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EXTREME(LY) MEAN(INGFUL): SEQUENTIAL
FORMATION OF A QUALITY GROUP

By Abba M. Krieger∗, Moshe Pollak∗ and Ester Samuel-Cahn†

University of Pennsylvania, Hebrew University and Hebrew University

The present paper studies the limiting behavior of the average
score of a sequentially selected group of items or individuals, the
underlying distribution of which, F , belongs to the Gumbel domain
of attraction of extreme value distribution. This class contains the
Normal, log Normal, Gamma, Weibull and many other distributions.
The selection rules are the ”better than average” (β = 1) and the
β-better than average” rule, defined as follows. After the first item
is selected, another item is admitted into the group if and only if
its score is greater than β times the average score of those already
selected. Denote by Y k the average of the k first selected items, and
by Tk the time it takes to amass them. Some of the key results ob-
tained are: Under mild conditions, for the better than average rule,
Y k less a suitable chosen function of log k converges almost surely to
a finite random variable. When 1 − F (x) = e−[xα+h(x)], α > 0 and

h(x)/xα x→∞−→ 0, then Tk is of approximate order k2. When β > 1, the
asymptotic results for Y k are of a completely different order of mag-
nitude. Interestingly, for a class of distributions, Tk, suitably normal-
ized, asymptotically approaches 1, almost surely for relatively small
β ≥ 1, in probability for moderate sized β and in distribution when
β is large.

1. Introduction and Summary. Individuals are observed sequentially.
The problem of whether to accept an individual at the time that she is ob-
served has a rich literature. The most celebrated version is the ”Secretary
Problem”, where the criterion is to select one individual and the objective
is to maximize the probability that the best individual is chosen. This set-
ting has been extended in various ways including selecting a limited number
of individuals and basing the reward on the rank or score of individual(s)
selected.

Another extension that has received recent attention is to select a group
of ”quality members”. This might occur when a team of highly qualified
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professionals is assembled, for example in an academic department or a
consulting group in a specialized area. The goal is to find good rules for
either accepting or rejecting each additional individual into the group at the
time that the individual is observed.

One such rule that has been studied is to add a new member to the
group only if this will not decrease the average quality of the group, termed
in the literature as the ”better than average selection rule”. This tacitly
assumes that ”quality” is measurable. A generalization of the rule would be
to only admit a new member whose score is say 5% higher than the current
average. We term the extended rules as ”β-better than average rules”. These
rules reduce to the better than average rule when β = 1 first considered by
Preater [6], but allows say for β = 1.05 to produce a group that is even more
progressively selective than when β = 1.

The assumption that is commonly made is that the quality of the individ-
uals are mutually independent from a common distribution. As the horizon,
n, tends to infinity we study the asymptotic behavior of the average quality
of the group and the rate at which the group grows for the β-better than
average rules.

The β-better than average rules are considered in Krieger, Pollak and
Samuel-Cahn [4], and the present paper, which can be read independently,
can be considered its natural continuation. Sequential selection of a ”good”
group, based only upon the relative ranks of the observations is consid-
ered in Krieger, Pollak and Samuel-Cahn [3]. It should be noticed that the
rules considered here can be implemented without knowledge of the under-
lying distribution, though their asymptotic behavior depends strongly on
that distribution. For convenience, we assume that the first item is always
selected. However, all asymptotic results remain correct if the selection pro-
cess is adopted only after a core group of members already exists. Also, the
random variable is assumed to be non-negative (or the process begins with
the first non-negative observation), because negative averages multiplied by
β > 1 provide a lower level for inclusion.

Two quantities are of interest: The average quality, Y k of the group, after
k items have been retained, and Tk, the time (in terms of the number of
observed items), it takes to amass a group of size k. Our interest is in the
asymptotics of these quantities, as k → ∞. This paper, unlike [4], consid-
ers F belonging to the extreme value domain of attraction of the Gumbel
distribution exp{−e−x} only. Write 1 − F (x) =exp{−H(x)}. Emphasis is
given to a subset of these distributions, which are also ”stretch exponen-
tial” distributions, where H(x) = xα + h(x), with h(x)/xα x→∞−→ 0, for all
x > x0, for some x0, where α > 0. This class includes the Gamma and
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Normal distributions as particular cases.
The ”expected overshoot”, f(x) = E(X − x|X > x), plays an essential

role. Our main findings are: For the ”better than average” rule (β = 1),
under some mild conditions, the quantity Y k −G−1(log k) converges a.s. to
a finite random variable where G(x) =

∫ x
x0

1/f(u)du. These mild conditions
are satisfied in particular by the stretch exponential distributions with α ≥ 1.
It is easy to show that the functions G(x) and H(x) are close to each other
in that G(x) = (1+o(1))H(x). The convergence of Y k−G−1(log k) is shown
in Section 3, where also the convergence of the sequence of expected values
and variances of {Y k − G−1(log k)} is established. The behavior of Y k for
β > 1 is very different. In Section 4 we show, under mild conditions, that
for β > 1, Y k/kβ−1 converges a.s. to a finite positive random variable.

The behavior of Tk is discussed in Section 5. It is shown that for stretch
exponential random variables with α > 0, β = 1 and every ε > 0 one has
Tk/k2−ε → ∞ a.s. as k → ∞, while Tk/k2+ε → 0 a.s. When α = 1, Tk/k2

converges to a finite positive random variable. The ”standardized” variable

T ∗k = Tk/
k−1∑

j=1

[1− F (βY j)]−1

for β ≥ 1 is considered and has a very interesting behavior, for the stretch
exponential with α > 0. For different values of β we obtain different asymp-
totic behavior: we show that for 1 ≤ β < 1 + 1/2α the random variable T ∗k
converges to 1 a.s. For 1+1/2α ≤ β < 1+1/α it converges to 1 in probabil-
ity. For β > 1 + 1/α the random variable T ∗k converges in distribution to an
exponential mean one distribution, while for β = 1 + 1/α the convergence
in distribution is to a sum of conditionally independent exponential random
variables. We conclude with Section 6, which contains further comments and
remarks. Section 2 contains some preliminaries. Proofs are relegated to an
appendix in order to highlight the results in the paper.

2. Mathematical Preliminaries. The observations are denoted by
X1, X2, . . . and are i.i.d. random variables from a common absolutely con-
tinuous distribution F . We assume that 1− F (x) > 0 for all x < ∞, unless
stated otherwise.

The behavior of rules will be characterized by considering two quantities:

• Tk = The number of observations inspected (including that item) until
the kth item is retained.

• Y k = The average score of the first k items that are retained.

The β better than average rule is defined as follows: For fixed β (which
is suppressed in the notation) and Tk defined above as the number of items
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observed until the kth item is selected, let T1 = 1 and Y1 = X1. Define Tk

and Yk inductively by

Tk+1 = inf{i > Tk : Xi > βY k} , k = 1, 2, . . .

Yk+1 = XTk+1
, k = 1, 2, . . . .

It is clear that Y k increases in k for β = 1. If β > 1 we assume non-negative
Xi to avoid the situation that if Y k is negative then the cutoff to retain an
observation becomes less stringent.

2.1. Theorems on Almost Sure Convergence. In this subsection, first we
present two theorems, that exist in the literature, which will be useful in
proving asymptotic results for the quantities of interest. First, we shall need
the following result, due to Robbins and Siegmund [7], quoted as follows:

Theorem 2.1. Let (Ω,F , P ) be a probability space and F1 ⊂ F2 ⊂ · · ·
a sequence of sub-σ-algebras of F . For each n = 1, 2, . . . , let zn, βn, ξn and
ζn be non-negative Fn-measurable random variables such that

E(zn|Fn−1) ≤ zn−1(1 + βn−1) + ξn−1 − ζn−1.

Then limn→∞ zn exists and is finite and
∑∞

n=1 ζn < ∞ a.s. on {∑∞
n=1 βn <

∞,
∑∞

n=1 ξn < ∞}.

Corollary 2.1. Let zn, βn, ξn and ζn be non-negative sequences of con-
stants such that

∑
βn and

∑
ξn converge, and

zn ≤ zn−1(1 + βn−1) + ξn−1 − ζn−1.

Then limn→∞ zn exists and is finite and
∑∞

n=1 ζn < ∞.

Proof. This follows trivially from Theorem 2.1.

We also need the following theorem, that appears in Feller [2], p. 239.

Theorem 2.2. Let Q1, Q2, . . . be independent r.v.’s with E(Qn) = 0,
and let Sn =

∑n
i=1 Qi. If

1) b1 < b2 < · · · → ∞ are constants
and
2)

∑∞
n=1 E(Q2

n/b2
n) < ∞

then b−1
n Sn → 0 a.s. as n →∞ .
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2.2. Classes of Distributions. Preater [6] showed that when F is expo-
nential and β = 1, Y k − log k converges almost surely to a Gumbel distri-
bution. Krieger, Pollak and Samuel-Cahn [4] extended this result in several
ways. The asymptotic behavior of other quantities, such as Tk, were ob-
tained, values of β > 1 were considered and other F , such as the Pareto and
Beta, were analyzed.

An interesting question is how the rules behave for other distributions
F . This depends on the behavior of the overshoot, X − a|X > a, and its
expectation f(a),

(2.1) f(a) := E(X − a|X > a).

Let xF = sup{x : F (x) < 1}.

Definition 2.1. (See [8] Section 1.1) A distribution function F , be-
longing to the domain of attraction of the Gumbel extreme value distribution
Λ(x) = exp{−e−x}, −∞ < x < ∞ is called a Von Mises function (VM) if
there exists x0 such that for x0 < x < xF and r > 0

(2.2) 1− F (x) = r exp

{
−

∫ x

x0

(g(u)/f(u))du

}
:= e−H(x),

where limu↗xF
g(u) = 1, f(u) > 0, x0 < u < xF , f satisfies (2.1) and f is

absolutely continuous on (x0, xF ) with derivative f ′(u) and limu↗xF
f ′(u) =

0.

Let G(x) be defined by

(2.3) e−G(x) = r exp
{
−

∫ x

x0

1/f(u)du

}
.

Thus,

(2.4) f(x) =
1

G′(x)
.

Note that

(2.5)
d

dx
G−1(x) = f(G−1(x)).

It is clear by this definition that H(x) = (1 + o(1))G(x).
We shall consider only such VM for which xF = ∞. (But see Remark

3.1).
Some of our results that will follow hold for VM distributions, but most

of the results pertain to a rich subclass. Specifically,
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Definition 2.2. F is a generalized stretched exponential distribution if
it is VM with H(x) = cxα + h(x), and c > 0, α > 0 are constants where

(2.6) lim
x→∞

h(x)
xα

= 0,

and

(2.7) lim
x→∞

h′(x)
xα−1

= 0.

This class of distributions is denoted by Gα. By change of variables y =
c1/αx it suffices in the sequel to consider only c = 1.

The reason for extending the stretched exponential by adding h(x) is
to include many of the classical families of distributions such as Normal,
Gamma, Lognormal, and Weibull. For example, the right-hand tail proba-
bility of the standard normal behaves like φ(x)/x by Mills’ ratio where φ(x)
is the standard normal density. Hence the standard normal belongs to G2

with h(x) = log(x).

3. Average, when β = 1. In this section we consider the behavior
of Y k, the average after k items are retained, using the better than average
rule. The emphasis is on the random variables that are generated from a VM
distribution. In the first subsection, we consider the almost sure behavior,
and in the ensuing subsection, results for the expectation and variance of
Y k are presented.

Let Zk = Yk − Y k−1, the ”overshoot” over Y k−1. The results are based
on the following relationship

(3.1) Y k =
(k − 1)Y k−1 + Yk

k
= Y k−1 +

Zk

k
= Y k−1 +

Z(Y k−1)
k

where Z(a) is distributed like X − a|X > a.
The results depend on the expected overshoot f(a) = E[Z(a)]. We shall

use the following lemma later, that gives the expected overshoot and squared
overshoot for F in Gα for large values of a. Specifically,

Lemma 3.1. If the underlying distribution is in Gα, α > 0 then

(3.2) lim
a→∞

EZ(a)
a1−α/α

= 1,

and

(3.3) lim
a→∞

EZ2(a)
2a2(1−α)/α2

= 1.
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The proof of the results uses l’Hôpital’s rule on E(Z(a)) =
∫∞
0 (1 −

FZ(a)(y))dy for the expected overshoot and E(Z2(a)) = 2
∫∞
0 y(1−FZ(a)(y))dy.

This result implies that f(a) = a1−α/α[1 + o(1)]. In some instances we
need a more refined result on the rate, that is the o(1) term, which depends
on h(x). An easy case, as shown in the proof of Corollary 3.1, is when
h(x) = 0, in which case the rate of o(1) is 1/aα.

In the more general case, we want to include h(x). The point of adding
h(x) is to extend our results to known distributions such as the Normal. The
role that h(x) plays, is that it is small relative to xα.

To get a handle on the overshoot consider through integration by parts

f(a) =
∫∞
a e−H(x)dx

e−H(a)
=

∫∞
a e−H(x) H′(x)

H′(x)dx

e−H(a)

=

[
−e−H(x)/H ′(x)

]∞
a

e−H(a)
−

∫∞
a e−H(x) H′′(x)

(H′(x))2
dx

e−H(a)

Note that H ′′(x)/(H ′(x))2 tends to 0 for a VM distribution. Now to get the
rate, consider H(x) = xα +h(x) where limx→∞ h′(x)/xα−1 = 0 by (2.7), and
assume limx→∞ h′′(x)/xα−2 = 0. This implies that H′′(x)

(H′(x))2
= O

(
1

xα

)
. Since

the first term is 1/H ′(a), using l’Hôpital’s rule on the second term yields

f(a) =
1

H ′(a)

(
1 + O

(
1
aα

))
.

Finally, to get the rate at which f(a)/(a1−α/α) goes to 1, we need the
rate at which h′(x)/xα−1 goes to 0. If we assume, as in Theorem 3.1, that
h′(x)/(xα−ε−1) goes to 0, where 0 < ε < α, we have that

(3.4) f(a) = a1−α
[
1 + o

(
1
aε

)]
/α.

These conditions on h(x) and its derivatives are hardly restrictive as the
intent is for h(x) to be small. In particular, if h(x) is xγ for γ < α, then all
of the above conditions hold.

The details of the proofs throughout this and the remaining sections of
the paper appear in the Appendix.

3.1. Results on Almost Sure Convergence of the Mean. The main result
in this subsection is that under mild conditions Y k − G−1(log k) converges
almost surely to a finite random variable (Theorem 3.2). This is an extension
of the result in [6] that Y k − log k converges a.s. to a Gumbel distribution
when observations are generated from an exponential distribution. Theorem



8 A.M. KRIEGER, M. POLLAK AND E. SAMUEL-CAHN

3.1, which is simpler than Theorem 3.2, considers only the Gα class of dis-
tributions. This theorem standardizes Y k by dividing it by a function of k.
Theorem 3.2, however, provides a stronger result, which for the Gα class of
distributions is applicable when α > 1.

The following theorem requires a slight strengthening of condition (2.7).

Theorem 3.1. If the underlying distribution function is in Gα, where
α > 0, and

(3.5) lim
x→∞h′(x)/xα−ε−1 = 0, for some ε > 0,

and
lim

x→∞h′′(x)/xα−2 = 0

then

(3.6) lim
k→∞

Y k

(log k)1/α
= lim

k→∞
Y k

G−1(log k)
= lim

k→∞
Y k

H−1(log k)
= 1 a.s.

The proof considers Sk = (Ak − 1)2 where Ak = Y k

(log k)1/α . Theorem 2.1
is used to show that Sk converges almost surely. We do not believe that the
strengthening of condition (2.7) by (3.5) is necessary for the conclusion to
hold, though we use it in the proof. We know from Theorem 3.2 that it is
not needed for α > 1.

The second result of this subsection, Theorem 3.2, is the stronger state-
ment that Y k − G−1(log k) converges a.s. to a finite random variable as
k → ∞. The conditions for this result are different from those of Theorem
3.1, but distributions in Gα with α > 1 satisfy the conditions of Theorem
3.2 without the additional conditions on h made in Theorem 3.1.

Theorem 3.2. Let β = 1 and F be a VM distribution. Then under
conditions
A) EZ2(a) < aγ for some 0 < γ < ∞ and all a > a0 and
B) f ′(a) ≤ 0 for all a ≥ a0, for some a0 < ∞

Y k −G−1(log k) converges a.s. to a finite random variable as k →∞.

The core of the proof is to show that [Y k−G−1(log k)]2 converges almost
surely, using Theorem 2.1.

The conditions A) and B) are usually satisfied for F a VM distribution
when G(x) increases fast enough. In particular they hold for F ∈ Gα with
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α > 1. That condition A) holds (for all α > 0) follows from Lemma 3.1. Con-

dition B) holds since here f(x) = 1/G′(x) = (1+o(1))
{
αxα−1

[
1 + h′(x)

αxα−1

]}−1

so from (2.7) f(x) is eventually decreasing. The case α = 1 holds when h(x)
is increasing. If F has increasing failure rate (IFR), i.e. satisfies ”new better
than used”, then condition B) is satisfied.
Remark 3.1 If xF < ∞, it is easy to see that limk→∞[Y k−G−1(log k)] = 0
a.s. An example F of a VM distribution with xF < ∞ is 1−F (x) = e1/xI(x <
0).

Corollary 3.1. Let F ∼ Gα with α ≥ 1 and h(x) = 0. Then

Y k − log1/α k converges a.s. to a finite random variable as k →∞.

Remark 3.2 The conclusion of Theorem 3.2 does not hold for all F ∈ Gα,
α > 0, thus not for all VM. An example is: H(x) = x1/2. We omit the proof.

3.2. Results on Convergence of Moments.

Theorem 3.3. If conditions A) and B) given in Theorem 3.2 hold then
there exist constants 0 < b1, b2, b3 < ∞ such that

[EY k −G−1(log k)] → b1,

E[Y k −G−1(log k)]2 → b2

and hence
V ar[Y k −G−1(log k)] → b3.

4. Average, when β > 1. In this section we consider the behavior of
Y k under the more stringent condition that an observation is retained only
if it exceeds β times the previous average, where β > 1. The main result
is that Y k must be standardized by an entirely different quantity, namely,
kβ−1, in order to get a.s. convergence. For F ∈ Gα this standardization is
correct for all α > 0. The result depends on the following relationship

(4.1) Y k = Y k−1 +
(β − 1)Y k−1

k
+

Z(βY k−1)
k

.

The result concerns Bk = Y k

kβ−1 . Let Fk denote the σ-field generated by
Y1, . . . , Yk. It follows by dividing both sides of (4.1) by kβ−1 that

E(Bk|Fk−1) = Bk−1

(
1 + O

(
1
k2

))
+ E

(
Z(βY k−1)

kβ

∣∣∣Fk−1

)
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= Bk−1

(
1 + O

(
1
k2

))
+ f(βY k−1)/kβ.(4.2)

Hence if the expected overshoot is bounded, it follows from Theorem 2.1
that Bk converges almost surely. A more refined result appears in the next
subsection followed by remarks on special cases. The section ends with re-
sults showing that under some conditions the expected value and variance
of Bk also converge.

4.1. Almost Sure Convergence of the Mean. We first show that Bk con-
verges almost surely under more general conditions in the following

Theorem 4.1. Assume F is a VM distribution. Let Bk = Y k

kβ−1 and
f(x) = E(X − x|X > x).
i) If f(x) < cx

(log x)1+ε , where c > 0 and ε > 0, then Bk converges a.s. to a
nondegenerate positive random variable.
ii) If Bk converges a.s., f is monotone and limk→∞E(Bk) < ∞ then for
some constant x0 > 0,

(4.3)
∫ ∞

x0

f(x)
x2

dx < ∞.

Remark 4.1 a) Note that the sufficient condition i) of Theorem 4.1 can
hold also for distributions that are not VM. An example is the Geometric
distribution.
b) Equation (4.3) does not have a β in the expression. Also, under the
more restrictive condition of bounded expected overshoot that was used to
introduce this section (which led to an easy proof of almost sure convergence
of the desired quantity), (4.3) holds.

The following is a general statement about convergence of Y k for the
stretched exponential family of distributions.

Corollary 4.1. Let F ∈ Gα, α > 0, β > 1. Then there exists a random
variable 0 < Wβ < ∞ such that

Y k(β)
kβ−1

k→∞−→ Wβ a.s..

Proof. Since f(x)
x1−α/α

→ 1 it follows that f(x) < cx1−α for some constant
c > 0 for all x > x0 for suitable choice of x0. Hence the condition in i) of
Theorem 4.1 holds.
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There exist VM distributions for which Bk fails to converge a.s. to a finite
limit. The proposition below provides a general result for when Bk does not
converge to a finite limit a.s.

Proposition 4.1. Let Ψ(a) be an increasing positive function of a such
that

(4.4)
∫ ∞

x0

Ψ(x)
x2

dx = ∞.

Let Bk = Y k

kβ−1 , Z(a) ∼ X−a|X ≥ a and define Z∗(a) = Z(a)/Ψ(a). If there
exists a constant a0 and a non-negative random variable V , not identically
zero, such that for all a ≥ a0 V is stochastically smaller than Z∗(a), then
Bk →∞ a.s. as k →∞.

Example 4.1 Let 1− FX(x) = e−(log x)2/2, which is easily seen to be a VM
distribution. Let Ψ(a) = a/ log(a). We shall show that the conditions (and
hence the conclusions) of Proposition 4.1 hold for this example.

Proof. It is immediate that
∫∞
a

Ψ(x)
x2 dx = ∞. Furthermore,

1− FZ∗(a)(x) =
1− FX(a + xa

log a)

1− FX(a)
=

exp{−(log a + log(1 + x
log a))2/2}

exp{−(log a)2/2}
= exp{−(log a)

(
log(1 +

x

log a
)
)
− 1

2

(
log(1 +

x

log a
)
)2

}

> exp{−x− x2/2
(log a)2

} > exp{−x− x2/2}

for all a > e. Hence, if V is such that 1−FV (x) = e−x−x2/21(x ≥ 0) then V
is stochastically smaller than Z∗(a) for all a > e. Furthermore,

lim
n→∞

n∑

k=1

1
kβ

Ψ(γkβ−1) =
n∑

k=1

1
kβ

γkβ−1

log(γkβ−1)
= γ

n∑

k=1

[k(log γ+(β−1) log k)]−1 = ∞.

Note that since here f(x) = [1 + o(1)]x/ log x, it follows that one cannot
take ε = 0 in Theorem 4.1 i).

4.2. Convergence of Moments. We now turn to showing that the expec-
tation of Y k suitably normalized converges to a finite limit for all random
variables that belong to the stretch exponential.

We first consider EBk and V arBk in a general setting.
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Theorem 4.2. Under the following three conditions
a) V arX < ∞
b) f(a) is non-increasing for a > a0

c) EZ2(a) < ca for some c > 0 and a > a0

EBk and V ar Bk converge to a finite limit.

Remark 4.2 Condition a) always holds for non-negative X with F a VM
distribution (see Exercise 1.1.1(a) of [8]). Lemma 3.1 implies that c) holds
for any F ∈ Gα with α ≥ 1/2. Condition b) holds for all F ∈ Gα, α > 1, as
well as for X ∼ Exp(1).

The above theorem does not apply for F ∈ Gα, with α ≤ 1. Nevertheless,
EBk converges in this case as shown in

Theorem 4.3. Let Bk = Y k

kβ−1 . If F ∈ Gα, α > 0 and β > 1 then EBk

converges to a finite limit.

Proof. By Theorem 4.2 we need only consider the case α ≤ 1. From
Lemma 3.1 it follows that for some c and k large enough

f(βY k−1) < cY
1−α
k−1 = c

[
(k − 1)β−1Bk−1

]1−α
= c(k − 1)(β−1)(1−α)B1−α

k−1

≤ c(k − 1)(β−1)(1−α)[1 + Bk−1].

Substituting this into (4.2) yields

(4.5) E(Bk|Fk−1) ≤ Bk−1

[
1 + O

(
1

kmin(2,1+(β−1)α)

)]
+ O

(
1

k1+(β−1)α

)
.

Taking expectations on both sides of (4.5) and using Corollary 2.1, yields
the result.

5. Time until k items are kept.

5.1. Discussion of the Problem. In this section we turn to the second
quantity of interest, Tk, the number of items that are observed until k items
are retained. Unfortunately, it is generally impossible to normalize Tk by
a function of k and achieve almost sure convergence to a nondegenerate
random variable. Instead we consider the following quantity

(5.1) T ∗k =
Tk∑k−1

j=1 [1− F (βY j)]−1
,

which depends on the averages {Y j}, the expectation of which tends to 1.
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The results are obtained for the Gα, α > 0 class of distributions. One in-
teresting facet of the results for α ≥ 1 is that the nature of the convergence
depends on β. When β is relatively small, 1 ≤ β < 1 + 1

2α , then the conver-
gence is almost sure to 1. When β is moderate in size, 1 + 1

2α ≤ β < 1 + 1
α ,

the convergence is to 1, in probability. Finally, if β is large, β ≥ 1 + 1
α , the

convergence is in distribution to an exponential or a sum of conditionally
independent exponential random variables with means adding up to 1.

5.2. Almost Sure Convergence, when β = 1.

Theorem 5.1. Let β = 1 and Xi ∼ F where F is Gα, α > 0. Then

T ∗k =
Tk∑k−1

j=1 [1− F (Y j)]−1
→ 1 almost surely.

The proof uses Theorem 2.2 by conditioning on the responses {Yk}, letting
Pj = 1− F (Y j−1), bj =

∑j
i=1 P−1

j and Qi = Ti − Ti−1 − P−1
i with T0 = 0.

Though Theorem 5.1 gives no explicit order of magnitude of the conver-
gence of Tk, in terms of k, we get an idea of this magnitude in the following

Corollary 5.1. For any δ > 0 and F ∈ Gα, α > 0, β = 1

limTk/k2−δ = ∞ and limTk/k2+δ = 0 a.s.

For the exponential distribution Tk
k2 converges a.s. to a limit as shown in

[4].

5.3. Asymptotic Results when β > 1 . The focus is on T ∗k , the number of
observations that are observed until k items are retained suitably normalized
as defined in (5.1).

For the sake of clarity, we consider in the continuation only F ∈ Gα, α > 0,
where h(x) ≡ 0, i.e. H(x) = xα.

Theorem 5.2. Let X ∼ F where 1− F (x) = e−xα
and α > 0. Then as

k →∞,

i) T ∗k
a.s.−→ 1 for 1 < β < 1 + 1

2α ,

ii) T ∗k
P−→ 1 for 1 + 1

2α ≤ β < 1 + 1
α ,

iii) T ∗k
D−→ Exp(1) and Tk

eβαY
α
k−1

D−→ Exp(1) for β > 1 + 1
α .
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The result for β = 1 + 1
α is of a different nature, and hence is treated

separately in Theorem 5.3. To prove parts ii) and iii) of Theorem 5.2, we
compute the limiting generating function of Tk, suitably standardized, and
are able to recognize the distribution for which this limit is the generating
function. The results then follow from the Continuity Theorem. This line of
reasoning is also used in proving Theorem 5.3.

Note that for U ∼ Geo(p),

Ee−tU =
1

1 + 1−e−t

pe−t

.

We ignore the first observation which adds one to Tk (this will have no effect
on the limiting distribution). Hence the resulting random part of Tk (which
we refer to as T̃k ) is the sum of, conditionally on {Y j}∞j=1, independent

geometric random variables where pj = e−(βY j−1)α
. We have conditionally

on {Y j}

E
(
e−tγ(k)T̃k

)
=

k∏

j=2

[
1 +

1− e−tγ(k)

e−(βY j−1)α−tγ(k)

]−1

,

where the sequence γ(k) is positive, and will be defined as a function of the
given {Y k}, according to the need in the proof for each particular instance,
but always tends to 0. Thus

log Ee−tγ(k)T̃k = −
k∑

j=2

log

(
1 +

1− e−tγ(k)

tγ(k)
tγ(k)etγ(k)+(βY j−1)α

)

= −
k∑

j=2

log
[
1 + (1 + ok(1))tγ(k)e(βY j−1)α

]
.(5.2)

The proof also relies on two details. First, bounds on (1 + x)α are needed
for 0 ≤ x ≤ 1. It is easy to see that

(5.3) 1 + ρlαx ≤ (1 + x)α ≤ 1 + ρuαx for 0 ≤ x ≤ 1,

where ρlα = α and ρuα = 2α − 1 when α ≥ 1, while ρlα = 2α − 1 and
ρuα = α when α < 1. The other detail that the proof relies on is to ensure
that there is k0 such that for all γ > 0 and for all k ≥ k0, with probability
one, the overshoot Zk is less than γY k−1/kδ. The following lemma provides
the justification.

Lemma 5.1. Let X ∼ F where F is Gα with α > 0. Let β > 1 and
let Zk be the random ”overshoot” over βY k−1. For any γ > 0, and any
0 ≤ δ < (β − 1)α, P (Zk > γY k−1/kδ infinitely often) = 0.
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We now turn to the case where β = 1 + 1/α, so that β − 1 = 1/α. This is
the only case where conditioning on the sequence {Y k} plays a role in the
limiting distribution obtained. We know from Theorem 4.1 that there exists
a random variable W , 0 < W < ∞, such that Y k/k1/α k→∞−→ W a.s. Our
result will be stated in terms of the value of W of the limiting variable.

Theorem 5.3. Let X ∼ F where 1−F (x) = e−xα
, α > 0. and β = 1+ 1

α .
Let W = limY k/k1/α. Then

T ∗k
D−→

∞∑

j=1

Rj as k →∞,

where, conditionally on W = w, the Rj are independently, exponentially
distributed with mean µj, where

µj =
exp(βw)α − 1
exp[j(βw)α]

.

Note that the µj sum to 1.

6. Concluding Remarks. The present paper extends the results in
[4] where the Exponential, Beta and Pareto distributions are considered in
detail, to other distributions that include the Normal, Gamma and Weibull.
The results on the special distributions considered in [4] are ”invertible” in
the sense that rates of convergence for Y k and Tk imply rates of converge for
the number of items that are kept and the average of the items kept after
n items are observed. The results obtained for the distributions considered
here are in general not invertible in this way.

Preater in [6] considered the behavior of the average of the first k items
that are kept, Y k, when the distribution generating the observations is ex-
ponential and β = 1 in the β better than average rule. He observed that
Y k − log k converges a.s. and in L2 to a Gumbel distribution. The behavior
of this quantity for β > 1 is markedly different. When β = 1, Y k− log k con-
verges a.s. When β > 1, Y k/kβ−1 converges a.s. In addition, the rate when
β > 1 holds for many distributions, while the amount that one subtracts
from Y k when β = 1 depends on the distribution.

There are two interesting mathematical observations. Firstly, it is not
surprising that there should be some relationship between the domain of
attraction to which the extremal distribution of F belongs and the limiting
distribution of Y k, since the Yk process will, on the average, select larger and
larger items. Preater in [6] shows that Y k−log k and max{X1, . . . , Xk}−log k
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have the exact same limiting Gumbel distribution when the observations
are i.i.d. from an exponential distribution (though Y k converges a.s. and
in L2 while the maximum converges only in distribution). Will the limiting
distribution of Y k, and Mk = max{X1, . . . , Xk} always agree, or at least
have the same rate of convergence? From the general theory of extreme
values it follows that

(6.1)
1

f(H−1(log k))
(Mk −H−1(log k)) D−→ U = Gumbel as k →∞.

This should be compared with our result for β = 1 (under the appropriate
conditions of Theorem 3.2),

(6.2) Y k −G−1(log k) a.s.−→ some finite random variable as k →∞.

The ”normalization” is the same in (6.1) and (6.2) if and only if f(x) ≡ 1
i.e. if and only if the tail of the distribution of X is exponential.

The second interesting mathematical observation is that for the Beta and
Pareto distributions, discussed in [4], we get the same kind of a.s. conver-
gence for Tk, after normalization (depending on β) for all β ≥ 1. In the
families of distributions considered in the present paper, different kinds of
asymptotic convergence holds for different values of β. Specifically, when β
is relatively small, the normalized quantity converges almost surely. When
β is in the middle range, the convergence is in probability. For large values
of β the convergence is in distribution.

APPENDIX A

A.1. Proofs for Section 3.

Proof of Lemma 3.1. Consider (3.3). For any nonnegative random vari-
able Q, EQ2 = 2

∫∞
0 y(1− FQ(y))dy. Thus

EZ2(a) =
2

∫∞
a (x− a)e−H(x)dx

e−H(a)
.

So

lim
a→∞

EZ2(a)
2aδ

= lim
a→∞

∫∞
a (x− a)e−(xα+h(x))dx

aδe−(aα+h(a))

l′Hôpital
= lim

a→∞
− ∫∞

a e−(xα+h(x))dx

e−(aα+h(a)){δaδ−1 − [αaα−1 + h′(a)]aδ}
= lim

a→∞

∫∞
a e−(xα+h(x))dx

e−(aα+h(a))αaα+δ−1
[
1 + h′(a)

αaα−1

]
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= lim
a→∞

∫∞
a e−(xα+h(x))dx

e−(aα+h(a))αaα+δ−1
,(A.1)

by (2.7). Using l’Hôpital’s rule once more we get that the value in (A.1)
equals

lim
a→∞

−e−(aα+h(a))

αe−(aα+h(a)) {(α + δ − 1)aα+δ−2 − [αaα−1 + h′(a)]aα+δ−1}
= lim

a→∞
1

α2a2(α−1)+δ
.

Thus if we take δ = 2(1− α) the above limit is 1/α2 and (3.3) follows.
The proof for E(Z(a)) =

∫∞
a e−H(x)dx/e−H(a) follows in a similar manner.

Proof of Theorem 3.1. Let Ak = Y k

(log k)1/α and Sk = (Ak − 1)2. Note

that log(k−1)
log k = 1− 1

k log k + O
(

1
k2

)
, thus

(
log(k − 1)

log k

)1/α

= 1− 1
αk log k

+ O

(
1
k2

)
.

Hence,

Sk =

(
Ak−1

(
log(k − 1)

log k

)1/α

+
Zk

k(log k)1/α
− 1

)2

=
[
(Ak−1 − 1)−Ak−1

(
1

αk log k
+ O

(
1
k2

))
+

Zk

k(log k)1/α

]2

= (Ak−1 − 1)2 + A2
k−1

(
1

α2k2(log k)2
+ O

(
1
k3

))
+

Z2
k

k2(log k)2/α

+ 2(Ak−1 − 1)
[

Zk

k(log k)1/α
−Ak−1

(
1

αk log k
+ O

(
1
k2

))]

− 2
Zk

k(log k)1/α
Ak−1

(
1

αk log k
+ O

(
1
k2

))
.

Taking conditional expectations on both sides, using (2.1), we therefore get

E (Sk|Fk−1) ≤ Sk−1 + 2(Sk−1 + 1)
(

1
αk2(log k)2

+ O

(
1
k3

))

+
E(Z2(Y k−1)|Fk−1)

k2(log k)2/α

+ 2(Ak−1 − 1)

[
f(Y k−1)

k(log k)1/α
−Ak−1

(
1

αk log k
+ O

(
1
k2

))]
(A.2)
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since A2
k−1 ≤ 2(Sk−1 + 1). The first two terms in (A.2) therefore cause no

problem in the application of Theorem 2.1 to Sk. By Lemma 3.1, for all k
sufficiently large

E(Z2(Y k−1)|Fk−1)
k2(log k)2/α

<
2(1 + ε)

α2

Y
2(1−α)
k−1

k2(log k)2/α
=

2(1 + ε)
α2

A
2(1−α)
k−1 (log(k − 1)1/α)2(1−α)

k2(log k)2/α

<
2(1 + ε)

α2

A
2(1−α)
k−1

k2(log k)2
<

2(1 + ε)
α2

(A2
k−1 + 1)

k2(log k)2

<
2(1 + ε)

α2

[
2Sk−1

k2(log k)2
+

3
k2(log k)2

]
,

so the second term in the last expression is summable and again factoring
out Sk−1 the first term is also summable.

It remains to deal with the last term in (A.2). From (3.4),

f(Y k−1) =
Y

1−α
k−1

[
1 + o(1/Y

ε
k−1)

]

α
.

Thus the first term in the square brackets in (A.2) satisfies

f(Y k−1)
k log k1/α

=
Y

1−α
k−1

[
1 + o(1/Y

ε
k−1)

]

αk(log k)1/α

=
A1−α

k−1 [(log(k − 1))1/α]1−α
[
1 + o(1/(Ak−1(log(k − 1))1/α)ε)

]

αk(log k)1/α

=
A1−α

k−1

[
1 + o

(
A−ε

k−1/(log k)ω
)]

αk log k
.

where ω = ε/α. The last line in (A.2) can therefore be rewritten as

(A.3) −
2(Ak−1 − 1)Ak−1

[
1−A−α

k−1 + O
(

log k
k

)
+ A−α

k−1o

(
A−ε

k−1

(log k)ω

)]

αk log k
.

We want to study when (A.3) is positive for large k. This depends on the
term in brackets, which to simplify notation we denote by R(x), where x =
Ak−1 and the dependence of R(x) on k is implicit. Note that for k sufficiently
large O(log k/k) < δk ≡ 1/(log k)ω. Also note that νk ≡ A−ε

k−1δk < Y
−ε
k−1 → 0

as k →∞ and that νk < x−ε
0 δk if Ak−1 > x0 > 0. Hence when k is sufficiently

large, R(x) ≤ R(x) ≤ R(x) where

(A.4) R(x) = 1− x−α − δk − νkx
−α
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and

(A.5) R(x) = 1− x−α + δk + νkx
−α.

The aim is to show that (A.3) is positive only when 1− cδk ≤ x ≤ 1+ cδk

for a suitably chosen constant 0 < c < ∞. We consider two cases:
i) Assume x > 1. Then (A.3) is positive for the values of x such that R(x) <
0. Since R(x) ≤ R(x), the values of x such that R(x) < 0, or equivalently the
values of x such that xαR(x) < 0 include the values of x such that R(x) < 0.
It suffices to consider

(A.6) xα − 1− δkx
α − νk < 0.

The values of x such that (A.6) holds is equivalent to the values of x such
that

x <

(
1 + νk

1− δk

)1/α

< 1 + c1δk,

for k large for a suitably chosen constant 0 < c1 < ∞.
ii) Assume x < 1. Then (A.3) is positive for the values of x such that
R(x) > 0. Since R(x) ≥ R(x), the values of x such that R(x) > 0, or
equivalently the values of x such that xαR(x) > 0 include the values of x
such that R(x) > 0. Hence, we want to consider when

(A.7) xα + δkx
α + νk > 1.

Since δk and νk are arbitraily small for k sufficiently large, there exists x0 > 0
such that for (A.7) to hold it is sufficient that x > x0. Therefore, (A.7) is
equivalent to

(A.8) x >

(
1− νk

1 + δk

)1/α

> 1− c2δk

for k sufficiently large for a suitable chosen constant 0 < c2 < ∞.
The above analysis shows that (A.3) can be bounded from above by zero

when Ak−1 is outside the interval c± δk. When it is inside, (A.3) is bounded
by O(1/[k(log k)ω]). Hence (A.3) is summable. Thus Sk converges a.s. by
Theorem 2.1. If Sk converges to a value different from 0 this would lead to
a contradition, as the sum of the terms in (A.3) would go to minus infinity,
while Sk is nonnegative. Hence Ak tends to 1 a.s.

Note that when H(x) = xα + h(x), and (2.6) holds then necessarily
H−1(x) = x1/α + h∗(x) where h∗(x)

x1/α

x→∞−→ 0. Thus H−1(log k)

(log k)1/α

k→∞−→ 1 and

the right hand side of (3.6) follows. Since G−1(x) = H−1(x)[1 + o(x)], also
the middle term in (3.6) converges a.s. to 1.
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Proof of Theorem 3.2. The first step in the proof is to show that
(Y k −G−1(log k))2 converges a.s. to a finite random variable as k →∞.

Since Y k → ∞, there will be a (possibly random) k0 such that for all
k > k0, everything written below holds. Consider k > k0 only. Let ck =
G−1(log k). Then, by (2.5) and the boundedness of f ,

ck − ck−1 = (log k − log(k − 1))[G−1(uk)]′

= − log(1− 1
k
)f(G−1(uk))

=
f(G−1(uk))

k
+ O(

1
k2

)(A.9)

where the O( 1
k2 ) term is positive and

(A.10) log(k − 1) ≤ uk ≤ log k.

Note that the last equality in (A.9) follows since f is bounded, by Condition
B. Now write

(Y k − ck)2 = [(Y k−1 − ck−1) +
Z(Y k−1)

k
+ (ck−1 − ck)]2

= (Y k−1 − ck−1)2 +
Z2(Y k−1)

k2
+ (ck−1 − ck)2

+
2Z(Y k−1)

k
(ck−1 − ck)

+ 2(Y k−1 − ck−1)

[
Z(Y k−1)

k
+ (ck−1 − ck)

]
.

Taking conditional expectation, conditional on Fk−1, yields

E[(Y k − ck)2|Fk−1] = (Y k−1 − ck−1)2︸ ︷︷ ︸
(i)

+
E[Z2(Y k−1)|Fk−1]

k2︸ ︷︷ ︸
(ii)

+ (ck−1 − ck)2︸ ︷︷ ︸
(iii)

+
2f(Y k−1)

k
(ck−1 − ck)

︸ ︷︷ ︸
(iv)

(A.11) + 2(Y k−1 − ck−1)

[
f(Y k−1)

k
+ (ck−1 − ck)

]

︸ ︷︷ ︸
(v)

.
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We shall show that the conditions for Theorem 2.1 hold. We shall examine
each term in (A.11) separately. We first show that for any ω > 0

(A.12) Y k/kω → 0 as k →∞, a.s.

Let Wk(ω) = Y k
kω . Then clearly Wk(ω) > 0 and

E[Wk(ω)|Fk−1] =
(

k − 1
k

)ω

Wk−1(ω) +
f(Y k−1)

kω+1
< Wk−1(ω) +

B

kω+1
,

since f is bounded (where we have denoted its bound by B). It follows that
Wk(ω) converges a.s. to a finite limit, L(ω) ≥ 0. Then also Wk(ω/2) →
L(ω/2) a.s. But Wk(ω) = Wk(ω/2)/kω/2, thus the limit must be 0 for all ω.

Now consider term (ii) of (A.11). By condition A) and (A.12), for all k
sufficiently large

(A.13)
E[Z2(Y k−1)|Fk−1]

k2
<

Y
γ
k−1

k2
<

εkωγ

k2
a.s.

Choose ω < 1
γ and write 1− ωγ = δ. The rightmost expression in (A.13) is

then ε/k1+δ, which clearly is summable.
Term (iii) is summable by (A.9) and the boundedness of f .
Term (iv) is negative, and hence causes no problem.
Term (v): Note first that by (A.9)

f(Y k−1)
k

+ (ck−1 − ck) =
f(Y k−1)− f(G−1(uk))

k
+ O(

1
k2

)

=
(Y k−1 −G−1(uk))

k
f ′(dk) + O(

1
k2

)(A.14)

where dk is a value between Y k−1 and G−1(uk). Since G−1 is increasing, it
follows from (A.10) that

(A.15) ck−1 ≤ G−1(uk) ≤ ck.

Consider two cases:
a) Y k−1 − ck−1 ≤ 0. Then by (A.15) also Y k−1 − G−1(uk) ≤ 0 and by B)
(v) is negative since the O(1/k2) term is positive.
b) Y k−1 − ck−1 > 0. If also Y k−1 − G−1(uk) ≥ 0, the previous argument
goes through, except that we still must show that
(Y k−1 − ck−1)I(Y k−1 − ck−1 > 0)/k2 is summable. Now write
(Y k−1 − ck−1)I(Y k−1 − ck−1 > 0) < (Y k−1 − ck−1)2 + 1. Thus

(A.16) (Y k−1 − ck−1)I(Y k−1 − ck−1 > 0)/k2 ≤ (Y k−1 − ck−1)2

k2
+

1
k2

.
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The first term on the right hand side of (A.16) can be combined with (i) in
(A.11), and the second is clearly summable.
Now suppose Y k−1 −G−1(uk) < 0 < Y k−1 − ck−1. Then

(A.17) ck−1 < Y k−1 < G−1(uk) < ck.

Since both |Y k− ck−1| and |Y k−G−1(uk)| are less than ck− ck−1, it follows
from (A.9) that (v) is summable.

It follows that in all cases we can write E[(Y k − ck)2|Fk−1] ≤ (Y k−1 −
ck−1)2(1 + Bk−1) + Dk−1 − Vk−1, where Bk, Dk and Vk are nonnegative
random variables, and Bk and Dk are summable. Thus by Theorem 2.1

(A.18) (Y k − ck)2
k→∞−→ W a.s.

where 0 ≤ W < ∞ is a random variable. Thus |Y k − ck| →k→∞
√

W a.s.
It remains to show that when W 6= 0, Y k− ck cannot jump between

√
W

and −√W an infinite number of times. It will then follow that the limit
exists and is either

√
W or −√W . Recall that Y k − Y k−1 = Zk

k , and that
by (A.9) 0 < ck − ck−1 < γ

k , for some γ > 0.
Take expectations on both sides of the inequality in (A.13). Then

P{Y k − Y k−1 > ε} = P{Zk

k
> ε} = P{Z2

k

k2
> ε2} ≤ C

ε2k1+δ
.

Thus by the Borel-Cantelli Lemma P{Y k − Y k−1 > ε infinitely often } = 0.
This implies P{|(Y k−ck)− (Y k−1−ck−1)| > 2ε infinitely often } = 0. Thus,
if
√

W > ε, Y k−ck cannot jump between
√

W and −√W an infinite number
of times, i.e., Y − ck will converge a.s. to

√
W or −√W . Since for W > 0,

there always exists a small enough ε > 0 such that W − ε > 0, it follows
that Y k − ck converges. Clearly on the set where {W = 0} the statement
(Y k − ck)2 → 0 is equivalent to Y k − ck → 0.

Proof of Corollary 3.1. The expected overshoot given X > a is

f(a) =
∫∞
a e−xα

dx

e−aα =
1
α

∫∞
aα y1/α−1e−ydy

e−aα .

The right-hand side follows by change of variables to y = xα. But in
Abramowitz and Stegun [1] page 263,

∫∞
x tν−1e−tdt

e−x
= xν−1

[
1 +

ν − 1
x

+ O

(
1
x2

)]
as x →∞.
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This implies that

f(a) =
1
α

a1−α
[
1 +

1/α− 1
aα

+ O

(
1

a2α

)]
as a →∞.

Equation (2.4) implies

G′(a) =
1

f(a)
= αaα−1

[
1 +

1− 1/α

aα
+ O

(
1

a2α

)]
as a →∞.

Integrating both sides results in G(a) = aα + (α − 1) log a + O(1) for large
a since the remainder term O(a−(α+1)) has finite integral.

Now for any ε > 0, if a is sufficiently large then G(a1/α+ε) = (a1/α+ε)α+
(α−1) log(a1/α +ε)+O(1). But (a1/α +ε)α = a{1+ ε

a1/α }α = a+αεa1−1/α+
smaller order terms. Hence if α > 1 and a is sufficiently large then G(a1/α +
ε) > a. A similar argument shows that if α > 1 and a is sufficiently large
then G(a1/α − ε) < a. Therefore lima→∞[G−1(a)− a1/α] = 0.

Proof of Theorem 3.3. Upon taking expectations on both sides of
(A.11) we obtain

E[(Y k − ck)2] = E[(Y k−1 − ck−1)2︸ ︷︷ ︸
(i)

] + E




E[Z2(Y k−1)|Fk−1]
k2︸ ︷︷ ︸
(ii)




+ (ck−1 − ck)2︸ ︷︷ ︸
(iii)

+
2E[f(Y k−1)]

k
(ck−1 − ck)

︸ ︷︷ ︸
(iv)

(A.19) + 2E

(
(Y k−1 − ck−1)

[
f(Y k−1)

k
+ (ck−1 − ck)

])

︸ ︷︷ ︸
(v)

.

All we need to do is subtract E[(Y k−1)− ck−1]2 on both sides and sum. If a
term remaining on the right-hand side is positive then we need to show that
it is summable. If a term is negative it must be summable as the term on the
left-hand side is nonnegative. Hence we see that terms (ii), (iii) and (iv) cause
no trouble. The only term of concern is (v). But the expectation (integral
over the density of Y k) can be divided into an integral over three regions:
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i) Y k−1 ≤ ck−1, ii) Y k−1 ≥ G−1(uk) and iii) ck−1 < Y k−1 < G−1(uk). As in
the proof of Theorem 3.2, the integrand for regions i) and ii) are negative
and over the third region it is positive, but can be dealt with in the same
way as in the proof of Theorem 3.2 by use of Corollary 2.1. The last two
statements of the theorem follow.

A.2. Proofs for Section 4.

Proof of Theorem 4.1.
Proof of i)

(A.20) E(Bk|Fk−1) = Bk−1

[(
k − 1

k

)β−1 (
1 +

β − 1
k

)]
+

f(βY k−1)
kβ

.

Thus

(A.21) E(Bk|Fk−1) = Bk−1

(
1 + O

(
1
k2

))
+

f(β(k − 1)β−1Bk−1)
kβ

where O
(

1
k2

)
> 0. Thus E(Bk|Fk−1) > Bk−1

(
1 + O

(
1
k2

))
which implies

that Bk converges, to a finite or infinite limit.
Suppose first that the limit is infinite. Then there exist k0 and D > 1/β

such that for all k > k0, Bk−1 > D. But then from i), for k > k0

f(β(k − 1)β−1Bk−1)
kβ

< Bk−1
cβ(k − 1)β−1

kβ[log(βBk−1) + (β − 1) log(k − 1)]1+ε

< Bk−1
cβ

k[log(βD) + (β − 1) log(k − 1)]1+ε
< Bk−1

cβ

(β − 1)1+εk[log(k − 1)]1+ε
.

But the term multiplying Bk−1 on the right is summable, which implies that
(A.21) satisfies the condition of Theorem 2.1, and hence Bk converges to a
finite limit. This contradiction implies that Bk converges to a finite r.v. a.s.
Proof of ii) Now suppose that Bk converges a.s. and limEBk < ∞. It follows
from (4.1) and as in (A.20) that Bk can be written as

Bk = Bk−1

[
1 + O

(
1
k2

)]
+

Z(βY k−1)
kβ

where O(1/k2) is positive. it follows that Bk > Bk−1, so that the limit is
positive. Since the support of the observations is not bounded, in a different
realization one could obtain a higher value. Hence the limit is a nondegen-
erate positive random variable. Set B0 = 0. Then

(A.22) Bk =
k∑

j=1

(Bj −Bj−1) = O(1)
k∑

j=1

Bj−1

j2
+

k∑

j=2

Z(βY j−1)
jβ

.
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Since Bk converges a.s. limBk exists and is finite a.s. Taking expecta-
tions and limits as k → ∞ on both sides of (A.22) and noting that EBk

is assumed to be bounded implies that
∑∞

j=1
Z(βY j−1)

jβ < ∞. This in turn

implies
∑∞

j=1
f(βY j−1)

jβ < ∞. Since Bk converges a.s. to a random variable
Wβ for 0 < ε < Wβ and a (random) k0, we have for all k − 1 > k0,
(Wβ − ε)(k − 1)β−1 < Y k−1 < (Wβ + ε)(k − 1)β−1. If f is increasing

∞ >
∞∑

k=k0

f(βY k−1)
kβ

>
∞∑

k=k0

f(β(Wβ − ε)(k − 1)β−1)
kβ

>

(
1
2

)β ∞∑

k=k0

f(A(k − 1)β−1)
(k − 1)β

(A.23)

where the inequality follows since
(

k−1
k

)β
>

(
1
2

)β
, and where we have writ-

ten A = β(Wβ − ε).
Finally,

∞∑

k=k0

f(A(k − 1)β−1)
(k − 1)β

>

∫ ∞

k0−2

1
(x + 1)β

f(Axβ−1)dx >

(
k0 − 2
k0 − 1

)β ∫ ∞

k0−2

f(Axβ−1)
xβ

dx.

By change of variable to y = Axβ−1 the integral on the right hand side
becomes A

β−1

∫∞
A(k0−2)β−1

f(y)
y2 dy. This integral is therefore finite by (A.23).

Proof of Proposition 4.1. In a manner similar to the end of the proof
in Theorem 4.1 it can be shown that if

∫∞
C

Ψ(y)
y2 dy diverges then limn→∞

∑n
k=k0

1
kβ Ψ(γkβ−1)

also diverges.
Note that

(A.24) Bk = Bk−1

[
1 + O

(
1
k2

)]
+

Z∗(βY k−1)
kβ

Ψ(βY k−1).

Let Fk be the cdf of Z∗(βY k−1) conditional on Y k−1. Let FV be the cdf
of V . Let U1, U2, . . . ∼ U [0, 1] i.i.d. Define Vk = F−1

V (Uk) (so Vi are i.i.d.
with cdf FV ). Clearly, Vk ≤ F−1

k (Uk) conditional on Y k−1 once βY k−1 ≥ a0

(which will happen with probability 1).
It follows that one can imbed the sequence Y1, Y2, . . . in a probability

space where V1, V2, . . . are i.i.d. with cdf FV and

Vi ≤ Z∗(βY k−1) for all i such that βY i−1 ≥ a0
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conditional on Y k−1. Define V ∗
i = c1(Vi > c) for some c such that P (Vi >

c) > 0. Clearly, V ∗
i ≤ Z∗(βY k−1). Note that V ∗

i is c times a Bernoulli
random variable. Now

(A.25)
Z∗(βY k−1)

kβ
Ψ(βY k−1) ≥ V ∗

k

Ψ(βY k−1)
kβ

.

Recall that
Y k ≥ β − 1 + k

k
Y k−1

so that for a constant a1 that is independent of Y1 and k,

(A.26) Y k > Y1

k∏

j=2

β − 1 + j

j
≥ Y1a1k

β−1.

Hence (for k such that βY k−1 ≥ a0 and a1 a constant) since Ψ(a) increases
in a

(A.27)
Z∗(βY k−1)

kβ
Ψ(βY k−1) ≥ V ∗

k

Ψ(βY1a1(k − 1)β−1)
kβ

.

Finally, condition on Y1 and denote

ck =
Ψ(βY1a1(k − 1)β−1)

kβ
.

By (4.4) and what we showed above, limn→∞
∑n

k=1 ck = ∞. It is a straight-
forward application of Kolmogorov’s three-series theorem (c.f. Feller [2], p.
317) that

(A.28) lim
n→∞

n∑

k=1

V ∗
k ck = ∞ a.s.

Putting (A.27) and (A.28) together obtains that Z∗(βY k−1)
kβ Ψ(βY k−1) is not

summable. This and (A.24) imply that limk→∞Bk = ∞ a.s.

Proof of Theorem 4.2. EBk converges to a finite limit by (4.2) since
f is bounded by assumption b).

V arBk = V ar

(
k − 1 + β

kβ
Y k−1 +

Z(βY k−1)
kβ

)

=

[
(k − 1 + β)2(k − 1)2(β−1)

k2β

]
V arBk−1 +

V ar(Z(βY k−1))
k2β
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+ 2
k − 1 + β

k2β
Cov

(
Y k−1, Z(βY k−1)

)
.(A.29)

We shall treat each of the three terms in ( A.29) separately.
i) It is easily seen (by taking log) that the value in the square bracket is
1 + O

(
1
k2

)
.

ii) From condition c) and the convergence of EBk to a finite limit

V ar(Z(βY k−1))
k2β

<
EZ2(βY k−1)

k2β
<

cβEY k−1

k2β
<

cβ(limEBk + ε)
kβ+1

.

Thus the second term in the right hand side of (A.29) is summable.
iii) We now show that the third term in the right hand side of (A.29) is
negative or 0.

Cov(Y k−1, Z(βY k−1)) = E(Y k−1Z(βY k−1))−E(Y k−1)E(Z(βY k−1))
= E[Y k−1E(Z(βY k−1)|Fk−1)]− E(Y k−1)E[E(Z(βY k−1)|Fk−1)]

=
1
β

E[βY k−1f(βY k−1)]− 1
β

E(βY k−1)Ef(βY k−1)

=
1
β

Cov(βY k−1, f(βY k−1)) ≤ 0

where the last inequality follows from b). It follows that (A.29) satisfies the
condition in Corollary 2.1 with zn = V arBn, and the result follows.

A.3. Proofs for Section 5.

Proof of Theorem 5.1. Let Pj = 1−F (Y j−1). We shall use Theorem
2.2 conditionally on the sequence {Y k}. Let bj =

∑j
i=1 P−1

i and Qi = Ti −
Ti−1 − P−1

i with T0 ≡ 0. Obviously, the sequence {bj}∞j=1 satisfies the first
condition of Theorem 2.2.

Note that conditional on the sequence {Pj} the distribution of Ti−Ti−1 is
Geometric (Pi) and these differences are conditionally independent of each
other. Hence {Qn}∞n=1 is a sequence of conditionally independent random
variables with zero expectation and variance (1 − Pn)/P 2

n . We shall show
that the second condition of Theorem 2.2 holds.

∞∑

n=1

E(Q2
n/b2

n) =
∞∑

n=1

1− Pn

P 2
n

/(
n∑

j=1

P−1
j )2 <

∞∑

n=1

1
P 2

n

/(
n∑

j=1

P−1
j )2.

It therefore suffices to show that for all n ≥ n0

(A.30)
n∑

j=0

Pn+1

Pj+1
≥ An1/2 log n
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for some A > 0. We shall actually show that for any 0 < ε < 1/4 there exists
j0 such that for all n ≥ j ≥ j0

(A.31)
Pn+1

Pj+1
>

j1−ε

n1+ε
.

From (A.31) it is immediate that (A.30) holds, since

n∑

j=0

Pn+1

Pj+1
>

n∑

j=j0

Pn+1

Pj+1
≥ 1

n1+ε

n∑

j=j0

j1−ε ≥ D
n2−ε − j2−ε

0

n1+ε
> An1−2ε.

Note that for H(x) = xα +h(x) for α > 0 and h that satisfies (2.6), we have

by Theorem 3.1, Y j = (log j)1/α(1 + εj) with εj
j→∞−→ 0. Thus

H(Y j) = (log j)(1 + εj)α

[
1 +

h((log j)1/α(1 + εj))
(log j)(1 + εj)α

]

and since h(x)/xα x→∞−→ 0 it follows that for any ε > 0 there exists j0 such
that for all j > j0

(1 + ε) log j > H(Y j) > (1− ε) log j

which implies, since [1− F (Y j)]−1 = exp H(Y j), that

(A.32) j1+ε > [1− F (Y j)]−1 > j1−ε.

Thus (A.31) follows.
Note that here Sn of Theorem 2.2 equals Tn−

∑n
i=1 P−1

i , thus b−1
n Sn → 0 a.s.

is equivalent to T ∗n − 1 → 0 a.s. Since this result holds for any conditioning
sequence {Y k}, it holds unconditionally.

Proof of Corollary 5.1. In (A.32) take any ε > 0. Hence for some
positive constants c1, c2, c

∗
1, c

∗
2 and all k large enough

c∗2k
2+ε > c2

k∑

j=1

j1+ε >
k∑

j=1

[1− F (Y j)]−1 > c1

k∑

j=1

j1−ε > c∗1k
2−ε.

Since Tk∑k

j=1
[1−F (Y j)]−1

→ 1 a.s. for k large enough and c∗∗1 a positive constant

Tk

k2−δ
=

Tk∑k
j=1[1− F (Y j)]−1

∑k
j=1[1− F (Y j)]−1

k2−δ
> c∗∗1 kδ−ε →∞ a.s. if δ > ε.

The proof for Tk

k2+δ follows in a similar manner.
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Proof of Theorem 5.2.
Proof of i) We shall (again) use Theorem 2.2 and show (A.30) where Pj = 1−
F (βY j−1). Assume that k0 (random) is such that for all k ≥ k0, Zk < γY k−1.
Such a k0 exists with probability one by Lemma 5.1. Then for k > k0,

Y k = Y k−1 +
Zk + (β − 1)Y k−1

k
≤ Y k−1

(
1 +

γ + β − 1
k

)
.

Thus

(A.33) Y
α
k ≤ Y

α
k−1

(
1 +

γ + β − 1
k

)α

≤ Y
α
k−1

(
1 +

d

k

)
,

where d = (γ +β−1)ρuα and ρuα is defined in (5.3). We can therefore write,
using (A.33),

(A.34)
Pk+1

Pk
= exp{−βα(Y α

k − Y
α
k−1) ≥ exp

{
−βα d

k
Y

α
k−1

}
.

Now let k1 ≥ k0 be so large that for all k ≥ k1, Y k < (W + ε)kβ−1, which
exists, by Theorem 4.1. Then we can continue the inequality in (A.34), by

Pk+1

Pk
> exp

{
−βα d

k
(W + ε)αkα(β−1)

}
= exp

{
−Bkα(β−1)−1

}
.

To simplify notation let

(A.35) τ = α(β − 1)− 1,

thus τ > −1. For j > k > k1, we have

Pn+1

Pj+1
=

n∏

k=j+1

Pk+1

Pk
> exp



−B

n∑

k=j+1

kτ



 > exp

{
− B

τ + 1

(
nτ+1 − (j + 1)τ+1

)}
.

Thus
n∑

j=1

Pn+1

Pj+1
>

n∑

j=k1

Pn+1

Pj+1
> e−

B
τ+1

nτ+1
n∑

j=k1

e
B

τ+1
(j+1)τ+1

.

But
n∑

j=k1

e
B

τ+1
(j+1)τ+1

>

∫ n

k1+1
e

B
τ+1

xτ+1

dx,

thus

(A.36)
n∑

j=1

Pn+1

Pj+1
>

∫ n

k1+1
e

B
τ+1

xτ+1

dx/e
B

τ+1
nτ+1

.
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We would like the right hand side of (A.36), divided by n1/2+ε for some
(small) ε > 0, to tend to a nonzero limit in order for (A.30) to hold. Thus
consider, by use of l’Hôpital’s rule, the limit as y →∞ of

q(y) =

∫ y
k1+1 eAxτ+1

dx

yδeAyτ+1 , where A > 0 is any constant.

lim
y→∞ q(y) = lim

y→∞
eAyτ+1

eAyτ+1(δyδ−1 + A(τ + 1)yτ+δ)

which is finite when τ + δ = 0 and tends to ∞ when τ + δ < 0. Now for
δ = 1/2, by (A.35) we get a finite limit when α(β − 1) − 1 + 1/2 = 0, i.e.
β = 1 + 1/(2α). Thus for β < 1 + 1/(2α) there will exist an ε > 0 such that
the value of

∑n+1
j=0

Pn+1

Pj+1
> n1/2+ε, and the result i) follows.

Proof of ii) Let

(A.37) γ(k) =
1

∑k−1
j=1 e(βY j)α

,

in (5.2). Then clearly γ(k) → 0. We shall show later that
[
(1 + ok(1))tγ(k)e(βY j−1)α

]

of (5.2) is arbitrarily close to 0 for 2 ≤ j ≤ k for all sufficiently large k and
β < 1 + 1/α. It suffices to show this for j = k. We can then write, using
(5.2) and (A.37),

−(1 + ε)t = −(1 + ε)
k∑

j=2

tγ(k)e(βY j−1)α
< log Ee−tγ(k)T̃k

< −(1− ε)
k∑

j=2

tγ(k)e(βY j−1)α
= −(1− ε)t.

It follows that limk→∞E
(
e−tγ(k)Tk

)
= e−t, which is the desired result. We

still must show that
[
(1 + ok(1))tγ(k)e(βY j−1)α

]
of (5.2) is arbitrarily close

to 0 for j = k for all sufficiently large k and β < 1 + 1/α. Let ρlα be defined
by (5.3).

Y
α
j − Y

α
j−1 >

ρlα(β − 1)Y α
j−1

j
>

ρlα(β − 1)j(β−1)αWα(1− ε)
j

for all j sufficiently large, where by Theorem 4.1 lim Y j−1

(j−1)β−1 = W > 0.
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Thus

γ(k)e(βY k−1)α
=

1
∑k−1

j=1 e−βα(Y
α
k−1−Y

α
j )

=
1

∑k−1
j=1 e

−βα
∑k−1

i=j+1
(Y

α
i −Y

α
i−1)

<
1

∑k−1
j=j0

e
−D

∑k−1

i=j+1
i(β−1)α−1

→ 0,

for suitable large j0, as long as (β− 1)α− 1 < 0, i.e. β < 1 + 1/α (where we
have let D = ρlαβα(β − 1)Wα(1− ε) ).
Proof of iii) Here let γ(k) = e−βαY

α
k−1 . With this γ(k), (5.2) becomes

log Ee−tγ(k)T̃k = −
k∑

j=2

log
[
1 + (1 + ok(1))te−βα(Y

α
k−1−Y

α
j−1)

]

= − log[1 + (1 + ok(1))t]

−
k−1∑

j=2

log
[
1 + (1 + ok(1))te−βα

∑k−1

i=j
(Y

α
i −Y

α
i−1)

]
.(A.38)

Now for some D > 0 (dependent on {Y k})

0 < e−βα(Y
α
i −Y

α
i−1) < e

−βαρlα(β−1)Y
α
i−1

i < e−Diα(β−1)−1
.

Thus
e−βα(Y

α
k−1−Y

α
j−1) < e

−D
∫ k−1

j
xνdx = e−

D
ν+1

[(k−1)ν+1−jν+1]

where ν = α(β − 1)− 1 > 0, i.e. β > 1 + 1/α. But

lim
k→∞

k−1∑

j=2

e−
D

ν+1
[(k−1)ν+1−jν+1] = lim

k→∞

∫ k
2 eDxν+1

dx

eDkν+1

l′Hôpital
= lim

k→∞
1

D(ν + 1)kν
= 0.

Since the sum in the right hand side of (A.38) tends to 0 and
limk→∞E

(
e−tγ(k)Tk

)
→ 1/(1 + t) which is Ee−tQ where Q ∼ Exp(1),

Tk

eβαY
α
k−1

tends in distribution to an exponential distribution. The above proof

shows that
∑k−1

j=1 e(βY j)
α
/e(βY k−1)α a.s.−→ 1, thus also T ∗k

D−→ Exp(1).

Proof of Lemma 5.1. Consider the event A = {Y k/kβ−1 → W, 0 <
W < ∞}. We know by Theorem 4.1 that P (A) = 1, and hence we shall
assume that A occurs. Let Ak = {Zk > γY k−1/kδ}. We shall show that
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∑∞
k=1 P (Ak) < ∞ so that the result will follow from the Borel-Cantelli

Lemma.

P (Ak|Y k−1) = exp{−[(γ/kδ + β)α − βα]Y α
k−1

− [h((γ/kδ + β)Y k−1)− h(βY k−1)]}
= exp{−βα

((
1 +

γ/β

kδ

)α

− 1
)

Y
α
k−1 − h′(Qk)

γ

kδ
Y k−1},

where βY k−1 ≤ Qk ≤ (β + γ
kδ )Y k−1. Write, by (2.7),

| − h′(Qk)
γ

kδ
Y k−1| = | − h′(Qk)

Qα−1
k

γ

kδ
Y k−1Q

α−1
k | = |okY

α
k−1

1
kδ
|

where |ok| < ε for k ≥ k0 with large enough k0 and ε > 0 arbitrary. Note
that by (A.26) k0 can be chosen to depend on Y1 only. For ε small enough
this implies

P (Ak|Y k−1) ≤ exp{−βα
(

αγ/β

kδ
+ o

(
1
kδ

))
Y

α
k−1 + |ok| 1

kδ
Y

α
k−1}

≤ exp{−[βα−1αγ − 2ε]
1
kδ

Y
α
k−1}

≤ exp{−1
2
βα−1αγ

1
kδ

cY1k
β−1} ≤ exp{−dY1k

β−1−δ}.

The next to last inequality follows from (A.26). Hence
P (Ak|Y1) ≤ exp{−dY1k

β−1−δ} for k ≥ k0 = k0(Y1). If δ < β−1,
∑∞

k=1 P (Ak|Y1) <
∞, so , by the Borel-Cantelli Lemma, conditonal on Y1, P (Ak i.o.|Y1) = 0.
But this is true for all Y1. Hence P (Ak i.o.) = 0.

Proof of Theorem 5.3. Let γ(k) = 1/
∑k−1

j=1 edY
α
j where d = βα. We

write (5.2) as

(A.39) log E
(
e−tγ(k)T̃k

)
= −

k−1∑

j=1

log
[
1 + t(1 + ok(1))γ(k)edY

α
k−j

]
.

Since when R is exponentially distributed with mean µ, log E
(
e−tR

)
=

− log(1 + µt), it is sufficient to show that the right hand side of (A.39)
converges, as k →∞, to −∑∞

j=1 log[1 + tµj ] .
First consider

(A.40) γ(k)edY
α
k−j =

1
Sj,k + Tj,k
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where Sj,k =
∑k−1

i=k−j ed(Y
α
i −Y

α
k−j) and Tj,k =

∑k−j−1
i=1 e−d(Y

α
k−j−Y

α
i ). Note

that Yi = Zi + βY i−1 where Zi is the amount above βY i−1 for the ith item
that is kept. Hence,

Y i =
(i− 1)Y i−1 + Zi + βY i−1

i
= Y i−1+

Zi + Y i−1/α

i
, because β−1 = 1/α.

By Lemma 5.1, for all i sufficiently large

Y
α
i = Y

α
i−1

(
1 +

Zi

iY i−1
+

1
αi

)α

= Y
α
i−1

(
1 +

1
i

+ smaller order terms
)

.

Let w = limk→∞ Y k/k1/α. Therefore, limi→∞ Y
α
i − Y

α
i−1 = wα and for fixed

b, limi→∞ Y
α
i+b − Y

α
i = bwα. This implies

lim
k→∞

Sj,k = lim
k→∞

k−1∑

i=k−j

ed(Y
α
i −Y

α
k−j) = lim

k→∞

j−1∑

l=0

ed(Y
α
k−j+l−Y

α
k−j)

=
j−1∑

l=0

edlwα
=

edwαj − 1
edwα − 1

.(A.41)

For any ε > 0 there exists m such that (1 − ε)wα ≤ Y
α
i

i+1 ≤ (1 + ε)wα for
all i ≥ m. This implies

lim
k→∞

Tj,k = lim
k→∞

m−1∑

i=1

e−d(Y
α
k−j−Y

α
i ) + lim

k→∞

k−j−1∑

i=m

e−d(Y
α
k−j−Y

α
i )

Fix m. Then the first limit on the right hand side is clearly zero since
Y k−j →∞ as k →∞. Consider the second term.

lim sup
k→∞

k−j−1∑

i=m

e−d(Y
α
k−j−Y

α
i ) ≤ lim

k→∞

k−j−m∑

l=1

e−dlwα(1−ε) =
1

ed(1−ε)wα − 1
.

Similarly,

lim inf
k→∞

k−j−1∑

i=m

e−d(Y
α
k−j−Y

α
i ) ≥ 1

ed(1+ε)wα − 1
.

Hence,

(A.42) lim
k→∞

Tj,k =
1

edwα − 1
for any fixed j.
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Substituting the results (A.41) and (A.42) into (A.40) yields
(A.43)

lim
k→∞

γ(k)edY
α
k−j =

1
edwαj−1
edwα−1

+ 1
edwα−1

=
edwα − 1

edwαj
= µj for fixed j.

Returning to (A.39), fix n.

−
k−1∑

j=1

log
[
1 + t(1 + ok(1))γ(k)edY

α
k−j

]

= −
n−1∑

j=1

log
[
1 + t(1 + ok(1))γ(k)edY

α
k−j

]

−
k−1∑

j=n

log
[
1 + t(1 + ok(1))γ(k)edY

α
k−j

]
.(A.44)

Equation (A.43) implies that each term in the sum of the first expression on
the right hand side converges to log(1 + tµj) as k → ∞. We need to show
that limk→∞

∑k−1
j=n log

[
1 + t(1 + ok(1))γ(k)edY

α
k−j

]
can be made arbitrarily

small by choosing n to be sufficiently large (all terms in the sum are positive).
Note that γ(k)edY

α
k−j < 1

Sj,k
. For any ε > 0 choose n large enough so that

Y
α
i

i+1 ≥ (1− ε)wα for all i ≥ n. For j ≥ n,

Sj,k =
k−1∑

i=k−j

ed(Y
α
i −Y

α
k−j) =

j−1∑

l=0

ed(Y
α
k−j+l−Y

α
k−j)

≥
j−1∑

l=0

edlwα(1−ε) =
edwαj(1−ε) − 1
edwα(1−ε) − 1

.

Hence,

γ(k)edY k−j <
edwα(1−ε) − 1
edwαj(1−ε) − 1

< e−dwα(j−1)(1−ε).

Choose k large enough so that ok(1) < ε. Then

lim
k→∞

k−1∑

j=n

log
[
1 + t(1 + ok(1))γ(k)edY

α
k−j

]

≤ lim
k→∞

k−1∑

j=n

t(1 + ε)e−dwα(j−1)(1−ε) <
t(1 + ε)e−dwα(n−2)(1−ε)

edwα(1−ε) − 1
.

Since the right hand side goes to zero as n →∞ the second term in the sum
in (A.44) can be made arbitrarily small by choosing n sufficiently large.
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