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Abstract

We propose and discuss two postulates on the nature of errors in

highly correlated noisy physical stochastic systems. The first postulate

asserts that errors for a pair of substantially correlated elements are

themselves substantially correlated. The second postulate asserts that

in a noisy system with many highly correlated elements there will be

a strong effect of error synchronization. These postulates appear to

be damaging for quantum computers.

Some examples discussed in the paper (stock-markets, weather),

and some connections to foundational issues in probability theory can

be of interest in wider contexts, and are relevant to recent discussions

in the Center regarding risks and uncertainties.
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1 Quantum computers and the threshold the-

orem

Quantum computers are hypothetical devices based on quantum physics. A

formal definition of quantum computers was pioneered by Deutsch [1], who

also realized that they can outperform classical computation. The idea of a

quantum computer can be traced back to works by Feynman, Manin, and

others, and this development is also related to reversible computation and

connections between computation and physics that were studied by Bennett

in the 1970s. Perhaps the most important result in this field and certainly a

major turning point was Shor’s discovery [2] of a polynomial quantum algo-

rithm for factorization. The notion of a quantum computer along with the

associated complexity class BQP is an exciting gift from physics to mathe-

matics and theoretical computer science, and has generated a large body of

research. Quantum computation is also a source of new, deep, and unify-

ing questions in various areas of experimental and theoretical physics. For

background on quantum computing, see Nielsen and Chuang’s book [3].

Of course, a major question is whether quantum computers are feasible.

An early critique of quantum computation (put forward in the mid-90s by

Unruh, Landauer, and others) concerned the matter of noise:

[P0] The postulate of noise: Quantum systems are noisy.

The foundations of noisy quantum computational complexity were laid

by Bernstein and Vazirani in [4]. A major step in showing that noise can

be handled was the discovery by Shor [5] and Steane [6] of quantum error-

correcting codes. The hypothesis of fault-tolerant quantum computation

(FTQC) was supported in the mid-90s by the “threshold theorem” [7, 8,

9, 10], which asserts that under certain natural assumptions of statistical

independence on the noise, if the rate of noise (the amount of noise per

step of the computer) is not too large, then FTQC is possible. It was also
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proved that high-rate noise is an obstruction to FTQC. Several other crucial

requirements for fault tolerance were also described in [11, 12].

The study of quantum error-correction and its limitations, as well as

of various approaches to fault-tolerant quantum computation, is extensive

and beautiful; see, e.g., [13, 14, 15, 16, 17, 18, 19]. Concerns about noise

models with statistical dependence are mentioned in several places, e.g., [20,

21]. Specific models of noise that may be problematic for quantum error-

correction are studied in [22]. Current FTQC methods apply even to more

general models of noise than those first considered, which allow various forms

of time- and space-statistical dependence; see [23, 24, 25].

The basic conjecture of this paper is that noisy highly correlated data

cannot be stored or manipulated. On a heuristic level this conjecture is

interesting for both the quantum and the classical cases.1 The formal con-

jectures are restricted to the quantum case and refer to decoherence, namely

the information loss of quantum systems.

Section 2 gives more background on noise and fault-tolerance. An infor-

mal description of our conjectures in Section 3 is followed by a mathematical

formulation in Section 4. Section 5 is devoted to a discussion of the con-

sistency of our conjectures with quantum mechanics and with the reality

of classical error-correction and fault tolerance. We also discuss the chal-

lenge of finding concrete noise models satisfying our conjectures, as well as

connections with computational complexity theory and with physics.

1Note that in the classical case correlations do not increase the computational power.

When we run a randomized computer program, the random bits can be sampled once they

are created, and it is of no computational advantage in the classical case to “physically

maintain” highly correlated data.
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2 Noise and fault tolerance

The postulate of noise is essentially a hypothesis about approximations. The

state of a quantum computer can be prescribed only up to a certain error.

For FTQC there is an important additional assumption on the noise, namely

on the nature of this approximation. The assumption is that the noise is “lo-

cal.” This condition asserts that the way in which the state of the computer

changes between computer steps is statistically independent, for different

qubits. We will refer to such changes as “qubit errors.” In addition, the

gates that carry the computation itself are imperfect. We can suppose that

every such gate involves at most two qubits and that the gate’s imperfection

can take an arbitrary form, so that the errors (referred to as “gate errors”)

created on the two qubits involved in a gate can be statistically dependent.

(Of course, qubit errors and gate errors propagate along the computation

and handling this is a main difficulty in fault tolerance.)

The basic picture we have of a noisy computer is that at any time during

the computation we can approximate the state of each qubit only up to some

small error term ǫ. Nevertheless, under the assumptions concerning the errors

mentioned above, computation is possible. The noisy physical qubits allow

the introduction of logical “protected” qubits which are essentially noiseless.

The close analogy between the classical case and the quantum case for

error correction and fault tolerance is very useful. For our purposes, a good

way to understand the notions of quantum error-correction and fault tol-

erance is to draw the line not between classical and quantum information

but between deterministic information (or even stochastic information where

the elements are statistically independent) and stochastic highly correlated

information (both classical and quantum). Thus, while the state of a digi-

tal computer having n bits is a string of length n of zeros and ones, in the

(classical) stochastic version, the state is going to be a (classical) probability

distribution on all such strings.

Quantum computers are similar to these (hypothetical) stochastic clas-
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sical computers and they work on qubits (say n of them). The state of a

single qubit q is described by a unit vector u = a|0 > +b|1 > in a two-

dimensional complex space Uq. (The symbols |0 > and |1 > can be thought

of as representing two basis elements in Uq.) We can think of the qubit q

as representing ′0′ with probability |a|2 and ′1′ with probability |b|2. The

state of the entire computer is a unit vector in the 2n-dimensional tensor

product of these vector spaces Uq’s for the individual qubits. The state of

the computer thus represents a probability distribution on the 2n strings of

length n of zeros and ones. The evolution of the quantum computer is via

“gates.” Each gate g operates on k qubits, and we can assume k ≤ 2. Every

such gate represents a unitary operator on Ug, the (2k-dimensional) tensor

product of the spaces that correspond to these k qubits.

A simple (rather special) example of noise to keep in mind is that all qubit

errors are independent random unitary operators for the individual qubits,

and all gate errors are random unitary operators on the spaces Ug. If these

errors are small (namely, if all these operators are sufficiently close to the

identity), the threshold theorem will apply.

A main insight of quantum error-correction is that errors affecting a sub-

stantial but small fraction of — even highly correlated – bits/qubits can be

handled. (For this, basic linearity properties of probability theory as well

as of quantum physics are crucial.) Errors that exceed, with substantial

probabilities, the capacity of the error-corrector are problematic. Under the

independence assumptions of the threshold theorems, if the rate of errors

is small the probability for exceeding the capacity of the error-corrector is

extremely small. The crux of the matter is whether independent (or almost

independent) errors on highly correlated elements is a possible or even a

physically meaningful notion.

5



3 Noisy stochastic correlated physical systems

3.1 The postulate of noisy correlated pairs

The purpose of this section is to propose and discuss the following postulate:

[P1] In any noisy physical system, the errors for a pair of elements that

are substantially statistically dependent are themselves substantially

statistically dependent.

In particular, for quantum computers2 this postulate reads:

[P1] In a quantum computer, the errors for a pair of substantially correlated

qubits are substantially correlated.

Another way to put Postulate [P1] is: noisy correlated elements cannot

be approximated up to almost independent error terms: if we cannot have an

approximation better than a certain error rate for each of two correlated ele-

ments, then an uncorrelated or almost uncorrelated approximation is likewise

impossible.

Remarks:

1. Real-life examples: The weather and the stock market. We

can discuss Postulate [P1] for cases of (classical) stochastic systems with

highly correlated elements. I am not aware of a case of a natural system

with stochastic highly correlated elements that admits an approximation up

to an “almost independent” error term. This is the kind of approximation

required for fault-tolerant quantum computation.

Can we expect to estimate the distribution of prices of two very corre-

lated stocks in the stock market up to an error distribution that is almost

independent?

2Our conjectures themselves come in (highly correlated) pairs. Each conjecture is for-

mulated first for general noisy physical systems and then specified to quantum computers,

which are physical devices able to maintain and manipulate highly entangled qubits.
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Or take, for example, the weather. Suppose you wish to forecast the prob-

abilities for rain in twenty nearby locations. We suppose these probabilities

will be strongly dependent. Can we expect to have a forecast that is off by

a substantial error that is almost statistically independent for the different

locations?

To make this question a little more formal, consider not how accurately a

weather forecast predicts the weather, but rather how it predicts (or differs

from) a later weather forecast. Let D be the distribution that represents the

best forecast we can give for the rain probabilities at time T from the data

we have at time T − 1. Let D′ be the best forecast from data we have at

time T − 1 − t. Suppose that D is highly correlated. Postulate [P1] asserts

that we cannot expect that the difference D−D′ will be almost statistically

independent for two locations where D itself is substantially correlated.

2. The threshold theorem and pair purification. The threshold

theorem that allows FTQC has various remarkable applications, but our

postulate can be regarded as challenging its simplest nontrivial consequence.

The assumptions of the threshold theorem allow the errors on a pair of qubits

involved in a gate to be statistically dependent. In other words, the outcome

of a gate acting on a pair of qubits prescribes the position of the two qubits

only up to an error that is allowed to exhibit an arbitrary form of correlation.

The process of fault tolerance allows us to reach pairs of entangled qubits

that, while still being noisy, have errors that are almost independent. This

“purifying” nature of fault tolerance for quantum computation is arguably

an element we do not find in fault tolerance for deterministic computation.

3. Positive correlations for errors. Consider a noisy classical com-

puter on n bits and suppose that the overall error is given by taking the XOR

of the n bits in the computer with a randomly chosen string e of n bits ac-

cording to a probability distribution E . Suppose that for every bit, the error

probability is 1/1000. If the errors are independent then the probability that

e will have, say, n/500 error is very tiny as n grows. Positive correlations
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between the errors for all (or most) pairs of bits will change this picture.

For example, if for every two bits the probability that for e both these bits

are 1 is around 1/50,000 (rather than 10−6), then there will be a substantial

probability that more than n/100 bits will be “hit” by the error. (The same

conclusion will apply if for every triple of bits the probability that they will

all be hit is, say, 10−7 rather than 10−9.) This effect of positive correlation

for errors is the basis for Postulate [P2] below.

4. Leaks of information. Rather than talk about errors and noise we

can talk about information “leaked” from our physical systems to the outside

world. For quantum computers leaking of information automatically amounts

to noise and thus a strong form of Postulate [P1] for quantum computers is:

[P1’] For a noisy quantum computer, information leaks for two substantially

correlated qubits have a substantial positive correlation.

For general stochastic systems [P1’] reads:

[P1’] In any noisy physical system, the information leaks concerning the

states of two elements that are substantially statistically dependent

have a substantial positive correlation.

Postulate [P1’] seems natural for systems where correlations are gradually

created and information is gradually leaked. The central question is whether

such an effect can be diminished via error correction.

3.2 The postulate of error synchronization

Suppose we have an error rate of ǫ. The assumptions of the various threshold

theorems (and other proposed methods for quantum fault-tolerance) imply

that the probability of a proportion of δ qubits being “hit” is exponentially

small (in the number of bits/qubits) when δ exceeds ǫ. Error synchronization

refers to an opposite scenario: there will be a substantial probability of a large

fraction of qubits being hit.
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[P2] In any noisy physical system with many substantially correlated ele-

ments there will be a strong effect of spontaneous error-synchronization.

[P2] In any quantum computer at a highly entangled state there will be a

strong effect of spontaneous error-synchronization.

As remarked above, error synchronization is expected for a large system

when the errors (or information leaks) are positively correlated. An even

stronger form of error synchronization is considered in [26], where formal

definitions for the quantum case can be found.

Remarks:

1. Empiric. Postulates [P1] and [P2] can be tested, in principle, for

quantum computers with a small number of qubits (10-20). Even if such

devices where the qubits themselves are sufficiently stable are still well down

the road, they are to be expected long before the superior complexity power

of quantum computers kicks in.

The rigorous form of Postulate [P1] (Section 4) can be suggested as a

benchmark for quantum-computer engineers: to construct pairs of noisy en-

tangled qubits with almost independent error-terms.

2. Spontaneous synchronization for highly correlated systems.

The idea that for the evolution of highly correlated systems changes tend

to be synchronized, so that we may witness rapid changes affecting large

portions of the system (between long periods of relative calm), is appealing

and may be related to other matters like sharp threshold phenomena and

phase transition, the theory of evolution, the evolution of scientific thought,

and so on.3 We can examine the possibility of error synchronization for the

examples considered above. Can we expect synchronized errors for weather

forecasts? Can we expect stock prices, even in short time scales, to exhibit

substantial probabilities for changes affecting a large proportion of stocks?

3This idea is conveyed in the Hebrew proverb “When troubles come they come

together.”
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Spontaneous synchronization is also related to the issue of pattern formation

for correlated systems.

3. Error synchronization and the concentration of measure phe-

nomenon. A mathematical reason to find spontaneous synchronization of

errors an appealing possibility is that it is what a “random” random noise

looks like. Talking about a random form of noise is easier in the quantum

context. If you prescribe the noise rate and consider the noise as a random

(say unitary) operator (conditioning on the given noise rate), you will see

a perfect form of synchronization for the errors, and this property will be

violated with extremely low probability.

Random unitary operators with a given noise rate are not a realistic form

of noise. The qubits in a quantum computer are expected to be quite isolated,

so that the errors are described by a “locally defined” process (namely, a pro-

cess (stochastically) generated by operations on a small number of qubits at

a time) — not unlike the (noiseless) evolution described by quantum com-

putation itself.

While random unitary operators with a prescribed error rate appear to be

unapproachable by any process of a “local” nature, the issue is whether some

of their statistical properties may hold for such stochastic processes describ-

ing the errors. The fact that perfect error-synchronization is the “generic”

form of noise may suggest that stochastic processes describing the noise will

approach this “generic” behavior unless they have good reason not to. (One

obstruction to error synchronization, pointed out by Greg Kuperberg, is time

independence.)

4. Correcting highly synchronized errors. An observation that com-

plements the discussion so far is that synchronized errors that are unbiased

can be corrected to produce noiseless deterministic bits. Suppose we have a

situation in which an error hits every bit with probability (1 − ǫ) and when

a bit is hit it becomes a random unbiased bit. (That is, a bit is flipped with

probability (1 − ǫ)/2.) This type of noise can be corrected by representing
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a 0 bit by a long string of 0’s and a 1 bit by a long string of 1’s. (If the

noise hits a smaller fraction of bits, the condition of it being unbiased can be

compromised.) If we start with qubits and again, with probability (1 − ǫ),

replace each qubit with a random (uniformly distributed) qubit, we can still

extract noiseless bits. However, there is no quantum error-correction code

for such noise.

This means that deterministic noiseless bits can prevail (for classical and

quantum systems) even for some forms of highly correlated errors. (Our

postulates do not imply a high correlation for the errors when the elements

of the system are statistically independent, but mechanisms leading to our

conjectural effects may still be relevant for the nature of noise for classical

forms of storing information and computation.)

The method of “clone and sample” appears to be essentially the only

error-correction method we find in nature. This method allows us to intro-

duce gates where errors on the involved bits will be almost independent to

start with, and thus will reduce “noise on gates” to “noise on bits.” But this

method is unavailable for quantum information of a general type.

5. The censorship conjecture. Notions of “highly correlated” or

“highly entangled” systems are not easy to define. We will refer informally to

systems that up to a small error are induced by their marginal distributions

on small sets of elements as “approximately local.”

[C] Censorship conjecture: Noisy stochastic physical systems are approxi-

mately local.

[C] The states of quantum computers are approximately local.

The rationale for this conjecture is that high forms of entanglement will

necessarily be accompanied with a strong effect of error synchronization,

which in turn will push the system towards approximate locality.

A suggested definition of “approximately local” (for the quantum case

only), and a precise formulation of the conjecture are given in the next section

11



(see also [26] for a different approach).4

4 A mathematical formulation

4.1 Measuring information leaks

In this section we give a mathematical formulation for Postulate [P1’] and

present even stronger conjectures. Our setting is as follows. We have a

quantum computer running on n qubits. The noise can be described by a

unitary operator on the computer qubits and the neighborhood qubits or as

a quantum operation E on the space of density matrices for these n qubits.

The ideal state of the quantum computer is pure.

Consider the conjectures in this section in the following way. A noisy

quantum computer is subject to noise described by a quantum operation E,

such that the error rates for individual qubits are small but substantial and

E satisfies the requirements described in this section. The operation E need

not be the overall noise that describes the gap between the ideal state and

the noisy state of the computer, but we assume that any damaging properties

of E will not be remedied by additional noise of a different nature.

We denote by L(a) the “amount of information the neighborhood has

on the qubit a.” More generally, for a set A of qubits we denote by L(A)

the “amount of information the neighborhood has on A.” Next we propose

mathematical definitions for these notions.

Let ρ be a state of the computer. For a set A of qubits let ρ|A be the

induced state on A. When the state ρ is a tensor product pure state then for

every set A of qubits, S(ρ|A) = 0 and the information leak of the noise oper-

ator E from the set of qubits A can be measured by the entropy S((E ◦ρ)|A).

4There are many measures for the “amount of entanglement” (and correlation) that

can be used. It is also unclear if we should measure the entanglement of a single state or

use a measure that depends on the variety of feasible states for a system. Leggett’s early

paper [27] and his “disconnectivity measure” (D-measure) seem relevant.
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Here, S(∗) is the (von Neumann) entropy function see, e.g., [3]; Ch. 11. (We

deem this entropy-based notion appropriate for our purposes, even though

the entropy does not capture every form of “information leak” attributable

to a noise operator.)

I am unaware of any canonical way to make the “information leak” a

measure of the noise operation E that does not depend on a specific choice for

this tensor product state. In what follows we let ρ0 = (+)⊗n = (1/
√

2((|0 >

+|1 >))⊗n and define L(A) = LE(A) = S(E(ρ0|A)).

Remark: Let ρ̂ be the state of the computer’s qubit and the environ-

ment that is represented by a set N of qubits. A standard measure of

the information that the environment has on the qubits in A is L′(A) =

S(ρ̂|A) + S(ρ̂|N) − S(ρ̂|{A∪N}). I would expect that L′(A) can replace L(A)

for the formulation of the conjectures in this section.

4.2 Two qubits

We will state mathematically a version of Postulate [P1’]. Our setting is as

follows. Let ρ be the “ideal” state of the computer and consider two qubits

a and b. We use as the (rather standard) measure of entanglement

ENT (ρ; a, b) = S(ρ|a) + S(ρ|b) − S(ρ|{a,b}).

As a measure of correlation of information leaks we use

EL(a, b) = L(a) + L(b) − L({a, b}).

Postulate [P1’] can be formulated as:

EL(a, b) ≥ K(L(a), L(b)) · ENT (ρ; a, b), (1)

where K is a function of L(a) and L(b), which is substantially larger than

their average (L(a) + L(b))/2. (K(0, 0) = 0, so that relation (1) tells us

nothing about noiseless entangled systems.)
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Remark: We are mainly interested in the case where the error rate

is fixed, but the dependence of K(L(a), L(b)) on the error rates is also of

interest.

4.3 Two qubits: A stronger version

We go on to describe and motivate an even stronger form of [P1’] and an

extension to more than two qubits. These extensions go beyond Postulates

[P1] and [P2] as discussed so far.

The expression S(ρ|a) + S(ρ|b) − S(ρ|{a,b}) was used as a measure of en-

tanglement between two qubits. We would like to replace it by a measure

that can be called “emergent entanglement,” which we are now going to de-

fine. This measure, denoted by EE(ρ; a, b), captures (roughly) the expected

amount of entanglement among the two qubits when we measure some other

qubits, “look at the outcome,” and condition on all possible outcomes for the

measurement. It appears to be related to Briegel and Raussendorf’s notion

of “persistent entanglement” [28].

For every representation ω of ρ|{a,b} as a mixture (convex combination)

of joint states

ρ|{a,b} =

t∑

i=1

pkρk,

let

ENTω(ρ; a, b) =
∑

pkENT (ρk; a, b).

Define

EE(ρ; a, b) = maxENTω(ρ; a, b),

where the maximum is taken over all representations ω. (We can assume

that ω is a mixture of pure joint states.)

A strong form of relation (1) is

EL(a, b) ≥ K(L(a), L(b)) · EE(ρ; a, b), (2)
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where, as before, K is a function of L(a) and L(b) which is substantially

larger than their average (L(a) + L(b))/2.

The motivation for this strong version of Postulate [P1’] comes from con-

sidering the state of a quantum computer that applies a fault-tolerant com-

putation. The state of the computer is t-wise independent for a large value

of t; hence every two qubits are statistically independent and Postulate [P1’]

does not directly apply. Consider an error-correcting code and let s be the

minimal number of qubits whose state “determines” that of the others, so

that once they are measured and their value are “looked at” the state of the

other qubits is determined. When we measure and look at the values of s−1

qubits, we see a very strong dependence between every pair of the remaining

qubits. Now, if we assume Postulate [P1’] and (just tentatively) also assume

that “measuring and looking at” the contents of some qubits does not induce

errors on other qubits (this is a standard assumption in current noise mod-

els), we see that the conclusion of Postulate [P1’] should apply for pairs of

qubits in a quantum computer running FTQC even though pairs of qubits

are independent.

4.4 More qubits

Here is a suggestion for an extension of the above conjecture from pairs of

qubits to larger sets of qubits. This suggestion goes beyond Postulates [P1]

and [P2] and is related to a strong form of error synchronization conjectured

in [26].

For a set A = {a1, a2, . . . , am} of m qubits let

ENT (ρ; A) = −S(ρ) + maxS(ρ∗),

where ρ∗ is a mixed state with the same marginals on proper sets of qubits

as ρ, i.e., ρ∗|B = ρ|B for every proper subset B of A.
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Define in a similar way

EL(A) = −LE(A) + LE∗(A),

where E∗ is a quantum operation which satisfies E∗|B = E|B for every proper

set B of A.

Using these definitions we will extend our conjectures, given by relations

(1) and (2), from pairs of qubits to larger sets of qubits. Let ρ be an ideal

state of the computer and let A be a set of m qubits. Extending (1) we

conjecture that

EL(A) ≥ KmENT (ρ|A). (3)

Here, Km = Km({L(a) : a ∈ A}) is substantially larger than min{L(a))) :

a ∈ A} and it vanishes when all the individual information leaks vanish.

Here again we further conjecture that for every representation ω of the

state ρ|A as a convex combination ρ|A =
∑

pkρk of pure joint states,

EL(A) ≥ Km

∑
pkENT (ρk; A). (4)

Remarks: 1. We expect that a quantum error-correcting code that

corrects t-errors and has a fixed error rate will have a strong form of error-

synchronization as t tends to infinity. Namely, the noise operation will have a

similar effect to that of the following operation: with probability ǫ a (1−o(1)-

fraction of qubits are being measured. (This is referred to as “devastating”

noise in [26].) I expect that Postulate [P1’] as expressed by relation (2)

will imply the weaker form of error-synchronization discussed in Section 3.2,

while an extension for larger sets of qubits given by (4) will imply the stronger

form.

2. The value of ENT (ρ; A) is intended to serve as a measure of the

additional information when we pass from “marginal distributions” on proper

subsets of qubits to the entire distribution on all qubits.
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4.5 Censorship

Here is a suggestion for an entropy-based mathematical formulation for Con-

jecture [C]. We remind the readers that in this section we always assume that

the “ideal” state of the quantum computer (before the noise is applied) is a

pure state. Some adjustments to our conjectures will be required when the

ideal state itself is a mixed state.

Let ρ be a pure state on a set A = {a1, a2, . . . , an} of n qubits. Define

ẼNT (ρ) =
∑

{ENT (ρ; B) : B ⊂ A}.

In this language a way to formulate the censorship conjecture is:

There is a polynomial P (perhaps even a quadratic polynomial) such that

for any quantum computer on n qubits, which describes a pure state ρ,

ẼNT (ρ) ≤ P (n). (5)

We will mention now some mathematical challenges. It will be interesting

to prove relation (5) based on relation (3), and to formulate and prove weak

and strong forms of error synchronization based, respectively, on relations

(1) and (3).

A further goal would be to derive, based on the assumptions on noise

for the physical qubits (relations (3) and (4)), the same relations as well

as relation (5), for “protected” qubits, namely logical qubits represented by

quantum error-correction.

Remarks: 1. It is interesting to study how the quantities ENT (A; ρ)

evolve in time for dynamical systems describing (quantum and classical)

physical processes.

2. The additional conjectures of this section are meant to draw the fol-

lowing picture: we have an ideal notion of a quantum computer that has

extraordinary physical and computational properties. Next come noisy quan-

tum computers with an ideal notion of noise. If the noise rate is small then
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FTQC is possible. Next come noisy quantum computers that satisfy relation

(1). For those, fault tolerance will require controlling the error rate as well as

K2, which we expect to be much harder. This model is also an idealization as

long as K3 = 0 and so on. For such highly entangled states as those required

in quantum algorithms, Ki will be more and more damaging for larger values

of i.

5 Discussion

Our conjectures on the nature of noise for correlated systems appear to be

damaging to the possibility of storing and manipulating correlated quantum

or classical stochastic data and therefore for the possibility of computationally-

superior quantum computers.

In Section 5.1 we ask if our conjectures are consistent with quantum

mechanics. We also examine if they are consistent with the reality of classical

error-correction and fault-tolerant classical computation. In Section 5.2 we

ask if our conjectures can be supported by concrete models of noise. In

Section 5.3 we discuss the computational complexity consequences of the

conjectures, and in Section 5.4 we ask if there are any existing or expected

counterexamples from physics.

5.1 Consistency

Causality

We do not propose that the entanglement of the pair of noisy qubits causes

the dependence between their errors. The correlation between errors can

be caused by the process leading to the correlation between the qubits, or

simply by the ability of the device to achieve strong forms of correlation.
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Linearity

Do our postulates violate the linearity of quantum physics? The plain simple

answer is no. Again the analogy with classical stochastic processes is telling.

The conjecture that in noisy systems like the weather substantially correlated

events are subject to substantially correlated noise (or, in other words, can

only be approximated up to error terms that are also substantially correlated)

is perhaps bold and possibly false, but it is not remotely bold enough to

violate the laws of probability theory. This is also so in the quantum case.

Probability, secrets, and computing

We will now describe a difficulty for our conjectures at least in the classical

case. Consider a situation where Alice wants to describe to Bob a complicated

correlated distribution D on n bits that can be described by a polynomial-size

randomized circuit. Having a noiseless (classical) computation with perfect

independent coins, Alice can create a situation where for Bob the distribution

of the n bits is described precisely by D. In this case the values of the n bits

will be deterministic and D reflects Bob’s uncertainty. Alice can also make

sure that for Bob the distribution of the n bits will be D + E , where E
describes independent errors of a prescribed rate.

Is this a counterexample to our Postulates [P1] and [P2]? One can ar-

gue that the actual state of the n bits is deterministic and the distribution

represents Bob’s uncertainty rather than “genuine” stochastic behavior of

a physical device.5 But the meaning of “genuine stochastic behavior of a

physical device” is vague and perhaps ill-posed. Indeed, what is the differ-

ence between Alice’s secrets and nature’s secrets? In any case, the difficulty

described in this paragraph cannot be easily dismissed.6

5Compare the interesting debate between Goldreich and Aaronson [29] on whether

nature can “really” manipulate exponentially long vectors.
6The distinction between the two basic interpretations of probability as either express-

ing human uncertainty or as expressing some genuine physical phenomenon is an important
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However, note that as in the case of faraway qubits, the noisy distribu-

tion D + E was based on the ability to achieve the noiseless distribution D.

Achieving the distribution D was based on noiseless classical computation

to start with. For the case of quantum computers, we can still defend our

Postulates [P1] and [P2] against this argument as follows. Even if nature

can simulate Alice, and Bob’s “mental” uncertainty can be replaced by a

“real” physical situation where a highly correlated distribution is prescribed

up to an independent error term, this approximation has been achieved via

a noiseless computation to start with. Therefore, such an approximation

cannot serve, in the quantum case, as a basis for fault tolerance.

The difficulties considered here motivated the formulation of our conjec-

tures (Section 3.1, remark 4, and Section 4) in terms of information leaks.7

The mathematical formulation of our postulates in Section 4 is thus restricted

to the quantum case.8

Faraway qubits

Suppose we have two qubits that are far away from each other at a given

entangled state at time T . Consider their state at time T + t. Is there

any reason to believe that the changes will not be independent? And if t is

small compared to the distance between the qubits isn’t it the case that to

implement a noise that is not independent we will need to violate the speed

issue in the foundation of (classical) probability. See, e.g., Anscombe and Aumann [30].

Opinions range from not seeing any distinction at all between these concepts to regarding

human uncertainty as the only genuine interpretation.
7A related idea, relevant also to the next item of faraway qubits, is to regard a stricter

definition of a noisy quantum computer as such that at any time along the computation

for every qubit, and for every observer (who extracts information from the computer) the

noise rate for every qubit (namely, the difference between its ideal state and its actual

state) is at least ǫ.
8For the classical case (or for a commutative fragment of noncommutative probability)

our postulates [P1] and [P2], as well as the postulate of noise [P0] and even the notion of

noise itself, are meaningful only on a heuristic or subjective level.
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of light? And finally isn’t this observation a counterexample to Postulate

[P1]?

The answer to the last question is negative. There is no difficulty in

conceding that changes over time in the states of two faraway entangled

qubits will be independent. The problem with this critique is the initial

assumption: we are given two qubits at time T at a given state. Starting

with noiseless correlated elements, we may well reach correlated elements

that can be described up to substantial but independent error terms. But

for fault tolerance we may not assume noiseless pairs of entangled qubits to

start with.

In this paper, as in other papers dealing with FTQC, we assume that at

any time during the computation every qubit is noisy. Sometimes, a quantum

computer that is only partially noisy is studied (e.g., [19]). In such a case we

should reformulate Postulates [P1] and [P2] relative to the noiseless part.

Running a quantum algorithm with a “random” state at all times

A critique of the possibility of any systematic damaging relation between the

state of the quantum computer and the noise was suggested by Ben-Or (see

[26]) and is related to some works of Preskill and Shor. (A related concern

was pointed out by Preskill. A detailed proof of such a result along with an

interesting interpretation was recently offered by Aharonov [31].) Having a

classical computer control a quantum computer makes it possible to run a

variant of any quantum computer program where at the initial state we apply

random Pauli operators on every qubit and modify the action of the gates

accordingly. This interesting critique does not apply to the mathematical

formulation given in Section 4 for Postulate [P1’], since the measures of

entanglement we use are invariant under such an operation.

To sum up this part of the discussion, our conjectures, properly formu-

lated in terms of decoherence of quantum systems, are consistent with the

reality of classical fault-tolerance. They also appear to be fully consistent
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with quantum mechanics. On the other hand, as proposed properties of de-

coherence our conjectures are not in agreement with the common point of

view regarding decoherence and the traditional decoherence models.

5.2 Models

A basic remaining challenge is to present concrete models of noise that sup-

port Postulates [P1] and [P2]. (Of course, there is a difference between show-

ing that the type of behavior we are looking for is possible and showing that

it is unavoidable.) A model for the noise that supports our postulates should

already exhibit [P1] and [P2] for the “new errors” — either qubit-errors or

gate-errors or both — and would thus be quite different from current models.

It is worth noting that error synchronization is a very familiar phe-

nomenon for error propagation of (unprotected) quantum programs. It is

instructive to see in this context how error synchronization is often created

when we start with small independent errors and let them propagate along

the steps of a computer program.

One way to view the noise is as represented by a rather primitive (but

quick) stochastic program (or circuit) “running” along the actual program.

We run the program P and we actually get P+N . The simplest explanation

for why errors of correlated qubits are themselves correlated is that the noise

N depends on P, or can be described as a weak perturbation of the original

program itself. But this is not the only possibility. It may be the case that

N does not depend on P but rather represents a certain form of “generic”

quantum program. In both these cases we think of N as a quantum program

with many steps for each computer cycle. This hypothetical “noise program”

partially achieves one familiar “computational task” for a distributed system:

synchronization.

Recently, Klesse and Frank [34] described a physical system in which

qubits (spins) are coupled to a bath of massless bosons. They reached (af-

ter certain simplifications) a noise model with error synchronization. (I am
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thankful to Robert Raussendorf for this information.) The earlier models

suggested by Alicki, Horodecki, Horodecki, and Horodecki [22] appear to be

relevant to our conjectures. Also relevant is Alicki’s idea [32] (see also [33])

that “slow gates” (combined with the free evolution of the system) will be

an obstacle to error correction.

There is a substantial interest in local stochastic behavior leading to spon-

taneous (collective) synchronization (e.g., [35, 36, 37, 38, 39]). The Glauber

dynamics (a very simple locally defined “program”) for the Potts model (e.g.,

[40]) can also be regarded in this way. There is also a substantial amount

of work on emergence of patterns in stochastic (correlated) locally described

systems.

Finally, let me mention the relevance of cluster states defined by Briegel

and Raussendorf (see, [41]). (We will further discuss cluster states below.)

The description of cluster states involves an array of qubits located on the

vertices of a rectangular lattice in the plane (or in space). Cluster states are

“generated” by local entanglements between pairs of nearby qubits on the

lattice grid. They can be regarded as the quantum analogs of the Ising and

Potts classical models. (Note that “cluster state” is a collective name for a

large number of possible models.) There is some evidence in the literature

(see [42]) that cluster states emerge in realistic situations.

Controlled creation and manipulation of cluster states can be very im-

portant for building quantum computers. On the other hand, cluster states

(and decohered cluster states) can serve as a basis for concrete models of

noise. Local processes leading (in reality) to cluster states may represent re-

alistic models of decoherence. This possibility deserves further study. (I am

thankful to Scott Aaronson for fruitful discussions concerning cluster states.)

5.3 Computation complexity

While it looks intuitively correct that our postulates are damaging for quan-

tum computation, proving it, and especially proving a reduction all the way
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to the classical model of computation, is not going to be an easy task. This is

an interesting question in computational complexity. In an earlier paper [26]

some problems on the computational power of quantum computers with var-

ious hypothetical types of noise were considered. Reduction of low-rate noisy

quantum computation to BPP is not known even for cases where the noise is

provided by an adversary. A more realistic task would be to show that our

postulates exclude fault tolerance based on linear quantum error-correction.

Let me first mention a few relevant earlier works. The problem of de-

scribing complexity classes of quantum computers subject to various models

of noise was proposed by Peter Shor [43] in the 90s, but apparently was not

picked up. See also [44]. It is even theoretically possible that deviating from

the standard assumptions on noise (and, in particular, allowing dependence

of the noise N on the program P), will allow stronger computation power

than BQP.

Aaronson [45] proposed a theory to study the computational-complexity

effect of an arbitrary form of restriction on states of quantum computers,

namely, some states are forbidden while others can be freely prepared and

manipulated. Aaronson was motivated by several skeptical opinions on quan-

tum computers, especially Levin’s paper [27], and he proposed his theory as a

way “to make the debate concerning quantum computers more scientific and

less ideologic.” The approach taken here is close, in broad strokes, to Aaron-

son’s. (A notable difference in the rhetoric is that Aaronson equates the

failure of quantum computers with the breakdown of quantum mechanics.)

Going back to the issue of how damaging our postulates on noisy quan-

tum computers can be, we note that going below the computation power of

logarithmic depth polynomial-size quantum circuits appears to be difficult,

yet such circuits combined with classical computers are strong enough to al-

low a polynomial-time algorithm for factoring as follows from a recent result

of Cleve and Watrous [46].

Aharonov, Ben-Or, Impallazio, and Nisan [12] proved that the compu-
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tational power of noisy reversible quantum computers reduces to log-depth

quantum computation. But it is not even known whether or not noisy re-

versible quantum computers (combined with a noiseless classical one), under

the standard noise models, allow polynomial-time factoring, and it may well

be the case that they do. Razborov [18] showed that, for a certain (standard)

model of noise, if the qubit-error rate is 50% then the computation power

reduces to log depth quantum computation. In this case too, a reduction

to classical computation is unknown. These results suggest that also in our

case it will be difficult to prove a reduction which excludes log-depth quan-

tum circuits. Moreover, it is quite possible that log-depth quantum circuits

prevail, with quasi-polynomial or even polynomial overhead, under rather

general forms of noise. This is the case when the noise is described by a

random unitary operator; the perfect error-synchronization allows log-depth

circuits to work perfectly with a probability which is only polynomially small.

Combining this observation with the application of low-overhead circuits for

fault-tolerance may apply to every low-rate noise model for which the noise

is invariant under permutations of the qubits. (Since constants in the depth

translate to exponents in the overhead, such a result will not be practically

useful.)

Complexity-theoretic reductions appear difficult and so is Scott Aaron-

son’s nice challenge of a “Sure/Shor separator” [45]. A more realistic goal

would be to prove that models of noise satisfying our conjectures do not allow

for quantum linear error-correction, e.g., by deriving relations (1) and (5) for

any form of “protected qubits” obtained by linear quantum error-correction.

5.4 Potential counterexamples from physics

Topological quantum computers and anyons

In the area of “topological quantum computers” [14, 47, 48] there is a beau-

tiful and powerful “bilingual dictionary” between certain forms of combina-
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torial methods for fault tolerance and remarkable objects from physics. It is

suggested that fault tolerance can be realized by non-Abelian anyons, which

can be thought of as analogous to the physical realization of logical bits in a

digital computer that are very robust to noise. The two “languages” of this

dictionary are a combinatorial descriptions of a quantum error-correction

with n qubits, and their physical realization as certain quasi-particles called

“anyons.” Only a small number of types of non-Abelian anyons are required

to realize the full power of quantum computers.

Analyzing the stability of non-Abelian (and Abelian) anyons based on the

assumption that the noise is “local” (statistically independent, as discussed

above) reveals a remarkable phenomenon referred to as “mass gap.” Below a

certain temperature the anyon is going to be extremely stable. (Low temper-

ature translates to low error rate.) The mathematical model predicts that

as n grows the region of stability (in terms of temperature) will not become

smaller and the “gap” will be maintained. Moreover, in this stable area the

robustness to noise will be exponential in n and thus, on the physics side, we

will obtain very robust qubits.9

The existence of very robust (“protected”) qubits based on quantum

error-correction via a highly entangled state, whether implemented by “soft-

ware,” say ion traps, or by “hardware,” say anyons, runs counter to our

conjectures. We can expect that when we study the effect of noise for the

combinatorial model of anyons with a highly entangled state, using a per-

turbation method that reflects Postulates [P1] and [P2], the exponential ro-

bustness with n, or even the “mass gap,” will disappear.

9In the translation between a discrete combinatorial model with n qubits (or n elements)

and a concrete physical object, it is unclear what the interpretation is on the physics side

for the value of n, and the relevance of the behavior as n tends to infinity should not be

taken for granted. Inner dependencies of the physical object appear to be relevant to the

best value of n for the combinatorial model describing it.
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Other possible counterexamples from physics

Superconductivity. Several people have suggested that our postulates,

and especially Conjecture [C], are already in conflict with phenomena from

physics, like superconductivity and Einstein–Bose condensation. Supercon-

ductivity and related phenomena are indeed physical systems with strong

forms of (pairwise) entanglement that appear to be related to what is re-

quired for quantum fault-tolerance.

I tend to think that the form of entanglement for superconductivity is

insufficient to refute Conjecture [C] since the entanglement in this case is

“generated” (to a large extent) by dependencies of pairs of elements. Trans-

lating and testing Postulate [P1’] for the setting of superconductivity would

be of interest.

Cluster states. Cluster states, defined by Briegel and Raussendorf (see

[41]) are roughly quantum analogs of (low-temperature) probability distribu-

tions described by Ising and Potts models. There is some simulation-based

evidence [42] that certain materials from solid-state physics exhibit a similar

form of entanglement. Those materials can thus be potential candidates for

checking empirically our conjectures on decoherence. On the other hand, the

possibility of having universal quantum computation [41], and even fault-

tolerant quantum computation [17], based on cluster states and single-qubits

measurements may challenge the relevance of our conjectures on the FTQC

hypothesis.10 For cluster states ẼNT appears to be linear in the number of

qubits.

2n bosons. Noisy quantum computers that respect our postulates are

incapable of simulating hypothetical objects like non-Abelian anyons. But

are they capable of simulating familiar, much simpler, objects from physics?

A simple example to test the conjectures is to consider them for a state X of

10What needs to be examined in this respect is the translation of non-Markovian noise

models (like those satisfying our conjectures) on the cluster-state computer, back to the

quantum circuit it simulates; see [17].
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2n bosons (n large) each having a ground state |0 > and an excited state |1 >,

so that |0 > has occupation number (precisely) n and |1 > has occupation

number n. (A similar state Y where the occupation number has a binomial

distribution can be simulated by a tensor product state.)

Other possible relations to physics

An obvious connection to physics is that a failure of computationally superior

quantum computing would suggest that computations of quantum physics

that are relevant to physical reality can efficiently be simulated on classical

computers, and thus would question the relevance to reality of computations

from quantum physics that appear to be computationally hard. We mention

two other potential connections.

Perturbation methods. Another connection to physics may come from

the perturbation methods used to analyze non-Abelian anyons. These meth-

ods are related to standard perturbative methods used in various other areas

of physics and mainly in quantum field theory. Modifications of the per-

turbation method itself, which may amount to amending unjustified hidden

probabilistic assumptions and may lead to a drastically different behavior for

the extreme situation of (hypothetical) highly entangled systems like quan-

tum error-correcting code and quantum computers, may be of interest also

in more mundane situations from physics, where these perturbation methods

are (rather successfully) used.

Thermodynamics. Connections between fault tolerance and thermo-

dynamics were considered, e.g., in [33, 49], and were intensely debated. (The

results and methods of [12] also have a clear thermodynamic flavor.)

For example, in a very recent paper, Alicki and Horodecki [49] propose

the following line of thought: 1. Thermodynamics is relevant because very

robust storage of quantum information requires large systems. 2. Meta-stable

states for finite systems are necessarily manifested by equilibrium states of

infinite systems. 3. Equilibrium states of infinite systems must have the form
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“probability measures over a set of states” and, in particular, cannot support

even a single (“viable”) qubit. Of the above points, the second is perhaps

the most controversial, and in view of some potential counterexamples may

be related to noise models and perturbative methods that are different from

the standard ones.

The information-theoretic form of the mathematical formulation of our

postulates (which, to a large extent, were required in order to respond to

various points discussed in this section) suggests possible connections with

thermodynamics. Of particular interest are connections with entropy-type

measures of “high order” statistical dependence.

5.5 Conclusion

My belief is that the interesting question of the physically realistic “Church–

Turing thesis” (put forward mainly by Deutsch) and, in particular, the fea-

sibility of computationally superior quantum computers will have a convinc-

ing solution, and that, whatever this solution is, the asymptotic approach —

namely, the relevance of the asymptotic behavior of complexity to real-life

computation — will prevail.

The question “How can (computationally superior) quantum comput-

ers fail”11 is as important a part of the quantum information and quantum

computers endeavor, as the question “How can (computationally superior)

quantum computers succeed.” As a matter of fact, the two questions are the

same.

11While the possibility of computationally superior quantum computers certainly cap-

tures the imagination, it is worth noting that implementing even simple computations on

quantum systems can be important for applications, such as enhancing the performance

of medical NMR [50, 51].
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