1 <
t ≤ nk we have

Eσ,τ (g∗t | Ht) =
∑

c

pt(c)
∑

d

qt(d)xc
tG

c,d(yt + yd
t − yt)

≥
∑

c

pt(c)
∑

d

(q̂k(d) + qt(d)− q̂k(d))xc
tG

c,dyt −
∑

d

qt(d)‖yd
t − yt‖

≥
∑

c

pt(c)
∑

d

q̂k(d)xc
tG

c,dyt − ‖qt − q̂k‖ − Eσ,τ (‖qt+1 − qt‖ | Ht)

≥
∑

c

pt(c)x
c
tG

c,q̂kyt − ‖qt − q̂k‖ − Eσ,τ (‖qt+1 − qt‖ | Ht)

≥ cavpu (p, q̂k)− ‖qt − q̂k‖ − Eσ,τ (‖qt+1 − qt‖ | Ht)

where the second inequality uses Lemma 2 and the last inequality uses in-
equality (10). Therefore, as Eσ,τ q̂k = q and vexqcavpu is convex in q and
≤ cavpu,

Eσ,τ (g
∗
t ) ≥ vexqcavp u(p, q)− Eσ,τ ‖qt+1 − qt‖ − Eσ,τ ‖qt − q̂k‖

By the triangle inequality (or equivalently, the convexity of the norm) we have
Eσ,τ ‖qt − q̂k‖ ≤ Eσ,τ ‖q̂k+1 − q̂k‖ and ‖qt+1 − qt‖ ≤ ‖qt+1 − q̂k‖ + ‖qt − q̂k‖,
and therefore, by setting ηk = Eσ,τ ‖q̂k+1 − q̂k‖, we have∑

nk−1<t≤nk

Eσ,τ (g
∗
t ) ≥ `kvexqcavp u(p, q)− 3ηk`k

and therefore ∑
1≤t≤nk

Eσ,τ (g
∗
t ) ≥ nkvexqcavp u(p, q)− εnk − 3ηknk
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Recall (7) and that the distribution of g∗t is independent of θ. Therefore

Eσ,τ,µ

∑
t

g∗t I(t ≤ θ) ≥ E(θ)vexqcavpu (p, q)− εE(θ)− 3E(θ)

K

∑
k

ηk (11)

By Lemma 4,
∑

k ηk ≤ B
√

K, where B = min(
√

2 log |D|,
√
|D| − 1).

Therefore, as K is sufficiently large so that 3B
√

K ≤ εK, we have

Eσ,τ,µ
1

E(θ)

∑
t

g∗t I(t ≤ θ) ≥ vexqcavpu (p, q)− 2ε

which together with (9) completes the proof of (5). �

5 Remarks

A natural question that arises is whether we can characterize the asymp-
totic conditions on the distribution of θ (with finite expectation) so that
independently of players’ signals about θ we will have vθ → lim vn.

A simple sufficient condition is that E(θ) → ∞ and E(|θ − E(θ)| +
1)/E(θ) → 0. Indeed, if n(θ) is the integer part of E(θ) then |

∑
t gtI(t ≤ θ)−∑

t≤n(θ) gt| ≤ |θ−n(θ)| ≤ |θ−E(θ)|+1. Therefore, if ‖G‖ := 2 maxc,d,i,j |Gc,d
i,j |,

an optimal strategy of P1 in Γn(θ) guarantees in Γθ a payoff of at least vn(θ)−
‖G‖E(|θ−E(θ)|+1)

E(θ)
→ lim vn as E(|θ−E(θ)|+1)

E(θ)
→ 0.

Another natural question that arises is the asymptotic characterization of
the distributions µ of the number θ of repetitions that when P1 is informed
of θ and P2 is not, then the value vθ is close to the minmax (vexqcavpu (p, q))
of the repeated game Γ(p, q). A close look at the proof of the main result
reveals a sufficient condition. Given a distribution µ of the uncertain number
of repetitions θ and 0 ≤ β ≤ 1 we define θ(β) to be

inf{β : Eµ(θI(θ ≤ β)) ≥ βEµ(θ)

Note that θ(β) is monotonic nondecreasing in β and that the distribution µ
constructed in our proof obeys θ(k/K) = nk. We have the following result:
for every ε > 0 there is δ > 0 such that for an uncertainty structure where
P1 is informed of the value of θ and P2 is not, if E(θ) > 1/δ and for every
β < 1− δ we have θ(β + δ) > θ(β)/δ, then

vθ ≥ vexqcavpu (p, q)− ε

15



It is also of interest to find out the limit behavior of vθ for specific classes
of asymmetric uncertain durations. Two suggestive examples are when θ
is uniformly distributed on {1, 2, . . . , n} and when θ has the distribution
P (θ = n) = (1 − λ)λn−1, and P1 is informed and P2 is not informed of the
value of θ. Denote the normalized values by vn∗ and vλ∗ . What are the limits,
if they exist, of vn∗ as n →∞ and of vλ∗ as λ → 1−.

It is also of interest to study the payoff outcomes of repeated games
with incomplete information and uncertain duration where the number of
repetitions is known to both players, but not commonly known. A study of
such non-zero-sum repeated games with complete information is presented
in [8].

References

[1] Aumann R. J. and M. Maschler (1995), Repeated Games with Incomplete
Information, with the collaboration of R. Stearns, MIT Press.

[2] Cover T. M. and J. A. Thomas (1991), Elements of Information Theory,
Wiley.

[3] Mertens J.-F. (1971), The Value of Two-Person Zero-Sum Repeated
Games: The Extensive Case, International Journal of Game Theory, 1,
217–227.

[4] Mertens J.-F. and A. Neyman (1981), Stochastic Games, International
Journal of Game Theory, 10, 53–66.

[5] Mertens J.-F., S. Sorin and S. Zamir (1994), Repeated Games, C.O.R.E.
D.P. 9420, 9421, 9422.

[6] Mertens J.-F. and S. Zamir (1971), The Value of Two-Person Zero-Sum
Repeated Games with Lack of Information on Both Sides, International
Journal of Game Theory, 1, 39–64.

[7] Mertens J.-F. and S. Zamir (1977), The Maximal Variation of a Bounded
Martingale, Israel Journal of Mathematics, 27, 252–276.

[8] Neyman A. (1999), Cooperation in Repeated Games when the Number
of Stages is Not Commonly Known, Econometrica, 67, 45–64.

16



[9] Neyman A. (2009), The Maximal Variation of Martingales of Probabil-
ities and Repeated Games with Incomplete Information. Preprint.

[10] Neyman A. and S. Sorin (2009), Repeated Games with Public Uncertain
Duration Processes. Mimeo.

[11] Zamir, S. (1972), On the Relation between Finitely and Infinitely Re-
peated Games with Incomplete Information, International Journal of
Game Theory, 1, 179–198.

17


