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Abstract 

In an epistemic framework due to Aumann we characterize the condition on the 
rationality of the players that is both necessary and sufficient to imply backward induction 
in l~rfec| i|l|brr|llilliOn games in agent form. This condition requires each player to know 
that the players am nttional at later, but not at previous, decision nodes. 
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I. introduction 

The notion of a subgame perfect equilibrium is one of the most important tools 
in economic applications of game theory; for instance, in tile modern theory of 
industrial organization. 

In a finite perfect information game, subgame perfection coincides with the 
principle of backward induction. Backward induction is the most natural and 
compelling solution concept for such a game. it yields a unique solution when the 
game is in 'generic position' and it seems to be based on comparatively weak 
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rationality requirements, which do not even invoke the concept of a Nash 
equilibrium. In ~rfect  infoi'mation games, backward induction seems to be almost 
tantamount to a principle that we will call 'forward knowledge of rationality'. The 
principle requires that the players act rationally at the last decision nodes, that this 
is known to the players at the second-last decision nodes, that the players act 
rationally at the second-last decision nodes, and so on. Forward knowledge of 
rationality requires knowledge of rationality only with respect to succeeding 
decision nodes, not with respect to preceding ones. While forward knowledge of 
rationality is a comparatively weak rationality condition, it is not an innocuous 
assumption: a chain of knowledge about the rationality of others as long as tile 
game tree is required. 

But can backward induction and forward knowledge of rationality really be 
identified in perfect information games in generic position? Our objective in this 
paper is to address this question in a formal model of knowledge. We show that 
forward knowledge of rationality is indeed the only rationality condition (i.e. the 
only condition that can be stated solely in terms of knowledge and rationality of 
the players) that is both necessary and sufficient to deduce backward induction. 
We show that any other rationality condition either does not imply backw,'u'd 
induction or is logically weaker than forward knowledge of rationality. But, as we 
will see, some qualification is needed: A rationality condition has to imply forward 
knowledge of rationality only if it implies backw~u'd induction in a sufficiently 
large class of perfect information games. Counterexamples show that this class 
may have to be strictly larger than the class of games with a fixed game tree. 

Establishing necessary rationality conditions for playing backward induction is 
of special importance in explaining strategic behavior not consistent with back- 
ward induction. By weakening the rationality conditions that imply backward 
induction we can describe with greater accuracy the possible reasons why back° 
waM induction might fail and hence how strong the rationality requirements for 
backward induction really are. Our condition implies that if backward induction 
fails, then it must be true that either the first moving player does not act rationally 
or that he does not know whether all players will act rationally at later decision 
nodes. Stronger rationality conditions (for instance, common knowledge of ratio- 
nality, see below) do not have to imply this seemingly obvious conclusion. 

Despite the extensive use of subgame perfection in the game-theoretic litera- 
ture, the logic of subgame perfection and backward induction in perfect infomm- 
tion games has been seriously challenged both by experimentalists and by theo- 
rists. Several experimental studies have pointed out that real-life strategic behavior 
is often inconsistent with the principle of backward induction even in extremely 
simple perfect information games such as the ultimatum bargaining game (see 
Giitb et al., 1982). 

On a more theoretical level, the intuition behind backward induction was 
questioned m examples such a~; the chain-store paradox (Sellen, 1978), and the 
Centipede game (Rosenthai, 1981), where the backwm'd induction outcome seems 
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implausible. In response, several authors (e.g. Kreps and Wilson, 1982; Milgrom 
and Roberts, 1982: and Fudenberg et al., 1988) argued that the perfect information 
game itself might not be the right model to consider. They consider games that 
are, in a certain sense, close to the original perfect information game, but where 
the payoff structure is not common knowledge. They show that these nearby 
games may have Nash equilibria satisfying the strongest refinement criteria that 
are qualitatively very different from the backward induction solution. 

In another approach, Aumann (1992) pointed out that a small lack of common 
knowledge of rationality (and, actually, of forward knowledge of rationality) might 
give rise to outcomes very different from the backward induction outcome. 

Yet another strand of literature (see Aumann, 1995, for detailed references) 
questioned directly the logic underlying backward induction. This literature argues 
that the assumptions on the mutual knowledge of rationality, which are required 
for deducing that backward induction will be played, are self-contradictory. 

In response to the latter literature, Aumann (1995) formulated an elegant model 
of knowledge and established sufficient epistemic conditions on rationality that 
imply backward induction in perfect information games in generic position. 
Aumann shows that common knowledge of rationality implies backward induc- 
tion. Thus, Aumann's condition requires that all players are rational, that every 
one of them knows that all players are rational, that every one of them knows that 

! 
everyone knows that all players are rational, and so on. 

We will use the model and the methods introduced by Aumann. In his 
framework we show that backward induction is implied by a condition that is 
intrinsically weaker than common knowledge of rationality and we identify the 
weakest such condition. 

Results similar to ours might still hold in frameworks where - unlike in 
Aumann'~ model - common knowledge of rationality would be inconsistent. One 
might expect this since, first of all, forward knowledge of rationality is weaker 
than common knowledge of rationality. Secondly, the contradictions that several 
authors obtained with common knowledge of rationality seem to be caused by the 
knowledge of the players about the rationality of other players at past decision 
nodes. They might not occur with forward knowledge of rationality, which refers 
only to the player's knowledge of rationality at future decision nodes. We 
conjecture, for instance, that Samet's (1993) notion of 'common hypothesis of 
rationality' is necessary and sufficient for backward induction in his model of 
hypothetical knowledge. 

Aumann's approach, which we are using, implicitly assumes that the game 
structure, and in particular tae payoff structure, are common knowledge. The work 
by Kreps and Wilson (1982), Milgrom and Roberts (1982) and Fudenberg et al. 

Aumann uscs the semantic approacll to model knowledge. Kramcrz (1993) oblains rclatcd results 

in a syntactic approach. 
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(1988) referred to above has shown that this is a very strong assumption. As much 
as common knowledge of rationality is not needed to deduce backward induction, 
common knowledge of the payoffs is not needed either. In a slight extension of the 
framework used here in which the payoffs can vary with the state, it can be shown 
that forward knowledge of rationality and payoffs implies backward induction. We 
do not know what the minimal requirements on the knowledge of rationality and 
payoffs would be in order to deduce backward induction, but the techniques we 
are using in this paper should be helpful in addressing this question, too. 

In Section 2 we review Aumann's (1995)epistemic framework and introduce 
the notion of forward knowledge of rationality. We will assume throughout that 
each player has only one decision node. As discussed in Subsection 5.3, this is not 
a serious restriction of our analysis. We also explain in Section 2 what we mean 
by a minimal (i.e. a necessary and sufficient) rationality condition for backward 
induction. Our notion of minimality refers to a class of perfect information games 
that can be strictly larger than the class of games with a fixed game tree. We 
illustrate in Subsection 5.1 why this is necessary. 

The argument as to why forward knowledge of rationality is indeed the minimal 
rationality condition for backward induction is illustrated in Section 3 for games 
with two players and two decision nodes. The general proof is given in Section 4. 
Section 5 contains extensions and additional remarks. In the appendix we explain 
in more detail how our notion of minirnality relates to logical deduction in 
epistemic logic. 

2. The model 

Following Aumann (1995) we restrict ourselves to finite perfect information 
games in generic position. Moreover, we will assume that every player has only 
one decision node. A game is said to be in generic position if no player receives 
the same payoff at any two terminal nodes. Henceforth, we will refer by the word 
'game' to any perfect information game with the properties just mentioned. 

Let N be a finite set of players. We consider a partial order >- on the set of 
players that is induced by a tree with a root whose nodes are the players in N; that 
is, we write j >- i when player j follows player i in that tree. The player r at the 
origin of the tree is called the root player. Player j is an immediate successor of 
player i if j >- i and there is no player f with j >- j '  >- i. Let S(i) denote the set of 
immediate successors of player i. 

We will say that a game F has the order o f  moves (N,  >- ) if it has the set of 
players N and if, whenever j >- i for i, j ~: N, j comes after i in I ' .  That is, each 
path through j ' s  decision node also goes through i 's  decision node. The order of 
moves defines an equivalence relation on the set of all games. Two games with the 
same game tree and the same assignment of players to decision nodes always have 
the same order of moves. But games with the same order of moves can have 
different payoff functions and different numbers of terminal nodes. 
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For a given game F let A, be the set of actions available to player i and let 
A := r l ~  N A, be the set of combinations of actions for the players. The backward 
induction solution b = ( b: . . . .  , b,,) ~ A is defined inductively as follows. If there 
is no player j with j ~ i, then b~ is simply i 's  optimal action conditional on his 
decision node being reached. Otherwise, b, is inductively defined as the action 
that, conditional on his decision node being reached, maximizes player i 's  payoff, 
given that each player j with j >- i plays b i. 

We now describe the model in which epistemic conditions for playing back- 

ward induction can be given. 
A knowledge space is a pair (,f2, ? ) ,  where g2 is a set of states of the world 

and .~ = (o/~)~ u are partitions of g7 for each player i in N, called knowledge 
partitions. ~ ( t o )  denotes the set of player i 's knowledge partition that contains 
the state to ~ g2. When a state of the world to is realized, each player i knows that 
the event .~,(aJ) has happened. For an arbitrary event E the event 'i knows E'~ 
denoted by E,(E) ,  is the union of all elements of <~, that are included in E. The 
event 'E  is common knowledge' is defined by 

CK( E) = EnK( E) nK( K( E)) nK( K( K( E))) n .... 

where K ( E ) : =  r I ~ N K ~ ( E ) f o r  any event E. 
A knowledge system (or simply a model) is a quadruple q~= (£~, Y~, i ' ,  f ) ,  

where (g2, c~) is a knowledge space, 1" is a game and f = {3';}~ ~ x assigns to each 
state of the world w a combination of actions for all the players. 2 We assume fl~at 
the map J;. : J'2 ~ A, is measurable with respect to player i 's knowledge partition, 
i.e..[;.( to' ) = j;(to) holds for all ~ '  ~f~,(oJ). We call a model q1 compatible wilh 
the order of moves (N, ~ )  if it is based on a game I" with the order of moves 

(N, >-). 
We use the notion of 'conditional rationality' iniroduced in Aumann (1995). i.e. 

player i 's rationality is defined as the set of all states of the world in which i does 
not know of any action that will yield him a conditional payoff higher than the one 
obtained by playing 3<;. To define this formally, it is convenient to make use of the 
following notation. Given a statement 0, we denote by [0] lhe event that consists 
of all elements in O for which 0 hol:'.s true. For example, the event [j; = a,] is 
the set of all states of the world to where J](co)= a,. The event "player i is 

rational' is now defined as 

R, = N K,lt,,(,,,..r') > h,(/,, i ' ) l .  
f l  I ~:  m i 

2 We will say that a playcr takes action a, at o~ if j ' ( w ) : :  a,. We will ~io so in our verbal 

discussions even if the decision node of tile player is not reached in the state co. Ki tmerz (1993) shows 
that ill a tbnnal semantic approach it is imporumt to distinguish care|ally between ~aking an action (if 

the decision node is reached) and planning lo take an action {regardless of whether the decision node 

is reached or not). 
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where h~ denotes player i 's  payoff function for the subgame starting with player 
i 's move, --1 denotes complementation in 12 and f i  := {fj}g~, i - W e  set R := 

~ i ~ N R i  • 
The event "player i plays backward induction' is written I~ := [f~ = b~]. The 

event "the backward induction solution is played' is simply I "= CI iE N[fi = bi]. 
Given a strategy combination a ~ A in F ,  let z~, be the end point reached in F 
when a is played. Thus zy is a function from 12 to the set Z of all end points of 
the game. Finally. the event "the backward induction outcome is reached' is given 
by IP = [ zb = z/ ]. 

2.1. Forward knowledge of rationality 

In Aumann (1995) it is shown that common knowledge of rationality implies 
backward induction, i.e. CK( R) c_ 1. 

Our sufficient condition is based on the idea that to deduce backward induction 
it is enough that knowledge of rationality 'f lows'  in only one direction. More 
specifically, each player's knowledge of rationality applies only to his successors, 
and he need not know anything about the rationality of those playing before him. 
Formally, the event "forward knowledge of rationality' is defined inductively as 
follows. 

For each player i we define the event Q,: if i has no successor, then Q, := Ri. 
Furthermore, if i has a successor, then Q, is inductively defined by 

Q,:= R , ;NK, (  U Q,). 

"l'ile event 'forward knowledge of rationality' is now gi',en by Q ::= Q,, where r is 
the root player. 

Note that while the fornmla for common knowledge of rationality depends only 
on the set of players N, forward knowledge of rationality also depends on the 
order >-. 

Aumann's result can now be strengthened as follows. 

Theorem 2.1. Forward knowledge of rationality implies backward induction, i.e. 
Qc_t. 

The proof is a straightforward adaptation of Aumann's (1995) proof and given 
in Section 4. 

2.2. The notion t~'minimality 

To define our notion of a minimal epistemic condition for backward induction. 
we will regard all epistemic expressions (such as 1. R,, Q. etc.) as operators that 
assign to each model ~k an event in the relevant set of states of the world. Thus. an 
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epistemic expression F without a model is merely a string of formal symbols that 
becomes an event whenever we assign it to a model qJ. From now on, we write 
/ (~) ,  R~(qt), Qt qj), etc. for the events determined by the epistemic expressions 
I,R;, Q, etc. in a given model ~. 

An epistemic expression F is said to he an (epistemic) rationality condition if 
it can be obtained from the expressions JR;}, ~ x by means of the regular set theory 
operators, i.e. U (union), N (intersection)and --, (complementation), and the 
knowledge operators K;. (The expression R; will only be applied to the event t~at 
player i is rational.) Observe that the expression 'the backwards induction is 
played' l(qt) is not a rationality condition. 

A rationality condition F is said to be a minbnal rationality condition for 
backward induction with respect to the order of moves (N, >- ) if: 

(1) F(qJ) c:_/(~) lbr every model qJ compatible with the order of moves 
(N. >- ) (i.e. F implies backward induction for a sufficiently rich class of games). 

(2) for any other rationality condition F '  satisfying Condition 1, we have 
r"(qt) c_ F(~,) for every model 4' compatible with the order of moves (N, >- ) 
(i.e. F'  implies F in every model ~). 

If F satisfies only Condition 1, then we call it a rationality condition for 
backward induction with respect to the order of moves (N, >- ). 

A minimal rationality condition for backward induction is thus sufficient for 
playing backward induction. It is necessary for playing backward induction 
insofar as any other raticnality condition for backward induction ~implies' the 
minimal condition. 

Theorem 2.2. For a gioen order of  moves ( N, >- ) there exists a unique minimal 
rationality condition .h~r backward induction. This condition is the J?~rward 
knowledge ¢~]" rationality, 

The result follows from Theorem 2.1 and Proposition 41 in Section 4. To 
obtain the result that tbrward knowledge of rationality is lh~ minimal rationality 
condition for backward induction, it is important that a rationality condition for 
backward induction is defined with respect to all games with the same order of 
moves and not with respect to some smaller class of games. This will be illustrated 
in Subsection 5.1. 

3. Illustration of the result 

This section illustrates our result for tile simplest interesting class of games. We 
consider tile class of games with just two players, and two decision nodes, where, 
without loss of generality, player I moves first. Forward knowledge of rationality 
then means that player I is rational and that he knows (and hence, fllat it is indeed 
true) that player 2 is rational. In short 

R I N K I R 2 . 
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3 !1 

o 

o ; 

Fig. I. 

This rationality condition implies backward induction. Intuitively, player 2 is 
rational if and only if he plays his backward induction choice. If player 1 knows 
that player 2 takes the backward induction choice but player ! would himself take 
an action different from his backward induction choice then player 1 would know 
that there is an action different from the one he chooses which must yield a higher 
payoff. A rational player 1 therefore has to choose his backward induction choice 
in this situation. The formalization of this argument is given in Aumann (1995). 

Of course, forward knowledge of rationality is strictly weaker than common 
knowledge of rationality. Consider, for instance, the following two-state model qJ 
based on the game in Fig. !. Player 2 takes his action 'right' in both states and 
does not know in which of the two states he is. Player 1 knows the state. In one 
his choice is 'left' and in the other his choice is 'right'. In both states player 2 
does not know that player 1 is rational, since he considers it possible that player 1 
takes his left, strictly dominated, choice. Therefore, common knowledge of 
rationality yields the ~mpty set. The event 'forward knowledge of rationality' is, 
however, not empty since it contains the state where player 1 takes his right 
choice. 

Our main concern is to show that any rationality condition for backward 
induction F implies forward knowledge of rationality in every model q~, i.e. 

F(qs)  c ( R ,  n K , R 2 )  (qj) .  

The crucial observation for proving this is the fact that if we alter the model qJ 
by changing 17 and {f,},~l,.~l' so that R,(q~) and R:(qJ) remain the same. then 
F(~k) will not change either. 

Now le I (12, g , ,  ~2  ) be the knowledge space of ~b and let E i := Ri(~p) be the 
event where player i E {!, 2} is rational. 
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We construct a new model q~'= (JT, 9~,  9 z, F ,  f~, f~) on the knowledge 
space (g2, ~ ,  9 2), which is again based on the game F in Fig. 1 with the maps 

"t " t  

.I~, 3'2 defined as follows: 
Player 2 chooses 'right' at each state in E 2 and ' left '  at each state in --, E 2. 
Player I chooses 'middle' in E~ N K~E 2, 'right' in E~ n -~ K~E 2 and 'left '  in 

--'-I E l  o 

The important properties of the new model qt' are: 
(1) Players 1 and 2 are rational exactly in the events E~, E 2, respectively, i.e. 

R,(q, ' )=E,  for i ~ { l ,  2}. 
(2) The event 'the backward induction solution is played' is identical to the 

event 'forward knowledge of rationality', i.e. 

t ( ~ ' )  = ( R, n r , g ~ ) ( q , ' ) .  

By assumption, F implies backward induction for all models based on the 
game in Fig. !. Thus, F(q~') c l(q~') and hence 

F(q~')  c_. ( R, N K,R2) (qJ') .  

Since both F and R I N KIR 2 are rationality conditions, we conclude for the 
original model ~: 

F( ~b ) c_ ( R, t~ KIR2) ( qt ). 

Thus, R I f3 K~ R 2 is indeed a minimal rationality condition for backward induction 
according to our definition. 

We now turn to the proof of the general case. 

4. Proofs 

Theorem 2.1. Forward knowledge of rationality intplies baclavard induction, i.e. 

Q(q,)  c_ t( , / , ) ,  

for all models q~ based on games with a given order of  moves ( N, >- ). 

Proof. For the sake of simplicity we drop ~ from the formulas throughout the 
proof, as we did prior to Subsection 2.2. It will be shown by induction that 

Q,c Ui,. (4.1) 

for all i ~ N .  Take some i ~ N  and suppose that (4.1) is satisfied for each 
immediate successor j ~ S(i). Then 

j i) 
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Now Aumann (1995) shows in the proof of his Theorem A that if i is rational and 
knows that all his successors are rational then i plays backward induction. 
Formally, 

R, n K i [ f i = b ' ]  c:l i . 

Therefore, 

Q,c_R, n K , [ f ' = b ' l c _ N !  ,. 

[] 

Proposition 4.1. Let F be a rationality condition with 

F ( ~ )  c l ( q J ) ,  

for all models ql compatible with a given order of moves ( N, 

F (qJ )c_Q(~) ,  

for all models q~ compatible with ( N, >- ). 

~" ). Then 

Two :further results are needed before we can prove Proposition 4.1. 
Define for a model q, and an action a~ ~ A~" 

R,~,t,. ~,) = N -~ K,[ h,(d,. S') > h,(a,. S')]. 
a;~ a,\la,} 

R,(q/, a~) is the event where it is rational lbr player i to take action a;. 

Lemma 4.2. For any model ql: 

R,(,I,)- U [L=a , ]ne , (~  ', a,). 
tli~ A, 

Pro~ We have 

- U ( :QA (x,[a, =f,] n .  r,[,,,(a:, f ')> ,,,(~, f')])), 
a~(zA e tJ 

As in Aumann (1995), Formula (13) and the preceding formulas in the proof of 
Theorem A, it follows that 

K;[,,; =L] n -, K,[ h,(<, f ')  > h,(Z, f')] 

= K,[o, =S;] ~ -~ K,[/,,(,~;. S') > ~,,(,,,. r ) ] .  

Usin~ K,[a,=.f,]~.[a=.fi] and -, K,[h,(a,, i f ) >  h~(a~, f ' ) ] =  J'2. the claim 
follows. [] 
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Lemma 4.3. Fix an order of moves (N, >-). For every knowledge space 
(O,  (.-~i)i~ :¢) and every family of  events {E,}i~ ~, in 12 with KiEi= E i for all 
i ~ N there exists a model 

¢=(a,, r ,  

compalible with the order of moves (N, >.-) on the given knowledge space 
( 12, (~q~i)i ~ N ) .for which 

Q ( q,) = l( q,) = lP( q,). 

and 

R,(,t,) = E,  

for all i E N. IP( ~b ) denotes hereby the event where the backward induction path 
is played. 

Proof Throughout the proof we work with ordinal preferences instead of payoff 
functions. Thus, for i ~ N  and two end points z, z' we write z Pi z' for 
hi(z) > hi(z') .  For the subgame starting with player i 's  move, a combination of 
actions of the players in the subgame (including player i) is denoted by a(i)  and 
the induced outcome in the subgame by z,,ti). 

The proof is by induction. Let i = 1 be the root player for the order >-. Let 
S(1) = {2, . . . .  j "  } be the set of immediate successors of player 1. We assume that 
for every immediate successor j ~ S(I~ we have found a model, 

as follows: 
(I) l j  is a game with a set of players Nj := {k[k ~ j} compatible with the order 

induced by >- on this set. 
(2) The knowledge space (12, (,5~k)k e N,) is obtained from (t2, ('~k)k ~ X) by 

omitting all knowledge partitions for the players not in Nj. 
(3) qJj satisfies 

and 

Qj( ,j) = = m ( , p , ) .  

for all players k ~ Nj. 
(The induction assumption consisting of these three conditions is satisfied if 
S(I) = ~,  i.e. N =  {i}.) 

Let b(j) denote the backward induction solution and let z~,~j~ denote the 
backward induction outcome for the game I). 

Consider now the game F constructed as follows: Player ! is the root player. 
His set of actions is 

A t = { a ~ ,  a:}  U { a i l j e S ( l )  }. 
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where a~- leads to the terminal node z- and a~" leads to the ternlinai node z ÷. By 
an action af, player 1 gives the move to his immediate successor j after which the 
game F~ with set of players Nj is played as a subgame. 

The game tree of F and the assignment of players to decision nodes is thereby 
completely specified and it is clear that F will be compatible with (N, >-). We 
next have to define the players' preferences on the terminal nodes. 

For a player k ~ Nj, j ~ S(I), we choose preferences on the terminal nodes of 
F that extend those for the subgame Fj and are in generic position. 

We will select the preferences of player 1 such that his outside option a~ 
becomes his backward induction choice b, and hence z + becomes the backward 
induction outcome of F. We therefore impose the following restrictions on player 
l ' s  preferences: 
® He is not indifferent between any two terminal nodes. 
® He prefers any outcome to the outcome z-" 

zp~z 

for any outcome z 4: z-. 
t- ® He prefers the outcome z to the backward induction ~utcome in any subgame 

~, j ~  S(I): 

for all 2 ~ j ,<. j ' .  
® But tbr an outcome other than the backward induction outcome in the subgame 

i~ i~e prcfer~: !his outcome to -+ and to arty outcome iwa the subgames !)  with 
lower index j': 

+ 

)1 °' ".a(jll ' .  ' 

and 

~',( . t )P i  '7",,( / ~' 

for any 2 ~< f < j ~< j ' ,  any outcome z,,, ;I of the subgame I~. and any outcome 
z,, c j~ 4: zt,~ of the subgame I~. 

® Finally. mnong the backward induction outcomes of the subgames, he prefers 
the out~.:omes for the subgame I~ with lower index, i.e. 

for all 2 <~j<f <~j'. 
Next we construct the model ~1~ by specifying the functions )')-12--0 A j. For 

any player k E Nj, j ~ S(!). we take the function f~ as specified by Ihe model q5. 
The function .[', for player I is now defined by 

: =  E ,  

If ,  = "; I := e,  n f )  t: ,[  : , , , ,  = 
j E S( ! 
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[f,  = a¢] := E, n n K , [ ~ , , I , -  z :s,l n -1 K,[ =I~J, = z~,j,], 
j< j ' ~ j "  

for 2 <~j<~j' .  
Thus, player I uses the strictly dominated choice a~ on --1 E t. On E t he uses 

the outside option a~ if he knows that the backward induction outcome results in 
all subgames Fj. If he does not know on E t that the backward induction outcome 
results in all these subgames, he is optimistic and gives the move to the next 
player in the subgame Fj with the highest index j, where the backward induction 
outcome might not result. 

The construction and the induction assumptions imply Rk(q~)= E k for every 
player k ~ ~ ,  j ~  S(I). We have to show that player l is rational exactly on Et: If 
player 1 uses a strategy other than a~-, then a temdnal node other than z- will 
result, which he always prefers. Hence, for all a t ~ A t, a t e; a~-, 

[ zt.,.z,~p a zc,,; .y,~] = D 

=* -'1Kt[ z~.,.l,~p t zt,,-.;,~] = t~. 

which implies 

R,(q , ,  , , ? )  = O ,  

and 

[f,  =a~-] nR, (qJ )  = -~ E, nRj (qJ )  = ¢ .  

Player I is rational when choosing a~. We obtain for all a(. j ~-S(I). 

[ zf~j, = z~, j,] c_ -1[ :,°~.f ' ,P,'~o," .r,  ] 

=, K,[ : ~ ,  = :,,,j,] c_ K , - . [  z,o~.s,,p, z~.: .s',] 

= K,[  z~j, = z,,c.] c__ -. ~c,[ z~°~.r,p, z, . :  . r , ] .  

which says that if player I knows that the backward induction outcom~ results in 
any subgame, then he is better off choosing the outside option a~. Since 

, g l [  Zt,,C.i,)plzt,:..f,~] = g2, 

we conclude that 

[ f , = a ~ ] C  n K,[zf, j , = z b t j , ] c R , ( q t ,  a ~ ) .  

Player I is rational when taking action a{ (2 ~< j -~.~ j* ): For any action a(  with 
j < f ,  player l is better off by giving the move to player j rather than to player f 
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with a higher index if he knows that U.~e backward induction outcome results in the 
subgame Ff, i.e. 

[ :s ,s ,  = Z~,s,l c_ -~ [ ~ 4 , s ' , p ,  z, oi,~ ~1 

- K,[  Z~,s, = :,,,s,] ~- K , - ,  [ z, o l ,  ,P ,  z,o~ s,,] 

= K,[  z:,,., = z , , : ) l  ~_ -~ K,[  z(o:.:,,:,, =,o~.:,,] 

= [ : ,  = a¢] ~ K , [  z,:, = z, , , . ) l  ~- -~ ::,[ z,o;.~,,p, ~ . : , , 1 ,  
while for a( with j > f he might gain more by giving the move to player j rather 
than to player f with a lower index if he considers it possible lhat the backward 
induction outcome does not result in Fj: 

[ Z/(j)= Z0(j)] = [ z/(/)p, z/(j)] = [ Z~,,{.s,)p, zt,,b,,-,)] 

= ~ K,[  z:,,, = z, , , , ]  = -~ ~ , [  ~o:.:,,p, z,o~.:,,] 

= [ s ,  = ,11 ~ -~ K, [  z,,~, = z~,, , l  = -~ K , [  z,~:..,,,p, ~,.o,,,,1 i o $ "  

Similarly 

[f ,  = af] C -1 K, ["  • - ~.,  .y ' )Pl  z(, ,~.s ')] ,  

and since 

[s,  = (,(l ~ n = -1 K,[  ~,,,, ,~,,p, ~,,~ ~,,1, 

it follows that 

[ s ,  = , , i]  ~ ~ , ( q , ,  ,,¢). 
Therefore, 

E,= U [,ft=a,l~R,(q,), 
a I ~ a I 

~md since -1 E I n R t(ql) = ~: 

E, = R,(q,) .  

In the model g,, player I takes his backward induction choice b I = a~ and 
hence the backward induction path results if and only if he knows that the 
backward induction outcome results in every subgame. By the induction assump- 
tion the latter is equivalent to the knowledge that the backw,'u'd induction solution 
is played in every subgame, i.e. 

j .  I) 

I P (  qt) = [ f t  = b l ]  = I f ,  = b , ]  n 

= [ f ,  =b,]n 
j~s(lt 

n ~(~,j) -- ~(q, ) .  
j~  s(I) 
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Finally, 

Q(qt) =Q,(qt)=R,(qt) NK,( ['~ Qj(q~)) 
j ~  S(l) 

j I) 

which completes the proof. [] 

Proof of Proposition 4.1. Let qJ= (12, (,Y'i)i~ N, F ,  (fi)i~ u) be a model compat- 
ible with (N, >- ). By Lemma 4.3 we can find a game F '  compatible with (N, >- ) 
and a model qJ '= (12, (~i)i~ N, F', (f')ie N) with the same knowledge space as 

such that for all i E N: 

and 

R , (q / )  = R~(q~), 

Q(,~,') = 1(q~'). 

(4.2) 

By assumption on F, F(qt') c:/(q~') = Q(~') .  But (4.2) implies that any rational- 
ity condition yields for both models ~ and q/ the same event in g2. Hence, 
F ( ~ )  c:: l(q~), which was to be shown. [] 

5. Remarks 

5.1. On our notion of minimalirv 

in this paper we considered die minimal rationality condition for backward 
induction with respect to all models based on games with the same order of moves 
(N, >- ). Alternatively, we could have asked for the minimal rationality condition 
with respect to all models based on a fixed game or with respect to all models 
based on games with a fixed game tree. This subsection illustrates that the res~,!ts 
change significantly if such alternative notions of minimality are considered. In 
particular, the existence of a minimal rationality condition is no longer obvious. 
We will use the framework of the two-player games discussed in Section 3 for 
illustration. 

In the game of Fig. 2 the player who moves first, player 1, has a strictly 
dominant move. Player I 's only rational choice is to choose 'left ' ,  regardless of 
what he knows about player 2's action. The backward induction solution will 
hence be played if both players are rational, i.e. if the formula 

Rt f) R 2 

holds. Obviously, the event 'forward knowledge of rationality' is for some models 
based on the game a strict :;ubset of the event 'both players are rational'. 
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Consequently, forward knowledge of rationality is not the minimal rationality 
condition for backward induction with respect to all models based on the game in 
Fig. 2. 

For the game in Fig. 3, where player 1 does not have a dominating move, it can 
actually be shown that forward knowledge of rationality is a minimal rationality 
condition for backward induction with respect to all models based on this game. 
However, the following peculiarity of Aumann's definition of rationality has an 
interesting implication for this game. Suppose player I does not know whether 
player 2 is rational, i.e. --1 J~ R~ holds with 

JIR~ := K IR~ U K I -~ R, .  

Then player 1 considers it both possible that player 2 might be playing 'left '  or 
'right'. Since player ! does not have a dominating move. he is rational regardless 

9 ...... G 
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of what he does. Hence R z U J~ R 2 is always true and common knowledge among 
the players. Consider now the following expression: 

F ' =  (R,  n K ,  Rz) U ( R ,  O R  2 N --1 CK(R,  u J t R 2 ) ) .  

For the game in Fig. 3, the part of the expression following the union yields the 
empty set. Therefore, F and forward knowledge of rationality yield the same event 
for every model based on this game. However, it is intuitively clear, and also 
follows from the next paragraph, that F describes a statement that is logically 
strictly weaker than forward knowledge of rationality. Consequently, forward 
knowledge of rationality is not the only minimal rationality condition for back- 
ward induction with respect to the models based on the game in Fig. 3. There are 
also others, which are strictly weaker in a logical sense. 

We have constructed F such that it implies R~ n R 2. Therefore, it is also a 
rationality condition for backward induction with respect to all models based on 
the game in Fig. 2. Indeed, it is easy to see that F ~s a rationality condition for 
backward induction with resoect to all models based on games with the game tree 
in Fig. 2. Moreover, one can construct a model with four states based on the game 
in Fig. 2, where both players are rational in a single state and where a player never 
knows whether his opponent is rational or not. In this model, forward knowledge 
of rationality yields the empty set. However, one has CK(R~ U JjR+ ) c  CK(R s) 

K2(R t) = ¢ and hence F does not yield the empty set. Consequently, Jorward 
kmnvledge of rationality is not the minimal rationali~ condition for backward 
induction with respect to all models based on games with the game tree in Fig. 2. 

We do not know whether F is the mhlinml rationality condition or whether a 
minhnal rationality condition exists here. ~ The reason why this problem is 
resolved m our approach is that one can always add to a game a dominated action 
leading to a terminal node without changing the order of moves. Adding such an 
action for each player makes it possible that each player can be irrational without 
knowing any+thing about his opponents. 

These difficulties appear in our nv~del because we do r, ot use a Bayesian 
approach. Our models do not specify the belieJs of the players in each state and in 
that sense the notion of rationality we use is weaker than Bayesian rationality. 
With specified beliefs it is, in the game of Fig. 3, not sufficient for Bayesian 
rationality that player i does not know anything about the actions planned by his 
opponent. For instance, player I may believe that player 2 chooses "left' '.++,ith 
probability I / 4  and 'right' with probability 3 /4 .  Then player I is not Baye:~ian 
rational if he chooses "right'. 

3 F is not a finite expression and hencc does not correspond to a formula in the modal logic $5. 



342 D. Balkenborg. E. Winter~Journal of Mathematical Economics 27 (1997) 325-345 

5.2. The minimal order-independent rationality condit ,m for backward induction 

Our notion of forward knowledge of rationality does not only depend on the set 
of players N but also on the order of moves (N, >.- ). We may be interested in a 
minimal condition on the knowledge of rationality for the players that implies 
backward induction for all games with player set N = { 1 . . . . .  n} regardless of the 
order >-. Using Lemma 4.3 it can be shown that this condition is simply the 
intersection of all forward knowledge of rationality conditions with respect to all 
possible orders >-. It is easy to see that this intersection equals: 

['~ Krr(l~K~(2) . . . . .  KTr(,,_ i)R..r(nt, ( 5 . 2 )  
~'~ H (n )  

where II(n) is the set of all permutations of {I . . . . .  n}. 
Condition (5.2) is still much weaker than common knowledge of rationality. 

For instance, due to the agent form this condition never requires a player to know 
what an opponent knows about him. 

5.3. Games not in agent form 

Our results can be adapted in a straightforward manner to more general perfect 
information games, where a player may have more than one de,';sion node. The 
expression: 

R I i'q K t R 2 , 

can, lot inslance, be read as 'tile player at Ihe first decision node takes a ralional 
action at this node and knows that the player at the second decision node lakes a 
rational action at thai node'. Provided we know what the first and the second 
decision node is, this sentence is meaningful even if there is only a single player at 
both decision nodes. More generally, we can interpret R, as the statement 'file 
player at mn#e i takes a rational action at thai node' and K, ( . . .  ) as 'the player at 
node i knows. . .  '. 4 With this reading lbrward knowledge of rationality and any 
rationality condition is meaningfifl. Clearly, rationality in this altered sense in no 
longer an attribute of a player, it is an attribute of a decision. A player may act 
rationally at some decisio~ nodes and irrationally at others. 

To proceed formally, a game 1" consists now of a game tree, a set of players 
M = {I . . . . .  m}, an assignment K: N --', M of decision nodes to players and a map 
from terminal node:; ::o payoffs of the players. In particular, we llave a well-de- 
fined ordering >- on the set of decision nodes N :-{I . . . . .  n}. A model ~1~ lot 
.~uch a game specifies, in addition, a stale space g~, ihe knowledge parlilions 

But again l]ial we arc u,~ing a nol ion o f  condi lk)nal rationali l),, i.e. for deciding wi l t ' f i ler il is 
rational for a player to lake an acllo|! al SOIIle nt.~i2 ii is nol relcvanl whelhor Ibis node can be l'eached 
or i loi. 
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. 

~ . . . . .  a~,,, for the players and an assignment 3i" gt ~ A~ of states to actions for 
each decision node i ~ N. From such a model we obtain a model ~' for the agent 
form of the game if we duplicate the knowledge partitions for each decision node 
of a player, i.e. if we write K,(E) instead of K~(~)(E) for a decision node i of a 
player K(i), and if we similarly duplicate the payoffs. The following statement is 
fl~en obvious given our result. 

Forward knowledge of  rationality is the minimal rationality condition rot 
baclavards induction with respect to all models based on the games with the same 
order of  moves (N,  >- ). (However, the number of players and the assignment of 
decision nodes to players can vary here.) 
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Appendix: Minhna|ity and |ogica| implication 

In this appendix we describe in which sense the statement 'every rationality 
condition for backward induction implies forward knowledge of rationality' holds 
in the epistemic (or modal) logic $5. For a full description of this logic, see. for 
example, Cheilas (1980). Here we remind ourselves only of the following facts. 

Propositions of the epistemic logic $5 are - in the case of several players - 
inductively formed from a list of basic propositions a~, a 2 . . . . .  by applying a 
finite number of times the logical operators V, A and --, and the knowledge 
operators k , ( i ~ N =  {1 . . . . .  h}). A proposition in $5 is a theorem if it can be 
deduced from the axioms of standard propositional logic, together with the axioms 
on knowledge, by using the inference rules modus ponens and necessitation. This 
syntactic approach is linked with the semantic approach based on knowledge 
spaces via the notion of an interpretation. An interpretation consists of a knowl- 
edge ~';pace (g2, ( '~,)i¢ x) and a mapping that assigns to every basic proposition 
a t an event E k c g2. Every proposition f defines a well-defined set theoretic 
formula and hence an event [ f ]  ~ g~ if we replace the logical operators V, A and 
-7 by the set-theoretic operators U. N and -1, the k, by the knowledge o~rators 



"'~"" 325-345 344 D. Balkenborg. E. Winter~Journal  o f  Mathematical Economic.~ 27 1 i ' ~  ) 

K~, ~.~ the elementary propositions a k by the events E k. ~ Strong completeness of 
$5 inq.:,,-s that a proposition g can be deduced from a proposition f by the 
axioms and inference rules of $5 if and only i f . [ f i e [ g ]  holds for every 
interpretation. 

We translate the notion of a rationality cond~.tion into this setting. A rationality 
condition was constructed inductively from the expressions R~. The definition of 
rationality, together with the measurability assumption, implies in our framework 
that a player always knows when he is rational, i.e. K~(R~):--R~. FGr the 
completeness result of $5 it is important that a basic proposition can also be 
interpreted as an event that a player does not know. Therefore, we cannot take 
basic propositions as the statements 'player i is rational". We take instead the 
propositions r~ := k~(a~) . . . . .  r. := k,,(a.),  where the a~ . . . . .  a,, denote n distinct 
fixed basic propositions. We call a proposition a 'rationality condition' if it is bv.ilt 
inductively from these propositions by using the logical operators and the knowl- 
edge operators. Given an order of moves (N, >- ) 'forward knowledge of rational- 
,..~;"" .,.. ,.--.";~n~ ~', ,,,~,u de6 . .~ . , . . . .  ....~ o rationality condition q in this sense. 

For a given order of moves (N, ~- ) we mean by the statement ' the rationality 
condition f is a condition for backward induction' that the following holds for 
every model ~ based on a game with the given order of moves: 6 if an 
interpretation assigns to the basic propositions a~ . . . . .  a,, (and hence to r I . . . . .  r,,) 
the events R i(~/J) . . . . .  R,,(q~) c O, then [ f ]  c !(e/s) holds. This condition is saris- 
fied if f corresponds to a set-theoretic tbrmula that is a rationality condition for 
backward induction as defined m Section 2. 

Suppose now that ,f is a rationality condition for backward induction. Suppose 
we are given any interpretation with a knowledge space (J'~, ( ~ '  ~ ). The 
propositions r~ . . . . .  r,, are then mapped to events El := K ~(E~) . . . . .  El, := K,,(E,,) 
satisfying E i ~ K~(EI). |.~sing Lemma 4.3 (with E i inslead of E,) it follows that 
I f ]  ~ [q ] .  Since this holds for every interpretation, strong completeness of $5 
implies: forward knowledge of rationality q can be deduced via the axioms and 
inference rules of $5 from every rationality condition for backward induction f. 
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