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Abstract

We consider stochastic dynamics whose expected (average) vector
field is not necessarily continuous. We generalize the ordinary differ-

ential equation method for analyzing stochastic processes to this case,
by introducing leading functions that “lead” the stochastic process
across the discontinuities, which yields approximation results for the
asymptotic behavior of the stochastic dynamic. We then apply the
approximation results to the classical best-response dynamics used in
game theory.

1 Introduction

In this paper we approximate a given stochastic process from the expected

behavior of the process (the average vector field). Having two processes with

the same expected behavior allows us to describe the limit behavior of one

process using the limit behavior of the second, “simpler” one. To obtain

the approximation, some assumptions on the vector field are needed, and
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guidance, and Andreu Mas-Colell for his useful comments.
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we introduce the notion of a leading function, which leads the process across

discontinuities of the vector field. This enables us to consider non-continuous

dynamics, such as the best-response dynamics used in game theory.

Starting with a vector field F : R
k → R

k, we consider a deterministic

process and a stochastic processes derived from it. The deterministic process

is derived from the given vector field by taking a solution to the ordinary

differential equation (ODE)

dx

dt
= F (x). (1.1)

The stochastic processes we consider in this paper are stochastic approxima-

tion algorithms, which are discrete-time stochastic processes with values in

R
k that satisfy the recursive equation

Xn+1 − Xn = γn (F (Xn) + Yn + Un+1) , (1.2)

where γn > 0 is a “small” step size, and Yn and Un+1 are random variables,

with Yn realized at time n, and Un+1 realized at time n+1 (Un+1 is interpreted

as “noise”).

Such processes appear in Robbins & Monro (1951) and Kiefer & Wolfowitz

(1952), and one of the methods to analyze such processes is the ODE method,

introduced by Ljung (1977). By the ODE method, we consider {Xn} as an

approximation to a solution of the ODE (1.1), and the asymptotic behavior

of {Xn} can be described on the basis of the asymptotic behavior of this

solution of (1.1).
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Using this method, several results can be obtained for processes with small

enough step size, such as the connection between an invariant distribution

of (1.2) to attractors of (1.1), or bounds on the probability that (1.2) differs

from (1.1).1 However, to get these results, the continuity (specifically, the

Lipschitz continuity) of the vector field F is needed.

Consider the Matching Pennies game. As a zero-sum game, the determin-

istic process of fictitious play for this game converges to the unique equilib-

rium which is completely mixed (see Robinson (1951)). However, by adding

a small probability each period that the players’ actions are not the best

responses, we obtain a simple stochastic model whose behavior each period

closely resemble the behavior of the deterministic process, and yet, since the

best-response correspondence is not continuous, no convergence results for

the stochastic process were obtained prior to Gorodeisky (2007).

Here we give approximation results for non-continuous processes by es-

timating the probability that (1.2) differs from (1.1), and we give an expo-

nential bound on that probability when the noise satisfies the martingale

difference condition that its conditional expectation is zero. In so doing we

extend existing results for Lipschitz dynamics.2 We then use the approxi-

mation results to analyze non-continuous stochastic processes, such as the

best-response process in games.

In Section 2 we describe the main approximation result for a simpler

model. In Section 3 we describe our general model, both the deterministic

processes (Section 3.1) and the stochastic processes (Section 3.2). In Sec-

1For such results, see, e.g., Benäım (1996), Benäım (1999), Benäım & Hirsch (1999),
Benäım et al. (2005), and Fort & Pagès (1999).

2See, e.g., Benäım & Hirsch (1996) and Benäım & Weibull (2003).
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tion 4 we prove the approximation result for processes with a unique discon-

tinuity point, and in Section 5 we extend the result to processes with more

than one discontinuity point. In Section 6 we present applications of the

result to obtain several asymptotic results. Finally, in Section 7 we apply a

proof of the convergence of a best-response process in the rock-scissors-paper

game to the Shapley cyclic polygon.

2 A Simple Case

We start by stating our main result for a simple model. In the sequel we deal

with the general case.

Let F : R
k → R

k be a vector field. Given F , we will look at a continuous

function x : [0, T ] → R
k, which is a solution to the differential equation (1.1).

Thus, the change of x at time t is F (x(t)).

Let X = {Xn}
∞
n=0 be a Markov process with values in R

k, that sat-

isfy (1.2). We will assume that Yn = 0 for all n, and that {Un} is a sequence

of bounded random variables that satisfy the martingale difference condition.

That is, X satisfies

Xn+1 − Xn = γn (F (Xn) + Un+1) , (2.1)

where γ = {γn} is a deterministic sequence of positive numbers, and U =

{Un} is the stochastic noise of the system with E(Un+1 |Fn) = 0, where Fn is

the sigma-field generated by {X0, . . . , Xn}, and ess sup ‖Un‖ < ∞ for every

n. Thus, the average change from period n to period n + 1 is F (Xn), with
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step size γn, and with bounded noise Un+1.

We use this similarity in the change of the processes to show that, with

high probability, the deterministic solution x can be used to approximate

X. To carry out the approximation, we do not need the vector field F to

be Lipschitz (or even continuous) along the path3 x(0, T ). Nevertheless, we

will assume that F is piecewise Lipschitz in some neighborhood of the path,

and that F satisfies a certain condition, which we call the “leading direction

condition”: on each boundary between two Lipschitz regions there exists,

locally, a direction leading from one region to the other, in which the process

moves at a speed that is bounded away from zero.

Thus, we will assume the following on4 F and x.

Assumption S. There exist a neighborhood V of x(0, T ) and hyperplanes

H1, . . . , Hm given by H i := {y ∈ R
k : λi · y = ci}, where λi 6= 0, such that

S1. F is bounded in V .

S2. For each i = 0, . . . , m, the path x[0, T ] intersects the hyperplane H i

at a unique ti ∈ [0, T ] (i.e., λi · x(ti) = ci). W.l.o.g., assume that

0 ≤ t1 < t2 < . . . < tm ≤ T . We will refer to x(ti) as a discontinuity

point of x.

S3. For each i = 0, . . . , m, the vector field F is Lipschitz on the set

Ri := V i
+ ∩ V i+1

− ,

3For A ⊂ [0, T ], we use x(A) for {x(t) : t ∈ A}.
4Assumption S is for the simple model, whereas Assumption G in Section 3 is for the

general model.
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Figure 1: The deterministic path

where V i
− = {y ∈ V : y · λi < ci} and V i

+ = {y ∈ V : y · λi > ci} for

i = 1, . . . , m, and V 0
+ = V m+1

− = V .

S4. For each i = 1, . . . , m, there exists a neighborhood Oi of x(ti) such that

inf
{

λi · F (y) : y ∈ Oi
}

> 0.

By rescaling λi, we will assume, w.l.o.g., that

inf
{

λi · F (y) : y ∈ Oi
}

= 1. (2.2)

Conditions S2 and S3 state that a neighborhood of the path can be di-

vided into finitely many “simple” regions, where the boundary between two

consecutive regions is a hyperplane (this assumption will be relaxed in the

general model), and inside each region the vector field F is Lipschitz; see

Figure 1. Notice that there is no assumption that F is Lipschitz on the

boundaries. Thus, F may be discontinuous along H i and in particular at the

discontinuity points x(T i).

6



Condition S4 is the main assumption, and deals with the discontinuity

of the vector field. We refer to it as the “leading direction condition”: along

the direction λi, which leads from the Lipschitz region Ri−1 to the Lipschitz

region Ri, the process crosses the non-Lipschitz boundary H i at a speed that

is bounded away from zero.

In later sections, we will relax the assumptions on F and x, by allowing

the regions Ri to be more complex (with nonlinear boundaries), and we will

replace the linear leading directions by more general functions.

To use the deterministic path x to approximate the stochastic process X,

we define the interpolated continuous process X̂ as follows: Let τ0 = 0, and

τn =
∑n−1

i=0 γi for n ≥ 1, and let X̂(τn) = Xn for each n, and let X̂ be affine

on [τn, τn+1]. Define

‖γ‖T = max {γn : τn ≤ T} ,

‖∆X‖T = max {ess sup ‖Xn+1 − Xn‖ : τn ≤ T} , and

‖U‖T = max
{

ess sup
(

‖Un‖
2
2

)

: τn ≤ T
}

.

We can now state our approximation result.

Theorem 2.1. Let F : R
k → R

k be a bounded vector field and let x : [0, T ] →

R
k be a solution to (1.1), such that they satisfy Assumption S. Then there

exist ε0 > 0 and c > 0 such that for every ε ≤ ε0 and for every Markov

process X that satisfies (2.1) with ‖∆X‖T ≤ cε and X0 = x(0), we have

Pr

[

sup
0≤t≤T

∥

∥

∥
X̂(t) − x(t)

∥

∥

∥
≥ ε

]

≤ 2k exp

(

−
cε2

‖U‖T ‖γ‖T

)

.
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Thus, if the step size γ and the noise U are small, the probability that

the stochastic process deviates from the deterministic process is exponentially

small in the step and the noise sizes.

Remark 2.1. The constants ε0 and c in Theorem 2.1 depend on the vector

Field F and the solution x. Specifically, they depend on the number of dis-

continuity points of x (i.e., m), the leading directions λi, the neighborhoods

Oi, and the bound of F in V , as given by Assumption S. For an explicit

expression of those constant, see Remark 5.1 below.

3 The General Model

In this section we describe our general model: the deterministic process in

Section 3.1, and the stochastic process in Section 3.2.

3.1 The Deterministic Process

We now describe the general deterministic process that can be used for the

approximation. The vector field F is assumed to be piecewise Lipschitz (as

in Assumption S), but the Lipschitz pieces can be of a more general form.

Again, the key assumption is the existence of a “leading direction,” or

more generally, a “leading function,” that leads the process over its discon-

tinuity, at a speed that is bounded away from zero.

Definition 3.1. Let Σ ⊂ R
k and let F : Σ → R

k. A solution of the system of

differential equations (1.1) is an absolutely continuous function x : [0, T ] → Σ

that satisfies x(t) − x(s) =
∫ t

s
F (x(τ))dτ for all 0 ≤ s < t ≤ T .
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Let x be a solution of (1.1). We will assume the following about F and

x.

Assumption G. There exist 0 = T 0 < T 1 < . . . < Tm = T , and for each

i = 1, . . .m, there are V i ⊂ Σ and ϕi : V i → R such that:

G1 F is bounded in V , where V = ∪iV
i; let ΛF be such that ‖F (x)‖ ≤ ΛF

for all x ∈ V .

G2 For each i = 1, . . . , m,

– V i contains an open neighborhood of x(T i−1, T i).

– ϕi is differentiable and ∇ϕi is Lipschitz in V i with a constant Li
∇.

Therefore, ϕi is also Lipschitz; let Li
ϕ be its Lipschitz constant.

We can assume w.l.o.g. that the region V i is bounded; let Λi
ϕ =

supV i ‖∇ϕi‖2 < ∞. We will extend ∇ϕi to Σ by setting ∇ϕ(x) =

0 for x /∈ V i.

– There exists a ti ∈ [T i−1, T i] such that ϕi(x(ti)) = 0, ϕi(x(t)) < 0

for all t ∈ [T i−1, ti), and ϕi(x(t)) > 0 for all t ∈ (ti, T i]. We will

refer to x(ti) as a point of discontinuity of x, and to ϕi as the

leading function at the discontinuity point x(ti).

G3 For each i, define V i
− = (ϕi)

−1
(−∞, 0) and V i

+ = (ϕi)
−1

(0,∞); then F

is Lipschitz in V i
− and in V i

+ with a constant Li
F , i.e., ‖F (x) − F (y)‖ ≤

Li
F ‖x − y‖ for all x, y ∈ V i

− and for all x, y ∈ V i
+.

G4 For each i there exist ρi > 0 and αi > 0 such that for all x ∈ V i with

‖x − x(tid)‖ < ρi we have ∇ϕi(x) · F (x) ≥ αi. By replacing ϕi with

ϕi/αi, we may assume w.l.o.g. that αi = 1.
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Figure 2: The deterministic path. The general model

Let ρ > 0 be such that for each i, the ρ-neighborhood of x(T i−1, T i) is a subset

of V i. Let ri
O = min{ρi, ρ/2} and let5 Oi = B(x(tid), r

i
O). Let rO = mini r

i
O,

L∇ = maxi L
i
∇, Lϕ = maxi L

i
ϕ, LF = maxi L

i
F and Λϕ = maxi Λ

i
ϕ, and let

Λ = max{ΛF , Λϕ, LF , Lϕ, L∇, 1}.

As in Assumption S, Assumption G states that some neighborhood of

the solution x can be divided into finitely many regions, {V i
−}i and {V i

+}i,

such that F is Lipschitz inside these regions (see Figure 2; note that these

regions may well overlap). However, now the boundary between two regions

is not a hyperplane but the more general surface (ϕi)
−1

(0). Again, the main

assumption (condition G4) states that the process crosses the discontinuity

at a speed that is bounded away from zero, where the direction in which the

process moves is not constant (as in S4), but rather perpendicular to ϕ(x)

for every point x.

The approximation theorem will be proved for each interval [T i−1, T i]

separately, and hence, in this section and in Section 4, we will assume that

x satisfies assumption G with only one discontinuity point, at

5B(x, r) is the ball around x with radius r.
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time 0 ≤ td ≤ T ,

and we will omit the superscript i. The result for more than one discontinuity

point will be given in Section 5.

Let φ
x

: [0, T ] → R be defined by φ
x
(t) = ϕ(x(t)); then

Lemma 3.2. For all 0 ≤ t1 < t2 ≤ T we have

φ
x
(t2) − φ

x
(t1) =

∫ t2

t1

(∇ϕ(x(t)) · F (x(t)))dt.

Proof. x(t) − x(s) =
∫ t

s
F (x(τ))dτ and, therefore, x′ = dx/dt exists and

satisfies x′ = F (x) almost everywhere and, therefore, φ′
x

= ∇ϕ(x) · F (x)

almost everywhere. ∇ϕ is continuous and F (x(t)) is continuous for all t 6= td.

Therefore, φ′
x

is continuous for all t 6= td, and we have φ
x
(t2) − φ

x
(t2) =

∫ t2

t1
φ′

x
(t)dt.

Lemma 3.3. There exist ∆T > 0 and r > 0 such that

1. For all t1 < t2 with x([t1, t2]) ⊂ O, we have φ
x
(t2) − φ

x
(t1) ≥ t2 − t1.

2. For all ∆t ≤ ∆T we have6 B(x([0, td − ∆t]), ∆t/Λ) ⊂ V−.

3. B(x([td, td + ∆T ]), 2∆T ) ⊂ O, and B(x([td + ∆T/Λ, T ]), r) ⊂ V+.

Proof. 1. Follows from Lemma 3.2.

2. From the continuity of x, there are ∆T ′ > 0 and r1, r2 > 0 such that

B(x([0, td − ∆T ′]), r1) ⊂ V−, and B(x([td − ∆T ′, td]), r2) ⊂ O. Let

∆T ≤ ∆T ′ such that ∆T/Λ ≤ min{r1, r2}; then for all ∆t ≤ ∆T we

have B(x([0, td − ∆T ′]), ∆t/Λ) ⊂ V−.

6For A ⊂ [0, T ], we use B(x(A), r1) for ∪t∈AB(x(t), r).
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Let td − ∆T ′ < t ≤ td − ∆t; then B(x(t), ∆t/Λ) ⊂ O. By 1, we have

φ
x
(t) ≤ φ

x
(td) − ∆t = −∆t, and for all x ∈ B(x(t), ∆t/Λ), we have

ϕ(x) < ϕ(x(t)) + λϕ∆t/Λ ≤ 0. Therefore, B(x(t), ∆t/Λ) ⊂ V−.

3. Since 2 holds for all ∆t ≤ ∆T and x is continuous, we may take ∆T to

be small enough for the first inclusion to hold. Given ∆T , the second

inclusion follows from the continuity of x.

Definition 3.4. For a vector field F and a solution x for (1.1) that satisfy

Assumption G, we will refer to P = {ρ, Λ, ∆T, r}, given by Assumption G

and Lemma 3.3, as the parameters of F and x.

3.2 The Stochastic Approximation Processes

Our result is that the deterministic process described in Section 3.1 can be

used to approximate “similar” discrete stochastic processes. In this section

we describe these stochastic processes and provide some preliminary results.

Unlike Section 2, we will not assume that Yn = 0 or that the noise Un satisfies

the martingale difference condition.

A stochastic process behaves like the deterministic process x (a solution

for (1.1)) when its step size is small and its expected difference per step size is

close to F (the change of the deterministic process). Thus, let X = {Xn}
∞
n=0

be a Markov process (on some probability space) with state space Σ′ ⊂ Σ that

satisfies the recursive equation (1.2), where F : Σ → R
k is a deterministic

vector field, and {γn} is a sequence of nonnegative numbers.

We define some notations and show some properties of X.
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1. Let τ0 = 0 and τn =
∑n−1

i=0 γi for n ≥ 1. Let n(t) be the “inverse” of τ ,

i.e., n(t) = sup{n ≥ 0 : t ≥ τn}.

2. For t ≥ 0, let X̄(t) be the continuous-time piecewise constant process

generated by X, i.e., X̄(τn + t) = Xn, and let X̂(t) be the continuous-

time affine interpolated process, i.e.,

X̂(τn + t) = Xn +
t

γn

(Xn+1 − Xn) , (3.1)

for every n and 0 ≤ t < γn+1. We will refer to X̂ as the stochastic

trajectory generated by X.

3. Let Y (τn + t) = Yn, γ(τn + t) = γn and U(τn + t) = Un+1 for every n

and 0 ≤ t < γn+1.

4. For all t ≥ 0 and T > 0 define7

Ψ(t, T ) = sup
0≤h≤T

∥

∥

∥

∥

∫ t+h

t

U(τ)dτ

∥

∥

∥

∥

. (3.2)

7Ψ is used to estimate the total stochastic noise of X̂ in the interval [t, t + T ].
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5. Let t ≥ 0, T > 0, and V ⊂ Σ, and define

γ(t, T ) = max
n

γn,

y(t, T ) = max
n

(ess sup ‖Yn‖) ,

∆x(t, T ) = max
n

(ess sup ‖Xn+1 − Xn‖) ,

∆u(t, T ) = max
n

(ess sup ‖(Xn+1 − Xn)Un+1‖) ,

u(t, T ) = max
n

(ess sup ‖Un+1‖2) , and

τV (t, T ) = inf{τ ≥ t : X̂(τ) /∈ V } ∧ (t + T ),

(3.3)

where each one of the five maximums is taken over the set {n : n(t) ≤ n ≤

n(t + T )}, and s ∧ s′ = min{s, s′}.

With these notations we can define when the stochastic process X is

“close” to x in the interval [t, t + T ].

Definition 3.5. Let F : Σ → R
k be a vector field, and let δ > 0. A stochastic

process X on a state space Σ′ ⊂ Σ is a δ-approximation of a solution x of (1.1)

in the interval [t, t + T ] if X satisfies (1.2), and y(t, T ) ≤ δ, ∆x(t, T ) ≤ δ,

and
∥

∥

∥
X̂(t) − x(t)

∥

∥

∥
≤ δ.

Thus, X is a δ-approximation of x in the interval [t, t+T ], if the distance

between the processes at the starting point (at time t), the difference between

the average change of the processes (i.e., y), and the difference between the

discrete process (Xn) and the continuous one X̂ (i.e., ∆x) are all less than δ.

The next two simple lemmata follow from the definitions above.

Lemma 3.6. For all t ≤ s ≤ t + T we have
∥

∥

∥
X̄(s) − X̂(s)

∥

∥

∥
≤ ∆x(t, T ).
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Lemma 3.7. For all t ≤ t′ we have

X̂(t′) − X̂(t) =

∫ t′

t

(

F (X̄(τ)) + Y (τ) + U(τ)
)

dτ .

Proof. For any n we have

Xn+1 − Xn =

∫ τn+1

τn

(

F (X̄(τ)) + Y (τ) + U(τ)
)

dτ .

Let n = n(t) and n′ = n(t′); then

∫ t′

τn

(

F (X̄(τ)) + Y (τ) + U(τ)
)

dτ =

n′

∑

k=n

(Xk+1 − Xk)

+

∫ s

τ
n
′

1

γn′

(Xn′+1 − Xn′) ds = X̂(t′) − X̂(τn).

Remark 3.1. We use Lemma 3.7 to approximate the discrete time process

X = {Xn}, but we could have replaced it with a continuous time Markov

process {Xt}t≥0 that satisfies

Xt − X0 =

∫ t

0

F (Xs)ds + Ut,

for some stochastic process {Ut}, and obtain similar approximation results,

while replacing Ψ(0, T ) with supt ‖Ut‖.

4 One Discontinuity Point

We now state and prove the approximation result in the case the deterministic

processes of Section 3.1 has a single discontinuity point (see Section 5 for the
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general result). The approximation result estimates the probability that the

stochastic process deviates from the deterministic process.

4.1 The Approximation Result

Let F : Σ → R
k be a vector field, and let x : [0, T ] → Σ be a solution of (1.1)

that satisfy Assumption G (for some V and ϕ) with one discontinuity point

(i.e., m = 1). Let X = {Xn}
∞
n=0 be a Markov process on Σ′ ⊂ Σ that

satisfies (1.2). For all t and ∆t ≥ 0 define8

Υ(t, ∆t) =

∫ t+∆t

t

(

∇ϕ(X̄(τ)) · U(τ)
)

dτ . (4.1)

Theorem 1. Let F : Σ → R
k be a vector field, and let x : [0, T ] → Σ be a

solution of (1.1), such that they satisfy Assumption G with one discontinuity

point (i.e., m = 1); let td ∈ [0, T ] be such that x(td) is the unique discontinuity

point of x. Then there exist constants ε0 > 0 and c > 0, such that for

every 0 < ε ≤ ε0 and every Markov process X = {Xn}
∞
n=0 that is a cε-

approximation of x in the interval [0, T ] (see (1.2) and Definition 3.5) with

∆u(0, T ) ≤ c, we have

Pr

[

sup
0≤h≤T

∥

∥

∥
X̂(h) − x(h)

∥

∥

∥
≥ ε

]

≤ Pr[Ψ(0, T ) ≥ cε] + Pr[Υ(td, ε) ≤ −cε],

where X̂ is given by (3.1), Ψ is given by (3.2), Υ is given by (4.1), and

∆u(0, T ) is given by (3.3).

8While Ψ measures the total stochastic noise of the stochastic process, Υ is used to
estimate the stochastic noise near the discontinuity of the process, where a small noise can
have a large effect.
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4.2 Proof of Theorem 1

The proof is divided into three parts. First (Section 4.2.2), before the dis-

continuity point is reached, the vector field is Lipschitz, and therefore the

stochastic process and the deterministic process are close to one another

with high probability (Proposition 4.3). Second (Section 4.2.3), when the

discontinuity point is reached, we use the “leading” function (ϕ) to carry the

process away from the discontinuity fast enough so that the two processes

remain close (Proposition 4.5). And finally (Section 4.2.4), when the process

has passed over the discontinuity, we again use the fact that the vector field

is Lipschitz there (Proposition 4.8).

4.2.1 Notations

Let P = {ρ, Λ, ∆T, r} be the parameters of the vector field F and a solution

x (see Definition 3.4). Let d < ρ and let X = {Xn}
∞
n=0 be a Markov process

that satisfies (1.2) and such that ‖x(0) − X0‖ ≤ d. Let {γ, y, ∆x, ∆u, u, τV }

be given by (3.3) (relative to the interval [0, T ]).

We use the following notations:

• For every 0 ≤ t ≤ T define

D(t) = sup
0≤s≤t

∥

∥

∥
x(s) − X̂(s)

∥

∥

∥
.

• Let φX :
[

0, τV
]

→ R be defined by φX(t) = ϕ(X̂(t)).

• For all t ≥ 0, let Ψ(T ) = Ψ(0, T ), where Ψ is given by (3.2).

• For all ∆t ≥ 0, let Υ(∆t) = Υ(td, ∆t), where Υ is given by (4.1).
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• If ∆x, y, and u are such that 1−Λ((Λ + u)∆x− y) > 0, we can define

for any ε > 0,

h(ε) = eΛT (d + T (y + Λ∆x) + ε) ,

H1(ε) = h(ε)
(

1 + 2eΛT Λ2
)

,

θ(ε) =
2ΛH1(ε) + ε

1 − Λ((Λ + u)∆x − y)
,

tθ = td + θ(ε),

H2(ε) = H1(ε) + θ(ε)(2Λ + y) + 2ε, and

H(ε) = eΛt (H2(ε) + T (y + Λ∆x) + 2ε) .

(4.2)

Remark 4.1. It can be verified that there exist constants a = a(P) and C =

C(P) (i.e., a and C depend only on P), such that whenever (1 + u)∆x ≤ a

and y ≤ a, we have 1 − Λ((f + u)∆x − y) ≥ 1/2, and

h(ε), H1(ε), θ(ε), H2(ε), H(ε) ≤ C(ε + d + y + ∆x). (4.3)

Therefore, there exists a constant δ = δ(P) such that if ε ≤ δ, u∆x ≤ δ,

and X is a δ-approximation of x in [0, T ], then

1 − Λ((Λ + u)∆x − y) > 0,

Λh(ε), θ(ε) < ∆T , and

eΛT H2(ε) + H1(ε) < min {ρ, ∆T, r} .

(4.4)
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Moreover, it can be checked that

C = 56Λ5e3ΛT (ΛT + 1) and

δ =
min{∆T, r}

8CeΛT

(4.5)

are appropriate constants.

Henceforth we will assume that ε ≤ δ, u∆x ≤ δ and X is a δ-approximation

of x in [0, T ], and thus (4.3) and (4.4) are satisfied.

We now use Lemma 3.7 to prove for φX a similar result to the one obtained

for φ
x

in Lemma 3.2.

Lemma 4.1. For every 0 ≤ t1 < t2 ≤ τV we have

φX(t2) − φX(t1) =

∫ t2

t1

(

∇ϕ(X̂(t)) ·
(

F (X̄(t)) + Y (t) + U(t)
)

)

dt.

Proof. By Lemma 3.7, X̂ ′ = dX̂/dt exists and satisfies X̂ ′ = F (X̄(t)) +

Y (t) + U(t) almost everywhere and, therefore, φ′
X

= ∇ϕ(X̂(t)) · X̂ ′ almost

everywhere.

Since F (X̄(t)) + Y (t) + U(t) is constant in (τn, τn+1) and ∇ϕ(X̂(t)) is

continuous, then φ′
X

is continuous except for countably many points and,

therefore,

φX(t2) − φX(t1) =

∫ t2

t1

φ′
X

(t)dt.

From the definitions we obtain

Lemma 4.2. For every ∆t > 0 we have

∫ t
d
+∆t

t
d

(

∇ϕ(X̂(t)) · U(t)
)

dt ≥ Υ(∆t) − ∆tΛu∆x.
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4.2.2 The First Step

The first part of the approximation is done before the discontinuity point is

reached.

Proposition 4.3. For every ε > 0, the event Ψ(td) < ε implies that D(td) <

H1(ε).

Proof. Let9 τ− = inf{t ≥ 0 : X̂(t) /∈ V −}, and define t− = t ∧ τ− for every

t ≥ 0; thus, X̄(s), X̂(s) ∈ V − for all 0 ≤ s < t−.

Let 0 ≤ t ≤ td. Since x(t) − x(0) =
∫ t

0
F (x(s))ds, we obtain, by

Lemma 3.7,

X̂(t) − x(t) =
(

X̂(0) − x(0)
)

+

∫ t

0

(

Y (s) +
(

F (X̄(s)) − F (X̂(s))
))

ds

+

∫ t

0

U(s)ds +

∫ t

0

(

F (X̂(s)) − F (x(s))
)

ds.

By the continuity of x and ϕ we have x(t) ∈ V − for all 0 < s < td, and

since X̄(s), X̂(s) ∈ V − for all 0 ≤ s < t−, we have

∥

∥

∥
F (X̄(s)) − F (X̂(s))

∥

∥

∥
≤ LF

∥

∥

∥
X̂(s) − X̄(s)

∥

∥

∥
≤ Λ∆x, and

∥

∥

∥
F (X̂(s)) − F (x(s))

∥

∥

∥
≤ Λ

∥

∥

∥
X̂(s) − x(s)

∥

∥

∥
.

Therefore, for 0 ≤ t ≤ t−d we have

∥

∥

∥
x(t) − X̂(t)

∥

∥

∥
≤ d + T (y + Λ∆x) + Ψ(td) + Λ

∫ t

0

∥

∥

∥
x(s) − X̂(s)

∥

∥

∥
ds,

9As there is only one discontinuity point, we will use V − for V− = V i

− and V + for
V+ = V i

+.
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and for t−d ≤ t ≤ td, we have

∥

∥

∥
x(t) − X̂(t)

∥

∥

∥
≤ d + T (y + Λ∆x) + Ψ(td)

+Λ

∫ t

0

∥

∥

∥
ξ(s) − X̂(s)

∥

∥

∥
ds + (t − t−d )Λ + χ(t),

where χ(t) =
∥

∥

∥

∫ t

t−
d

F (X̄(s))ds
∥

∥

∥
. Using Grönwall’s inequality we obtain

D(t) ≤
[

d + T (y + Λ∆x) +
∣

∣t − t−d
∣

∣Λ + χ(t) + Ψ(td)
]

eΛT .

Let ∆t = Λh(ε). Given Ψ(td) < ε, we have D(t−d ) < h(ε). By Lemma 3.3,

for all 0 ≤ t ≤ td − ∆t we have B(x(t), h(ε)) ⊂ V − and, therefore, X̂(t−) ∈

V − and hence t− = t and t−d ≥ t− ≥ td − ∆t.

Let tVd = td ∧ τV ; then, given Ψ(td) < ε, we have t−d ≤ tVd ≤ td ≤ t−d + ∆t.

Since X̂(t) ∈ V for all t < tVd we have χ(tVd ) ≤ Λ∆t, and D(tVd ) < H1(ε).

Since H1(ε) < ρ, we have X̂(tVd ) ∈ B(ξ(tVd ), H1(ε)) ⊂ V and, therefore, tVd =

td, and D(td) < H1(ε). Therefore, Ψ(td) < ε implies that D(td) < H1(ε).

4.2.3 The Second Step

The second part of the approximation is done at a neighborhood of the

discontinuity. Let τO = inf
{

t ≥ td : X̂(t) /∈ O
}

, and define tO = t ∧ τO for

all t ≥ td. Let tθ be given by (4.2) and let ∆t = tOθ − td.

Lemma 4.4. For every ε > 0 we have

φX(tOθ ) ≥ ∆t(1 − Λ((Λ + u)∆x − y)) − Λ
∥

∥

∥
x(td) − X̂(td)

∥

∥

∥
+ Υ(∆t). (4.6)
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Proof. For all td ≤ t < tOθ , we have ∇ϕ(X̄(t)) · F (X̄(t)) ≥ 1. Therefore,

∇ϕ(X̂(t)) ·
(

F (X̄(t)) + Y (t)
)

≥ 1 − Λ(Λ∆x − y).

Since ϕ is Lipschitz and φ(x(td)) = 0, we have

φX(td) = ϕ(X̂(td)) ≥ −Lϕ

∥

∥

∥
x(td) − X̂(td)

∥

∥

∥
≥ −Λ

∥

∥

∥
x(td) − X̂(td)

∥

∥

∥
,

and by Lemmata 4.1 and 4.2 we obtain

φX(tOθ ) = φX(td) +

∫ tO
θ

t
d

(

∇ϕ(X̂(t)) ·
(

F (X̄(t)) + Y (t)
)

+ U(t)
)

dt

≥ ∆t(1 − Λ((Λ + u)∆x − y)) − Λ
∥

∥

∥
x(td) − X̂(td)

∥

∥

∥
+ Υ(∆t).

Proposition 4.5. For every ε > 0, the event {Ψ(tθ) < ε and Υ(θ(ε)) > −ε}

implies that D(tθ) < H2(ε) and φX(tθ) > ΛH1(ε).

Proof. Let tVθ = tθ ∧ τV . For all td ≤ t ≤ tVθ , we have

∥

∥

∥
x(t) − X̂(t)

∥

∥

∥
≤
∥

∥

∥
x(td) − X̂(td)

∥

∥

∥
+

∫ t

t
d

∥

∥F (ξ(s)) − F (X̄(s))
∥

∥ ds

+

∫ t

t
d

‖Y (s)‖ ds +

∥

∥

∥

∥

∫ t

t
d

U(s)ds

∥

∥

∥

∥

≤ D(td) + θ(ε)(2Λ + y) + Ψ(td, θ(ε)).

By Proposition 4.3, Ψ(tθ) < ε implies that D(td) < H1(ε), and therefore,

D(tOθ ) ≤ D(tVθ ) < H1(ε) + θ(ε)(2Λ + y) + 2ε = H2(ε),
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and given Υ(θ(ε)) > −ε and using Lemma 4.4, we have

φX(tOθ ) > ∆t(1 − Λ((Λ + u)∆x − y)) − ΛH1(ε) − ε.

By Lemma 3.3, we have B(x([td, tθ]), 2∆T ) ⊂ O; therefore, D(tOθ ) <

H2(ε) < ∆T implies that X̂(tOθ ) ∈ O, and hence tOθ = tθ and ∆t = θ(ε),

which completes the proof.

Remark 4.2. If the leading function ϕ is linear (as in the simple model),

then (4.6) can be replaced by

φX(tOθ ) ≥ ∆t(1 − Λy) − Λ
∥

∥

∥
x(td) − X̂(td)

∥

∥

∥
+ Υ(∆t),

and hence θ(ε) can be replaced by

θ′(ε) =
2ΛH1(ε) + ε

1 − Λy
.

Therefore, no restriction on u is needed in order for (4.4) to hold.

4.2.4 The Last Step

The last part of the approximation is done after passing the discontinuity.

Let x ∈ B(x(tθ), H2(ε)) such that ϕ(x) > ΛH1(ε). Since x ∈ V + and F

is Lipschitz there, there exists a unique solution ξ : [tθ, Tξ) → V + of (1.1),

where tθ < Tξ ≤ T and ξ(tθ) = x.

Proposition 4.6. For all tθ ≤ t < Tξ we have B(ξ(t), H1(ε)) ⊂ V +.
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Proof. By Lemma 3.3, we have B(x(tθ), 2∆T ) ⊂ O. Since H2(ε) < ∆T , we

have B(x, ∆T ) ⊂ O. Let TO = inf{tθ < t ≤ Tξ : ξ(t) /∈ O}; then, for all

tθ ≤ t < TO we have ξ(t) ∈ O and therefore, since H1(ε) < ρ/2, we have

B(ξ(t), H1(ε)) ⊂ V .

Similar to Lemma 3.2, for all tθ ≤ t < TO, we have

ϕ(ξ(t)) = ϕ(ξ(tθ)) +

∫ t

t
θ

∇ϕ(ξ(s)) · F (ξ(s))ds > ΛH1(ε) + t ≥ ΛH1(ε),

and therefore, for all z ∈ B(ξ(t), H1(ε)) we have z ∈ V and ϕ(z) > 0, and

hence z ∈ V +. Therefore, for all tθ ≤ t < TO we have B(ξ(t), H1(ε)) ⊂ V +,

and hence, if TO = Tξ, the proposition is proved.

Assume now that TO < Tξ. In that case, we have ξ(TO) /∈ O, and

therefore
∥

∥ξ(TO) − ξ(tθ)
∥

∥ ≥ ∆T , and since supO ‖F‖ ≤ Λ, we must have

TO ≥ ∆T/Λ.

For all tθ ≤ t < Tξ we have x(t), ξ(t) ∈ V + and F is Lipschitz in V +.

Therefore,

‖x(t) − ξ(t)‖ ≤ H2(ε) + Λ

∫ t

t
θ

‖x(s) − ξ(s)‖ ds,

and ‖x(t) − ξ(t)‖ ≤ eΛT H2(ε). By Lemma 3.3, for all tθ + TO ≤ t <

Tξ, we have B(x(t), r) ⊂ V +, and since eΛT H2(ε) + H1(ε) < r, we have

B(ξ(t), H1(ε)) ⊂ V +.

Corollary 4.7. For all x ∈ B(x(tθ), H2(ε)) such that ϕ(x) > ΛH1(ε), there

exists a solution ξx : [tθ, T ) → V +, where ξx(tθ) = x and B(ξx(t), H1(ε)) ⊂

V + for all tθ ≤ t < T .

24



Proof. Let ξ : [tθ, Tξ) → V + be the unique solution with ξ(tθ) = x. If Tξ < T ,

then, by Proposition 4.6, B(ξ(t), H1(ε)) ⊂ V + for all tθ ≤ t < Tξ, and hence

ξ can be extended to t > Tξ.

Proposition 4.8. For every ε > 0, the event {Ψ(T ) < ε and Υ(θ(ε)) > −ε}

implies that D(T ) < H(ε).

Proof. Let x = X̂(tθ). Given Ψ(T ) < ε and Υ(θ(ε)) > −ε and using Propo-

sition 4.5, we have x ∈ B(x(tθ), H2(ε)) and ϕ(x) > ΛH1(ε), and therefore, by

Corollary 4.7, there exists a solution ξx : [tθ, T ) → V +, such that ξx(tθ) = x

and B(ξx(t), H1(ε)) ⊂ V + for all tθ ≤ t < T .

Let τ+ = inf{t ≥ tθ | X̂(t) /∈ V +} ∧ T ; then. for all tθ ≤ t < τ+ we have

ξx(t), X̂(t),x(t) ∈ V + and, therefore,

∥

∥

∥
x(t) − X̂(t)

∥

∥

∥
≤ H(ε) + eΛT (Ψ(tθ, τ

+ − tθ) − 2ε), and
∥

∥

∥
ξx(t) − X̂(t)

∥

∥

∥
≤ H1(ε) + eΛT (Ψ(tθ, τ

+ − tθ) − 2ε),

and as Ψ(T ) < ε we have

D(τ+) < H(ε) and
∥

∥

∥
ξx(τ

+) − X̂(τ+)
∥

∥

∥
< H1(ε).

By Corollary 4.7, we have X̂(τ+) ∈ V +, and hence τ+ = T .

Remark 4.3. If the stochastic part is small (i.e., Ψ(T ) < ε and Υ(θ(ε)) > −ε)

and X̂(0) = x(0), then Proposition 4.8 can be stated as follows:

D(T ) < C(y + ∆x + ε). (4.7)
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As the difference between the average change of X and that of x is y,

and the difference between the discrete time of X and the continuous time

of x is ∆x, we expect D(T ) to be at least of the order of y + ∆x, even

without considering the stochastic part of X. Adding stochastic noise to X

will increase D(T ) by less than ε only if the stochastic noise is small.

From the previous result, we can prove the approximation theorem.

Proof of Theorem 1. Let d = ‖X0 − x(0)‖. By Remark 4.1 and Proposi-

tion 4.8, there exists δ such that for all ε′ ≤ δ, we have

Pr[D(T ) ≥ H(ε′)] ≤ Pr[Ψ(T ) ≥ ε′] + Pr[Υ(θ(ε′)) ≤ −ε′], (4.8)

whenever d ≤ δ, y ≤ δ, ∆x ≤ δ and ∆xu ≤ δ.

Let C be the constant from (4.3), and assume w.l.o.g. that C ≥ 1. Let

ε0 = 4δ, and δ0 = 1/(4C). Let ε ≤ ε0 and let X be a δ0ε-approximation of

x with u∆x ≤ δ. Let ε′ = εδ0. Since δ0ε ≤ δ, (4.8) holds, and by (4.3), we

have

H(ε′), θ(ε′) ≤ C(ε′ + d + y + ∆x) ≤ ε,

and therefore,

Pr[D(T ) ≥ ε] ≤ Pr[D(T ) ≥ H(ε′)] ≤ Pr[Ψ(T ) ≥ ε′] + Pr[Υ(θ(ε′)) ≤ −ε′]

≤ Pr
[

Ψ (T ) ≥
ε

4C

]

+ Pr
[

Υ (ε) ≤ −
ε

4C

]

;

taking c = δ ∧ δ0 completes the proof.
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Remark 4.4. By Remark 4.1, we may take

ε0 =
min{∆T, r}

2CeΛT
and c = min

{

1

4C
,
min{∆T, r}

8CeΛT

}

,

where C = 56Λ5e3ΛT (ΛT + 1).

Remark 4.5. If ϕ is linear, then

Υ(θ(ε)) =

∫ t+θ(ε)

t
d

(

∇ϕ(X̄(τ)) · U(τ)
)

dτ

= ∇ϕ ·

∫ t+θ(ε)

t
d

U(τ)dτ ≥ −ΛΨ(td, θ(ε)).

Therefore, there exists a constant c > 0 such that Ψ(T ) < cε implies that

Υ(θ(ε)) > −ε, and we obtain

Pr[D(T ) ≥ ε] ≤ Pr
[

Ψ (T ) ≥
cε

4C

]

.

Moreover, if the noise U = {Un} satisfies the martingale difference con-

dition, we have (see Section 6.2 below)

Pr[Ψ(0, T ) ≥ cε] ≤ 2k exp

(

−
c′ε2

‖U‖2
T ‖γ‖T

)

,

for some c′, and we obtain Theorem 2.1

4.3 The Role of the Leading Function

We now show that the existence of the leading function ϕ is indispensable.

We do so by providing an example of a deterministic process that cannot
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be used to approximate stochastic processes, although the stochastic process

behaves, on average, in a similar way.

Obviously, if the solution to (1.1) is not unique, we cannot expect a

general solution to approximate a given stochastic process. In our example

there will be a unique solution for every initial point, but the deterministic

process, unlike the stochastic process, will not cross over the discontinuity,

and hence the two processes will not be close to one another.

Let F : R
2 → R

2 be defined by (see Figure 3)

F1(x, y) = 1, and (4.9)

F2(x, y) =















































0 if x < 0 and y = 0,

2x if x ≥ 0 and y = 0,

2x if y > 0,

−2x if y < 0.

(4.10)

Let Σ+ = {y > 0} ∪ {y = 0, x ≥ 0}. F is Lipschitz in Σ+, and there is a

unique solution x = (x1,x2) : [0, T ) → R
2 for every initial point (x, y) ∈ Σ+.

Solving the differential equation yields that for x ≥ 0 or y ≥ x2, there

is a solution for all t ≥ 0 with (x1(t),x2(t)) ∈ Σ+. For the initial point

(x, y) ∈ Σ+, where x < 0 and y < x2, there is T such that x1(T ) < 0 and

x2(T ) = 0, but because F2 = 0 and F1 = 1, the solution can be extended

(uniquely) along the half line {x ≤ 0, y = 0} until the point (0, 0), where x

is back in Σ+. By similar arguments, there is a unique solution x : R+ → R
2

for every initial point (x, y) with y ≤ 0.
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Figure 3: The vector field.

Let x : R+ → R
2 be a solution with x(0) = (0, 0). By solving (4.9)

and (4.10), we get x1(t) = t and x2(t) = t2 for all t ≥ 0. Let γ > 0 and let

X = {(xn, yn)} be a Markov process on R
2 that satisfies

• X0 = (0, 0).

• For Xn = (0, 0) we have Xn+1 = (γ, γ) with probability 1/2, and

Xn+1 = (γ,−γ) with probability 1/2.

• For all (x, y) where (x, y) 6= (0, 0), we have Xn+1 = Xn + γF (Xn) for

Xn = (x, y) (i.e., X is deterministic at (x, y)).

Thus, X satisfies (1.2), but Xn is in a neighborhood of x(γn) only with

a probability of 1/2. Notice that for x(0) = X0 = (−1, 1), both processes

approach the discontinuity point of F at (0, 0), but only the stochastic process

can pass the line y = 0 (with probability of 1/2).
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5 Many Discontinuity Points

Theorem 1 deals with solutions x to (1.1) that have only one discontinuity

point. We extend Theorem 1 to more general solutions by dealing with

several discontinuity points sequentially,

Let F : Σ → R
k be a vector field, and let x : [t, t + T ] → Σ be a solution

of (1.1), such that they satisfy Assumption G with m discontinuity points

x(ti) for ti ∈ [T i−1, T i] (i = 1, . . . , m). Proposition 4.8 can be restated as

follows (while adjusting all the notations regarding the segment [0, T ], to the

segments [T i−1, T i]).

Proposition 5.1. For every i = 1, . . . , m, there exist εi
0 > 0 and 0 <

ci ≤ 1 such that for every 0 < ε ≤ εi
0 and for every Markov process

X = {Xn}
∞
n=0 that is a ciε-approximation of x in the interval [T i−1, T i] with

∆u(T i−1, T i) ≤ ci, the event {Ψ(T i−1, T i − T i−1) < ciε and Υ(ti, ε) > −ciε}

implies that supT i−1≤h≤T i

∥

∥

∥
X̂(h) − x(h)

∥

∥

∥
< ε, where X̂ is given by (3.1), Ψ

is given by (3.2), Υ is given by (4.1), and ∆u(T i−1, T i) is given by (3.3).

We thus obtain

Theorem 2. Let F : Σ → R
k be a vector field, and let x : [t, t+T ] → Σ be a

solution of (1.1), such that they satisfy Assumption G with m discontinuity

points {x(ti)}m
i=1. Then there exist ε0 > 0 and c > 0 such that for every 0 <

ε ≤ ε0 and for every Markov process X = {Xn}
∞
n=0 that is a cε-approximation
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of x in the interval [t, t + T ] with ∆u(t, t + T ) ≤ c, we have

Pr

[

sup
0≤h≤T

∥

∥

∥
X̂(t + h) − x(t + h)

∥

∥

∥
≥ ε

]

≤ Pr[Ψ(t, t + T ) ≥ cε] +
m
∑

i=1

Pr[Υ(ti, ε) ≤ −cε],

where X̂ is given by (3.1), Ψ is given by (3.2), Υ is given by (4.1), and

∆u(t, t + T ) is given by (3.3).

Proof. For each i = 1, . . . , m, let εi
0 and ci be given by Proposition 5.1, and

let ε0 = mini ε
i
0 and c = c1 · . . . · cm/2.

Let ε ≤ ε0, and let X be a cε-approximation of x in the interval [t, t+T ]

with ∆u(t, t + T ) ≤ c, and assume that Ψ(t, t + T ) < cε and that for each

i Υ(ti, ε) > −cε; then, for each i we have ∆u(T i−1, T i) ≤ ci, Ψ(T i−1, T i −

T i−1) < ciε and Υ(ti, ε) > −ciε.

Let cm+1 = 1 and assume that
∥

∥

∥
X̂(T i−1) − x(T i−1)

∥

∥

∥
≤ (ci · . . . · cm+1/2)ε

for some i = 1, . . . , m−1. Then X is a ciε-approximation of x in the interval

[T i−1, T i], and therefore, using Proposition 5.1, we have

sup
T i−1≤h≤T i

∥

∥

∥
X̂(h) − x(h)

∥

∥

∥
< (ci+1 · . . . · cm+1/2)ε ≤ ε,

and as
∥

∥

∥
X̂(t) − x(t)

∥

∥

∥
≤ cε we have, using induction,

sup
0≤h≤T

∥

∥

∥
X̂(t + h) − x(t + h)

∥

∥

∥
< ε.

Remark 5.1. For each i = 1, . . . , m, let P i = {ρi, Λi, ∆T i, ri} be the param-

eters of F and x in [T i−1, T i], and let νi = min{∆T i, ri}. Let Λ = maxi Λ
i
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and ν = mini ν
i. By Remark 4.4, we may take

ε0 =
ν

2CeΛT
and c =

(

min

{

1

4C
,

ν

2CeΛT

})m

,

where C = 56Λ5e3ΛT (ΛT + 1).

6 Applications

In this section we use the approximation result to obtain asymptotic results

for processes with decreasing step size and vector fields whose discontinuity is

“uniform” for all solutions, and we analyze the long-run behavior of stochastic

approximation processes satisfying the Robins–Monro condition by giving

explicit bounds on the probabilities. In particular, we obtain results on

visitations rates of global attractors for the deterministic process. Finally,

we use the approximation result to analyze stochastic processes with constant

step size.

6.1 Asymptotic Behavior and Uniformly Bounded Dis-

continuity

Our approximation result Theorem 2 provides bounds on the probability that

a stochastic process deviates from a specific solution of (1.1) in a specific time

interval [t, t+T ], provided that the discontinuities satisfy Assumption G. The

approximation depends on the specific solution (i.e., on the starting point),

however, if all the solutions of some vector field F satisfy the assumption in a

uniform way, we can use the approximation theorem to obtain an asymptotic
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result on the difference between the stochastic process and the deterministic

one.

Definition 6.1. Let F : Σ → R
k be a vector field. A semiflow induced by

F is a continuous function Φ : R+ × R
k → R

k, Φ(t, x) = Φt(x), such that

Φt+s = Φt ◦Φs for all t, s ≥ 0, and for all x ∈ R
k, Φt(x) is a solution of (1.1)

with Φ0(x) = x. By setting Φt(x) = x for t < 0, we may regard the semiflow

Φ as a flow (i.e., we replace t ∈ R+ by t ∈ R).

Definition 6.2. Let F : Σ → R
k be a vector field, and let x : [t, t + T ] →

Σ be a solution of (1.1) that satisfy Assumption G. We will say that x

satisfies Assumption G in the interval [t, t + T ] with constants ε0 > 0 and c

if Theorem 2 is satisfied with ε0 and c.

We consider flows that satisfy the discontinuity assumption G uniformly

on the starting point in the following way.

Definition 6.3. Let K ⊂ Σ. A flow (or semiflow) Φ satisfies Assumption G

uniformly (or “Assumption UG”) on K if for every T > 0 there are constants

εT , cT and mT such that for all x ∈ K, Φt(x) satisfies Assumption G in

the interval [0, T ] with constants εT and cT and with no more than mT

discontinuity points.

With these notations, we can use Theorem 2 to obtain the following result.

Theorem 6.4. Let F : Σ → R
k be a vector field with induced flow Φ that

satisfies Assumption UG on Σ. Let X = {Xn}
∞
n=0 be a Markov process with

values in Σ that satisfies (1.2). Assume that, with probability 1,

A1 supn ‖F (Xn)‖ < ∞.
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A2 supn ‖Un‖ < ∞.

A3 limn→∞ γn = 0 and
∑∞

n=1 γn = ∞.

A4 limn→∞ Yn = 0.

Then for all T > 0 there exist ε0 > 0, c > 0, t0, and m such that for all

ε ≤ ε0 and t > t0,

Pr

[

sup
0≤h≤T

∥

∥

∥
X̂(t + h) − Φh(X̂(t))

∥

∥

∥
≥ ε

]

≤ Pr[Ψ(t, T ) ≥ cε] + m

(

sup
t≤t

d
≤t+T

Pr[Υ(td, ε) ≤ −cε]

)

, (6.1)

where X̂ is given by (3.1), Ψ is given by (3.2), Υ is given by (4.1), and td is

a point of discontinuity of Φ(X̂(t)).

Proof. Let T > 0. Let ε0 = εT , and let ε ≤ ε0. By Assumptions A1-4, there

exists t0 such that

ess sup ‖Yn‖ ≤ cT ε,

ess sup ‖Xn+1 − Xn‖ ≤ cT ε, and

ess sup ‖(Xn+1 − Xn)Un+1‖ ≤ cT ,

for all n ≥ n(t0). Since Φ satisfies Assumption UG, it is the case that

for all t ≥ t0, X̂(t + h) is a cT ε-approximation of Φh(X̂(t)) in the interval

h ∈ [0, T ], with ∆xu ≤ cT , and Theorem 2 completes the proof with c = cT

and m = mT .

For continuous vector fields, if the stochastic part is small (i.e., with
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probability one, Ψ(t, T ) and Υ(t, ε) go to zero as t → ∞), then the stochastic

trajectory X̂ is an10 asymptotic pseudotrajectory of the deterministic flow

(see, e.g., Proposition 4.1 of Benäım (1999)), and attracted to the set of

trajectories SΦ := {Φ(·, x) : x ∈ R
k}. Moreover, in Benäım et al. (2005) it is

shown that this result holds also if the differential equation (1.1) is replaced

with a differential inclusion of an upper semi-continuous set-valued function

(see Theorem 4.2 there).

If Ψ(t, T ) and Υ(t, ε) go to zero (with probability one), then, using The-

orem 6.4, we can show that the stochastic trajectory X̂ is an asymptotic

pseudotrajectory of the deterministic flow, even for our non-continuous vec-

tor fields. However, a vector field F that satisfies Assumption UG can be

naturally extended to an upper semi-continuous set-valued function with the

same solutions, and hence X̂ is an asymptotic pseudotrajectory of the deter-

ministic flow by Benäım et al. (2005).

Nevertheless, the explicit bound in (6.1) enables us to use Theorem 6.4

to obtain asymptotic results for the stochastic process even if the stochastic

noise goes to zero only in probability rather than almost surely. Following

Benäım & Schreiber (2000), we look at a more general class of stochastic

trajectories.

Definition 6.5. A stochastic trajectory X̂ is a weak asymptotic pseudotra-

jectory of the flow Φ if for any T > 0 and ε > 0, we have

lim
t→∞

Pr

[

sup
0≤h≤T

∥

∥

∥
X̂(t + h) − Φh(X̂(t))

∥

∥

∥
≥ ε

]

= 0.

10The notion of asymptotic pseudotrajectory was introduced in Benäım & Hirsch (1996),
where it is used to analyze the long-run behavior of stochastic approximation processes,
using the properties of the deterministic flow.
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As seen in Benäım & Schreiber (2000) (see the discussion after Corollary

1 there), the interpretation of Definition 6.5 is that if X̂ is a weak asymptotic

pseudotrajectory of Φ, then with probability one, the fraction of time spent

by X̂ in an arbitrary neighborhood of11 supp(Φ) goes to one. In Section 6.3

we will show implications of such behavior.

From Theorem 6.4 we obtain

Corollary 6.6. Given the assumptions of Theorem 6.4, if for any T > 0

and ε > 0,

lim
t→∞

Pr[Ψ(t, T ) ≥ cT ε] = 0, and

lim
t→∞

sup
t≤t

d
≤t+T

Pr[Υ(td, ε) ≤ −cT ε] = 0,

then X̂ is a weak asymptotic pseudotrajectory of Φ.

6.2 Robbins–Monro Algorithms

The probability that the stochastic process and the deterministic process are

close to one another is expressed using the probabilities that the stochastic

parts (Ψ and Υ) are small. Here we provide an explicit expressions of those

probabilities for Robbins–Monro algorithms, which are examples of stochastic

processes that satisfy (1.2) and that can therefore be approximated by the

deterministic process, as a function of the step size.

11Let M(Φ) denote the set of Φ-invariant measures; then

supp(Φ) =
⋃

µ∈M(Φ)

supp(µ).
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Definition 6.7. Let F : Σ → R
k be a vector field, and let X = {Xn}

∞
n=0

be a Markov process, defined on some probability space and with values in

Σ, that satisfies (1.2). We say that X satisfies the Robbins–Monro condition

with martingale difference noise (Kushner & Yin (1997)) if Xn and Un are

measurable with respect to Fn and E(Un+1 | Fn) = 0, where {Fn} is a

filtration of the probability space. We say that X has bounded noise if

supn(ess sup ‖Un‖) < ∞.

Using Robbins–Monro algorithms, the next proposition shows that having

bounded noise is sufficient to show that the stochastic trajectory is close to

the deterministic one (i.e., Ψ and Υ are small), as long as the step size is

small.

Lemma 6.8. Let X = {Xn} be a Robbins–Monro algorithm with bounded

noise, and let ϕ be a differentiable function defined on a bounded set V , such

that ∇ϕ is continuous and bounded on V . Then, for any ε > 0, t ≥ 0, T > 0,

and 0 ≤ ∆t ≤ T , we have

Pr[Ψ(t, T ) ≥ ε] ≤ 2k exp

(

−
ε2

2u2Tγ

)

, and

Pr[Υ(t, ∆t) ≤ −ε] ≤ 4 exp

(

−
ε2

2(Λu)2∆tγ

)

,

where Ψ is given by (3.2), Υ is given by (4.1), γ = γ(t, T ) and u = u(t, T )

are given by (3.3), and Λ = supV ‖∇ϕ‖.

Proof. The first inequality follows from Proposition 4.4 of Benäım (1999).

We will prove the second inequality. Let s = τV (t, ∆t). For each n ≤ n(s),

let Vn+1 = 〈∇ϕ(Xn), Un+1〉, and let v = Λu; then for all n ≤ n(s) we have
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|Vn| ≤ v, and E[Vn+1 |Fn] = 〈∇ϕ(Xn), E[Un+1 |Fn]〉 = 0. Let n1 = n(t) and

n2 = n(s) − 1. Let mi ∈ {ni, ni + 1} for i = 1, 2. Then, by the Hoeffding–

Azuma inequality, we have

Pr[
m2
∑

l=m1

γlVl ≤ −ε] ≤ exp

(

−
ε2

2v2
∑m2

l=m1
γ2

l

)

.

Therefore,

Υ(t, ∆t) =

∫ s

t

〈∇ϕ(X̄(τ)), U(τ)〉dτ

≥(τn1+1 − t)Vn1
+

n2
∑

l=n1+1

γlVl + (s − τm2
)V

2+1

≥ min
mi∈{ni,ni+1}

m2
∑

l=m1

γlVl,

and

Pr[Υ(t, ∆t) ≤ −ε] ≤
∑

m1,m2

Pr[

m2
∑

l=m1

γlVl ≤ −ε] ≤ 4 exp

(

−
ε2

2v2∆tγ

)

.

Therefore, using Corollary 6.6 and Lemma 6.8, for Robbins–Monro algo-

rithms with bounded noise, and for a flow Φ with bounded leading functions,

i.e., there exists Λ such that supV ‖∇ϕ‖ ≤ Λ for any leading function ϕ of

the flow at any discontinuity point, we have

Proposition 6.9. Let F : Σ → R
k be a vector field with induced flow Φ

that satisfies Assumption UG on Σ, and assume that there exists Λ such that

supV ‖∇ϕ‖ ≤ Λ for any leading function ϕ of the flow. Let X = {Xn}
∞
n=0

be a Robbins–Monro algorithm with bounded noise that satisfies conditions
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A1-4 of Theorem 6.4. Let γ(t, T ) be given by (3.3). If for all T > 0 we have

limt→∞ γ(t, T ) = 0, then X̂ is a weak asymptotic pseudotrajectory of Φ.

Remark 6.1. If we assume the stronger assumption that for all T > 0 and

c > 0 we have
∞
∑

i=1

exp

(

−
c

γ(iT, T )

)

< ∞,

then, using the Borel-Cantelli Lemma, X̂ is an asymptotic pseudotrajectory

of Φ.

Example 6.10. A simple example of a stochastic process that satisfies the

Robbins–Monro condition is the generalized Polya urn process. Let

∆k =
{

x ∈ R
k+1 : xi ≥ 0,

∑

xi = 1
}

be the unit k-simplex. Consider an urn that contains N balls of colors

1, . . . , k + 1, at time n = 0. At each time n = 0, 1, . . ., a new ball is added

to the urn and its color is randomly chosen according to the following pro-

cess: Let Xn,i be the proportion of balls with color i at time n, and let

Xn = (Xn,1, . . . , Xn,k+1) ∈ ∆k be the vector of proportions. The color of the

ball that is added at time n + 1 is chosen to be i with probability fn,i(Xn)

where the functions fn = (f1, . . . , fk+1) : ∆k → ∆k are such that fn → f

uniformly, for some f : ∆k → ∆k.

Let F (x) = f(x)−x, Yn = fn(Xn)−f(Xn) and γn = 1/(N +n). Then, it

is easy to verify that {Xn} satisfies the Robbins–Monro condition with the

equation

Xn+1 − Xn = γn (F (Xn) + Yn + Un+1) .
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6.3 Visitation Rates to Sets

As seen in the previous section, a Robbins–Monro algorithm with decreasing

step size follows the deterministic process with increasing accuracy over time.

Here we show that if the deterministic process is attracted by a given set,

then the stochastic process almost surely spends almost all the time in that

neighborhood.

Let F : Σ → R
k be a vector field with induced flow Φ. A subset

M ⊂ Σ is positively invariant if Φt(M) ⊂ M for all t ≥ 0. It is an at-

tractor if it is nonempty, compact and positively invariant, and it has a

neighborhood U ⊂ Σ such that limt→∞ dist(Φt(x), M) = 0 for all x ∈ U . If

limt→∞ dist(Φt(x), M) = 0 for all x ∈ Σ, then M is called global attractor.

For a subset U ⊂ Σ, let Tx(U) := inf{t ≥ 0 : Φt(x) ∈ U} be the time it takes

Φ to reach U starting from x.

Lemma 6.11. Let M be a global attractor. If Φ satisfies Assumption UG on

Σ and Σ is compact, then for any neighborhood U of M there exists TU such

that Tx(U) < TU for all x ∈ Σ.

Proof. Let U be a neighborhood of M . As M is a global attractor, we have

Tx(U) < ∞ for all x ∈ Σ, and thus {Φ−1
t (U)}t≥0 covers Σ. Since Φ satisfies

Assumption UG, it is easy to show that Φt(x) is continues in x, and hence

Φ−1
t (U) is open for all t. Since Σ is compact, there is a finite subcover, which

completes the proof.

Let X = {Xn}
∞
n=0 be a Robbins–Monro algorithm with bounded noise

that satisfies conditions A1-4 of Theorem 6.4. For any subset U , starting
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point x ∈ Σ, and times t and T , let

Pt,x(U, T ) := Pr[inf{s ≥ t : X̂(s) ∈ U} ≤ t + T |X̂(t) = x]

be the probability at time t and state x that the stochastic process enters U

in less than T periods. From Theorem 6.4 and Lemma 6.8 we obtain

Lemma 6.12. Let U ⊂ Σ be a subset such that Tx(U) < TU for all x ∈ Σ

for some TU > 0. If Φ satisfies Assumption UG on Σ then for any ε > 0

and for any ε-neighborhood Uε of U there exist t0 and p > 0 such that for all

t ≥ t0 and x ∈ Σ we have Pt,x(U
ε, TU) ≥ p.

We will now show that if the stochastic process reaches a positively in-

variant set with positive probability, then with probability 1 it spends almost

all the time near that set.

Proposition 6.13. Let M ⊂ Σ be a positively invariant set such that there

exist t0, T and p > 0 such that for all t ≥ t0 and x ∈ Σ we have Pt,x(M, T ) ≥

p. Let U be an ε-neighborhood of M such that Φ satisfies Assumption UG

on U ; then,

lim
t→∞

1

t

∫ t

0

1X̂(s)∈Uds = 1.

Proof. Notice that if M is positively invariant then so is its closer cl(M)

and any neighborhood of M is a neighborhood of cl(M). Thus, w.l.o.g,

assume that M is closed. Let σ(t) be the entrance time to M , i.e., σ =

inf{s ≥ t : X̂(s) ∈ M}. By our assumption on M , for all t ≥ t0 we have

Pr[σ(t)− t > T ] < 1−p, and for all n we have Pr[σ(t)− t > nT ] < (1−p)n.

Therefore, for all t ≥ t0, we have E[σ(t) − t] ≤ TM for TM = T/(1 − p).
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By Theorem 6.4 and Lemma 6.8, for every α > 0, there exist tα ≥ t0 such

that for all t ≥ tα

Pr

[

sup
0≤h≤αT

∥

∥

∥
X̂(t + h) − Φh(X̂(t))

∥

∥

∥
≥ ε

]

<
1

2
. (6.2)

If X̂(t) ∈ M then Φh(X̂(t)) ∈ M for all h ≥ 0, and (6.2) implies that the

probability that X̂(t + h) ∈ U for all 0 ≤ h ≤ αT is at least 1/2. Let τ(t)

be the exit time from U , i.e., τ(t) = inf{s ≥ t : X̂(s) /∈ U}, then X̂(t) ∈ M

implies that E[τ(t) − t] ≥ αT/2.

Let α > 0 and let t ≥ tα. Let σ1 = σ(t), and define inductively τi = τ(σi)

and σi+1 = σ(τi) for i = 1, 2, . . .. Then X̂ ∈ U for all σi ≤ t < τi, and

E[σi+1 − τi] ≤ TM and E[τi − σi] ≥ αT/2.

Therefore, for all t > tα + TM , we have

E

[

1

t

∫ t

0

1X̂(s)∈Uds

]

≥
α(1 − p) (t − tα − TM)

t(2 + α(1 − p))
−→
t→∞

α(1 − p)

2 + α(1 − p)
.

As this holds for any α, the proof is complete.

From Lemmata 6.11 and 6.12 and Proposition 6.13 we obtain the following

corollary.

Corollary 6.14. Assume that Σ is compact, and let M ⊂ Σ be a global

attractor. Let U be a positively invariant neighborhood of M . If Φ satisfies

Assumption UG on Σ then for any ε-neighborhood V of U we have

lim
t→∞

1

t

∫ t

0

1X̂(s)∈V ds = 1.
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6.4 Stochastic Algorithms with Constant Step Size

In the previous sections we have analyzed a given stochastic process X =

{Xn}
∞
n=0 and a flow Φ. The approximation is better the smaller the step

size, and assuming that the step size goes to zero as the time increases,

enables us to analyze the long-run behavior of the stochastic process, using

the deterministic process.

However, for a stochastic process with constant step size γ (or with step

sizes that are bounded by γ but not necessarily converging to zero), the

long-run behavior of the stochastic process cannot be described using the

deterministic process. Nevertheless, the smaller the bound γ is the “closer”

the stochastic and deterministic processes are. Therefore, we will consider

here a collection of stochastic approximation processes Xδ = {Xδ
n}

∞
n=0, for

δ > 0, each with step size less than γδ, and instead of analyzing the case

where γδ
n → 0 as n → ∞, we will assume that γδ → 0 as δ → 0.

Thus, let F : Σ → R
k be a vector field and let x : [0, T ] → Σ be a solution

of (1.1), such that they satisfy Assumption G with m discontinuity points.

For each δ > 0, let Xδ = {Xδ
n}

∞
n=0 be a Markov process that satisfies (1.2) and

the Robbins-Monro condition. Let γδ = γδ(T ), yδ = yδ(T ), ∆xδ = ∆xδ(T ),

∆uδ = ∆uδ(T ), and uδ = uδ(T ) be given by (3.3), and assume that there

exists u < ∞ such that uδ ≤ u for all δ.

By Theorem 2 and Lemma 6.8, we obtain

Theorem 6.15. There exist ε0 > 0 and c > 0 such that for every ε ≤ ε0 and

every δ > 0 such that Xδ is a cε-approximation of x in the interval [0, T ]
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and ∆uδ ≤ c, we have

Pr

[

sup
0≤t≤T

∥

∥

∥
X̂δ(t) − x(t)

∥

∥

∥
≥ ε

]

≤ 6km exp

(

−
ε2

cγδ

)

.

In particular, under the above assumptions, we have

Corollary 6.16. If Xδ
0 → x(0) and γδ, yδ, and ∆xδ go to zero as δ goes to

0, then for every ε > 0 we have

lim
δ→∞

Pr

[

sup
0≤t≤T

∥

∥

∥
X̂δ(t) − x(t)

∥

∥

∥
≥ ε

]

= 0.

A similar result to Theorem 6.15 is obtained in Gorodeisky (2007) and is

used there to show convergence to the equilibrium in the Matching Pennies

game. This also extends Lemma 1 in Benäım & Weibull (2003) to vector

fields that are not Lipschitz. That lemma is used there to obtain several

asymptotic results, results that can now be obtained without assuming that

the vector field is Lipschitz or even continuous.

If Assumption G is satisfied uniformly (i.e., the flow Φ satisfies Assump-

tion UG), and the stochastic processes {Xδ}δ>0 have invariant distributions12

that describe their long-term behavior, then Corollary 6.16 can be used to

obtain the following result on the limits points of those distributions (see,

e.g., Corollary 3.2 in Benäım (1998) or the Main Theorem in Gorodeisky

(2007)).

12µ is an invariant distribution of Xδ if for every continuous and bounded function
f : R

k → R and every n we have

∫

Σ

E[f(Xδ

n
) |Xδ

0 = x]dµ(x) =

∫

Σ

f(x)dµ(x).
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Proposition 6.17. For every δ > 0, let µδ be an invariant distribution of

Xδ and let µ0 be a limit point of {µδ} as δ → 0. Assume that supT γδ(T ),

supT y(T ), and supT ∆xδ(T ) go to zero as δ goes to 0, and that there exists

u < ∞ such that uδ(T ) ≤ u for all δ and T . Then µ0 is an invariant measure

of Φ on K for every subset K ⊂ Σ such that Φ satisfies Assumption UG on

K, i.e., for every continuous and bounded function f : R
k → R and T > 0

we have
∫

K

f(ΦT (x))dµ0(x) =

∫

K

f(x)dµo(x).

7 Fictitious Play in Games

The best-response correspondence in games is an instance of a non-continuous

function whose discontinuity points (except the equilibria) satisfy Assump-

tion G. Therefore the approximation results can be used for stochastic pro-

cesses that behave, on expectation, like the best-response dynamics, or the

continuous-time fictitious play.

Fictitious play, introduced by Brown (1951), is a learning model in games.

In fictitious play, each player chooses in each round a best response to his

beliefs about his opponents’ play, given by the time average of their past

play.

We consider now the continuous-time version, which is given by a solution
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to the equation13

dx

dt
=

1

t
(BR(x(t)) − x(t)), (7.1)

where BR(x) is the set of best responses to the strategy profile x. By rescaling

time — which does not change the orbits — the continuous fictitious play is

equivalent to the best-response dynamics, which is given by

dx

dt
= BR(x(t)) − x(t). (7.2)

We look at the symmetric rock-scissors-paper (RSP) game, played within

one population, with the following payoff matrix

G =













0 −α β

β 0 −α

−α β 0













,

where 0 < β < α, and consider the best-response dynamics for this game, on

the space of mixed strategies ∆2 (the unit 2-simplex).

Deterministic dynamics for this game have been analyzed in Gaunersdor-

fer & Hofbauer (1995), and in the case considered here (i.e., β < α), the limit

of best-response paths is a Shapley polygon14 (see Figure 4). Here we con-

sider stochastic dynamics for the game and we use the approximate results

to show convergence of such dynamics to the Shapley polygon.

13Since best responses are not necessarily unique, (7.1) should not be considered a differ-
ential equation but rather a differential inclusion. Since the best-response correspondence
is upper-semicontinuous, closed, and convex, there must be a solution. In our example
below, the solution is unique.

14The polygon is the triangle A1A2A3, with A1 = a(α2, β2, αβ), A2 = a(αβ, α2, β2) and
A3 = a(β2, αβ, α2), where a = 1/(α2 + β2 + αβ).
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Figure 4: The rock-scissors-paper game (taken from Gaunersdorfer & Hof-
bauer (1995))

The best-response correspondence is non-continuous on the lines li, where

the best response changes. In l1, for example, the best response changes from

the second strategy to the third, and the dynamic changes its direction from

F2 to F3. However, in the direction F2 + F3, the speed of the dynamic is

bounded away from zero, both before and after reaching l1. Therefore, that

direction can be used as a “leading direction” for the best-response dynamic,

and hence it satisfies Assumption G.

We can therefore define a function F : ∆2 → R
3 as the vector field

corresponding to (7.2) for the RSP game,15 and use our results to analyze

stochastic processes that satisfy (1.2) and the Robbins-Monro condition with

bounded noise (see Definition 6.7). As the equilibrium E is a rest point of

F , we cannot assure that the stochastic process will converge to the Shapley

15For x ∈ li, we take F (x) to be any value in the convex hull of {f−, f+}, where

f− = lim
t→t

−

0

F (x(t)) and f+ = lim
t→t

+

0

F (x(t)),

where x is a solution for (7.2) with x(t0) = x.
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polygon and not to E. However, if we assume that the stochastic process

does not stay in E (see Assumption 7.6), then we obtain

Theorem 7.1. Consider the vector field F and stochastic process as de-

scribed above. If the step size γn goes to zero as n goes to infinity, then

with probability one, the fraction of time the stochastic process spends in any

neighborhood of the Shapley polygon goes to one.

We start by defining neighborhoods in which Assumption UG is satisfied.

Definition 7.2. For each r > 0 and i = 1, 2, 3, let ai be the point on li

at a distance r from the equilibrium point E, i.e., ‖E − ai‖1 = r. The r-

“neighborhood” Or of the Nash equilibrium E is defined to be the interior of

the triangle a1a2a3. Let Kr = ∆2
r Or. Let16 ρ : ∆2 → R+ be defined as the

distance that is derived from these neighborhoods, i.e., ρ(x1, x2) = inf{r :

(x1, x2) ∈ Or}.

Let Φ be the semiflow induced by F .

Remark 7.1. ρ is the “right” distance function to use as it is constant on the

Shapley polygon, and for V (x) := |ρ(x) − s|, where s = ρ(x0) for some x0 on

the Shapley polygon, it follows that V (Φt(x)) is strictly decreasing in t for

any starting point x 6= E not on the polygon.

It can easily be checked that the following result holds.

Proposition 7.3. For all ρ > 0 where the Shapley polygon is a subset of Kρ

we have:

1. Kρ is positively invariant.

16For simplicity we identify the point (x1, x2, 1 − x1 − x2) ∈ ∆2 with (x1, x2) ∈ R
2.
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2. The Shapley polygon is a global attractor for the restriction of Φ to Kρ.

3. Φ satisfies Assumption UG on Kρ.

The simplex ∆2 can be divided into three sections S1 = EG1F1G3, S2 =

EG2F2G1, and S3 = EG3F3G2, where in each section the distance function

ρ is a linear function, and direct calculation shows that for

ρ1(x1, x2) =
2α(2α + β)

α2 + αβ + β2
x1

+
2(α + β)(2α + β)

α2 + αβ + β2
x2 −

2(2α + β)2

3(α2 + αβ + β2)
, (7.3)

we have

Lemma 7.4. In S1 we have ρ(x1, x2) = ρ1(x1, x2).

With Proposition 7.3, we can use Φ to approximate stochastic processes

that satisfy (1.2). Thus, let X = {Xn}
∞
n=0 be a Markov process on ∆2 that

satisfies the Robbins-Monro condition with bounded noise and conditions

A1-4 of Theorem 6.4.

We can think on the following evolutionary process. In time n = 0, there

are N individuals playing the RSP game. Each individual plays one of the

three pure strategies, and the proportions of these strategies are given by

X0 ∈ ∆2. Let {pn} be a sequence of probabilities that goes to zero as n goes

to infinity (pn is the probability of mutation at time n). At each period n, one

individual joins the population. With probability pn, the new individual is a

mutant, and his strategy is randomly chosen from the three pure strategies,

and with probability of 1 − pn, the individual plays a best response against
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Xn; i.e., the probability that he plays strategy i is 1/|BR(Xn)| if i ∈ BR(Xn),

and 0 otherwise.

Let Fn be the sigma-field generated by {X0, . . . , Xn}, and define

γn =
1

N + n + 1
,

Yn =
E[Xn+1 − Xn |Fn]

γn

− F (Xn), and

Un+1 =
Xn+1 − Xn

γn

− (F (Xn) + Yn);

then X satisfies (1.2) and the Robbins-Monro condition with bounded noise,

and ‖Yn‖ ≤ pn.

From Lemma 7.4 and (7.3), we get

Lemma 7.5. There exist ρ̄ > 0, C > 0, and ȳ > 0, such that for all n with

‖Yn‖ ≤ ȳ

E[ρ(Xn+1) |Fn] ≥ (ρ(Xn) + Cγn)1A,

where 1A is the indicator function of the set A = {Xn ∈ Oρ̄ r {E}}.

Proof. W.l.o.g., assume that Xn ∈ S1. As ρ(x) ≥ ρ1(x) for all x, then

E[ρ(Xn+1)] ≥ E[ρ1(Xn+1)] = ρ1(E[Xn+1]).

In S1 r {E} we have

E[Xn+1 | Xn = (x1, x2)] = (x1, x2) + γn(F (x1, x2) + Yn)

= (x1, x2) + γn(−x1 + Yn,1, 1 − x2 + Yn,2),
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and therefore,

ρ1(E[Xn+1 | Xn = (x1, x2)]) − ρ1(x1, x2)

≥ γn

2α(2α + β)

α2 + αβ + β2
(1 − (x1 + x2) + Yn,1 + Yn,2) ,

and if ‖Yn‖ is small enough, then there exists ρ̄ > 0 such that (x1, x2) ∈ Oρ̄

implies that

ρ1(E[Xn+1 | Xn = (x1, x2)]) − ρ1(x1, x2) ≥ Cγn,

for some C > 0.

To extend Lemma 7.5 to Xn ∈ Oρ̄, we will assume the following on the

stochastic process:

Assumption 7.6. There exist C > 0 and ȳ > 0 such that for all n with

‖Yn‖ ≤ ȳ

E[ρ(Xn+1) |Xn = E] ≥ Cγn.

This assumption is stronger than necessary,17 but to simplify the proofs

we will assume it.

By Proposition 7.3, we can use the approximation result to show con-

vergence of the stochastic process to the Shapley polygon. We will use

Lemma 7.5 to show that the stochastic process reaches any neighborhood

of the Shapley polygon in bounded time with positive probability. Let ρ̄,

C and ȳ be given by Lemma 7.5 and Assumption 7.6. As Yn → 0, we will

17A weaker assumption that we may assume is the existence of p > 0 such that
Pr[Xn+1 6= E | Xn = E] ≥ p for all n.
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assume that ‖Yn‖ ≤ ȳ for all n.

Proposition 7.7. For any neighborhood U of the Shapley polygon there exist

t0, T and p > 0, such that for all t ≥ t0 and x ∈ ∆2 we have Pt,x(U, T ) ≥ p.

Proof. We will first show that for any ρ < ρ̄, the stochastic process reaches

Kρ in bounded time with positive probability.

Let t ≥ 0, and let n be minimal such that τn ≥ t; then τn ≤ t + γn−1.

Let m be minimal such that C
∑m1

i=n γi ≥ ρ̄; then τm ≤ τn + ρ̄/C + γm−1.

Define σρ̄ = inf{i ≥ n : Xi ∈ Kρ̄} as the first time i when Xi is in Kρ̄, and

let mρ̄ = m ∧ σρ̄.

For each i ≥ n, define Zi = ρ(Xi) − C
∑i

j=n γj, then, since ρ(Xi) is

bounded, Zi is bounded from above, and by Lemma 7.5, {Zi} is a sub-

martingale for i = n, . . . , mρ̄. Therefore, E[Zmρ̄ ] ≥ E[Zn] ≥ 0, and for every

ρ < ρ̄ there exists p > 0 such that Pr[Xmρ̄ ∈ Kρ] ≥ Pr[Zmρ̄ ≥ ρ − ρ̄] ≥ p.

Thus, for any x and t, we have Pt,x(Kρ, ρ̄/C + γn−1 + γm−1) ≥ p, where

n and m are given above, and as γn → 0, there exists Tρ > 0 such that

Pt,x(Kρ, Tρ) ≥ p.

Let V be a neighborhood of the Shapley polygon and let ρ < ρ̄. By

Lemma 6.11, there exists TV such that Tx(V ) < TV for all x ∈ Kρ. Let ε > 0

be small enough such that E is not in the ε-neighborhood of Kρ, and let V ε

be the ε-neighborhood of V .

By Theorem 6.4 and Lemma 6.8, there exist t0 such that for all t ≥ t0 we

have

Pr

[

sup
0≤h≤TV

∥

∥

∥
X̂(t + h) − Φh(X̂(t))

∥

∥

∥
≥ ε

∣

∣

∣

∣

X̂(t) ∈ Kρ

]

<
1

2
,

which implies that for all x ∈ Kρ and t ≥ t0 we have Pt,x(V
ε, TV ) ≥ 1/2, and
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together with the first part of the proof, completes the proof.

Since any neighborhood of the Shapley polygon contains a positively in-

variant neighborhood, we can use Propositions 6.13 and 7.7 to obtain

Proposition 7.8. For any neighborhood U of the Shapley polygon we have

lim
t→∞

1

t

∫ t

0

1X̂(s)∈Uds = 1.
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Benäım, M. (1999). Dynamics of stochastic approximation algorithm. In
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