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Abstract

The secretary problem for selecting one item so as to minimize its
expected rank, based on observing the relative ranks only, is revisited.
A simple suboptimal rule, which performs almost as well as the optimal
rule, is given. The rule stops with the smallest i such that Ri ≤
ic/(n + 1 − i) for a given constant c, where Ri is the relative rank of
the ith observation, and n is the total number of items. This rule has
added flexibility. i) A curtailed version thereof can be used to select
an item with a given probability P , P < 1. ii) The rule can be used to
select two or more items. The problem of selecting a fixed proportion,
α, 0 < α < 1, of n, is also treated. Numerical results are included to
illustrate the findings.
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1 Introduction

Consider a group of n items that arrive sequentially and are rankable without
ties. The number of items n is known. A rank of 1 denotes the best item, a
rank of 2 the second best, etc. It is assumed that all n! permutations of the
ranks {1, ..., n} are equally likely.

The problem is to establish a rule that decides on whether item i is to be
chosen based on its relative rank, Ri, i.e., its rank among the first i items.
Just as in the classical secretary problem, once a decision is made on an
item, there is no recourse.

The performance of the rule depends on the absolute rank of item i, An
i ,

i.e., its rank among all n items, if it is chosen. In the classical secretary
problem the objective is to choose a single item by means of an optimal
stopping rule τn that maximizes P (An

τn
= 1).

Chow et. al. [2] consider the problem of finding an optimal stopping rule
τn for choosing one item minimizing the expected value of the absolute rank
of the item selected. They show that the optimal stopping rule, satisfies

lim
n→∞E(An

τn
) =

∞∏

j=1

(
1 +

2
j

)1/(j+1)

= 3.869

This is an astonishing result since it shows that, for example, from one
million items one can sequentially select an item with expected rank less
than 4. Note that since one item must be chosen, if one has not stopped
earlier, one must take one of the last few items. Since the last few items
have expected absolute rank (n + 1)/2, the probability of this happening
must be at most O

(
1
n

)
, for the expected rank of the chosen item not to tend

to infinity. The Chow et. al. [2] paper is heavily cited and has spawned
many variations.

The optimal stopping rule in Chow et. al. for keeping one item, can
in principle be determined by dynamic programming and so in practice is
hard to implement for large n. The asymptotic form of the rule is to pass
on the first γ0n items; choose the first item with Ri = 1 after i > γ0n and
up to γ1n; an item with Ri ≤ 2 after γ1n (if none has been chosen before)
and up to γ2n etc. The values of the γi’s can be computed asymptotically.
For example, from Ferguson [4] (Page 2.6), γ0 = .2584, γ1 = .4476, and
γ2 = .5640.

We consider finding simple stopping rules that perform well in minimiz-
ing the sum of the expected value of the absolute ranks of the items selected,
when one or more items are desired. In Section 2, we pose a class of rules
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which are easy to implement, and specifically a rule that achieves asymptotic
expected absolute rank of 3.928, nearly the same as the optimal rule. The
rules that are posed have added flexibility. They allow for stopping rules
that select an item only with high probability, P , of stopping. One can find
rules that do substantially better than the optimal expected absolute rank of
3.89 by relaxing the ”must” select an item only slightly. For example when
the probability of stopping is at least 95% the asymptotic expected abso-
lute rank (conditional on stopping) is 2.987. Yeo and Yeo [7] also consider
stopping rules for secretary problems which do not necessarily stop with
probability one, and include some asymptotic evaluations. Our approach is
different from theirs in that we are considering simple suboptimal rules that
perform well.

In Section 3, we consider the problem of selecting a fixed number, r, of
items, r > 1. The optimal stopping rule can again be determined by dynamic
programming. The simple rule we establish for r = 1 can be adapted to this
problem as well, again producing nearly optimal results.

The above rules fix the number of items selected. Other rules select a
random number of items satisfying a condition on the average number of
items retained, for example the average number that is retained is a given
proportion of n. The problem of sequentially selecting a group of items on
the basis of their relative ranks, has recently been described in Krieger et. al.
[5]. They consider a class of rules, termed, ”percentage rules”, for 0 < p ≤ 1,
with the property that they retain on average an order of np items, most
of which are good. Simple rules that perform asymptotically optimally in
terms of the sum of the absolute ranks and retain (approximately) a fixed
given fraction α are described in Section 4. For the rules in Krieger et. al.
[5], as well as for the rules in Section 4, no prior knowledge of n is needed.
In Section 5 we supply tables illustrating the results obtained in the earlier
sections.

2 Retaining One Item

The optimal rule to retain one item that minimizes the expected value of
the absolute rank can be found using dynamic programming for any n. This
rule can be described by a sequence of integers rn(j); j = 0, ..., n with
1 ≤ rn(0) ≤ rn(1) ≤ · · · ≤ rn(n) = n + 1. Let i denote the index of the
item. If i < rn(0) then the item is never accepted. In general, item i is
chosen when its relative rank Ri ≤ j and i < rn(j), provided no item has
been retained earlier.
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In this section we consider simple rules that are easy to implement, (i.e.,
with values of rn(j) that are readily available). To this end, let c ≥ 1 be a
fixed constant, and let the stopping rule be

tn(c) = inf
{

i : Ri ≤ ic

n + 1− i

}
. (2.1)

Note that the stopping rule tn(c) satisfies P (tn(c) ≤ n) = 1.
We shall suppress the dependence on c in some of the following notation,

where we consider c as fixed. Let an(k) be the smallest integer greater than
or equal to (n+1)k

(c+k) , i.e.,

an(k) = d(n + 1)k
(c + k)

e, k = 1, ..., n.

Note that for small values of k (as compared to n) the values of an(k) will
be distinct, but for large values of k some consecutive an(k) may coincide.
Clearly tn(c) of (2.1) can be written as

tn(c) = inf {i : Ri = k, for some i ≥ an(k), k = 1, ..., n} . (2.2)

One of our main interests will be in a ”curtailed” version of (2.2), which
stops with probability less than one. Let ks be a fixed integer with ks < n.
Define

tks,n(c) = inf {i : Ri = k, for some i ≥ an(k), k = 1, ..., ks} . (2.3)

Clearly tks,n(c) will stop with probability less than 1. For fixed c and ks

we are interested in finding the limiting probability of stopping, and the
expected absolute rank upon stopping, as n → ∞. This is used later to
determine c and ks to attain a desired probability P of stopping.

Let bn(k) = an(k+1)−1 for k = 1, ..., ks−1, and let bn(ks) = n. Assume
that n is large, so that bn(k) > an(k) for k = 1, ..., ks. Let Qn(k) = {Ri > j
for all i ≤ bn(j) and all j = 1, ..., k}. Thus,

P (Qn(k)) = P {tks,n(c) > bn(k)} for k = 1, ..., ks − 1,

(where not stopping is considered t = ∞) and

Pn(ks, c) = P {tks,n(c) < ∞} = 1− P (Qn(ks)) , (2.4)

where Qn(ks) is defined by the above expression and let Qn(0) be the entire
space.

4



Lemma 2.1. For k ≤ ks, let

f(k) := lim
n→∞P (Qn(k)|Qn(k − 1)) = lim

n→∞

bn(k)∏

j=an(k)

(
1− k

j

)
. (2.5)

Then for k = 1, ..., ks − 1

f(k) =
{

k(k + c + 1)
(k + c)(k + 1)

}k

(2.6)

and

f(ks) =
{

ks

ks + c

}ks

. (2.7)

Proof. To see (2.6) note that

lim
n→∞


log

bn(k)∏

j=an(k)

(
1− k

j

)
 = lim

n→∞

bn(k)∑

j=an(k)

log
(

1− k

j

)
= lim

n→∞


−k

bn(k)∑

j=an(k)

1
j




= −k lim
n→∞[log bn(k)− log an(k)] = lim

n→∞ log
{

an(k)
bn(k)

}k

= log
{

k(k + c + 1)
(k + c)(k + 1)

}k

.

Equation (2.7) follows similarly.

Proposition 2.1.

P (ks, c) : = lim
n→∞Pn(ks, c) = lim

n→∞P{tks,n(c) < ∞}

= 1−
ks∏

k=1

f(k) = 1− ks!∏ks
k=1(k + c)

. (2.8)

Proof. This follows from (2.4), (2.5) and Lemma 2.1.

To compute the expected absolute rank upon stopping note that

E(An
i |Ri) =

n + 1
i + 1

Ri, (2.9)

where An
i is the absolute rank, among n, of the ith observations. It fol-

lows that E(An
i |Ri ≤ k) = (n+1)(k+1)

2(i+1) . We are interested in computing

E
(
An

tks,n
(c)|tks,n(c) < ∞

)
:= E(n, ks, c), as well as its limiting value, to be
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denoted by E(ks, c). Let Vn(k) = P (tks,n(c) > bn(k − 1)) for k = 2, ..., ks,
and Vn(1) = 1. Note that for k = 2, ..., ks, from (2.6)

lim
n→∞Vn(k) := V (k) =

k−1∏

j=1

f(j) =
(k − 1)!∏k−1
j=1(j + c)

(
k + c

k

)k−1

. (2.10)

We now find the conditional(on an item being retained) expected absolute
rank, E(n, ks, c) and its limit as n →∞, E(ks, c) in

Theorem 2.1.

E(ks, c) =





ks∑

j=1

αj−1βj − ksαks



 /2P (ks, c) (2.11)

and when c > 1

lim
ks→∞

E(ks, c) := E(c) =
1
2

∞∑

j=1

αj−1βj , (2.12)

where

αm =
m!∏m

j=1(j + c)
=




m∏

j=1

(
1 +

c

j

)

−1

,

and

βm =
(

m + c

m

)m

=
(
1 +

c

m

)m

with α0 = 1.

Proof. We shall compute the expected value E(n, ks, c) by considering in
which of the disjoint intervals, [an(k), bn(k)] for k = 1, ..., ks, and at which
value i inside that interval the rules stop. It is easily seen that

E(n, ks, c) =
ks∑

k=1

Vn(k)





bn(k)∑

i=an(k)




i−1∏

m=an(k)

(
1− k

m

)
 k

i

(n + 1)(k + 1)
2(i + 1)



 /Pn(ks, c).

(2.13)
To evaluate the limit, note that for k ≤ ks the value of i will be a fraction
of n. Thus denote i/n = x. The term

∏i−1
m=an(k)(1− k

m) = (i−1−k)...(an(k)−k)
(i−1)...an(k) .

Dividing the numerator and denominator by n and letting n → ∞ yields
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(
k

k+c

)k
in the numerator and xk in the denominator. Then it follows that

for k < ks

lim
n→∞

bn(k)∑

i=an(k)




i−1∏

m=an(k)

(
1− k

m

)
 n + 1

i(i + 1)
=

[
k

k + c

]k ∫ k+1
k+1+c

k
k+c

x−(k+2)dx

=
[

k

k + c

]k
[(

k + c

k

)k+1

−
(

k + 1 + c

k + 1

)k+1
]

/(k + 1) (2.14)

and similarly, the corresponding limit for ks is

[
ks

ks + c

]ks
∫ 1

ks
ks+c

x−(ks+2)dx =
[

ks

ks + c

]ks
[(

ks + c

ks

)ks+1

− 1

]
/(ks + 1).

(2.15)
Taking limits of (2.13) by substituting the limits in (2.10),(2.14) and (2.15)
and simplifying somewhat, we get

E(ks, c) =

{
ks−1∑

k=1

k!k∏k
j=1(j + c)

[(
k + c

k

)k+1

−
(

k + 1 + c

k + 1

)k+1
]

+
ks!ks∏ks

j=1(j + c)

[(
ks + c

ks

)ks+1

− 1

] }
/2P (ks, c), (2.16)

where P (ks, c) is given in (2.8). Opening the square bracket and canceling
yields

E(ks, c) =

{
ks∑

k=1

(k − 1)!∏k−1
j=1(j + c)

(
k + c

k

)k

− ks!ks∏ks
j=1(j + c)

}
/2P (ks, c).

The result (2.11) follows from the definitions of αm and βm.
Note that the negative term in (2.11), for c = 1 equals ks/(ks + 1) < 1,

and is a decreasing function of c. We are interested in E(c) = limks→∞E(ks, c).
Clearly, from (2.8), limks→∞ P (ks, c) = 1. Since αmmc → constant as m →
∞ and βm → ec as m → ∞, it follows that for c > 1, limks→∞ ksαks → 0,
and we have (2.12).

When 0 < c ≤ 1, however, the sum in (2.12) is infinte.
An important issue is to show that the rule in (2.2) that is not curtailed

behaves like the curtailed rule with ks →∞, as given in (2.12), when n →∞.
It is sufficient to consider the curtailed rule with n = ks as n →∞.
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Theorem 2.2. Let tn(c) be as in (2.1) and c > 1. Then

lim
n→∞EAn

tn(c) = E(c)

where E(c) is given in (2.12).

Proof. In order to show that the convergence of E(n, ks, c) is uniform in ks

as n →∞, we need to consider the remainder term from (2.13) (for n > k0

large)

Rn(k0) =
ks∑

k=k0

Vn(k)





bn(k)∑

i=an(k)




i−1∏

m=an(k)

(
1− k

m

)
 k

i

(n + 1)(k + 1)
2(i + 1)



 .

(2.17)
We want to show that Rn(k0) can be made arbitrarily small by choosing k0

to be sufficiently large. We consider (2.17) in three parts:
1. For Vn(k) we have

Vn(k) =
k−1∏

j=1

bn(j)∑

m=an(j)

(
1− j

m

)
<

k−1∏

j=1

(
1− j

bn(j)

)bn(j)−an(j)

.

But bn(j) − an(j) ≥ (n+1)c
(c+j+1)(c+j) − 1. Hence with k and n fixed, for A, B

and D (used later) positive finite constants,

Vn(k) < exp
[
−

k−1∑

j=1

j(c + j + 1)
(n + 1)(j + 1)

( (n + 1)c
(c + j + 1)(c + j)

− 1
)]

< A exp
[
− c

k−1∑

j=1

j

(j + 1)(c + j)

]
= A exp

[
− c

( k−1∑

j=1

1
c + j

−
k−1∑

j=1

1
(j + 1)(c + j)

)]

< B exp
[
− c log(c + k − 1)

]
= B(c + k − 1)−c. (2.18)

2. We next onsider the middle term in (2.17), which refers to the probability
of obtaining a value in [an(k), bn(k)] which would force us to stop for a given
k. Note that for ks we can bound this probability trivially by 1. For k < ks

an upper bound is c
k+1 . The upper bound follows from

bn(k)∑

i=an(k)

i−1∏

m=an(k)

(
1− k

m

)
k

i
= 1−

bn(k)∏

m=an(k)

(
1− k

m

)
≤ 1−

(
1− k(c + k)

(n + 1)k

) (n+1)c
(c+k+1)(c+k)
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≤
(

k(c + k)
(n + 1)k

)(
(n + 1)c

(c + k)(c + k + 1)

)
=

c

c + k + 1
≤ c

k + 1
. (2.19)

3. Finally, we bound the expected absolute rank, for i in [an(k), bn(k)], by

(n + 1)(k + 1)
2(i + 1)

≤ (n + 1)(k + 1)(c + k)
2(n + 1)k

< (c + 1)(k + 1). (2.20)

Substituting (2.20), (2.18) and (2.19) into (2.17) yields

Rn(k0) ≤ D
∞∑

k=k0

(c + k − 1)−c + (c + 1)(ks + 1)B(c + ks − 1)−c. (2.21)

It is clear for c > 1, that the sum in (2.21) converges, and hence that sum
can be made arbitrarily small by choosing k0 sufficiently large. Likewise the
last term, involving ks, tends to 0 as ks → ∞. So for any ε > 0, k0 can be
chosen to be suitably large to ensure that Rn(k0) < ε, as desired.

We have a class of rules that depends on the value of c. Since we are
free to choose any c, the issue is to find the value of c that minimizes E(c)
in (2.12). The following Theorem shows that this minimum exists and is
unique.

Theorem 2.3. E(c) = 1
2

∑∞
i=1 αi−1βi is a strictly convex function of c.

Proof. Let gi = log(αi−1βi). Then, E(c) = 1
2

∑∞
i=1 egi , E′(c) = 1

2

∑∞
i=1 egig′i,

and E′′(c) = 1
2

∑∞
i=1 egi

[
(g′i)

2 + g′′i
]
.

It is therefore sufficient to show that (g′i)
2 + g′′i ≥ 0 for all i, with at least

one inequality strict. It is straightforward to show that it is true for i = 1
since g1 = log(c + 1). For i > 1

gi = i log(c + i)− i log i +
i−1∑

j=1

log j −
i−1∑

j=1

log(c + j).

Hence

g′i =
i

c + i
−

i−1∑

j=1

1
c + j

=


1−

i−1∑

j=1

(hi,j − 1)


 /(c + i),

where hi,j = c+i
c+j > 1 for 1 ≤ j ≤ i− 1. Similarly,

g′′i =
−i

(c + i)2
+

i−1∑

j=1

1
(c + j)2

=


−1 +

i−1∑

j=1

(
h2

i,j − 1
)

 /(c + i)2.
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Hence

(c + i)2
[
(g′i)

2 + g′′i
]

=


1−

i−1∑

j=1

(hi,j − 1)




2

− 1 +
i−1∑

j=1

(hi,j − 1)(hi,j + 1)

= 1− 2
i−1∑

j=1

(hi,j − 1) +




i−1∑

j=1

hi,j − 1




2

− 1 +
i−1∑

j=1

(hi,j − 1)(hi,j + 1) > 0.

The inequality holds because hi,j + 1 > 2.

In Section 5 we list some values of the expected rank of the optimal rule,
and compare them with the corresponding values of our simple rule, both
when the latter stops with probability one, and with a given probability less
than one. We find, numerically, the optimal c-values, which when stopping
with probability one is about 4.2 and is not very sensitive to n, as seen in
Tables 1 and 2.

3 Retaining More than One Item

In this section, we consider the performance of the simple rules given by
(2.3) where we allow the rules to continue until a given number of items, r,
are retained. To this end, we extend the formula (2.8) for P (ks, c), which
provides the probability that at least one item is retained when n → ∞,
to the entire distribution for the number of items that these rules retain,
asymptotically in n. Equation (2.11) that provides the expected absolute
rank for the item that is retained by this rule is extended to the correspond-
ing value when r > 1. Finally, a discussion of the implementation of the
optimal dynamic rule and its behavior (in terms of the relative rank that
is required for retention as a function of the item number) for fixed n is
provided.

Let Zn denote the probability distribution for the number of items that
could be retained using the simple rule. Clearly, Zn =

∑n
i=1 Ii, where

I1, ..., In are a sequence of independent 0, 1 random variables with P (Ii =
1) = pin = min

(
b ic

n+1−ic, ks

)
/i where bxc is the largest integer less than or

equal to x. Then Zn converges uniformly to a Poisson random variable (c.f.,
Barbour et. al. [1], page 3). Let p(n) = max pin, i = 1, ..., n. Then

P (Zn = r) = exp(−λn)λr
n/(r!) exp{O(λnp(n), r

2λ−1
n p(n))},

where λn =
∑n

i=1 pin.
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It remains to find the parameter λ∗ of the limiting Poisson distribution
as n →∞. Following arguments similar to those in the previous section

λ∗ = lim
n→∞

ks∑

k=1

bn(k)∑

i=an(k)

k

i

= −
ks∑

k=1

k log(fk) = −
ks∑

k=1

log
(

k

k + c

)
.

Specifically, it follows from Barbour et. al. [1] that

Proposition 3.1.

lim
n→∞P (Zn = r) = expλ∗ λ∗r

r!
.

The probability of retaining one item as n →∞ is 1− limn→∞ P (Zn =
0) = 1− exp(−λ∗) which agrees with the result (2.8).

We now turn to the limiting expected sum of the absolute ranks, denoted
by E2(ks, c), for keeping r = 2 items, conditional on two items being kept,
for simple rules given by (2.3), for fixed ks, as n →∞. Let A2(ks, c) be the
limiting expected absolute rank of the second item that is kept, assuming
that the first two available items (by the rule) are kept. Then the expected
absolute sum of ranks from the two items kept (conditional on two items
being kept), is

E2(ks, c) =
[
F (0)E(ks, c) + A2(ks, c)

]
/F (1) (3.1)

where F (x) = 1 − F (x) and F is the cumulative distribution function of a
Poisson random variable with parameter λ∗.

The expected absolute rank from the second item that is kept for fixed
n can be written in a form similar to (2.13) by summing over instances that
item k is the first one that is retained. Similar limiting arguments as n →∞
yield

A2(ks, c) =
ks∑

k=1

V (k)
{[

k2

2(k + 1)

(
c + k

k
− f(k)

c + k + 1
k + 1

)]
+ f(k)

k

2
c + k + 1

k + 1
log f(k)

}

−
ks−1∑

k=1

log f(k)
ks∑

j=k+1

V (j)
j

2

[
c + j

j
− f(j)

c + j + 1
j + 1

]
. (3.2)

Substituting (2.16) and (3.2) into (3.1) yields the desired result.
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The rule can be modified so that the value of c until the first item is
retained, c1, is different from the value of c for selecting the second item, c2.
The numerical results in Table 5 show that for the optimal choice of these
values, c1 > c2. This makes sense as this implies that the first item will be
chosen rather early to allow for a sufficient number of items from which to
make the second choice. This extends to retaining more than two items by
means of different c values.

We now turn to the dynamic programming required to find the optimal
rule of selecting r items, with probability one, r ≤ n. Let (m, j) be the state
that the relative rank of item m is being observed and j additional items
are required. Let C(m, j) be the minimum over all stopping rules of the
sum of the expected absolute ranks from the last j items that are retained
given the state is (m, j). The optimal solution to retain r is then C(1, r).
This implies that the optimal solution for retaining r out of n is obtained
simultaneously for all r = 1, ..., n by one run of the dynamic program. Let
h(m, j) be the largest relative rank of an item to be retained in the optimal
solution given that the state is (m, j).

The values of C(m, j) and h(m, j) are determined recursively as follows:

h(n, 1) = n

and
C(n, 1) =

n + 1
2

; C(n, j) = ∞ for j > 1.

Furthermore, since it is preferred to retain item m with Rm = k in state
(m, j) if
C(m + 1, j − 1) + (n+1)k

(m+1) ≤ C(m + 1, j) it follows that

h(m, j) =
⌊

(C(m + 1, j)− C(m + 1, j − 1))(m + 1)
n + 1

⌋
.

This implies that

C(m, j) =
h(m, j)

m

[
C(m + 1, j − 1) +

(n + 1)(h(m, j) + 1)
2(m + 1)

]
+

(
1− h(m, j)

m

)
C(m+1, j).

Some values of C(1, r) for various values of n are given in Table 4.

4 Rules That Retain a Given Percentage of Items

In this section we consider simple rules which, for a fixed given fraction α,
0 < α < 1, retain (approximately) the fraction α of the population of ”good”
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items. More specifically, if for fixed α, we denote by Ln(α) the number of
items retained by the rules considered, we show that

lim
n→∞ELn(α)/n = α (4.1)

and
Ln(α)/n → α a.s. as n →∞. (4.2)

Let Sn(α) denote the sum of the absolute ranks of the items retained by the
rule. We furthermore show that

lim
n→∞E

Sn(α)
nE(Ln(α))

= α/2. (4.3)

Note that this is optimal in the sense that if one could inspect all the items
first, and pick the dαne best items, then the sum of the ranks, Bn would
satisfy

lim
n→∞

Bn

ndαne = lim
n→∞

dαne+ 1
2n

=
α

2
.

Let 0 < α < 1 be fixed. We omit the index α. Consider
Rule 1. Keep item j if and only if Rj ≤ dαje.
Note that knowledge of n is not required to implement the rule. Let Ij = 1
or 0, according to whether or not the jth item is kept. Then Ln =

∑n
j=1 Ij ,

and
α ≤ EIj < α +

1
j
, j = 1, ..., n

Thus,
nα ≤ ELn < αn + log n + 1, (4.4)

and (4.1) follows. The second limit, (4.2), follows by noting that, by the
independence of the Rj ’s, the Ij ’s are independent (almost identically dis-
tributed) Bernoulli variables, and applying the SLLN.

Here Sn =
∑n

j=1 An
j Ij , thus

ESn =
n∑

j=1

E(An
j Ij) =

n∑

j=1

E(EAn
j Ij |Rj) = (n + 1)

n∑

j=1

1
j(j + 1)

djαe∑

k=1

k

=
n + 1

2

n∑

j=1

djαe(djαe+ 1)
j(j + 1)

=
n + 1

2
[
nα2 + o(n)

]
. (4.5)

Combining (4.5) and (4.4) yields (4.3).
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We now show that the sum of the absolute ranks, Sn, suitably normal-
ized, converges a.s. We first prove a result that shows that for any α the
normalized sum of the relative ranks of kept items converges a.s. to half of
the sum of the resulting absolute ranks.

Lemma 4.1. Let Tn =
∑n

i=1 RiIi. Then

Tn

nLn
→ α

4
almost surely as n →∞. (4.6)

Proof. Let Ui = RiIi − vi(vi+1)
2i where vi = dαie. Then Ui are independent

random variables with mean zero. Let bi = i2. Since

∞∑

i=1

E

(
U2

i

b2
i

)
<

∞∑

i=1

vi(vi + 1)(2vi + 1)
6i5

< ∞,

it follows from Feller [3] (Theorem 2, page 239) that b−1
n

∑n
i=1 Ui → 0 a.s.

as n → ∞. This implies that Tn/n2 → α2/4 a.s. because n−2
∑n

i=1[vi(vi +
1)]/(2i) → α2/4. (4.6) follows from (4.2).

We are now prepared to show

Theorem 4.1.
Sn

nLn
→ α

2
a.s. as n →∞.

Proof. Let Gn be the sum over j = 1, ..., n of the contribution to the absolute
rank An

j above Rj for the items retained, i.e., Gn =
∑n

j=1(A
n
j −Rj)Ij . Then

by (2.9)

E(Gn|Fn−1) = (Gn−1 + Rn−1In−1)
(n + 1)

n
(4.7)

where Fn−1 is the σ-algebra generated by the relative ranks of the first n−1
items. Let Zn = Gn

n(n+1) . (4.7) implies that

E(Zn|Fn−1) =
Zn−1(n− 1)n(n + 1)

n(n + 1)n
+

Rn−1In−1

n2

=
n− 1

n
Zn−1 +

Rn−1In−1

n2
.

Note that by Lemma 4.1
∑∞

n=2
In−1Rn−1

n2 → α2/4 a.s. Hence Gn/n2 a.s.
converges from a theorem in Robbins and Siegmund [6]. But Tn/n2 con-
verges a.s. from Lemma 4.1 and Sn/n2 = (Gn + Tn)/n2. Therefore, Sn/n2

converges a.s.
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To see that the a.s. limit of Sn/n2 is α2/2, note that Sn ≥ Ln(Ln +1)/2
and thus by (4.2) lim inf Sn/n2 ≥ α2/2 a.s. Since Sn/n2 is bounded, it
follows that E(limSn/n2) = limE(Sn/n2) = α2/2, where the last equality
follows from (4.3) and (4.1). Thus if P (limSn/n2 > α2/2) > 0 we would get
a contradiction.

The simple rule discussed above satisfies Ln/dαne → 1 a.s. Suppose
however, that it is desired that a rule keep exactly dαne items. Can this be
achieved? Below we exhibit a rule for which P (Ln = dαne) → 1, and for
which (4.3) holds. This is achieved by increasing the cutoff level for which
an item is kept, somewhat.
Rule 2. Fix 0 < α < 1 and 0 < ω < .5. Retain item j if

Rj ≤
⌈
(α + n−

ω
)j

⌉
, (4.8)

and if not already dαne items have been chosen. Note that to implement
this rule we need to know n.

Proposition 4.1. For Rule 2

P (Ln = dαne) → 1, as n →∞. (4.9)

Proof. Let Xn be the number of items j, for which (4.8) holds, j = 1, ..., n.
We shall show that P (Xn ≥ dαne) → 1. Let Ij = 1 if (4.8) holds for j,
Ij = 0 otherwise. Then P (Ij = 1) = pnj ≥ pn = α + n−ω. Let Yn be a
Binomial(n, pn) random variable. Then Xn is stochastically larger than or
equal to Yn. Hence

lim
n→∞P (Xn ≥ dαne) ≥ lim

n→∞P (Yn ≥ dαne) = lim
n→∞

(
1− Φ

(
dαne − npn√
npn(1− pn)

))

≥ lim
n→∞

(
1− Φ

(
1− n1−ω

√
npn(1− pn)

))
= 1,

since 0 < ω < .5, where Φ is the standard normal distribution. Thus (4.9)
holds.

Proposition 4.2. (4.3) holds for Rule 2.

Proof.

E(An
j |Ij = 1) ≤ n + 1

j + 1

(
(α + n−ω)j + 1

2

)
≤ (n+1)

(
α + n−ω

2
+

1
2(j + 1)

)
.
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Let j∗1 , ..., j∗s be the at most dαne smallest indices j ≤ n for which (4.8)
holds. Thus Sn =

∑n
i=1 An

j∗i
Ij∗i . Hence,

ESn ≤ dαne(n + 1)(α + n−ω)/2 + (n + 1) log(n + 2)/2.

It follows that ESn/dαnen → α/2 as n →∞, i.e., (4.3) holds.

A result corresponding to Theorem 4.1, for Rule 2, follows in a similar
way as for Rule 1.

5 Numerical Results

This section demonstrates the results from the previous sections. We first
illustrate the findings from Section 2 where one item is retained. Table 1
presents the expected value of the absolute rank of the retained item of the
optimal rule (based on dynamic programming for each given n) and the
corresponding value and the optimal choice of c for the simple rule, which
is evaluated directly for each given c.

It is apparent from Table 1 that the relative advantage of the using the
simple rule is greater for large n. It is interesting that the performance of
the simple rule is less sensitive to the value of n. Hence, when the number
of items becomes large, the case where it is hard to implement dynamic
programming, is when the simple rule performs almost as well as the optimal
rule.

The choice of c in the simple rule should be taken to be about 2.4. This
value of c is nearly optimal for a wide range of n. Furthermore, the actual
performance does not vary much for different c near 2.4, as seen in Table 2.
Note from Table 2 that for n = 100, c = 2.30 performs better than c = 2.40,
consistent with the findings in Table 1.

In Table 3 we illustrate the performance of the rules which select an item
with probability P < 1, along with their optimal c and ks. It is observed
that even for P = .99 one does not need ks bigger than 11, for all n ≤ 106.
It is noted that for n ≥ 1000 the optimal values of c and ks do not change
with n (up to the precision given).

Table 4 lists the optimal sum of the ranks for keeping r, standardized
by r(r + 1)/2 (which is the lowest possible attainable sum of ranks). Those
values were obtained by the dynamic programming described in Section 3.

In Table 5 we list the performance of the simple rule which selects two
items, with one c-value, and with c1 6= c2 respectively. It is seen that c1 6= c2

yields a large improvement. The optimal values are listed for comparison.
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In Table 6 we list the corresponding conditional values when a selection
is only required with given probability P . The same c is used for both
choices. A comparison with the corresponding values in Table 3 shows that
the second term improves the average (when divided by r(r + 1)/2 = 3).

Finally, in Table 7 shows the performance for Rule 1 of Section 4, for
α = .1, .2, .3, .4 and .5 and n = 100, 1000, 10000. This is the only table that
is based on simulations, with 1000 replications for each n and α. Since the
probability of retaining an item is usually greater than α and at least equal
to α, it is not surprising that the average number kept, when standardized
by nα, is somewhat greater than 1. This effect is larger for small values of n.
Similarly, the average absolute rank standardized by n/2 times the number
kept, is slightly above α, especially when n is small .

Acknowledgement
We would like to thank Moshe Pollak for many helpful suggestions.

17



Table 1: Optimal rule and simple rule for retaining one item.

n Optimal Simple rule Optimal c
Exp. Rank Exp. Rank

100 3.6032 3.7348 2.30
1,000 3.8324 3.9062 2.36
10,000 3.8649 3.9258 2.41
100,000 3.8690 3.9279 2.41
1,000,000 3.8695 3.9281 2.42

Table 2: Sensitivity of one-choice simple rule to c

c n = 100 n = 1, 000 n = 10, 000 n = 100, 000 n = 1, 000, 000
2.00 3.7706 4.0019 4.0397 4.0450 4.0457
2.10 3.7550 3.9543 3.9857 3.9894 3.9899
2.20 3.7418 3.9251 3.9513 3.9543 3.9546
2.30 3.7348 3.9109 3.9325 3.9349 3.9352
2.40 3.7405 3.9066 3.9259 3.9280 3.9282
2.50 3.7540 3.9111 3.9292 3.9311 3.9313
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Table 3: One item selected with given P , Optimal c, ks and conditional
expected absolute rank, and actual value of P obtained.

P Act Prob c ks Exp Abs Rank
n=100

0.50 0.5051 1.06 1 1.5049
0.60 0.6061 1.58 1 1.7549
0.70 0.7013 1.15 2 1.8982
0.80 0.8032 1.25 3 2.2058
0.90 0.9013 1.61 4 2.6028
0.95 0.9506 1.74 6 2.9378
0.99 0.9906 2.16 11 3.4140

n=1000
0.50 0.5015 1.01 1 1.5025
0.60 0.6016 1.51 1 1.7536
0.70 0.7021 1.14 2 1.9176
0.80 0.8010 1.22 3 2.2254
0.90 0.9001 1.60 4 2.6346
0.95 0.9502 1.96 5 2.9817
0.99 0.9901 2.15 11 3.4964

n=10,000
0.50 0.5025 1.01 1 1.5049
0.60 0.6016 1.51 1 1.7548
0.70 0.7023 1.14 2 1.9193
0.80 0.8011 1.22 3 2.2277
0.90 0.9004 1.60 4 2.6391
0.95 0.9502 1.96 5 2.9868
0.99 0.9900 2.15 11 3.5035

n=100,000
0.50 0.5025 1.01 1 1.5050
0.60 0.6016 1.51 1 1.7550
0.70 0.7000 1.13 2 1.9142
0.80 0.8011 1.22 3 2.2279
0.90 0.9005 1.60 4 2.6395
0.95 0.9502 1.96 5 2.9873
0.99 0.9900 2.15 11 3.5043

n=1,000,000
0.50 0.5025 1.01 1 1.5050
0.60 0.6016 1.51 1 1.7550
0.70 0.7000 1.13 2 1.9142
0.80 0.8011 1.22 3 2.2280
0.90 0.9005 1.60 4 2.6396
0.95 0.9502 1.96 5 2.9874
0.99 0.9900 2.15 11 3.5044
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Table 4: Expected absolute rank/[r(r + 1)/2] obtained by the Optimal rule
for keeping r.

r n = 100 n = 1, 000 n = 10, 000 n = 100, 000 n = 1, 000, 000
1 3.6032 3.8324 3.8649 3.8690 3.8695
2 2.7937 2.97807 3.0039 3.0072 3.0076
3 2.3774 2.5386 2.5612 2.5640 2.5644
4 2.1216 2.2688 2.2893 2.2919 2.2922
5 1.9476 2.0851 2.1042 2.1066 2.1069
6 1.8209 1.9513 1.9694 1.9716 1.9719
7 1.7242 1.8491 1.8664 1.8686 1.8688
8 1.6475 1.7683 1.7850 1.7871 1.7873
9 1.5849 1.7026 1.7188 1.7208 1.7211
10 1.5331 1.6481 1.6639 1.6659 1.6661

Table 5: Two items selected with probability one for equal c and unequal c1

and c2, Optimal c, c1,c2 and expected absolute rank/3.

n c c1 c2 Exp Abs Rank Exp Abs Rank Exp Abs Rank
Equal/3 Unequal/3 Optimal/3

100 3.21 3.81 2.16 3.0857 2.8667 2.7937
1,000 3.19 3.79 2.20 3.2198 3.0078 2.9798
10,000 3.15 3.80 2.22 3.2342 3.0259 3.0039
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Table 6: Two items selected with given P , Optimal ks and conditional
expected absolute rank/3.

P Act Prob c ks Exp Abs Rank/3
n=100

0.50 0.5365 2.04 2 1.9407
0.60 0.6030 2.48 2 2.0179
0.70 0.7037 2.20 3 2.0724
0.80 0.8024 2.31 4 2.2093
0.90 0.9007 2.42 6 2.4414
0.95 0.9502 2.62 8 2.6107
0.99 0.9903 3.06 13 2.8939

n=1,000
0.50 0.5019 1.82 2 1.9436
0.60 0.6003 1.66 3 2.0209
0.70 0.7009 2.18 3 2.1091
0.80 0.8013 2.32 4 2.2568
0.90 0.9004 2.48 6 2.4940
0.95 0.9503 2.70 8 2.6919
0.99 0.9901 2.95 15 2.9935

n=10,000
0.5000 0.5016 1.82 2 1.9468
0.6000 0.6002 1.66 3 2.0235
0.7000 0.7002 2.18 3 2.1119
0.8000 0.8009 2.32 4 2.2607
0.9000 0.9007 2.49 6 2.5011
0.9500 0.9504 2.71 8 2.7002
0.9900 0.9902 2.96 15 3.0023
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Table 7: Rule 1 for selecting a proportion α. Average number kept normal-
ized by nα. Average Abs Rank normalized by (Number kept times n/2).

n α Avearge Std Dev Avearge Std Dev
Abs Rank/ Abs Rank Number kep/ Number kept
Number kept · n

2 nα
100 0.1 0.1760 0.06500 1.2291 0.3305
100 0.2 0.2579 0.05604 1.1114 0.2101
100 0.3 0.3457 0.05306 1.0582 0.1621
100 0.4 0.4457 0.05276 1.0469 0.1253
100 0.5 0.5572 0.05041 1.0572 0.0967
1000 0.1 0.1127 0.01351 1.0386 0.0964
1000 0.2 0.2092 0.01435 1.0171 0.0651
1000 0.3 0.3078 0.01636 1.0102 0.0514
1000 0.4 0.4080 0.01566 1.0095 0.0376
1000 0.5 0.5091 0.01692 1.0098 0.0327
10000 0.1 0.1017 0.00325 1.0055 0.0302
10000 0.2 0.2013 0.00396 1.0025 0.0195
10000 0.3 0.3012 0.00476 1.0019 0.0156
10000 0.4 0.4012 0.00495 1.0015 0.0123
10000 0.5 0.5012 0.00502 1.0014 0.0100
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