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Abstract

The subset agreement problem generalizes all forms of two-sided matching. Two
agents need to agree on some subset of a given finite set of contracts. A solution
concept - agreement - generalizes the notion of a stable subset. Its definition does
not require the consideration of a preference ordering on sets of contracts, but
only that of the choice function that reveals the agents’ preferences by choosing
the best subset of any given set of contracts. Under a suitable condition, called
coherence, that requires that contracts are substitutes to one another, at least one
agreement always exists. A constructive proof is given that the structure of the set
of agreements is a lattice.

1 Introduction and Background

1.1 What is Matching?

When we talk about matching we refer to a set of models and related concepts that try to
model certain resource allocation markets. What special about those markets is that the

∗This work was partially supported by the Jean and Helene Alfassa fund for research in Artificial
Intelligence
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decision-making agents that compete for resources also serve as resources for other agents:
every agent is a resource for some other agents and every resource could be thought of as
an agent. Consider, for example, a labor market consisting of hiring firms and workers.
A worker is a resource that provides labor for a firm that hires him. On the other hand,
the firm is a resource for the worker: the former establishes the working conditions and
pays the latter.

Matching models attempt to study both statics and dynamics of matching markets.
The first problem is to formulate a reasonable equilibrium solution concept, i.e., is there
such a resource allocation that the markets clear. Other questions usually follow naturally
from the formulation of the solution concept: Is there at least one such equilibrium? Are
there more than one equilibrium? What are the dynamics (if any) that lead to such an
equilibrium? How do different equilibrium solutions compare? And so on.

1.2 A Review of the Literature

The best approach to understanding of matching is to describe and compare various
matching models that have been studied in the literature. Such a review also establishes
the point of departure for this work. A substantial review of all the aspects of matching
is out of the scope of this work. Moreover, such a review (which cites slightly fewer than
200 references) already exists: it is a monograph by Alvin Roth and Marilda Sotomayor
( [27]). In our review we focus on the evolution of matching models and on the results
dealing with the structure of the set of stable matchings.

1.2.1 Pure Matching Models

Serious theoretical analysis of matching and attempts to model certain market activities
on its basis date back to the pioneering work of Gale and Shapley [12] that analyzes
the one-to-one marriage problem1 and the many-to-one college admissions problem and
their relationship. In their model colleges have preferences over individual students, not
groups. They begin with defining the solution concept — a stable matching. It is a
quintessential static game-theoretic equilibrium concept in the following sense: when
players find themselves in an equilibrium it is impossible for any single player, or two
players from the opposite sides, to improve on their outcome. It is closely related to the
solution concept in the coalitional games — the core — where in an equilibrium no subset
of players can improve on the outcome of some of its members by forming a new coalition
without hurting at least one member of the subset. It differs from the core in that it is

1See Appendix A.1
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local in nature — only two player from the opposite sides are considered, not any coalition
of the players 2.

Further, Gale and Shapley provide a constructive proof (an algorithm) of the existence
of a stable matching for every marriage market 3, duality of the stable matchings with
respect to men’s and women’s preferences4, and the existence of optimal outcomes for
men and for women when the preferences are strict5.

Finally, they extend the results from one-to-one marriage market to the one-to-many
college admissions market and demonstrate the existence of stable matchings via an al-
gorithm very similar to that employed in the marriage problem, as well as existence of
college-optimal and student-optimal outcomes.

The first lattice structure result appears in the book of Knuth [16] 6. He attributes it
to John Conway. He proves that the set of stable matchings is a distributive lattice7. This
last result is especially important to us as the main result of this work is to demonstrate
the lattice structure of the set of stable matchings in a more generalized setting.

In 1984 Charles Blair [7] showed that for every finite distributive lattice there exists
some marriage market whose set of stable matchings equals the lattice.

The Gale-Shapley model was further generalized by Roth in [23] who considered one-
to-many college admissions matching models where the colleges had preferences over the
groups of individuals (unlike [12] who considered college preferences only over individuals).
They do it by introducing so called responsive preferences where college preferences over
groups of students are derived from their preferences over individuals8.

Building in part on the work of Crawford and Knoer [10] and Kelso and Crawford
[15], Alvin Roth in [22] and [25] reformulated discrete matching models in terms of an
increasingly complex hierarchy: one-to-one, many-to-one, and many-to-many matching.
In the many-to-many model not only firms may employ multiple workers, but also a
worker may work for more than one firm. He used an important generalization introduced
in [15]: preferences over groups of individuals are no longer derived from the preferences
over individuals, as in responsive preferences. Rather, they can be arbitrary as long
as they satisfy the gross substitutes property (which is equivalent to the substitutability

2It should be noted that in some (more restrictive) matching models the set of stable matchings
coincides with the core.

3Theorem 4 in Appendix A.1.1
4Theorem 5 in Appendix A.1.2
5Theorem 6 in Appendix A.1.2
6In 1972 Shapley and Shubik [29] demonstrated a similar result. That, however, referred to the class of

so called assignment games that are somewhat similar to matching models, but are different in important
ways.

7Theorem 7 in Appendix A.1.2
8See Appendix A.2

3



condition of [6]9). In their model (which is not by itself a pure matching model because
they have a money element affecting the preferences) [15] demonstrate that a deferred
acceptance algorithm (which, in essence, is very similar to the original algorithm of Gale
and Shapley) where firms propose first can be used to achieve a stable matching that
is optimal for the firms. [25] demonstrated how to remove the money element from the
model making it completely symmetric, therefore automatically proving the dual theorem:
a deferred acceptance algorithm where the workers propose first leads to a stable matching
optimal for the workers.

Charles Blair in [6] further studied the symmetric many-to-many matching model. He
demonstrated that the set of locally (i.e. pairwise) stable matchings no longer coincides
with the core as in other models. The lattice structure of the set of stable matchings
is preserved (and with it the duality and best/worst stable outcomes for the two sides),
however the lattice is no longer distributive.

Relatively recently, Hatfield and Milgrom [14] presented a model that abstracts from
the individual properties of matching algorithms and so to speak catches the essence of
two-sided matching10. All previous models treated separable preferences: every individual
has her own preferences not affected by the preferences of others. [14] abstracts from that
approach: now every side as a whole has preferences over groups on the other side. When
preferences satisfy the gross substitutability property separable preferences generalize
to Hatfield and Milgrom’s preferences. Theoretically this is useful when preferences of
individuals on one side affect each other, but conserve the gross substitutability property11.

1.2.2 Practical Relevance of Pure Matching Models

The Gale-Shapley model applies to markets without wages or transfers (or ’without
money’, for short). However, even such a ’simplistic’ approach is proving to be extremely
useful in practice. To mention just a few relatively recent examples: [24] demonstrates
how the procedure used to match tens of thousands of physicians per year to medical res-
idency programs is in fact a slightly modified Gale-Shapley Algorithm. [26] analyzes the
practical aspects of the program and some of its shortcomings and offers solutions that
since then have been successfully implemented. [1] analyzes some of the existing school
choice plans, suggesting that a Gale-Shapley-based mechanism could remedy their serious
flaws. [19] presents a theory of matching in vertical networks, generalizing Gale-Shapley
matching theory.

9See Definition 25
10See Chapter 2.
11Practical usefulness of this approach is yet to be seen.
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1.2.3 Tatonnement Algorithms

Closely related to Gale-Shapley are the tatonnement algorithms of Kelso and Crawford
[15], [11], and [13]. The Kelso-Crawford model, in fact, may be treated as a many-to-many
matching algorithm without money (see [27]).

1.2.4 Auction Models

Auction models of [8], [18], [5] and [4] are also closely related to matching.

1.2.5 Common Features of the Matching Models

There are certain features that are common to all the matching models without money:

• Problem setting is two-sided: the agents can be naturally divided into two groups,
viz., men and women, students and colleges, doctors and hospitals, workers and
companies.

• An outcome is defined as a set of offers, every offer involving two agents - one from
each side. Viz., man M marries woman W; hospital H employs doctor D; company
F employs worker W at wage level L.

• A set of valid outcomes (or matchings) is defined.

• The solution concept employed is that of stable matching with respect to agents’
preferences on outcomes. This means, roughly speaking, that no single agent could
improve by withdrawing (individual rationality) and that no two agents - one from
each side - could improve by agreeing on a separate offer.

• The solution procedure is an iterative process in which agents on one side make
a series of offers and, whenever an offer is rejected, the rejected agent is given an
opportunity to make another offer.

The differences among the models lie in the particular limitations that are imposed
on the set of valid outcomes. For example, the stable marriage problem is one-to-one, i.e.
in a valid outcome every man is matched to no more than one woman, every woman is
matched to no more than one man, and man M is matched to woman W iff W is matched
to M. On the other hand, the hospital residency model and the Kelso-Crawford model,
are one-to-many: a doctor is employed by no more than one hospital, but a hospital may
employ more than one doctor. The difference between those two models is that a wage
component is introduced in Kelso-Crawford.
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As noted above, [14] presented a model that abstracts from the individual properties
of matching algorithms and so to speak catches the essence of two-sided matching.

1.3 Our Contribution

One of the properties of matching models is that the set of solutions has a certain math-
ematical structure: it is a lattice. As noted above, we consider a generalized matching
model of [14]. He shows that even in that general case the set of solutions form a lattice.
However, his proof is non-constructive. Drawing on the work of Blair ([6]) we prove it con-
structively. [6] demonstrates that the set of solutions for certain many-to-many matching
markets is a lattice. But due to the less restrictive nature of our model his proof breaks
down, therefore we fix it.

Some other (lesser) contributions of this work are: a rigorous treatment of how classic
matching models translate into the generalized matching model12, a discussion of the
relationship between cumulative partial orders and choice functions13, and a necessary
and sufficient condition for existence of a non-empty agreement14.

2 The Model

We start with an informal description and then proceed with the formal setting.

2.1 The Informal Description

Following [14] we study a model of matching theory that unifies the class of two-sided
matching models by abstracting from the content of an offer. Our basic unit of analysis
is a two-party contract the content of which is opaque. Each such contract represents a
possible assignment of a student to a college, or a doctor to a hospital, or a worker to
a firm at a certain wage level. A set of such contracts may be considered a candidate
matching, i.e. a possible assignments of students to colleges, etc. Hence any matching
may be represented as a set of contracts.

Furthermore, we aggregate preferences of the players on each side arriving at a model
that consists of only two aggregate preferences. Those preferences express the collective
preferences of their members over the set of all possible matchings, i.e. the power set of
contracts.

12See Appendix A
13See Section 2.2
14See the end of Chapter 4

6



Most previous work describes preferences by a total order or a total partial order on
some unstructured set of alternatives. It is an essential feature of our framework that
any player is interested only in those contracts that he is a part of (a no-externalities
assumption). In the aggregate preference relation a subset of contracts A is preferred to
B only if all players weakly prefer A to B. However, it is possible that some players prefer
A to B and some B to A. Therefore we have no choice but to consider relations that allow
the subsets of contracts to be incomparable.

In order to make the model more general, we would have liked to allow the players to
be indifferent between alternatives, so the anti-symmetry does not always hold. However,
it is impossible to obtain many of the results if such a relaxation is allowed. Therefore we
require anti-symmetry. Hence the preference relations we consider are reflexive, transitive,
anti-symmetric, but not necessarily total, i.e. partial orders.

From the algorithmic perspective, those preferences over sets require vast amounts of
information to be fully specified. Alkan and Gale [3] proposed that such preferences be
revealed, only partially and when needed, by a choice function.15 In order to employ the
choice function approach we impose the following restriction on the aggregate preferences
we consider: given any set A of contracts, there is a subset B of A that is preferred to
any subset of A. Due to anti-symmetry this subset B is unique.

Finally, we need to define what constitutes a stable matching. Consider two players
that are trying to agree on a set of contracts. Each player has preference over subsets
of contracts. Those preferences correspond to the aggregate preferences of the sides that
we have discussed above. Given a set of contracts any one player may remove contracts
from it. Contracts may be added only one by one and only if both players agree. Adding
a contract may be beneficial to a player because the resulting set contains a subset that
the player prefers to the one that is on the table now. A subset of contracts is called
an agreement if it cannot be modified. In our model agreements correspond to stable
matchings, as we demonstrate in Section 3.

Our model may seem more restrictive than the classical matching models: Typically
the set of alternatives is an arbitrary set that does not have any special structure. We,
on the contrary, assume that the set of alternatives is the powerset of some set (the set
of contracts), and has a certain structure that we use in order to restrict the preferences.
However, as we shall see in Section 3, those restriction do not prevent our model from
generalizing the existing matching models.

15Their framework is slightly different: the set of firms and the set of workers have preferences over
matching matrices, which is a special case of sets of contracts.

7



2.2 The Formal Setting

We start with the definition of preference relations we consider:

Definition 1 Let Ω be some finite set. A cumulative partial order � on the powerset
of Ω is a reflexive, transitive, and anti-symmetric binary relation on 2Ω such that

∀B∈2Ω ∃C⊆B : ∀C ′⊆B C�C ′

In other words, although some subsets of Ω may be incomparable, every subset B
contains a subset C that is preferred to all other subsets of B.

Apart from being defined on a powerset, this definition differs from the usual definition
of a preference relation in that we do not require it to be total, i.e. we allow elements of
2Ω to be incomparable. Also, we require anti-symmetry.

In what follows whenever we write preference relation we mean cumulative partial
order, unless indicated otherwise. As usual, a�b indicates that a�b and a6=b.

In analyzing our model we take the approach of choice functions and revealed pref-
erences very similar to that of [3] and implicit in [6]. Given a set of contracts A we are
only interested in the most preferred subset of A. That property can be described by
a function from sets of contracts to sets of contracts that for every set A picks its most
preferred subset. The following definition captures that property:

Definition 2 Let � be a cumulative partial order on 2Ω and f : 2Ω → 2Ω be a function
from subsets of Ω to subsets of Ω. We call f the choice function for � if

∀A∈2Ω, ∀B ⊆ A : f(A) ⊆ A and f(A) � B

Note that due to cumulativity of � such a function exists, and due to anti-symmetry
of � such a function is unique.

The following definition encapsulates the properties we want to assume about the
function f . We claim that in all previously studied matching problems the preferences of
the players may be described by coherent choice functions:

Definition 3 Let f : 2Ω → 2Ω be a function from subsets of Ω to subsets of Ω. We
define three properties:

• (Contraction) ∀X ⊆ Ω f(X) ⊆ X

• (Cumulativity) ∀X, Y ⊆ Ω if f(X) ⊆ Y ⊆ X, then f(Y ) = f(X)
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• (Sα) ∀X, Y ⊆ Ω if X ⊆ Y , then X ∩ f(Y ) ⊆ f(X).

We call f a choice function if it satisfies Contraction; we call it a cumulative
choice function if it satisfies both Contraction and Cumulativity; and we call it a co-
herent function if it satisfies all three of the properties.

For the justification of those requirements consider a choice function f for �. Remem-
ber that f(X) is the most preferred subset if only elements of X are allowed. Contraction
just requires that only elements of X be present.

Cumulativity is obviously satisfied if f(X) is the most preferred subset of X (see Claim
1).

The property Sα is Sen’s [28] property α. The property appears in Chernoff’s [9]. It is
essentially the substitutability condition of [6] (see Definition 25) and [22]. The persistence
property of [3] is very similar. This property says that if a contract is chosen out a larger
set Y , it will still be chosen out of any subset of Y which contains it. In Blair’s words
([6, p. 620]) it means that “members of Y are wanted for their own sake, not because of
potential benefits of their interaction with other members”.

Those three properties have been extensively used for non monotonic logics in [17].
In Appendix B we demonstrate some properties of coherent functions.

Claim 1 For any cumulative partial order its choice function is cumulative.

Proof: Let f be the choice function for �. Clearly f satisfies Contraction.
Suppose X, Y ⊆ Ω and f(X) ⊆ Y ⊆ X. Now, f(Y ) is a subset of Y , so it is a subset

of X. Therefore f(X) � f(Y ). On the other hand, since f(X) is a subset of Y we have
f(Y ) � f(X). Therefore, by anti-symmetry, f(X) = f(Y ). Hence f is a cumulative
choice function.

Having demonstrated that there is a mapping from cumulative partial orders to cumu-
lative choice functions, we would like to establish next a mapping in the reverse direction:
from cumulative choice functions to cumulative partial orders. The following claim shows
that it is impossible in the unrestricted case:

Claim 2 There exists a cumulative choice function that is not a choice function for any
cumulative partial order.

Proof: Let Ω = {a, b, c}. Define f(Ω) = Ω, f({a, b}) = f({a}) = {a}, f({b, c}) =
f({b}) = {b}, f({a, c}) = f({c}) = {c}, f(∅) = ∅. It is easy to verify that f is a
cumulative choice function.

9



Suppose that f is a choice function for some cumulative partial order �. Since
f({a, b}) = {a} and {b} ⊂ {a, b} it must be the case that {a} � {b} (see Definition 2).
Similarly, from f({b, c}) = {b} we obtain {b} � {c}, and from f({a, c}) = {c} we obtain
{c} � {a}. By transitivity and anti-symmetry it must be the case that {a} = {b} = {c}.
Contradiction.

In order to establish a mapping from choice functions to cumulative partial orders we
restrict our attention to coherent partial orders:

Definition 4 A cumulative partial order � is called coherent if its choice function is
coherent.

The following claim establishes a mapping from coherent choice functions to coherent
partial orders.

Claim 3 Let f : 2Ω → 2Ω be a coherent choice function. Let binary relation �f on 2Ω be
defined as:

• X �f X

• if X 6= Y then X �f Y iff there exist Z ⊆ Ω such that X = f(Z) and Y ⊆ Z

Then �f is a coherent partial order, f being its choice function.

Proof: �f is reflexive by definition.
Suppose A �f B and B �f C, where A 6= B and B 6= C. It means that there exist D′

and D′′ such that A = f(D′), B ⊆ D′, B = f(D′′), and C ⊆ D′′. Let D = D′ ∪ D′′. Due
to coherence of f we have:

D′′ ∩ f(D) ⊆ f(D′′) = B ⊆ D′

Therefore, due to Contraction, f(D) ⊆ D′, and so f(D) ⊆ D′ ⊆ D. By Cumulativity
f(D) = f(D′) = A. Since C ⊆ D′′ ⊆ D, by definition of �f we obtain A �f C. So �f is
transitive.

Suppose A �f B and B �f A. It means that there exist E ′ and E ′′ such that
A = f(E ′), B ⊆ E ′, B = f(E ′′), and A ⊆ E ′′. Let E = E ′ ∩E ′′. By Contraction A ⊆ E ′.
Since A ⊆ E ′′ we have f(E ′) = A ⊆ E. Similarly f(E ′′) ⊆ E. Since E ⊆ E ′, by coherence
of f , E∩f(E ′) ⊆ f(E) ⇒ f(E ′) ⊆ f(E) ⇒ f(E ′) ⊆ f(E) ⊆ E ′. Hence, by Cumulativity,
f(E ′) = f(E). Similarly, f(E ′′) = f(E). Therefore A = B and �f is anti-symmetric.

Let A ⊆ B. Then, by definition of �f , f(B) �f A. Thus �f is a cumulative partial
order. It is also immediate that f is the choice function for �f , so �f is coherent.
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Note that in general the reverse of Claim 3 does not hold: there may exist many
coherent partial orders having the same choice function.

Suppose that we somehow managed to translate individual preference in a two-sided
matching model into aggregate preferences of the two sides (see Section 3 on how it can
be done for classical matching models). Our next goal is to provide a suitable definition
for the resulting model, including the definition of stable matchings via the new aggregate
preferences.

Definition 5 A two-party subset agreement problem (or 2-SAP for
short) (Ω,�1 ,�2 ) consists of the finites set of contracts Ω, and binary relations �1

and �2 on 2Ω. Where �i , i∈{1, 2} is understood as a preference relation of player i
over subsets of Ω.

In order to obtain interesting results we have to restrict our attention to 2-SAPs where
the player preferences are coherent.

Definition 6 A 2-SAP (Ω,�1 ,�2 ) is called coherent if both �1 and �2 are coherent.
In such a case we say that the coherent choice functions for �1 and �2 characterize
the 2-SAP.

We follow with two definitions of stable agreements. The first one defines an agreement
via player preferences. The second - via the choice functions. While the first approach
provides the intuition behind the definition, the choice functions definition is easier to
work with technically. Of course we will have to demonstrate the equivalence of the two
definitions.

Definition 7 Given a two-party subset agreement problem (Ω,�1 ,�2 ) and a set A⊆2Ω,
we say that A is a stable agreement or simply an agreement if both of the following
conditions hold:

1. (Individual Rationality) ∀B⊆A : A�1 B and A�2 B

2. (Stability) ∀x ∈ Ω ∃i∈{1, 2} : (∀B⊆A ∪ {x} : A�i B)

To justify the definitions, remember that �i are aggregate preferences: A�i B means
that all individuals on side i (weakly) prefer A to B. Each contract, on the other hand,
is between two individuals on both sides. The Individual Rationality property means
that individuals are not forced to enter into contracts and may drop any contract if the
result is more suitable to them. The Stability property means that if a new contract is
introduced all the individuals on at least one of the sides are not going to be willing to
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enter into it (possibly by dropping some other contracts). Note that Stability is a local
condition in the following sense: we require A only to be resistant to addition to it of any
single contract, not any arbitrary subset of contracts.

Definition 8 Given two coherent choice functions f1, f2 : 2Ω → 2Ω we call A ⊆ Ω an
agreement with respect to f1 and f2 if both of the following two conditions hold:

1. f1(A) = f2(A) = A

2. ∀x ∈ Ω : f1(A ∪ {x}) ∩ f2(A ∪ {x}) ⊆ A.

When the identity of f1 and f2 is clear from the context we will refer to such subsets as
simply agreements.

The following claim establishes equivalence between the two definitions.

Claim 4 Suppose a coherent 2-SAP (Ω,�1 ,�2 ) is characterized by coherent choice
functions f1 and f2. Then A is an agreement with respect to f1 and f2 if and only if
A is an agreement in the 2-SAP.

Proof: Suppose A is an agreement with respect to f1 and f2. We show that A satisfies
Individual Rationality and Stability and therefore is an agreement in the 2-SAP:

By definition fi(A) = A, where i ∈ {1, 2}. Since fi is the choice function for �i , by
Definition 2 we obtain Individual Rationality: ∀B ⊆ A : A�i B.

Fix x ∈ Ω and let C ⊆ A ∪ {x}. Since f1(A ∪ {x}) ∩ f2(A ∪ {x}) ⊆ A, it must
be the case that either f1(A ∪ {x}) ⊆ A or f2(A ∪ {x}) ⊆ A. Suppose without loss of
generality that the former holds, then f1(A ∪ {x}) ⊆ A ⊆ A ∪ {x}, and by Cumulativity,
f1(A ∪ {x}) = A. Since f1 is the choice function for �1 we have A�1 C. But x and C
were chosen arbitrarily, therefore we obtain Stability.

Suppose now that A is an agreement in the 2-SAP. We show that it is an agreement
with respect to f1 and f2:

From Individual Rationality and Definition 2 it immediately follows that fi(A) = A
for i ∈ {1, 2}.

For the sake of contradiction suppose that ∃x ∈ Ω such that f1(A ∪ {x}) ∩ f2(A ∪
{x}) * A. This means that f1(A ∪ {x}) 6= A and f2(A ∪ {x}) 6= A. By Definition 2,
f1(A ∪ {x}) �1 A. Since f1(A ∪ {x}) 6= A it cannot be the case that A �1 f1(A ∪ {x}).
Similarly it cannot be the case that A �2 f2(A ∪ {x}). Thus Stability is violated. We
conclude by contradiction that ∀x ∈ Ω : f1(A ∪ {x}) ∩ f2(A ∪ {x}) ⊆ A.

It follows from Claim 3 and Claim 4 that if we are interested only in the set of
agreements, coherent preferences approach and coherent choice function approach may
be used interchangeably.
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The set of all possibilities that a player faces may be huge. Consider, for example, a
hospital that wants to hire 50 residents out 10,000 newly graduated medical doctors. The
number of all possible assignments is around 3× 10135. The preference relation over such
a set of possibilities cannot be calculated. On the other hand, given a subset of doctors,
it is a relatively easy task to choose 50 (or less) best suited candidates among them. It
is therefore the choice function approach that really matters. And it is the approach that
we use as the main definition of stable agreements.

3 Model Comparisons

In this section we justify the definitions given in Section 2. We demonstrate how the
classical matching models can be translated into 2-SAPs and prove that stable agreements
in those models map one-to-one to stable agreements in the corresponding 2-SAPs.

We formally consider 2 classical matching models: Stable Marriage and One-to-many
Job Matching (those models are formally presented in Appendix A).

3.1 The Marriage Problem

The Marriage Problem is the simplest matching model. Although due to its simplic-
ity lacking practical application, it is very useful in establishing basic intuitions about
matching. Therefore we start with it.

We first would like to translate a marriage market into a 2-SAP and show that the
agreements in the two models coincide. We do it indirectly by constructing choice func-
tions for men and women such that the agreements with respect to the functions coincide
with the stable marriages. We are assured of the existence of suitable preferences by
Claim 3, and therefore we obtain a 2-SAP. Claim 4 then guarantees that the agreements
in the 2-SAP and the marriage market coincide.

One of the common features of classical treatments of matching problems is the special
emphasis given to the legal (or feasible) solutions. Preferences of the parties are then
considered only over such legal solutions. We, on the other hand, consider preferences
over both legal and illegal solutions. Instead of ruling out by law a marriage à trois, of,
say, a woman accepting contracts with two different men, we simply make the assumption
that every player prefers a legal subset of contracts (in this case, any set consisting of no
more than one contract) to any illegal set.

Let (M, W, (�i )i∈M∪W ) be a marriage market. The set Ω of contracts will be the set
of all possible man-woman pairings:

Ω = {(m, w)| m∈M, w∈W}

13



Next we define two partitions of Ω: one for M and one for W . Let p ∈ M ∪W , define
Ωp as:

Ωp = {x ∈ Ω| x = (p, w) or x = (m, p)}.

Then the two sets {Ωm}m∈M and {Ωw}w∈W are partitions of Ω.
For notation convenience denote Xp ≡ X ∩ Ωp for X ⊆ Ω. Now for every m ∈ M we

define a choice function fm : 2Ω → 2Ω as:

fm(X) = (X − Ωm) ∪ {(m, w) ∈ Xm| w �m ∅ and ∀(m, w′) ∈ Xm, w �m w′}

Analogously, for every w ∈ W :

fw(X) = (X − Ωw) ∪ {(m, w) ∈ Xw| m �w ∅ and ∀(m′, w) ∈ Xw, m �w m′}

In other words, given a set of contracts X, fp(X) consists of all the contracts in X to
which p is not a party, plus the contract p prefers the most among the members of Xp

(provided that p prefers that contract to staying single).
It is an easy exercise to verify that:

• fp’s are coherent

• By Definition 29, {fm}m∈M form a party and {fw}w∈W form a party

Therefore, by Lemma 14, the function fM(X) =
⋂

m∈M fm(X) and the function
fW (X) =

⋂
w∈W fw(X) are coherent.

We next establish the equivalence of the set of agreements in the marriage market and
the set of agreements with respect to fW (X) and fM(X).

Let A ⊆ Ω and let p∈M∪W be a player in the underlying marriage game. We define
πp(A) as the set of all players whose name appears opposite p on contracts in A to which
p is a party:

πp(A) = {w| (p, w)∈A} ∪ {m| (m, p)∈A}

Note that if p ∈ M then πp(A) ⊆ W , and if p ∈ W then πp(A) ⊆ M .
Let A ⊆ Ω be an agreement. We define µA : M∪W → 2M∪W as follows:

µA(p) = πp(A)

Since fM(A) = fW (A) = A it follows that for any player p we have fp(A) = A. Which
means that |πp(A)| ≤ 1 and thus |µA(p)| ≤ 1 for any p. Other properties of a matching
readily follow from the definition of πp and the fact that |πp(A)| ≤ 1. Therefore µA is a
matching.

14



Suppose µA is not individually rational. Without loss of generality assume that ∅ �m

µA(m) = {w} for some m∈M and w∈W . It follows that (m, w)∈A. But then (m, w) /∈
fm(A), and therefore fM(A) 6= A. Contradiction. Therefore µA must be individually
rational.

Suppose that µA is blocked by a pair (m, w). Then (m, w) ∈ fM(A ∪ (m, w)) and
(m, w) ∈ fW (A ∪ (m, w)). Clearly (m, w) is not in A. Hence fM(A ∪ (m, w)) ∩ fW (A ∪
(m, w)) * A. Contradiction. Therefore it must be the case that µA is not blocked by any
pair, and thus it is a stable matching.

Thus we have demonstrated how to map agreements into stable matchings. Now we
show how to map stable matchings into agreements. Let µ be a stable matching. Define
Aµ as follows:

Aµ = {(m, w)| µ(m) = {w}}

or, equivalently:
Aµ = {(m, w)| µ(w) = {m}}

It is easy to verify that πp(Aµ) = µ(p). In particular, there is no more than one
contract in Aµ for any player p.

Suppose that fM(Aµ) 6= Aµ. It follows that fm(Aµ) 6= Aµ for some m ∈ M . But that
is possible only if (m, w) ∈ Aµ and (m, w) /∈ fm(Aµ) for some w ∈ W . Since (m, w) is the
only contract in Aµ for m, it must be the case that ∅ �m w. But then µ is not individually
rational. Contradiction. Therefore fM (Aµ) = Aµ and, similarly, fW (Aµ) = Aµ.

Suppose that fM(Aµ ∪ (m, w))∩ fW (Aµ ∪ (m, w)) * Aµ for some (m, w) ∈ Ω. Clearly
(m, w) /∈ Aµ. Then (m, w) ∈ fm(Aµ ∪ (m, w)). That is possible only if w �m µ(m).
Similarly, m �w µ(w). Therefore µ is blocked by (m, w). Contradiction. We conclude
that fM(Aµ ∪ (m, w)) ∩ fW (Aµ ∪ (m, w)) ⊆ Aµ for all (m, w) ∈ Ω.

Therefore Aµ is an agreement with respect to fM and fW .
It is an easy exercise to show that the mappings A → µA and µ → Aµ are inverses of

each other, thus completing the construction.

3.2 One-to-many Job Matching

The translation of One-to-many Job Matching model into a 2-SAP follows the same
pattern as the Marriage problem translation.

Let M = (F, W, S, (Lp)p∈F∪W , (�p)p∈F∪W ) be a job market. The set Ω consists of all
possible triplets of firm, worker, and salary:

Ω = {(f, w, s)| f∈F, w∈W, s∈S}

15



Let A ⊆ Ω and let p∈P = F∪W be a player in the underlying job matching model.
We define πp(A) as the set of all player-salary pairs that appear on contracts in A to
which p is a party:

πp(A) = {(w, s)| (p, w, s)∈A} ∪ {(f, s)| (f, p, s)∈A}

We next define two partitions of Ω: one for F and one for W . Let p ∈ F ∪ W , define
Ωp as:

Ωp = {x ∈ Ω| x = (p, w, s) or x = (w, p, s)}.

Then the sets {Ωf}f∈F and {Ωw}w∈W form partitions of Ω.
We naturally extend the concept of the choice set (see Definition 23) to the sets of

contracts. Let f ∈ F , then C2−SAP
f : 2Ωf → 2Ωf is defined as:

C2−SAP
f (X) = {(f, w, s) ∈ X| (w, s) ∈ Cf (πf(X))}

Analogously, for w ∈ W , C2−SAP
w : 2Ωw → 2Ωw is defined as:

C2−SAP
w (X) = {(f, w, s) ∈ X| (f, s) ∈ Cw(πw(X))}

We are now ready to define a choice function gp : 2Ω → 2Ω for every p ∈ F ∪ W as:

gp(X) = (X − Ωp) ∪ C2−SAP
p (X)

In other words, given a set of contracts X, gp(X) is the subset of contracts p prefers
the most among members of X to which p is a party, together with all the contracts in
X to which p is not a party.

It is an easy exercise to verify that:

• gp’s are coherent (Sα, of course, follows from the Substitutability property of choice
sets)

• By Definition 29 {gf}f∈F form a party, and {gw}w∈W form a party

Therefore by Lemma 14, function gF (X) =
⋂

f∈F gf(X) is coherent, and the function
gW (X) =

⋂
w∈W gw(X) is also coherent.

We next show that there is a one-to-one correspondence between agreements with
respect to gF () and gW () and stable matchings in the job market.

Let A ⊆ Ω be an agreement, P = F∪W . We define νA : P → 2P×S as follows:

νA(p) = πp(A)
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Since A is an agreement, we have gF (A) = gW (A) = A. Therefore for any p∈P ,
gp(A) = A. By definitions of gp() and C2−SAP

p () it must be the case that Cp(πp(A)) =
πp(A). Since νA(p) = πp(A) and Cp(πp(A)) ∈ Lp by definition, we conclude that νA(p) ∈
Lp for any p.

Suppose, without loss of generality, that (w, s) ∈ νA(f) for some w ∈ W . Then
(w, s) ∈ πf (A), which means that f ∈ F . Moreover, (f, w, s) ∈ A, and therefore (f, s) ∈
πw(A) ⇒ (f, s) ∈ νA(w). We conclude that νA is a matching in M.

We next show that νA is stable. We’ve already demonstrated that for any p∈P ,
Cp(νA(p)) = νA(p).

Suppose that for some w∈W, f∈F, and s∈S, (w, s)∈Cf(νA(f)∪{(w, s)}). If (w, s)∈νA(f)
then it immediately follows from the definition of matching and the equivalence Cp(νA(p)) =
νA(p) that Cw(νA(w) ∪ {(f, s)}) = νA(w).

Suppose then that (w, s)/∈νA(f) and, for the sake of contradiction, that
Cw(νA(w) ∪ {(f, s)}) 6= νA(w). Since Cw(νA(w) ∪ {(f, s)}) 6= νA(w), it must be the
case that (f, s)/∈νA(w) and (f, s)∈Cw(νA(w) ∪ {(f, s)}). It follows that (f, w, s) /∈ A,
but (f, w, s) ∈ gw(A ∪ {(f, w, s)}) ⇒ (f, w, s) ∈ gW (A ∪ {(f, w, s)}) and (f, w, s) ∈
gf(A ∪ {(f, w, s)}) ⇒ (f, w, s) ∈ gF (A ∪ {(f, w, s)}), violating Stability. Contradiction.

This completes the proof that νA is a stable matching in M .
Now we show how to map stable matchings into agreements. Let ν be a stable match-

ing. Define Aν as follows:

Aν = {(f, w, s)| (f, s) ∈ ν(w)}

or, equivalently:
Aν = {(f, w, s)| (w, s) ∈ ν(f)}

Note that for any p∈P , πp(Aν) = ν(p), and also, by definition of a stable matching,
ν(p) = Cp(ν(p)), so Cp(πp(Aν)) = ν(p).

Suppose gW (Aν) 6= Aν. Then it must be the case that for some w ∈ W , f ∈ F ,
and s ∈ S: (f, w, s) ∈ Aν, but (f, s) /∈ Cw(πw(Aν)) = ν(w). But that contradicts the
definition of Aν. We conclude that gW (Aν) = Aν and, analogously, gF (Aν) = Aν.

Suppose that for some (f, w, s) /∈ Aν: (f, w, s) ∈ gW (Aν ∪ {(f, w, s)}) and (f, w, s) ∈
gF (Aν∪{(f, w, s)})). Then it must be the case that (f, s) /∈ ν(w) and (f, s) ∈ Cw(πw(Aν∪
{(f, w, s)}). But Cw(πw(Aν ∪{(f, w, s)})) = Cw(πw(Aν)∪{(f, s)}) = Cw(ν(w)∪{(f, s)}).
Therefore (f, s) ∈ Cw(ν(w)∪{(f, s)}). Analogously, (w, s) /∈ ν(f) and (w, s) ∈ Cf (ν(f)∪
{(w, s)}). Since (f, s) ∈ Cw(ν(w)∪{(f, s)}) and ν() is a matching, it follows that Cf(ν(f)∪
{(w, s)}) = ν(f), but that is impossible, since (w, s) /∈ ν(f) and (w, s) ∈ Cf(ν(f) ∪
{(w, s)}). Contradiction. We conclude that Aν is a stable agreement with respect to gW

and gF .
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One can easily verify that the mappings A → νA and ν → Aν are inverses of each
other completing the construction.

4 Existence of an Agreement

In this section we demonstrate that there is always an agreement with respect to two
coherent functions. We also produce an easily checkable necessary and sufficient condition
for non-emptiness of the agreements.

Theorem 1 Assume the choice functions f1 and f2 are coherent, then there exists an
agreement with respect to them.

Proof: The proof is constructive. We shall first describe the iterative process that will
lead to constructing an agreement. Define function g for any X ⊆ Ω as:

g(X) = (X − f1(X)) ∪ f2(f1(X)).

Let Y0 = Ω and for any i ≥ 0 let Yi+1 = g(Yi). Since the choice functions fi are contrac-
tions, so is g and, since Ω is finite, there is some i such that Yn+1 = Yn. Let Y = Yn and
Z = f1(Y ). We shall show that Z is an agreement.

Lemma 1 For any i: f2(f1(Yi)) ⊆ f1(Yi+1).

Proof: By definition of Yi+1, f2(f1(Yi)) ⊆ Yi+1. Since f2 is a contraction, f2(f1(Yi)) ⊆
f1(Yi). Therefore f2(f1(Yi)) ⊆ Yi+1 ∩ f1(Yi). But by Sα, since Yi+1 ⊆ Yi, we have
Yi+1 ∩ f1(Yi) ⊆ f1(Yi+1).

Lemma 2 For any x ∈ Ω and any i such that x /∈ f2(f1(Yi) ∪ {x}),
we have x /∈ f2(f1(Yi+1) ∪ {x}).

Proof: By Lemma 1, f2(f1(Yi)) ∪ {x} ⊆ f1(Yi+1) ∪ {x}. Therefore, by Sα:

(f2(f1(Yi)) ∪ {x}) ∩ f2(f1(Yi+1) ∪ {x}) ⊆ f2(f2(f1(Yi)) ∪ {x})

= (by Path Independence) f2(f1(Yi) ∪ {x}).

From which it immediately follows that if x ∈ f2(f1(Yi+1) ∪ {x}) then
x ∈ f2(f1(Yi)) ∪ {x}.

Lemma 3 If x ∈ Yi − Yi+1, then x /∈ f2(Z ∪ {x}).
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Proof: Since x ∈ Yi, but x /∈ Yi+1, by definition of Yi+1 it must be the case that
x ∈ f1(Yi), but x /∈ f2(f1(Yi)). Therefore x /∈ f2(f1(Yi) ∪ {x}). Using Lemma 2 we obtain
by induction that for any j ≥ i, x /∈ f2(f1(Yj) ∪ {x}), and thus x /∈ f2(Z ∪ {x}).

Lemma 4 For any x ∈ Ω − Z, x /∈ f1(Z ∪ {x}) ∩ f2(Z ∪ {x}).

Proof: If x ∈ Y , then f1(Y ) ⊆ Z ∪ {x} ⊆ Y and, by Cumulativity of f1, f1(Z ∪ {x}) =
f1(Y ) = Z, so x /∈ f1(Z ∪ {x}).

If x /∈ Y , there is some i such that x ∈ Yi − Yi+1. In this case by Lemma 3, x /∈
f2(Z ∪ {x}).

Lemma 5 f1(Z) = f2(Z) = Z

Proof: f1(Z) = Z is immediate. Now, Yn+1 = Yn = Y . So,

Y = Yn+1 = (Yn − f1(Yn)) ∪ f2(f1(Yn))

= (Y − f1(Y )) ∪ f2(f1(Y ))

= (Y − Z) ∪ f2(Z).

Since Z ⊆ Y it follows that Z ⊆ f2(Z), but f2(Z) ⊆ Z, therefore f2(Z) = Z.

Theorem 1 then immediately obtains from Lemmas 4 and 5 and the definition of an
agreement.

Note that the running time of the algorithm is polynomial in |Ω| times the complex-
ity of calls to fi. Thus if we have an oracle that computes fi, the whole algorithm is
polynomial in |Ω|.

Corollary 1 A non-empty agreement exists if and only if ∃x ∈ Ω such that f1({x}) =
f2({x}) = {x}.

Proof: Suppose such an x exists. Then f1(∅ ∪ {x}) ∩ f2(∅ ∪ {x}) = {x} * ∅. So ∅ is not
an agreement. By Theorem 1 at least one agreement exists, so it cannot be empty.

Suppose there is no such x and there exists a non-empty agreement A. Let y ∈ A. By
Sα we have: {y}∩f1(A) ⊆ f1({y}), since f1(A) = A, it must be the case that y ∈ f1({y}),
and therefore f1({y}) = {y}. Similarly, f2({y}) = {y}. Contradiction.

Corollary 2 If the empty set is an agreement, then it is the only one.

Proof: Suppose a non-empty agreement exists. By Corollary 1 ∃x ∈ Ω such that
f1({x}) = f2({x}) = {x}. But then, following the first part of the proof of Corollary
1, ∅ is not an agreement. Contradiction.

Due to Claim 4 the result of Theorem 1, Corollary 1, and Corollary 2 immediately
carry to 2-SAPs charachterized by f1 and f2.
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5 The Set of Agreements: Its Structure

In this section we study the structure of the set of stable agreements. We demonstrate that
it is a lattice with respect to the preferences revealed by the underlying choice functions.

5.1 Definitions

In Section 2 we considered certain classes of preferences and demonstrated how they can
be represented by choice functions. We may take a slightly different approach: In the
algorithm in Section 4 the players were only allowed to choose subsets of a given set of
contracts according to their choice functions. Such a restriction affects the implicit player
preferences as the relative ranking of any two given subsets of contracts now depends only
on what may be “extracted” from them via the choice functions. The following definition
makes precise this intuitive notion:

Definition 9 Given a choice function f : 2Ω → 2Ω, we say that a preference relation �f

on subsets of Ω is revealed by f if:

C �f D ⇔ f(C ∪ D) = C

Note that in general �f is not anti-symmetric and therefore does not belong to the
class of preference relations we considered in Section 2. In this section, however, we
are going to restrict our attention to revealed preferences over fixed points of coherent
functions, on which �f induces a partial ordering (see Claim 5). Therefore we allow
ourselves to write �f instead of more technically correct %f .

Since the relation revealed by choice function f (Definition 9) and preference relations
for which f is the choice function (Claim 3) are not the same thing, one should be careful
not to confuse them. In order to avoid that confusion note that until this section we have
only dealt with the latter. From now on we will deal only with the former (i.e. revealed
preferences). The only exception is Claim 6 below.

In what follows fixed points of coherent functions play a prominent role. Therefore we
make explicit the notion of the set of fixed points of a coherent function:

Definition 10 Let f : 2Ω → 2Ω be a coherent choice function. We denote by Φf ⊆ 2Ω

the set of all fixed points of f: Φf = {A ∈ 2Ω| f(A) = A}. In the context of two-sided
matching we denote by Φ1 and Φ2 the sets of fixed points of f1 and f2 respectively.

Claim 5 It is easy to verify that �f restricted to Φf is reflexive, antisymmetric, and
transitive, and therefore is a partial ordering on Φf .
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The following claim provides some further justification for Definition 9:

Claim 6 Let �f be the preference relation defined in Claim 3. Let �f be the preference
relation revealed by f as defined in Definition 9. Then �f and �f coincide on Φf .

Proof: Let X, Y ∈ Φf . Suppose X�fY . Then f(X ∪ Y ) = f(X) = X. Meaning that
there exists a set Z = X ∪ Y such that f(Z) = X and Y ⊆ Z. By definition X �f Y .

Suppose now that X �f Y . Then there exists a set Z such that f(Z) = X and
Y ⊆ Z. Therefore X ∪ Y ⊆ Z. We have: f(Z) ⊆ X ∪ Y ⊆ Z. By Cumulativity
f(X ∪ Y ) = f(Z) = X, so X�fY .

See Appendix C for some other properties of �f .

Notation: Let f : 2Ω → 2Ω be a coherent choice function. In the context of two-
sided matching we denote by �1 and �2 the preference relations revealed by f1 and f2

respectively.
Our goal is to prove that �f1

(and �f2
) induce a lattice structure on the set of all

agreements between f1 and f2 under natural meet and join. The following definitions
formalize that notion:

Definition 11 Let f1, f2 : 2Ω → 2Ω be coherent choice functions. We denote by Φ̄f1,f2

the set of all agreements between f1 and f2. When the identities of f1 and f2 are clear
from the context we will omit the subscript and just write Φ̄ instead of Φ̄f1,f2

.

Claim 7 Since Φ̄ ⊆ Φ1 and Φ̄ ⊆ Φ2 it follows from Claim 5 that �1 and �2 are partial
orderings on Φ̄.

Definition 12 Let Φf be the set of fixed points of a coherent choice function f , and let
Ψ ⊆ Φf . We define the join X ∨f,Ψ Y of two elements of Ψ in the usual way as their least
upper bound in Ψ:

C = X ∨f,Ψ Y iff C ∈ Ψ, C �f X, C �f Y, and for any D ∈ Ψ such that D �f

X, D �f Y, we have D �f C.
Analogously we define the meet X ∧f,Ψ Y as the greatest lower bound of X and Y in

Ψ:
C = X ∧f,Ψ Y iff C ∈ Ψ, X �f C, Y �f C, and for any D ∈ Ψ such that X �f

D, Y �f D, we have C �f D.

If the join and the meet exist for a pair of sets of contracts X and Y then, due to
anti-symmetry of �f , they are unique. If the join X ∨f,Ψ Y and the meet X ∧f,Ψ Y exist
for any two elements X and Y of Ψ, then (Ψ,∨f,Ψ,∧f,Ψ) is called a lattice.
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5.2 The Best and the Worst Agreements

In this section we show that the stable agreement Z obtained by the iterative process
described in Chapter 4 is the best stable agreement for side 1, and worst for side 2, i.e.
∀W ∈ Φ̄ : Z�1W and W�2Z.

Lemma 6 Assume W is any stable agreement. If W ⊆ Yi (see Chapter 4 for notation),
then

1. f1(W ∪ f1(Yi)) = f1(Yi),

2. f2(W ∪ f1(Yi)) = W , and

3. W ⊆ Yi+1.

Proof:

1. Since f1(Yi) ⊆ W ∪ f1(Yi) ⊆ Yi, by Cumulativity, we have f1(W ∪ f1(Yi)) = f1(Yi).

2. Since W is a stable agreement, we know that

f1(W ∪ f1(Yi)) ∩ f2(W ∪ f1(Yi)) ⊆ W

Therefore f1(Yi) ∩ f2(W ∪ f1(Yi)) ⊆ W . But, by Contraction,

f2(W ∪ f1(Yi)) − f1(Yi) ⊆ W

and therefore we may conclude that f2(W ∪ f1(Yi)) ⊆ W . We have:

f2(W ∪ f1(Yi)) ⊆ W ⊆ W ∪ f1(Yi)

and, by Cumulativity:

f2(W ∪ f1(Yi)) = f2(W ) = W

3. f1(Yi) ⊆ W ∪ f1(Yi) and, by Sα,

f1(Yi) ∩ f2(W ∪ f1(Yi)) ⊆ f2(f1(Yi))

Therefore:
f1(Yi) ∩ W ⊆ f2(f1(Yi)) ⊆ Yi+1

But Yi − f1(Yi) ⊆ Yi+1 and W ⊆ Yi, therefore W − f1(Yi) ⊆ Yi+1. We conclude that
W ⊆ Yi+1.
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Corollary 3 If W is a stable agreement, then W ⊆ Yn.

Proof: By Lemma 6, since W ⊆ Y0 = Ω.

Theorem 2 If W is a stable agreement, then f1(W ∪ Z) = Z and f2(W ∪ Z) = W .

Proof: By Corollary 3 and Lemma 6 we have f1(W ∪ f1(Yn)) = f1(Yn) and f2(W ∪
f1(Yn)) = W . But Z = f1(Yn).

5.3 Lattice Structure

In this section we prove the following theorem:

Theorem 3 Let Φ̄ be the set of all agreements in the context of two-sided matching. Then
(Φ̄,∨f1,Φ̄,∧f1,Φ̄) and (Φ̄,∨f2,Φ̄,∧f2,Φ̄) are lattices.

In order to prove the theorem we will need some additional constructions:

Definition 13 Let f : 2Ω → 2Ω be a coherent choice function. We define “wish list”
function f̃ : 2Ω → 2Ω as f̃(A) = {y ∈ Ω| y ∈ f(A ∪ {y})}.

See Appendix C for some properties of f̃().
Given two agreements F and G the natural candidate for their meet with respect to

�1 is the set H0 = f1(F ∪ G). Unfortunately, in general case H0 is not necessarily an
agreement. A counter example may be found in [6].

In Lemma 7 we proceed by building a non-decreasing sequence H0, H1, ... of upper
bounds of F and G with respect to �1. We prove that the sequence converges to a fixed
point H = F ∨f1,Φ̄ G.

Although the results of Lemma 7 are new for the general model we consider, they
closely follow the results obtained by [6] for a more restricted model (that applies both
to the statement of the lemma as well as to some ideas in the proof).

Certain limitation of the model considered by [6] allow for a straightforward proof
that the fixed point is an agreement. In our case, however, in order to prove that H is
an agreement we need to do some additional work. Part of that work is done in proving
Lemma 15 and the rest is done in Theorem 3.
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Lemma 7 Let f1, f2 : 2Ω → 2Ω be coherent choice functions. Let F, G ∈ Φ̄f1,f2
. Consider

the sequence {Hi}i∈N defined recursively as follows:

H0 = f1(F ∪ G)

Hi+1 = f1(f2(f̃1(Hi)))

Then ∀i ∈ N:

1. Hi�1F , Hi�1G

2. ∀E ∈ Φ̄ : (E�1F and E�1G) ⇒ E�1Hi

3. Hi ⊆ f2(f̃1(Hi))

4. Hi ⊆ Φ1 ∩ Φ2

Proof: Induction on i.

[Induction basis: i = 0]

1. f1(H0 ∪ F ) = f1(f1(F ∪ G) ∪ F ) = (by Path Independence) f1((F ∪ G) ∪ F ) =
f1(F ∪ G) = H0. Therefore H0�1F . Analogously, H0�1G.

2. Suppose E is an agreement, E�1F , E�1G (i.e. f1(E ∪ F ) = f1(E ∪ G) = E). We
have: f1(E ∪ H0) = f1(E ∪ f1(F ∪ G)) = (by Path Independence) f1(E ∪ (F ∪ G)) =
f1((E ∪ F ) ∪ (E ∪ G)) = (by Path Independence)
f1(f1(E ∪ F ) ∪ f1(E ∪ G)) = f1(f1(E)) = f1(E). So, E�1H0.

3. Since H0�1F , by Claim 10, f̃1(H0) ⊆ f̃1(F ). Applying Sα:

f̃1(H0) ∩ f2(f̃1(F )) ⊆ f2(f̃1(H0))

Since F is an agreement, f2(f̃1(F )) = F by Lemma 15. Therefore:

f̃1(H0) ∩ F ⊆ f2(f̃1(H0))

Since H0 = f1(H0), by Claim 11, H0 ⊆ f̃1(H0). Therefore:

f̃1(H0) ∩ F ⊆ f2(f̃1(H0)) ⇒ H0 ∩ F ⊆ f2(f̃1(H0))
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Analogously, H0 ∩ G ⊆ f2(f̃1(H0)). Therefore H0 ∩ (F ∪ G) ⊆ f2(f̃1(H0)). However,
H0 = f1(F ∪ G) ⊆ (F ∪ G), and we obtain:

H0 = H0 ∩ (F ∪ G) ⊆ f2(f̃1(H0))

4. H0 ∈ Φ1 is immediate. Now, by Claim 11 H0 ⊆ f̃1(H0). Applying Sα:

H0 ∩ f2(f̃1(H0)) ⊆ f2(H0)

Combining that with H0 ⊆ f2(f̃1(H0)) (as we have shown), we obtain H0 ⊆ f2(H0).
However, f2(H0) ⊆ H0. Therefore H0 = f2(H0) and thus H0 ∈ Φ1 ∩ Φ2.

[Induction step]

1. f1(Hi+1 ∪ Hi) = f1(f1(f2(f̃1(Hi))) ∪ Hi) = (by Path Independence)
f1(f2(f̃1(Hi)) ∪ Hi). Since by the induction hypothesis Hi ⊆ f2(f̃1(Hi)):

f1(f2(f̃1(Hi)) ∪ Hi) = f1(f2(f̃1(Hi))) = Hi+1

Therefore Hi+1�1Hi. Since by the induction hypothesis Hi�1F and Hi�1G, we obtain
Hi+1�1F and Hi+1�1G.

2. Suppose E is an agreement, E�1F , E�1G. By the induction hypothesis E�1Hi.
Therefore, by Claims 11 and 10 E ⊆ f̃1(E) ⊆ f̃1(Hi). Since E is an agreement, we have:

(1) f2(E ∪ f2(f̃1(Hi))) ∩ f1(E ∪ f2(f̃1(Hi))) ⊆ E

Now, f2(E ∪ f2(f̃1(Hi))) = (by Path Independence) f2(E ∪ f̃1(Hi)). Since E ⊆ f̃1(Hi):

f2(E ∪ f̃1(Hi)) = f2(f̃1(Hi)) ⊇ f1(f2(f̃1(Hi))) = Hi+1

So,

(2) Hi+1 ⊆ f2(E ∪ f2(f̃1(Hi)))

On the other hand,

(3) f1(E∪f2(f̃1(Hi))) = (by Path Independence) f1(E∪f1(f2(f̃1(Hi)))) = f1(E∪Hi+1)

So we have:

(4) f1(E ∪ Hi+1) = f1(E ∪ f2(f̃1(Hi)))
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Combining 1,2, and 4 we obtain:

Hi+1 ∩ f1(E ∪ Hi+1) ⊆ E

Since f1(E ∪ Hi+1) ⊆ E ∪ Hi+1, it must be the case that f1(E ∪ Hi+1) ⊆ E. So, f1(E ∪
Hi+1) ⊆ E ⊆ E ∪ Hi+1, and by Cumulativity f1(E ∪ Hi+1) = f1(E), which is equivalent
to E�1Hi+1.

3. We have shown above that Hi+1�1Hi. Therefore by Claim 10, f̃1(Hi+1) ⊆ f̃1(Hi).
Applying Sα:

f̃1(Hi+1) ∩ f2(f̃1(Hi)) ⊆ f2(f̃1(Hi+1))

Now, by Claim 11, Hi+1 ⊆ f̃1(Hi+1). Also,

Hi+1 = f1(f2(f̃1(Hi))) ⊆ f2(f̃1(Hi)).

Therefore:
Hi+1 ⊆ f̃1(Hi+1) ∩ f2(f̃1(Hi)) ⊆ f2(f̃1(Hi+1))

4. The proof of Hi+1 ⊆ Φ1 ∩ Φ2 based on Hi+1 ⊆ f2(f̃1(Hi+1)) is the same as for H0

above.

Corollary 4 ∀i ∈ N: Hi+1�1Hi.

Proof: See the proof of Lemma 7 (induction step part 1).

Corollary 5 The sequence {Hi}i∈N as defined in Lemma 7 converges to a fixed point H,
i.e. ∃i s.t. Hi = Hi+1 = H.

Proof: Since �1 induces a partial ordering on Φ1, the sequence is drawn from Φ1, non-
decreasing in terms of the ordering (as follows from Corollary 4), and Φ1 is finite, therefore
the sequence must converge to a fixed point.

We are now ready to prove Theorem 3.

Theorem 3 Let Φ̄ be the set of all agreements in the context of two-sided matching. Then
(Φ̄,∨f1,Φ̄,∧f1,Φ̄) and (Φ̄,∨f2,Φ̄,∧f2,Φ̄) are lattices.
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Proof: We prove the theorem for f1. The proof for f2 is symmetrical.
We need to demonstrate that for any pair of agreements F, G ∈ Φ̄ their join F ∨f1,Φ̄ G

and meet F ∧f1,Φ̄ G always exist.
We start with the join F ∨f1,Φ̄ G. According to Definition 12 we need to show that:

∀F, G ∈ Φ̄ ∃H ∈ Φ̄ s.t.

H�1F, H�1G and ∀E ∈ Φ̄((E�1F and E�1G) ⇒ E�1H)

We will show that the fixed point H of the sequence {Hi}i∈N as defined in Lemma 7
satisfies the required conditions.

Since H satisfies the conditions of Lemma 7 the only requirement left to be shown is
that H ∈ Φ̄. By definition of {Hi}i∈N and the fact that H is its fixed point we have:
H = f1(f2(f̃1(H))). Suppose y ∈ f2(f̃1(H)). According to Lemma 7 H ⊆ f2(f̃1(H)).
Therefore we have:

H ⊆ H ∪ {y} ⊆ f2(f̃1(H))

Substituting for H we obtain:

f1(f2(f̃1(H))) ⊆ H ∪ {y} ⊆ f2(f̃1(H))

By Cumulativity:
H = f1(f2(f̃1(H))) = f1(H ∪ {y})

Since y ∈ f2(f̃1(H)) ⊆ f̃1(H) we have y ∈ f1(H ∪ {y}) = H. So, y ∈ H. We have
demonstrated that y ∈ f2(f̃1(H)) ⇒ y ∈ H, which is equivalent to f2(f̃1(H)) ⊆ H. Thus:

H ⊆ f2(f̃1(H)) ⊆ H ⇒ f2(f̃1(H)) = H

and by Lemma 15, H ∈ Φ̄. So we have: H = F ∨f1,Φ̄ G.
Now, by the same process of Lemma 7, only with the roles of f1 and f2 reversed, we

build the join L = F ∨f2,Φ̄ G. But by Claim 15, F ∧f1,Φ̄ G = L, completing the proof.

6 Conclusion and open questions

By abstracting from particulars of individual matching models we have demonstrated
some properties essential to two-sided matching in general: the nature of stability in
terms of Individual Rationality and Stability, polarization of interests between the two
sides, and the lattice structure of the set of stable matchings.
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The general consensus in the literature is that coherence (or the substitutability con-
dition) seems to be necessary in order to assure existence of stable matchings. When that
condition is removed the set of agreements may be empty (which is not the same as to
say that there is an agreement, but it contains no contracts). An interesting practical
example is provided in [21]: when doctors’ choice of hospitals depends of choices of other
doctors (for example, two doctors who are married want to work in the same geograph-
ical area), a stable matching between doctors and hospitals may fail to exist. A careful
examination of that example when modeled as a two-sided matching problem shows that
doctors’ preferences are not coherent.

However, maybe there is another (perhaps strictly weaker) condition that will ensure
existence of stable matchings? And if there is, does it preserve the lattice structure? The
first challenge here is how exactly to formulate the problem in technical terms. One can
always come up with specific preference setups where coherence does not hold, but the
set of agreements is not empty. So in the strictest sense it is not a necessary condition.
One possibility is to define natural extensions of preference setups to families of preference
setups. Then show that without coherence there will always be a setup with no agreements
in every such family. The techniques developed in this work may help in finding the right
approach to this open question.
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A Classical Matching Models

In this section we formally define two matching models that we use as examples.

A.1 The Marriage Problem

Definition 14 A marriage market (M, W, (�i )i∈M∪W ) consists of

• A finite set of men M

• A finite set of women W that is disjoint from M
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• For each man m∈M his linear (reflexive, transitive, anti-symmetric, and total)
preference ordering �m on the set W ∪ {∅}

• For each woman w∈W her linear preference ordering �w on the set M ∪ {∅}

Inclusion of the empty set into the set of preferences is used to capture the player’s
preference of staying single. For example, {w} �m ∅ means that m prefers w to being
single.

In order to make the formal definition of the marriage model and its translation into
the 2-SAP model less cumbersome, we naturally translate the definitions of �m and �w

to the sets of singletons over W and M respectively. That is, every �m is translated to
be over the set {x| x = {w} where w∈W}∪{∅}. Similarly, every �w is translated to
be over the set {x| x = {m} where m∈M}∪{∅}. We retain the same notation for the
translations, since it is always clear which set we are talking about.

Definition 15 A matching in the marriage market (M, W, (�i )i∈M∪W ) is a function
µ : M∪W → 2M∪W such that:

1. |µ(p)| ≤ 1

2. If m∈M then µ(m) ⊆ W

3. If w∈W then µ(w) ⊆ M

4. q∈µ(p) ⇒ p∈µ(q)

The meaning of µ(x) = {y} is that x is matched to y. The meaning of µ(x) = ∅ is
that x remains single.

Definition 16 We say that matching µ is blocked by an individual x if ∅ �x µ(x).
If µ is not blocked by any individual we call it individually rational. We say that
matching µ is blocked by a pair (m∈M, w∈W ) if {w} �m µ(m) and {m} �w µ(w).

Definition 17 A matching µ is called stable if it is not blocked by any individual or
pair.
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A.1.1 Existence of a Stable Matching

A stable matching always exists. One can always be found by the iterative process de-
scribed in this section.

Definition 18 Let Ŵ ⊆ W , m ∈ M . A choice function of m is a function
Cm : 2W → W ∪ {∅} such that:

1. Either Cm(Ŵ ) ∈ Ŵ or Cm(Ŵ ) = ∅

2. ∀w ∈ Ŵ Cm(Ŵ )�m w.

In other words, Cm chooses one of the most preferred for m members of Ŵ . Clearly, if
�m is strict, then Cm is unique. Otherwise every Cm imposes some strict ordering on W
that is consistent with �m . We can similarly define choice functions Cw for the women’s
preferences. In terms of choice functions the algorithm that achieves a stable matching
can be described as follows:

menFirst()
begin

for every m ∈ M do Ŵm := W ; µ(m) := ∅ endfor;
for every w ∈ W do M̂w := ∅; µ(w) := ∅ endfor;
while changes to µ occur do

for every m ∈ M do
µ(m) := setify(Cm(Ŵm));
if µ(m) 6= ∅ then M̂w := M̂w ∪ µ(m);

endfor;
for every w ∈ W do µ(w) := setify(Cw(M̂w)) endfor;
for every m ∈ M do

if (µ(m) 6= ∅) and ({m} 6= µ(µ(m))) then
Ŵm := Ŵm − µ(m);

endif;
endfor;

endwhile;
return(µ);
end;

setify(u)
begin

if u = ∅ then
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return (∅)
else

return ({u})
endif;

end;

In plain words the algorithm can be described as follows: every man proposes to the
most desirable woman on his list. Then every woman gives a tentative ‘yes’ to the most
desirable man among those who have proposed to her, and a final ‘no’ to the others among
those who have proposed. Then all rejected men propose to the next desirable woman
on their lists, and so forth. The algorithm terminates when there are no more rejections.
All tentative ‘yes’ answers that still stand become final.

Clearly an algorithm can be modified symmetrically such that women propose and
men accept or reject. We’ll call such an algorithm womenFirst.

Theorem 4 ([12]) menFirst (womenFirst) algorithm always terminates and returns a
stable matching.

A.1.2 Duality and Structure of the Set of Stable Matchings

We can define an aggregate preference relation on the set of matchings that reflects if the
set of men as a whole prefers one matching over another.

Definition 19 Given two matchings µ and ν we say that µ�M ν (or men weakly prefer µ
over ν) if ∀m ∈ M µ(m)�m ν(m). Moreover, we say that µ �M ν (or men strictly prefer
µ over ν) if µ�M ν and for at least one m ∈ M µ(m) �m ν(m). We similarly define
an aggregate preference relation �W on the set of matchings that reflects preferences of
women as a whole.

Theorem 5 Duality ([12]) Let µ and ν be two stable matchings. Then µ�M ν if and
only if ν�W µ. Moreover, µ �M ν if and only if ν �W µ.

Theorem 6 Best and Worst Matchings ([12])
Suppose all preferences �m ,�w are strict. Then matching µ achieved by menFirst algo-
rithm is the most preferred matching with respect to �M and the least preferred matching
with respect to �W . The symmetric result hods for �W due to duality.

Theorem 7 Lattice Structure ([16] — attributed to John Conway) Suppose all
preferences �m ,�w are strict. Then the aggregate preference relation �M imposes a
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lattice structure on the set of stable matchings. I.e. for any two stable matchings there
is a stable matching that is the unique greatest lower bound (µ ∧ ν) with respect to �M

called the the meet of µ and ν and there is a stable matching that is the unique least upper
bound (µ ∨ ν) with respect to �M called the the join of µ and ν.

Moreover, the lattice is distributive, meaning that the join and the meet have the
following properties:

(µ ∧ ν) ∨ λ = (µ ∨ λ) ∧ (ν ∨ λ),

(µ ∨ ν) ∧ λ = (µ ∧ λ) ∨ (ν ∧ λ).

Moreover, due to duality �W imposes exactly the same structure on the set of stable
matchings as �M if we reverse the direction of preferences.

A.2 Responsive Preferences

The one-to-one marriage problem can be extended to the more general one-to-many college
admissions problem. Since agents on one of the sides (colleges) can utilize more than one
resource on the other side (i.e. admit more than one student) we need to solve the problem
of how to generalize preferences over individuals to preferences over subsets of individuals.
For that purpose [23] introduces the idea of responsive preferences. In other aspects the
definition of college admissions model closely follows that of the marriage model. We
present here the case where preferences over individuals are strict.

Let � be a linear (i.e. total, reflexive, antisymmetric) preference relation on S ∪ {∅}
(think of S as the set of students; the empty set is introduced in order to specify the
students that the college is not willing to admit at all). Let q be the quota, i.e. the
maximum number of students a college is willing to admit. We first define an auxiliary
relation �r on subsets of S as follows:

Definition 20 Let U, T ⊆ S.

1. If |U | > q and |T | ≤ q then T�r U .

2. If T = U ∪ s and |T | ≤ q, then T�r U iff s � ∅.

3. If T = U ∪ s and |T | ≤ q, then U�r T iff ∅ � s.

4. If T = Q ∪ t and U = Q ∪ u, then T�r U iff t � u.

[23] shows that the transitive closure of �r does not contain cycles. So we can now extend
� to preferences over subsets as follows:
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Definition 21 A linear preference relation �R over subsets of S is called responsive to
the preference relation � over elements in S ∪ {∅} with quota q if �R contains �r as
its subset (in other words �R is consistent with �r ).

Note that there may exist more than one preference relations that are responsive to a
given preference relation over individuals.

Responsive preferences are coherent:

Claim 8 Let �R be responsive to the strict linear order � on S ∪ {∅} with quota q. Set
W = {s ∈ S| s � ∅}. For any X ⊆ S define f(X) to contain the q most preferred elements
of X ∩W if this set contains at least q elements and the whole of X ∩W otherwise. Then
f is the choice function for �R and is coherent.

Proof: The proof is left to the reader.

A.3 One-to-many Job Matching

This is a more general two-sided matching model. There exist several variations on it in
the literature. Our formalization follows [6] with some simplifications 16.

Definition 22 A job market

M = (F, W, S, (Lf)f∈F , (Lw)w∈W , (�f )f∈F , (�w)w∈W )

consists of

• A finite set F of firms

• A finite set W of workers

• A finite set S of salaries (or “job descriptions”)

• For every f∈F a set Lf of feasible subsets of W×S that includes the empty set

• For every w∈W a set Lw of feasible subsets of F×S that includes the empty set,
satisfying the following condition: if A ∈ Lw then |A| ≤ 1

16[6] considers a many-to-many model where firms and workers are completely symmetric (a worker
may take employment with several firms). Our model generalizes that model as well. However, in order
not to get bogged down in the technical details that shed little light on the underlying principles we
simplify the model and do not allow a worker to be employed by more than one firm.
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• For every p∈F∪W a total strict preference ordering �p over Lp, such that ∅ is the
minimal element of Lp according to �p

Notation:For convenience we will often refer to the set P = F∪W of players, rather
then to F and W separately.

The interpretation of the feasible subsets is as follows: for a firm every subset repre-
sents a set of workers which the firm may be willing to hire in principle at the specified
salary levels at the same time. Only those combinations are included that are preferred by
the firm to not hiring any workers. Thus ∅ is the least preferred element of Lf as required
by the definitions. The feasible subsets for workers have the same interpretation with the
additional condition: a worker can’t work for more than one firm, thus all feasible subsets
for workers are either empty or singleton.

Definition 23 Given set A⊆P×S and player p∈P , the choice set Cp(A) is a subset of
A feasible for p that p prefers the most. Since Lp∩2A is not empty (it always contains the
empty set), finite, and the preference relation �p over Lp is total and strict, Cp always
exists and is unique.

Definition 24 Legality condition. If (i, s)∈Cj(A) and (i, t)∈Cj(A), then s = t.

Definition 25 Substitutability condition. If (j, s)∈Ci(A), then Ci(A) − {(j, s)} ⊆
Ci(A − {(j, s)}).

When talking about One-to-many Job Matching model we assume that the job market
M satisfies the legality17 and substitutability conditions. Note that for the workers’ choice
functions the substitutability condition is satisfied trivially, since if (j, s)∈Cw(A), then
Cw(A) − {(j, s)} = ∅.

Definition 26 Let M be a job market as described in Definition 22 and let P = F∪W .
A matching in M is a function ν : P→2P×S such that:

1. If (i, s) ∈ ν(j) then (j, s) ∈ ν(i)

2. If p∈P then ν(p)∈Lp

Intuitively if f∈F then (w, s)∈ν(f) means that firm f hires worker w at salary s.

Definition 27 We define matching ν to be stable iff for all i, j∈P, s∈S:

17In [6] the legality condition is not mentioned explicitly. A careful reading, however, reveals that it is
implied in the proof of existence of a stable matching
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1. Ci(ν(i)) = ν(i)

2. If (j, s)∈Ci(ν(i) ∪ {(j, s)}), then Cj(ν(j) ∪ {(i, s)}) = ν(j).

The first of those conditions says that no player wants to discard any of his partners
in ν. This condition is similar to the individual rationality condition in the Marriage
Problem.

If (j, s)∈ν(i) the second condition follows immediately from the definition of a match-
ing and the first condition. If (j, s)/∈ν(i) the second condition means that if i wants
(j, s) then j does not want (i, s). This condition is similar to the non-blocking by pairs
condition in the Marriage Problem.

B Some Properties of Coherent Functions

Lemma 8 Let f be a choice function that satisfies

• (Local Monotonicity) ∀X, Y ⊆ Ω if f(X) ⊆ Y ⊆ X, then f(Y ) ⊆ f(X)

• (Sα) ∀X, Y ⊆ Ω if X ⊆ Y , then X ∩ f(Y ) ⊆ f(X).

Then for any X, Y ⊆ Ω, f satisfies:

• (Cumulativity) if f(X) ⊆ Y ⊆ X, then f(Y ) = f(X), and

• (Idempotence) f(f(X)) = f(X).

Proof: Suppose f(X) ⊆ Y ⊆ X. By Local Monotonicity f(Y ) ⊆ f(X), and by Sα
f(X) = Y ∩ f(X) ⊆ f(Y ). So f(X) = f(Y ).

By Contraction f(X) ⊆ f(X) ⊆ X, so by Cumulativity: f(f(X)) = f(X).

Lemma 9 If f is coherent, then f(X ∪ Y ) ⊆ f(X) ∪ f(Y ).

Proof: By Contraction: f(X ∪ Y ) = (X ∩ f(X ∪ Y )) ∪ (Y ∩ f(X ∪ Y )). By Sα, X ∩ f(X ∪ Y ) ⊆ f(X)
and Y ∩ f(X ∪ Y ) ⊆ f(Y ).

Lemma 10 (Plott [20]) A function f is coherent iff it satisfies Contraction and, for
any X, Y ⊆ Ω:

• (Path Independence) f(X ∪ Y ) = f(f(X) ∪ Y ).
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Lemma 11 (Aizerman and Malishevski [2]) A function f is coherent iff there is a
finite set of binary relations >i on Ω such that for any X, f(X) is the set of all elements
of X that are maximal in X for at least one of the >i’s.

Lemma 12 If ≤ is a partial order, i.e., reflexive and transitive, on Ω, then function f
defined for every X ⊆ Ω as:

f(X) = {x ∈ X | ∀y ∈ X, y ≥ x ⇒ x ≥ y}

is coherent.

Proof: Note that f(X) is the subset of maximal elements of X. Contraction is obvious.
Local Monotonicity: suppose f(X) ⊆ Y ⊆ X. Assume by way of contradiction that

y ∈ f(Y ), but y /∈ f(X), meaning there is a maximal element y of Y that is not maximal
in X. Due to the finiteness of Ω, since y ∈ X there must be some maximal element x of
X such that x ≥ y. Since x ∈ f(X) it follows that x ∈ Y , so y ≥ x, since y is maximal
in Y . Therefore y must be maximal in X as well. Contradiction.

Sα: suppose X ⊆ Y and x ∈ X ∩ f(Y ). Since x is maximal in Y , it is also maximal
in any subset of Y in which it is contained. So, since it is contained in X, it is maximal
in it, meaning that x ∈ f(X).

Typically, individual preferences are supposed to be linear orders and therefore Lemma
12 applies to them.

Assume Ω′ ⊆ Ω. If f is a coherent choice function on Ω its restriction to Ω′ is obviously
a coherent choice function on Ω′. More interesting is the fact that there exists a natural
way to extend a coherent choice function on Ω′ to Ω.

Definition 28 If Ω′ ⊆ Ω and f is a choice function on Ω′, its natural extension fΩ to Ω
is defined by fΩ(X) = f(X ∩ Ω′) ∪ (X − Ω′) for any X ⊆ Ω.

Lemma 13 If Ω′ ⊆ Ω, then a choice function f on Ω′ is coherent iff its natural extension
to Ω is coherent.

Proof: Suppose fΩ is coherent. Since f is the restriction of fΩ to Ω′ it is also coherent.
Suppose f is coherent. We need to show that fΩ is coherent. Contraction is immediate.
Suppose fΩ(X) ⊆ Y ⊆ X. Then fΩ(X) ∩ Ω′ ⊆ Y ∩ Ω′ ⊆ X ∩ Ω′. Now, fΩ(X) ∩

Ω′ = f(X ∩ Ω′). Therefore, by Cumulativity of f , f(X ∩ Ω′) = f(Y ∩ Ω′). Therefore,
fΩ(Y ) = (Y − Ω′) ∪ f(Y ∩ Ω′) ⊆ (X − Ω′) ∪ f(X ∩ Ω′) = fΩ(X). Thus fΩ satisfies
Cumulativity.

Suppose X ⊆ Y . Then X ∩ Ω′ ⊆ Y ∩ Ω′. By coherence of f , (X ∩ Ω′) ∩ f(Y ∩ Ω′) ⊆
f(X ∩ Ω′) ⇒ X ∩ f(Y ∩ Ω′) ⊆ f(X ∩ Ω′). Taking the union of the last expression with
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X ∩ (Y − Ω′) ⊆ (X − Ω′) we obtain X ∩ fΩ(Y ) ⊆ fΩ(X), meaning that fΩ satisfies Sα.

Lemma 14 is essential in showing that aggregate preference relations in 2-SAPs cor-
responding to classical matching models are coherent.

Definition 29 A collection {fi}i∈I of choice functions is a party, i.e., a suitable collective
for matching purposes, if the set Ω of contracts can be partitioned into disjoint subsets Ωi,
i ∈ I, in such a way that for any i ∈ I, fi is the natural extension to Ω of its restriction
to Ωi, i.e., fi(X) = fi(X ∩ Ωi) ∪ (X − Ωi).

Given any collection of choice function, fi for i ∈ I, one may define a collective choice
function fI in the following way:

(5) fI(X) =
⋂

i∈I

fi(X).

Lemma 14 Suppose a collection of coherent choice functions {fi}i∈I is a party. Then
the collective choice function fI is also coherent.

Proof: We first make the following simple observations:

fi(X) ∩ Ωi = fi(X ∩ Ωi)

if i6=j, then fi(X) ∩ Ωj = X ∩ Ωj

Therefore fI(X) ∩ Ωi = (X ∩ Ωi) ∩ fi(X ∩ Ωi) = fi(X ∩ Ωi).

Cumulativity of fI is trivial.

Suppose fI(X) ⊆ Y ⊆ X. Then, for any i ∈ I, fI(X) ∩ Ωi ⊆ Y ∩ Ωi ⊆ X ∩ Ωi. Since
fI(X) ∩ Ωi = fi(X ∩ Ωi), by Cumulativity of fi we obtain: fi(X ∩ Ωi) = fi(Y ∩ Ωi).
Therefore, using the fact that {Ωi}i∈I is a partition of Ω, we obtain:

fI(X) =
⋃

i∈I

(fI(X) ∩ Ωi) =
⋃

i∈I

fi(X ∩ Ωi) =
⋃

i∈I

fi(Y ∩ Ωi) =
⋃

i∈I

(fI(Y ) ∩ Ωi) = fI(Y )

Therefore fI satisfies Cumulativity.

Suppose X ⊆ Y . Then for any i ∈ I, X ∩ Ωi ⊆ Y ∩ Ωi. By coherence of fi:
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(X ∩ Ωi) ∩ fi(Y ∩ Ωi) ⊆ fi(X ∩ Ωi) ⇒ X ∩ fi(Y ∩ Ωi) ⊆ fi(X ∩ Ωi)

⇒
⋃

i∈I

(X ∩ fi(Y ∩ Ωi)) ⊆
⋃

i∈I

fi(X ∩ Ωi)

⇒ X ∩
⋃

i∈I

fi(Y ∩ Ωi) ⊆
⋃

i∈I

fi(X ∩ Ωi)

⇒ X ∩
⋃

i∈I

(fI(Y ) ∩ Ωi) ⊆
⋃

i∈I

(fI(X) ∩ Ωi)

⇒ X ∩ fI(Y ) ⊆ fI(X).

Meaning that fI satisfies Sα.

Notice that the intersection of coherent functions is not in general coherent. Local
Monotonicity does not obtain in general: consider two contracts a and b, and two agents
such that f1(X) = f2(X) = X for every X different from Ω = {a, b}, f1(Ω) = {a} and
f2(Ω) = {b}.

C Some Properties of �f and f̃

In this section we demonstrate the properties of �f and f̃ that we need to prove the main
result.

Claim 9 Let f : 2Ω → 2Ω be a coherent choice function. Then
y ∈ f(A ∪ B) ⇒ y ∈ f(A ∪ {y}).

Proof:

y ∈ f(A ∪ B) ⇒ y ∈ A ∪ B ⇒ A ∪ {y} ⊆ A ∪ B

(by Sα) ⇒ (A ∪ {y}) ∩ f(A ∪ B) ⊆ f(A ∪ {y}).

Since y ∈ (A ∪ {y}) ∩ f(A ∪ B), we conclude that y ∈ f(A ∪ {y})

Claim 10 Let f : 2Ω → 2Ω be a coherent choice function. Let C�fD. Then f̃(C) ⊆

f̃(D).
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Proof:

y ∈ f̃(C) ⇔ y ∈ f(C ∪ {y})

(by Path Independence) ⇒ y ∈ f(f(C) ∪ {y})

(by Definition 5.1) ⇒ y ∈ f(f(C ∪ D) ∪ {y})

(by Path Independence) ⇒ y ∈ f((C ∪ D) ∪ {y})

⇒ y ∈ f(C ∪ (D ∪ {y}))

(by Claim 9) ⇒ y ∈ f(D ∪ {y}).

Which is equivalent to y ∈ f̃(D)

Claim 11 Let f : 2Ω → 2Ω be a coherent choice function. Let H ∈ Φf . Then H ⊆ f̃(H).

Proof: Immediately follows from H = f(H) and the definition of f̃ .

Claim 12 Let f : 2Ω → 2Ω be a coherent choice function. Let H ∈ Φf , C ∈ 2Ω, H�fC.

Then H ⊆ f̃(C).

Proof: Immediately follows from Claim 11 and Claim 10

Claim 13 Suppose A is an agreement and X ⊆ Ω. Then f1(A ∪ X) ∩ f2(A ∪ X) ⊆ A.

Proof: Suppose there exists y ∈ Ω such that y ∈ f1(A ∪ X) ∩ f2(A ∪ X), but y /∈ A.
Then by Claim 9, y ∈ f1(A ∪ {y}) and y ∈ f2(A ∪ {y} and so

f1(A ∪ {y}) ∩ f2(A ∪ {y} * A,

meaning that A is not an agreement. Contradiction.

Claim 14 Let A, B ∈ Φ̄ be agreements. Then A �1 B ⇔ B �2 A.

Proof: Suppose f1(A ∪ B) = A. Since B is an agreement, by Claim 14,

f1(A ∪ B) ∩ f2(A ∪ B) ⊆ B.

Therefore
A ∩ f2(A ∪ B) ⊆ B ⇒ f2(A ∪ B) ⊆ B ⊆ A ∪ B.

By Cumulativity we obtain: f2(A ∪ B) = f2(B) = B. Thus A �1 B ⇒ B �2 A. The
proof in the opposite direction is symmetrical.
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Claim 15 Let A, B ∈ Φ̄ be agreements, then:
A ∨f1,Φ̄ B exists if and only if A ∧f2,Φ̄ B exists. In such a case A ∨f1,Φ̄ B = A ∧f2,Φ̄ B.
Symmetrically, A∨f2,Φ̄B exists if and only if A∧f1,Φ̄B exists. In such a case A∨f2,Φ̄B =

A ∧f1,Φ̄ B.

Proof: Follows directly from Definition 12 and Claim 14.

Lemma 15 Let f1, f2 : 2Ω → 2Ω be coherent choice functions. Then
(F ∈ Φ1 and F = f2(f̃1(F ))) ⇔ F ∈ Φ̄.

Proof: (⇐) Suppose F is an agreement. It immediately follows from the definition of an
agreement that F = f1(F ) which is the same as F ∈ Φ1.

Suppose y ∈ f̃1(F ) which is equivalent to y ∈ f1(F ∪ {y}). Since F is an agreement we
have:

f1(F ∪ {y}) ∩ f2(F ∪ {y}) ⊆ F

Therefore:
f2(F ∪ {y}) ⊆ F ⊆ F ∪ {y}

and by Cumulativity:
f2(F ∪ {y}) = f2(F ) = F

Now, by Claim 11, F ⊆ f̃1(F ), so:

F ∪ {y} ⊆ f̃1(F )

applying Sα:
(F ∪ {y}) ∩ f2(f̃1(F )) ⊆ f2(F ∪ {y}) = F

Thus we have y ∈ f̃1(F ) ⇒ (F ∪ {y}) ∩ f2(f̃1(F )) ⊆ F , and therefore:

(F ∪ f̃1(F )) ∩ f2(f̃1(F )) ⊆ F

Since F ⊆ f̃1(F ) and f2(f̃1(F )) ⊆ f̃1(F ) the above reduces to f2(f̃1(F )) ⊆ F . So,
f2(f̃1(F )) ⊆ F ⊆ f̃1(F ), and by Cumulativity f2(f̃1(F )) = f2(F ) = F .

(⇒) Suppose F ∈ Φ1 and F = f2(f̃1(F )). By Claim 11, F ⊆ f̃1(F ). Thus

f2(f̃1(F )) ⊆ F ⊆ f̃1(F )

and by Cumulativity it follows that F = f2(F ).
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Suppose y ∈ f̃1(F ) which is equivalent to y ∈ f1(F ∪ {y}). Then:

f2(f̃1(F )) ⊆ F ∪ {y} ⊆ f̃1(F )

By Cumulativity: f2(F ∪ {y}) = f2(f̃1(F )) = F . Thus

y ∈ f1(F ∪ {y}) ⇒ f2(F ∪ {y}) = F

Which means that
∀y ∈ Ω : f1(F ∪ {y}) ∩ f2(F ∪ {y}) ⊆ F

Meaning F satisfies all the requirements of the agreement definition.
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