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Incentive Reversal

Eyal Winter∗†

June 18, 2008

Abstract

By incentive reversal we refer to situations in which an increase of rewards for all
agents results in fewer agents exerting effort. We show that externalities among peers
may give rise to such intriguing situations even when all agents are fully rational.
We provide a necessary and sufficient condition on the organizational technology in
order for it to be susceptible to incentive reversal. The condition implies that some
degree of complementarity is enough to allow incentive reversal.
Keywords: Incentives, Peer Effects, Team Production, Externalities

1 Introduction

The effect of rewards on performance is central to almost any debate on the optimal
functioning of organizations. Rewards, if contingent on performance, can be used to boost
agents’ incentives to exert effort. Much of the principal-agent literature and the more
recent literature on contract theory is based on this principle. The objective of this paper
is to demonstrate that in a team environment rewards may affect performance in a non-
monotonic way. Put differently, a promise to reward agents more generously in the case of
success may paradoxically reduce agents’ incentives to exert effort. We will provide this
argument in a framework of fully rational agents, without building on any psychological
argument, or making any behavioral assumption1. The argument we provide builds on the
externalities among agents and uses a very simple moral hazard model in which agents’
effort decisions are mapped into a probability of success for the joint project. We show that
increasing rewards for all agents can result in the shirking of the set of agents who exert
effort. In fact, the effect can be so dramatic that under low rewards all agents exert effort
while under higher rewards almost all of them shirk. An increase in reward can change an
agent’s strategic consideration by making an effort decision become a dominant strategy.

∗Center for the Study of Rationality and the Economics Department, The Hebrew University of
Jerusalem, Jerusalem 91904 mseyal@pluto.huji.ac.il

†I wish to thank the editor and a referee for their constructive suggestions. This paper was supported
by the Fritz Thyssen Stiftung.

1Incentive reversal driven by psychology has been shown empirically and experimentaly by Gneezy and
Rustichini (2000) as well as Fehr and Falk (2002). See also Benabu and Tirole (2003) for a theoretical
model explaining the phenomenon.
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Suppose that under the low set of incentives agent i finds it rational to exert effort only
when he observes some of his peers doing so, but under the high set of incentives he would
choose to exert effort regardless of his peers’ actions. In such a scenario the increase of
incentives on part of agent i may rationally decrease the willingness to exert effort on the
part of those whom he observes. If effort becomes a dominant strategy for agent i those
whom he observe lose the endogenous incentives imposed by agent i. Consequently, the set
of players exerting effort in equilibrium can shrink dramatically. The main result of this
paper will characterize the technologies susceptible to incentive reversal. Specifically, we
show that any technology that has increasing returns to scale for some range of production
(i.e., is not concave on the entire range of production) is prone to yield reverse incentives.
Furthermore, we show that if the technology has increasing returns to scale on the entire
range of production, i.e., when it is supermodular, then incentive reversal can take a
dramatic form in which as a result of reward increase all but one agent move from effort
exertion to shirking.For the relationship between supermodularity and complementarity
see Milgrom and Roberts (1990), Topkis (1998) and Segal (2003). The broader implication
of our results and the intuition they provide is that in organizational environments in which
peers have some information about each other’s effort and where workers deal with tasks
that have some degree of complementarity one should be cautious in setting up incentives.
Raising rewards, which naively seems a helpful mean to boost incentives, may have a
reverse effect. 2

While we phrase our results in terms of incentives in organizations, their implications
reach beyond this framework. Incentive reversal of the sort we describe here can arise in
other economic environments. A fund-raiser who elicits donations for a cause should be
cautious in his/her campaign. Suppose that donors are approached sequentially and that
the cause requires a certain threshold of funds (making the fund-raising technology satisfy
complementarity). Boosting the attractiveness of the cause in a way that would make it a
dominant strategy for late movers to donate may make early movers reluctant to chip in
their contributions. In fact, a phnomenon similar in spirit to the idea of incentive reversal
often takes place in fund raising campaigns. A donation which is contingent on a matching
from a different donor often allows fundraisers to raise more money. A similar phenomenon
can arise with a design of environmental incentives for pollution abatement. Raising fines
in a way that would make abatement a dominant strategy for some may discourage others
to follow suit. A third environment in which our results may be relevant is the one of
the Presidential election. Because of different time zones across the US the Presidential
election is practically carried out sequentially, with voters at the west coast being early
movers, and those in the east being late movers. If a party’s campaign spending has been
excessively high in some late moving states it may create an incentive problem for voters
in early moving states. Voters’ turnout in early moving states may be substantially lower
as voters, and party activists may anticipate that turnout in the east will be sufficiently
high (due to high campaign spending) and will be less motivated to show up or encourage

2Some papers in behavioral economics document empirical evidence of a very different type of incentive
reversal. One prominent example is Gneezy and Rustichini’s (2000) evidence on daycare centers. When
daycare centers in Israel introduced small fines for parents who failed to pick up their kids on time, the
overall effort towards on-time pickup declined. Roughly, the fine was perceived by parents as a convenient
substitute for the shame and embarrassement linked with a late pickup.
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other supporters of their party to do so3.
This paper is part of a large literature on incentives in organizations using principal-

multiagent models, much of which stems from Holmstrom’s (1982) seminal paper. Papers
such as Itoh (1991), Baliga and Sjoestrom (1998), Che and Yoo (2001), and Winter (2007)
discuss the design of optimal incentives in teams and the way they are affected by the
underlying environment (such as information among peers and prospects of collusion). Che
and Yoo (2001) have also pointed to the role of implicit incentives among peers, which has
a central role also in our context. To the best of my knowledge, however, the possibility of
incentive reversal has not been mentioned in this literature, largely because this literature
is concerned with optimal incentive mechanisms, while demonstrating incentive reversal
requires a comparison of two mechanisms at least one of which is suboptimal.

We start in Section 2 by demonstrating incentive reversal with the simplest possible
example. We use a two-agent example and show how a 15% increase in rewards for both
agents shifts the equilibrium in the organization from full effort to 50% effort. In Section
3 we set up a simple model of moral hazard similar to ones used in Winter (2004) and
Winter (2006) and define the notion of incentive reversal. Unlike the current paper both
Winter (2004) and Winter (2006) deal with optimal mechanisms. In Winter (2004) the
strategic environment is one of simultaneous effort decisions (no information among peers)
and it is shown that full implementation of effort requires the principal to discriminate
among her agents. The result is used to explain the role of hierarchies in organizations
without authority. Winter (2006) introduces an environment of sequential production,
and the paper deals with various optimal design questions, such as the allocation of agents
(depending on their skills) to different production slots, as well as the allocation of tasks
across different stages of the game.

In Section 4 we provide necessary and sufficient conditions for incentive reversal in
the two-agent case, which will be used as an intermediary result towards the general case.
Section 5 provides a characterization of incentive reversal for arbitrary number of agents,
and shows that its form is made severe with increasing returns to scale. We conclude in
Section 6. All proofs except for the proof of Proposition 1 are relegated to the Appendix.

2 Example

Two agents form a team to manage a joint project with each of them in charge of a different
task. Each agent can either shirk or exert effort. If an agent exerts effort he performs his
task successfully with certainty. If he shirks his task succeeds with probability α < 1.
The common cost of effort is c. The joint project will succeed if and only if both tasks
end successfully. The principal who can neither monitor agents’ effort nor the outcome
of individual tasks offers the agents rewards that are contingent only on the project’s
outcome. Specifically, if the project suceeds, agent 1 gets v1 and agent 2 gets v2, and they
both get zero if the project fails.

3The above examples seem even more relevant in view of recent laboratory results on incentive reversal.
Klor, Kube, Winter and Zultan (2008) designed 2-person and 3-person effort games which are susceptible
to incentive reversal. Both cases have shown sharp evidence for incentive reversal. Moreover, as predicted
by the theory incentive reversal emerged only in a sequential environment and not in a simultaneous one.
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Assume now that agents move sequentially. Agent 1 acts first and agent 2 observes
agent 1′s effort decision (but not the outcome of his task) and makes his own effort decision.
We wish to raise the following question: Is it possible that higher rewards for both agents
will generate less effort in equilibrium?

Let us set α = 0.9 , c = 1, and assume first that v1 = 5.5 and v2 = 11. It is easy to
verify that under these rewards both agents exert effort in the unique (subgame-perfect)
equilibrium of the game. Player 2’s optimal strategy is to exert effort if and only if player
1 exerts effort (which follows from the fact that v2− c > αv2, and αv2− c < α

2v2). Player
1’s optimal strategy is therefore to exert effort (since v1 − c > α

2v1).
Suppose now that the principal raises the rewards of both agents by 15%, yielding

v∗1 = 6.33 and v∗2 = 12.66. It is now a dominant strategy for agent 2 to exert effort (since
α2v∗2 < αv∗2 − c ). But now the first agent, who realizes that the second will invest no
matter what agent 1 is doing, loses his incentive to exert effort: αv∗1 > v

∗

1 − c. Thus, the
unique equilibrium of the game yields only player 2 investing. Hence, the principal spent
more money and got less effort.

In the sequel of the paper we will characterize the technologies under which such
reverse incentives can happen.

3 The Model

The organizational project involves a set N of n identical agents who collectively manage a
project. The project involves a sequential production. Each agent in his turn has to decide
whether to exert effort in the performance of his tasks or not. We denote by di = 1 agent
i′s decision to exert effort and by di = 0 his decision to shirk. When an agent is making his
effort decision he is informed about the effort decisions of all his peers who acted earlier.
The cost of effort is c and is constant across all players. The technology of the organization
maps a profile of effort decisions into a probability of the project’s success. We denote by
p(s) the probability that the project succeeds if exactly s agents exert effort and n − s
shirk. The technology is assumed to be increasing, i.e., if s1 > s2 then p(s1) > p(s2).

The principal who cannot monitor the agents for their effort but knows only the
project’s outcome sets up a mechanism v = (v1, ..., vn) by which agent i receives the payoff
vi if the project succeeds and zero otherwise. 4 For a given mechanism v players are facing
a perfect information game.

Denoting by Ti the set of agents preceding agent i in the order of moves, we can
specify the game formally as follows. The strategy for player i is a function σi: 2

Ti −→
{0, 1} specifying to each player whether to exert effort or to shirk as a function of the infor-
mation he possesses on other agents’ decisions. For every strategy profile σ = (σ1, ..., σn)
we denote by E(σ) the set of agents who exert effort under the profiles σ. Finally, the
payoff for player i under σ = (σ1, ..., σn) is given by fi(σ) = vip(E(σ))− c if i ∈ E(σ) and
fi(σ) = vip(E(σ)) if i /∈ E(σ). Generically, the extensive form game described above has a
unique subgame-perfect equilibrium. For the non-generic case we assume that indifferences
are resolved in favor of exerting effort. We denote by E(v) the set of agents who exert

4Zero payment in case of failure is a standard assumption of limited liability.
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effort in equilibrium under the reward vector v.
By incentive reversal we refer to situations in which an increase of rewards for all

the agents results with the shrinkage of the (equilibrium) set of investing agents. Formally,
we say that the technology p is susceptible to reverse incentives if there exist two reward

vectors v1, v2 such that v1 < v2 (coordinatewise) and yet E(v1) � E(v2). If p is not
susceptible to reverse incentives we will say that it is immune to reverse incentives.

Two properties of the technology p will play an important role in our analysis. We
say that p satisfies increasing returns to scale (IRS) if D(k) = p(k+1)− p(k) is increasing
in k. We say that p satisfies decreasing returns to scale (DRS) if D(k) is weakly decreasing
in k. The properties of IRS and DRS correspond to the convexity and the concavity of the
technology p respectively. The IRS condition represents situations with complementarity
across agents’ tasks since the higher an agent’s marginal contribution, the more other agents
contribute. In contrast, DRS represents substitution across tasks since effort becomes less
effective the more agents contribute. If there are only two agents in the organization p
must have either DRS or IRS. We examine this case in detail in the next section.

4 The Two-agent Case

The intriguing situation of incentive reversal that we demonstrated in Section 2 relied
on the complementarity of the two tasks that form the project. In this section we show
that complementarity is both a necessary and sufficient condition for incentive reversal in
the two-agent case. We will later address the case of an arbitrary number of agents to
characterize incentive reversal, and will use the analysis in this section as a step in the
proof for the general case.

Proposition 1 : If n = 2, then p is susceptible to reverse incentives if and only if it
has IRS.

We will start by showing that any technology which is susceptible to incentive re-
versal must be convex. This result has a flavor of reverse engineering. A typical result in
economics takes the technology as part of the premise and the implication consists of a
comparative statics result. In contrast, we assume a certain comparative statics result and
deduce the properties of the technology.

Lemma 1: If for some v1 < v2 we have E(v1) � E(v2) then the technology p has
IRS.

In the proof of Lemma 1 we wil show that incentive reversal implies that under the
low vector of incentives player 2’s strategy must be to exert effort if and only if player 1
does so, which as we shall see implies complementarity.

Proof of Lemma 1: If E(v1) � E(v2), then the vector of equilibrium actions
under v2 cannot be (1, 1) and is therefore either (0, 0), (0, 1), or (1, 0). Consider the four
strategies of player 2:

(a) Exert effort if and only if player 1 does so.
(b) Always exert effort (i.e., effort is a dominant strategy)
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(c) Exert effort if and only if player 1 shirks.
(d) Never exert effort (i.e., shirking is a dominant strategy)
It is easy to verify that regardless of the technology (as long as it is monotonic

increasing) player 1 has higher incentive to exert effort under (a) than under (b) or (d)
(meaning that if player 1 exerts effort when facing a player 2 with a strategy (b), then
for the same reward he will also exert effort when facing a player 2 with a strategy (a)).
Likewise, he has a higher incentive to exert effort under (b) or (d) than under (c). This
will play a role in our analysis later. We now distinguish cases:

Case 1: The equilibrium actions under v1 are (1, 1). Since under v1 both exerted
effort it must be the case that player 2’s best response to an effort by player 1 under v1 is
to exert effort. So this must also be the case under v2. Hence, (1, 0) is not possible under
v2. Assume now that E(v2) = (0, 0). Consider the best response of player 2 to effort by
player 1 under v2. If this best response is shirking, then shirking is a dominant strategy for
player 2 under v2. Hence it must also be a dominant strategy under v1, but this contradicts
E(v1) = (1, 1). So the best response of player 2 to effort by player 1 under v2 must be
effort. So under v2 player 2 exerts effort if and only if player 1 does so. Hence, player 2’s
strategy is (a) where player 1’s incentive to exert effort is the highest and even more so
since v2 > v1. This contradicts E(v2) = (0, 0). Hence, (0, 1) is the only possible case. So
under v1 the equilibrium outcome is (1, 1) and under v2 > v1 it is (0, 1). Consider again
player 2’s strategies under both payoff vectors. Under v1 his strategy must either be (a) or
(b), while under v2 it must either be (b) or (c). Moreover if it is (b) under v1 it must also
be (b) under v2 since v2 > v1. But the latter contradicts that the equilibrium under v2 is
(0, 1). Hence player 2 exerts effort under v1 if and only if player 1 does so. This implies
the following two incentive constraints: p(2)v12 − c > p(1)v12 and p(1)v12 − c < p(0)v12 or

c
p(2)−p(1)

< v12 <
c

p(1)−p(0)
, or p(2)− p(1) > p(1)− p(0), which means IRS.

Case 2: The equilibrium actions under v1 are (0, 1). In this case it must be that
under v2 the equilibrium actions are (0, 0). This is impossible: if under v1 player 2’s best
response to player 1’s choosing 0 was to choose 1, it should also be the case under v2.

Case 3: The equilibrium actions under v1 are (1, 0). Again in this case it must be
that under v2 the equilibrium actions are (0, 0). It must be the case that under v1 player
2 strategy is either (c) or (d), whereas under v2 it is either (a) or (d). But this means
that player 1 has more incentive to exert effort under v2 than under v1. This contradics
E(v2) = (0, 0). and completes the proof of the Lemma. Q.E.D.

We now proceed with the converse of Lemma 1 namely,

Lemma 2: If p satisfies IRS, then it is susceptible to reverse incentives.

The proof of Lemma 2 is based on the intuition that we provided in the example of
Section 2. In order to generate incentive reversal we design the payoffs in such a way that
under the high scheme player 2 will have a dominant strategy to exert effort while under
the low scheme player 2 exerts effort (in equilibrium) if and only if player 1 does so.

Proof of Lemma 2: Consider the following vectors of rewards for the two agents
v1 =

c
p(2)−p(0)

and v2 =
c

p(2)−p(1)
. Under this reward vector there exists a subgame-perfect
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equilibrium in which both agents exert effort. The strategies of the players in this equilib-
rium are as follows. Player 1 exerts effort and player 2 exerts effort if and only if player
1 exerts effort. To verify that this is an equilibrium simply note that v1 and v2 satisfy
v1p(2) − c = v1p(0). Hence, player 1 is indifferent between exerting effort and shirking
given the strategy of player 2. Furthermore, v2p(2)− c = v2p(1), which means that player
2 is best responding to the action taken by player 1. Next, if player 1 is shirking, then
player 2 is better off shirking as well because v2p(1)− c < v2p(0), which follows from the
fact that p(2)− p(1) > p(1)− p(0) (the IRS condition). It is easily seen that for any ε > 0
arbitrarily small the equilibrium described above is the unique subgame-perfect equilib-
rium of the game given by the rewards v∗1 = v1+ ε and v∗2 = v2+ ε for ε > 0 small enough.
(it is sufficient to take ε < 1

2
( c
p(1)−p(0)

− v1), which is positive because of IRS), and define

the following new vectors of rewards v = (v1, v2) by v1 = v∗1+ ε and v2 =
c

p(1)−p(0)
+ ε.

Note that v2 > v∗2 because of IRS. We can now compare the equilibria under the two
mechanisms. Under v∗ the unique equilibrium outcome is with both players exerting effort
and hence E(v∗) = {1, 2}. Under v, on the other hand, player 2’s optimal action is to
exert effort also when agent 1 is shirking. This is because v2p(1) − c > v2p(0). Hence,
exerting effort is a dominant strategy for player 2. But now player 1 will find it optimal to
shirk under v1 because he is no longer threatened by the shirking of player 2. The unique
equilibrium of the game under v has player 1 shirking and player 2 exerting effort. Hence,
E(v) ⊆ {2} � {1, 2} = E(v∗), which establishes the result. Q.E.D.

The Proof of Proposition 1: follows directly from Lemma 1 and Lemma 2.
Q.E.D.

It is interesting to point out that if agents make their effort decisions simultaneously
(rather than sequentially), then incentive reversal is not possible. In a simultaneous game
there may be a multiplicity of equilibria. However, it is easy to verify that if a certain
reward vector (v1, v2) admits a Nash equilibrium in which both agents exert effort, then
any increase of rewards for both agents will sustain this equilibrium as well. Furthermore,
if (v1, v2) sustains only an equilibrium in which one of the agents exerts effort, then a vector
of increased rewards will either sustain an equilibrium in which one agent exerts effort (not
necessarily the same agent) or an equilibrium in which both exert effort. This suggests
that information about peers (which is prevalent in almost every team environment) is
crucial for incentive reversal.

We now move to discuss the multiple-agent case.

5 The General Case

For an arbitrary number of agents the technology p may satisfy neither IRS nor DRS.
There can be, therefore, two potential extensions for Proposition 1. It turns out, however,
that incentive reversal can prevail under much weaker conditions than IRS. In fact, any
technology that is not DRS is susceptible to incentive reversal.

Theorem 1: A technology p is immune to incentive reversal if and only if it has
decreasing returns to scale.
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Theorem 1 indicates that it is the immunity to reverse incentives which is exceptional,
and not its susceptibility to reverse incentives. Only when the marginal contribution of
effort is declining for the entire range of production can we guarantee that no incentive
reversal is possible. If the technology is not concave there must be a range of production
such that the marginal contributions are increasing in this range. This means that we can
generate two schemes v1 and v2 such that under v1 the equiibrium behavior for last player
in this range is to exerts effort if and only if his predecessor did so, and under v2 he has
a dominant strategy to exert effort. This will alow us to generate incentive reversal using
similar ideas as in Proposition 1. The proof of Theorem 1 is given in the Appendix via
Proposition 2 and Proposition 3.

We conclude this section by showing that incentive reversal may take a rather dra-
matic form if the technology is one of increasing returns to scale. For such technologies an
increase of rewards can paradoxically cause all but a single agent to move from exerting
effort to shirking. This phenomenon is sustained by a domino effect in which one agent af-
ter another realizes that his own action will not affect that taken by each of his subsequent
peers, which induces almost everyone to shirk.

Proposition 4: If p has increasing returns to scale, then there exist two reward
vectors v1and v2 with v2 > v1 such that under v1 all agents exert effort in eqilibrium, while
under v2 only one agent does so.

It is instructive, at this stage, to discuss the relation between the principal’s optimal
mechanism and incentive reversal. By the optimal mechanism we refer to the vector of
rewards that induces all players to exert effort (in subgame perfect equilibrium5) and does
so at the minimal total cost for the principal. Winter (2006) shows that under increasing
returns to scale technology p the optimal mechanism (implementing effort by all players)
is given by v = ( c

p(n)−p(0)
, c
p(n)−p(1)

, ..., c
p(n)−p(n−1)

). With this mechanism the principal never
falls into the trap of incentive reversal. It is easy to verify that under this mechanism each
player i is indifferent between shirking and exerting effort provided that all his predecessors
exerted effort. However, if one or more of these players shirk player i strictly prefers to
shirk as well. Hence, the implicit incentive to exert effort generated by the sequential
structure of the game allows the principal to reduce the explicit incentive yielding the
optimal mechanism. We have seen in Proposition 1 (as well as in Theorem 1) that the
implicit incentive described above plays a central role in the presence of incentive reversal.
If the principal raises the payoff of the player to the extent that choosing effort becomes a
dominant strategy it will remove the implicit incentive on part of the second to last player
who will choose to shirk. This shirking will induce all earlier players to shirk as well.

Consider now a decerasing returns to scale technology p. The optimal mechanism
for such a technology is given by v′ = ( c

p(n)−p(n−1)
, c
p(n)−p(n−1)

, ..., c
p(n)−p(n−1)

). (see Winter

(2006)) and each player is exerting effort in a dominant strategy. Hence, implicit incentives
play no role for such a technology, which is the reason why the technology is not susceptible
to incentive reversal.

5Assuming that indifferences are resolved in favor of exerting effort.
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6 Discussion

Externalities among peers in team environments can give rise to intriguing situations of
incentive reversal in which all agents are promised higher rewards while the set of agents
exerting effort in equilibrium shrinks. We show that such situations can arise without any
behavioral assumption, and characterize the technological environment that breeds them.
Our basic assumption is that agents respond rationally to the effort decisions taken by their
peers while taking into account the organizational technology. Recently, Gould and Winter
(2007) provided evidence to this effect using a database on professional baseball players.
The empirical analysis shows that a player’s performance increases with the performance
of players with whom his production relationship is one of complementarity. On the other
hand players’ performance decline with the performance of their substitutes. For example,
a player’s batting average significantly increases with the batting performance of his batting
peers, but decreases with the quality of the team’s pitching. These findings jointly with
our results on incentive reversal offer a potential implication (that of course should be
judged only in view of other incentive considerations): Bonuses based only on the team
performance (like those offered during playoffs) should not be excessively high for batters
who appear late in the order as it may quash the incentives of batters who appear earlier
in the order.

In this paper we have assumed that agents move sequentially and that the resulting
game is one of perfect information. While this assumption may seem stringent, it is merely
simplifying. Incentive reversal can arise in a partially sequential environment. Assume for
example that player 2 observes the effort decision of player 1, and the rest of the players are
ignorant of each other’s effort. In this almost simultaneous framework incentive reversal
can be shown to occur using the same argument as in our two-person example.

We have mentioned that under incentive reversal the high vector of incentives cannot
be optimal because the principal would be better off shifting to the low vector. However,
our results are relevant to the design of optimal mechanisms in three respects. Firstly, in
real-life organizations it is reasonable to assume that the optimal mechanism is reached
through a series of improvements over existing mechanisms. Our observation about incen-
tive reversal says that if the principal detects that the number of agents exerting effort is
too low, the way to induce more effort is not necessarily by increasing rewards. It may
be possible to boost effort by reducing rewards. Secondly, incentive reversal is relevant to
optimal mechanisms with principals who face external constraints. Suppose, for example,
that incentive reversal occurs for the reward vectors v1 and v2 with v1 < v2and the prin-
cipal is constrained to offer at least v2 to his agents because of the non-competitiveness of
the market. Suppose that v1 is the optimal mechanism under the unconstrained problem.
Incentive reversal says that in the constrained problem, rather than offering the contract
in which the entire payoff v2 is contingent on the success of the project the principal
may be better off using a different contract in which he promises a payment of v2 − v1

regardless of the project’s outcome in addition to a payment of v1, which is contingent on
its success. Thirdly, another (related) form of incentive reversal may arise when rewards
are fixed but the cost of effort varies. Consider an organization that operates under an
optimal mechanism that induces all agents to exert effort. Suppose that at some stage
the cost of effort drops for all agents (for example, because experience has improved their
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skill). If the technology is not concave it may happen that the same mechanism will now
induce a smaller set of agents to exert effort. This can also happen when effort becomes
a dominant strategy for late movers killing the incentives of earlier movers to exert effort.
Such incentive reversal can take place in the short run of an organization operating under
the optimal incentive mechanism until the mechanism is amended to take into account the
new vector of the cost of effort.

While our model and results are based on full rationality, our analysis offers an insight
into a different type of incentive reversal that is behaviorally based. There is considerable
empirical and experimental evidence on psychological peer effects that shows that workers
are typically reluctant to exert effort when they observe their peers shirking (see, e.g.,
Fischbacher (2002), Gaechter and Fehr (2001)). This reluctance may in fact be quite
effective in sustaining a high level of effort within teams, because it serves as an implicit
threat against shirking. In such teams an increase in rewards may quash this implicit
threat. Some agents may find it attractive enough to exert effort even when observing
their peers shirking, which in turn may encourage these peers to shirk. This will give rise
to an incentive reversal quite similar in spirit to the one described in this paper. Indeed,
it is one that may arise for any technology and for a wider range of initial reward vectors.

7 Appendix

Proposition 2: If p does not have DRS, then it is susceptible to incentive reversal.

Proof: We will construct two reward vectors v1 and v2 such that v1 < v2 and the
set of players exerting effort under v2 is a strict subset of the set of players investing under
v1. If p does not have DRS, then there exists some k < n such that

p(k + 1)− p(k) > p(k)− p(k − 1) ∗ ∗

Let v∗ satisfy v∗ > c
minj [p(j)−p(j−1)]

and note that for a player who is promised v∗

exerting effort is a dominant strategy. Consider now the following rewards vector:

v1 =






v∗ for j > n− k + 1
0 for j < n− k

c
p(k+1)−p(k)

for j = n− k + 1
c

p(k+1)−p(k−1)
for j = n− k

For this reward vector the unique equilibrium of the game is for players j > n−k+1
to exert effort, for players j < n− k to shirk, and for players j = n− k and j = n− k + 1
to exert effort as well. Furthermore, we argue that player n − k + 1 exerts effort if and
only if player n − k exerts effort. This follows from the inequality ** and from the fact
that for j = n− k+1 we have v1jp(k+1)− c ≥ v

1
jp(k) (which means that it is optimal for

j to invest if n− k invests) and v1jp(k)− c < v
1
jp(k − 1) (which means that j is better off
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shirking if n− k shirks). Consider now a new reward vector given by

v2 =






v∗ for j > n− k + 1
0 for j < n− k
v∗ for j = n− k + 1

c
p(k+1)−p(k−1)

for j = n− k

It is now a dominant strategy for player n−k+1 to exert effort. Hence it is optimal
for player n− k to shirk because for j = n− k we have v2jp(k + 1)− c < v

2
jp(k− 1) (recall

that if n−k shirks n−k+1 shirks as well). The set of players exerting effort in equilibrium
is now {j : j ≥ n− k + 1} and it is a strict subset of the set of players investing under v1,
which is {j : j ≥ n − k}. We finally note that the equilibrium outcome will not change if
we replace v2 with v2 + ε = (v21 + ε, ..., v

2
n + ε), which establishes the result. Q.E.D.

Proposition 3: If p satisfies DRS, then it is immune to incentive reversal.
For the proof of Proposition 3 we need the following two lemmas:
Lemma 3: Let p have DRS. Consider any decision node of player i after players

1, 2, , ..., i− 1 have already acted. Denote
S1i = {j > i; dj = 1 at the subgame where di = 1} and S0i = {j > i; dj = 1 at the

subgame where di = 0}, and let ski = #S
k
i , where k = 0, 1. Then we have s1i ≤ s

0
i .

Proof : We prove the claim by (backward) induction. The argument for i = n − 1
is straightforward and it follows from the fact that if player n exerts effort when player
n− 1 exerts effort then he will do so also when player n− 1 shirks, which follows from the
concavity of the technology. We now assume the statement is true for all players j ≥ i and
consider player i− 1. Let di(k) be the action of player i after player i− 1 chooses k, where
k = 0, 1, and let S1i (k), S

0
i (k) be the sets defined above in the subgame where player i− 1

chose k, where k = 0, 1.
We will distinguish the following cases:
Case 1: di(1) = 1 and di(0) = 0. Consider first the subgame in which i−1 chooses 1.

If s1i (1) < s
0
i (1), then it cannot be the case that i invests at this node (because by shirking

he will generate at least as many investing agents and will save the cost of effort). Fur-
thermore, by the induction hypothesis, #S1i (1) ≤ #S

0
i (1). Hence, s1i (1) = s

0
i (1). Consider

now the subgame in which i − 1 chooses 0. Because of the symmetry of the technology,
the equilibrium continuation at each player’s decision node depends only on the number of
agents who exerted effort prior to that stage and does not depend on who they are. This
implies that s0i (1) = s

1
i (0). By the induction hypothesis we again have s1i (0) ≤ s0i (0). If

s1i (0) = s
0
i (0) then we have s1i (1) = s

0
i (1) = s

1
i (0) = s

0
i (0). But if this is the case it must be

optimal for i to exert effort after i−1 chooses 0 if it was optimal for him to do so after i−1
chose 1. This follows from the property of decreasing returns to scale of p. Specifically, i′s
marginal contribution to the project’s success is greater after i−1 chooses 0. So it must be
that s1i (0) < s

0
i (0), and thus s0i (0) > s

1
i (0) = s

0
i (1) = s

1
i (1). Note now that s1i−1 = s

1
i (1)+1

and s0i−1 = s
0
i (0) and hence because s0i (0) > s

1
i (1) we have s0i−1 ≥ s

1
i−1, which is what we

need.
Case 2: di(0) = di(1) = 1. In this case using the same arguments as above (i.e.,

induction hypothesis plus symmetry) we have s1i (0) = s
0
i (1) ≥ s

1
i (1). Furthermore, s0i−1 =

s1i (0) + 1 ≥ s
1
i (1) + 1 = s

1
i−1 and we are done.
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Case 3: di(0) = di(1) = 0. We now have s0i (1) = s1i (0) ≤ s0i (0). Furthermore,
s0i−1 = s

0
i (0) ≥ s

0
i (1) = s

1
i−1 as needed. Finally,

Case 4: di(0) = 1 and di(1) = 0. By symmetry we have s1i (0) = s
0
i (1). Furthermore,

s0i−1 = s
1
i (0) + 1 > s

0
i (1) = s

1
i−1, and we are done. Q.E.D.

Lemma 4: Let p be a technology with DRS and let v1 < v2 be two reward vectors.
Denote by s1 and s2 the number of players who exert effort in equilibrium under the vectors
v1 and v2, respectively, when p is the prevailing technology. Then we have s1 ≤ s2.

Proof: We prove the result by induction on the number of players n. For n = 2
the result follows directly from Proposition 1. Suppose now that the statement is true for
any game with n ≤ k and consider now a game with k + 1 players. Let G1 and G2 be the
games with k+1 players with reward vectors v1 and v2 respectively. We denote by s1 and
s2 the number of players exerting effort in the equilibrium of the two games respectively.
We will show that s1 ≤ s2. We next denote by d11 and d21 the equilibrium actions of player
1 in the games G1 and G2 respectively. We note that following the action of player 1 we
enter a subgame that involves k players with a technology p∗ = p if player 1 chooses 0
and p∗(s) = p(s+ 1) if player 1 chooses 1. In both cases the technology remains concave.
We denote by G10 and G11 the subgames of G1 following a choice of d11 = 0 and d11 = 1 by
player 1 respectively. Likewise G20 and G21 are the subgames of G2 following a choice of
d21 = 0 and d21 = 1 by player 1 respectively. Finally, s10 , s11, s

2
0, and s21 denote the number of

players exerting effort in the equilibrium of the subgames G10, G
1
1, G

2
0, and G21 respectively.

We now distinguish the following cases:
Case 1: d11 = 1 and d21 = 0. By the Lemma 3 s10 ≥ s

1
1. If s10 > s

1
1 it cannot be optimal

for player 1 to exert effort in G1. Hence, we must have s10 = s
1
1. Suppose first that s20 = s

2
1,

then it must be that s20 = s
2
1 > s

1
0 = s

1
1. Otherwise player 1 would choose to exert effort

in G2 where his reward is at least as high as in G1. This follows from the concavity of p
as player 1’s marginal contribution to s21 is greater than it is to s11. But if s20 > s11, then
combined with the action of player 1 we have s1 ≤ s2, which is what we need. We now
assume that s20 > s

2
1. By the induction hypothesis, s21 ≥ s

1
1. Hence we have s20 > s

1
1, and

combined with player 1’s action we again have s1 ≤ s2, as needed.
Case 2: d11 = 0 and d21 = 1. By Lemma 1, s20 ≥ s

2
1. Since d21 = 1 we must have s20 =

s21. Otherwise, if s20 > s
2
1, player 1 is better off not exerting effort at G2. By the induction

hypothesis we have s10 ≤ s
2
0 = s

2
1. Furthermore, s1 = s10 ≤ s

2
0 = s

2 − 1 < s2.
Case 3: d11 = d21. By the induction hypothesis we have s21 ≥ s11 and s20 ≥ s10. If

d11 = d
2
1 = 0 we have s2 = s20 ≥ s

1
0 = s

1 and if d11 = d
2
1 = 1 we have s2 = s21 ≥ s

1
1 = s

1 as
needed. Q.E.D.

The Proof of Proposition 3 follows directly from Lemmas 3 and 4. Q.E.D.

The Proof of Theorem 1: follows directly from Propositions 2 and 3. Q.E.D.

The Proof of Proposition 4: We define v1 = ( c
p(n)−p(0)

, c
p(n)−p(1)

, ..., c
p(n)−p(n−1)

).

We argue that under v1 the unique equilibrium yields all players investing.6 Specifically,
the strategy profile is for player 1 to invest and for all other players to invest if and only if
all preceding players have invested. To verify this note first that p(n)v1n − c = p(n− 1)v

1

n

6Notethat this vector is the one with minimal total rewards among those incentivizing all agents to
exert effort (see Winter (2006)).
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and so by our tie-breaking rule player n invests if all preceding players invested as well. If,
on the other hand, a set of preceding players of size k chose to shirk, then the incentive
constraint faced by player n is given by p(n − k)v1n − c < p(n − k − 1)v1n, which follows
from the fact that p(n)−p(n−1) > p(n−k)−p(n−k−1), which in turn follows from the
property of IRS. Hence, n will not invest if at least one of his preceding players shirked.

Assume now by induction that all players k + 1, k + 2, ..., n are using the strategy
specified above and consider player k. If all players acting prior to player k invested,
then player k is facing the following incentive constraint: p(n)v1k − c ≥ p(k − 1)v1k and
k will exert effort. If some set of players preceding k of size r shirked, then we have
p(k − r)v1k − c < p(k − r − 1)v

1

k (again because of IRS), and player k will choose to shirk
as well. This establishes that under v1 all players exert effort in equilibrium.

We next define v2 as follows: v2j = v
1
j for j = 1, 2, ..., n−1 and v2n = c

p(1)−p(0)
. We first

argue that under v2 it is a dominant strategy for player n to exert effort. Indeed, because
of IRS, if player j′s best response is to exert effort when k other players are exerting effort,
then it is also his best response when r > k players exert effort. Furthermore, because
v2np(1)− c ≥ p(0), it is optimal for player n to invest even when no one else does so. Hence,
investing is a dominant strategy for n. Consider now the decision of player n − 1 at the
subgame where all preceding players invest. If player n− 1 invests, his expected payoff is
v2n−1p(n)−c; if he shirks it is v2n−1p(n−1). So n−1 will invest only if v2n−1 ≥

c
p(n)−p(n−1)

. But

since p is increasing we have p(n)−p(n−2) > p(n)−p(n−1) and hence v2n−1 <
c

p(n)−p(n−1)

and player n− 1 must shirk. Furthermore, if some of the players acting before n− 1 chose
to shirk, then player n − 1′s incentive to shirk is even greater because when k > 1 we
have v2n−1p(n− k)− c < v

2

n−1p(n− k − 1) if and only if c
p(n−k)−p(n−k−1)

, which holds since

p(n − k) − p(n − k − 1) < p(n) − p(n − 1) < p(n) − p(n − 2) (where the first inequality
follows from IRS). We thus obtain that player n− 1 shirks regardless of the action taken
by the earlier players. Using backward induction we can now obtain that all players j < n
shirk regardless of the action taken by their predecessors and only player n invests. We
finally note again that the analysis of the equilibrium will not change if instead of v2 we
take v2 + ε for sufficiently small ε. Q.E.D.
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