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Abstract

This note revisits the problem of selection bias, using a simple binomial example. It
focuses on selection that is introduced by observing the data and making decisions
prior to formal statistical analysis. Decision rules and interpretation of confidence
measure and results must then be taken relative to the point of view of the decision
maker, i.e., before selection or after it. Such a distinction is important since inference
can be considerably altered when the decision maker’s point of view changes. This
note demonstrates the issue, using both the frequentist and the Bayesian paradigms.

Key words:
Confidence interval, Credible set, Binomial model, Decision theory, Likelihood
principle

1 Introduction

1.1 Background

Decision theory provides precise and well-defined criteria that quantify our
confidence in data-based decisions such as the level of significance, p-value,
confidence interval level, and Bayesian confidence interval (credible interval).
Such criteria are predicated on a variety of assumptions and models. An im-
portant but problematic condition which is often made and rarely satisfied is
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that the data are not subject to selection or screening prior to their analysis,
and that the hypotheses, models, and statistical methods are determined in
advance, that is, before observing the data.

The problem has become more severe in recent years, where sometimes re-
search starts with data mining and data selection, and is followed by formu-
lation of hypotheses, and selection of statistical models and relevant tools for
testing and estimation: an order of operations that violates the basic tenets
of decision theory. An exceptional area that acknowledges selection bias to
some degree is meta-analysis, where individual studies are combined to esti-
mate an overall effect. Much of the effort in meta-analysis research is devoted
to understanding and testing for the existence of selection bias due to use of
published data only, and to making the necessary adjustments in inference.
See, for example, Duval and Tweedie (2000) and Berger (1985, Problem 4 of
Chapter 4).

In specific well-structured cases, decision-theoretic criteria can be evaluated
in spite of violations of this type. For example, Olshen (1973) considers ap-
plication of Scheffé simultaneous confidence intervals computed only on data
that first lead to rejection of the null hypothesis of equality of the parameters
in question to zero. He shows how to calculate the correct frequentist region
in this two-stage problem. The reply in Scheffé (1977) to this procedure is en-
lightening, and can be summarized by the well-known frequentist mantra: one
must decide on the criterion before analyzing the data. For other examples of
confidence rules that are constructed conditionally on a result of a statistical
test see Siegmund (1978), Meeks and D’Agostino (1983), Finner (1994) and
Chiou and Han (1999).

Bayesian advocates may feel that these problems are unique to the frequentist
school, since the Bayesian philosophy follows the Likelihood Principle, which
enables post-data inference. This, however, is only partially true. It would be
true if all decisions including the choice of the model, the prior, and the loss
function were made in advance.

The purpose of this paper is to shed some light on the difficulties of trying to
take data selection into account and the dangers of not doing so, by means of a
very simple binomial example. In particular, we make the point that in certain
situations of the kind described above, frequentist confidence levels may have
to be taken as relative to the point of view of the user. Such measures may
vary between the scientist performing the study, the statistician advising him,
and the reader and user of the research results. We also characterize situations
in which selection bias can be ignored by the Bayesian statistician and models
under which the bias must be taken into account.
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1.2 Main example

To crystalize the issues, we consider the following scenario, which is a pro-
totype of the situations described above. A scientist comes to a statistician
after conducting a binomial experiment, asking to construct a confidence in-
terval for the probability of success p. The scientist says that she would not
have come had she observed two or more successes, but came because fewer
successes had been observed and she was not sure how to construct the con-
fidence interval. Furthermore, she says that all scientists act in this way, that
is, go to a statistical consultant only when they observe fewer than two suc-
cesses; when observing two or more successes they construct the confidence
interval by themselves. No further information regarding other scientists or
experiments is provided.

In the sequel, we will distinguish between two possible population models:
Model I - there is an infinite number of independent binomial experiments
Bin(n, p) with the same probability of success p.
Model II - there is an infinite number of independent binomial experiments
Bin(n, pi) with different probabilities of success pi.
Under both models, the statistician observes an experiment from the subset
of experiments that result in one or zero successes, not knowing the number
of unreported experiments that might have been performed.

As an example, pi could be the probability of an adverse reaction to a new drug
at a given dose di given to n subjects in each of a number of experiments. Only
“successful” experiments that end with at most one case of adverse reaction
are brought to the statistician for analysis. Model I holds when all doses and
hence all pi’s are equal; otherwise, we have Model II.

A formal description of the problem is as follows. Let P = (p1, p2, . . .) be a
sequence of probabilities 0 < pi < 1, and let Xi ∼ Bin(n, pi), i = 1, 2, . . ., be
independent binomial experiments, where under Model I pi ≡ p. The random
variable observed is XT , where T = min{i : Xi ≤ 1}, and T is unknown to
the statistician. We assume that P is such that PP (T < ∞) = 1. The aim is
to construct a 1− α level confidence interval CI(XT ) for pT . We remark that
under Model I, the sequence P can be identified with the real number p and
pT ≡ p. However, under Model II, the parameter pT is random.
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2 A Frequentist Perspective

2.1 The Statistician’s Viewpoint

For the frequentist statistician, the parameter P (a sequence of probabilities)
is fixed but unknown, and the data is a realization of XT obtained by the
process and stopping rule defined above. He aims at constructing a confidence
interval for pT that satisfies

PP (CI(XT ) 3 pT ) ≥ 1− α for all possible P. (1)

Thus, the statistician’s criterion depends only on the experiments he observes,
and the intervals he constructs are supposed to cover pT for 1−α of the times
on average, no matter what the parameter is.

Under Model I, pi ≡ p and the confidence interval is based on

Pp(XT = x) = Pp(X = x|X ≤ 1) := P (X∗ = x|p), (2)

where X∗|p has the distribution of [X|X ∈ {0, 1}] and X ∼ Bin(n, p).

Under Model II, pT is a random coordinate of the parameter P and we have

PP (CI(XT ) 3 pT ) =
∑

t

PP (CI(Xt) 3 pt |T = t)PP (T = t). (3)

Now for x = 0, 1 we have

PP (Xt = x|T = t) = PP (Xt = x|Xt ≤ 1, X1 > 1, ..., Xt−1 > 1)

= Ppt(Xt = x|Xt ≤ 1) := P (X∗ = x|pt). (4)

Therefore, if CI(Xt) is constructed as a 1−α confidence interval for pt based
on X∗|pt, then (4) implies PP (CI(Xt) 3 pt |T = t) ≥ 1 − α, and (1) follows
from (3).

Thus, for the frequentist statistician the distinction between Model I and Model
II is unimportant. He provides a confidence interval for pT corresponding to
“successful” experiments, based on the variable X∗ having a Bernoulli distri-
bution with probability

Pp(X
∗ = 1) = Pp(X = 1|X ∈ {0, 1}) =

np

1 + (n− 1)p
≡ p∗. (5)
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For α < 1/2, a 1 − α level confidence interval for p∗, that is, a confidence
interval CI(X∗) satisfying Pp(CI(X∗) 3 p∗) ≥ 1− α for all possible values of
p, is

CIp∗(X
∗) =





(0, 1− α) X∗ = 0

(α, 1) X∗ = 1 .
(6)

For X∗ = 0, CIp∗(X
∗) is equivalent to the interval 0 < np/(1 + (n− 1)p) <

1−α, and for X∗ = 1, the interval CIp∗(X
∗) becomes α < np/(1 + (n− 1)p) <

1, which after rearrangement as intervals for p reduce to

CI∗(0) =
(
0,

1− α

αn + 1− α

)
, CI∗(1) =

(
α

(1− α)n + α
, 1

)
. (7)

The interval CI∗(0) equals (0, 1 − α) for n = 1 and decreases with n as
expected. However, CI∗(1) includes large values of p and becomes wider as n
increases, eventually approaching (0, 1). For example, for α = 0.05 and n = 20,
CI∗(0) = (0, 0.4872) and CI∗(1) = (0.0026, 1).

The result may surprise a scientist who expects that one success out of n
indicates a small p. However, taking the selection into account, the result is
not surprising: for p > 0 and increasing n, an outcome of X∗ = 1 occurs with
probability approaching 1, and hence it is hardly informative, resulting in a
large confidence interval that contains 1, rather than proving a small p.

2.2 The Scientist’s Viewpoint

For a scientist who conducts experiments many times until one or no successes
are obtained, the confidence interval (7) is correct. It would clearly be wrong
and dishonest to ignore the selection issue, and compute a confidence interval
based on X ∼ Bin(n, p). Under Model I (pi ≡ p), the best honest option for
the scientist is of course to combine all the data he has on p, while taking into
account any stopping rule.

However, let us look again at the problem from the viewpoint of a scientist
who according to Model II conducts binomial experiments with different pi’s.
Such a scientist does not use the interpretation (1), but instead would like a
procedure that satisfies for all i

PP (CI(Xi) 3 pi) ≥ 1− α for all P ∈ (0, 1)∞. (8)

In terms similar to Berger (1985), she looks for a procedure that satisfies
(with probability one) lim infN→∞ N−1 ∑N

i=1 I{CI(Xi) 3 pi} ≥ 1 − α for all
P ∈ (0, 1)∞, where I{E} is the indicator function of the event E. She therefore
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should compute 1 − α level confidence intervals based on X ∼ Bin(n, p) in
each experiment, including those ending with 0 or 1 successes, so that on
average (1− α)100% of her intervals will contain the true pi. For X = 0 or 1,
these intervals concentrate on small values of p and are considerably different
from the statistician’s intervals (7). For example, for α = 0.05 and n = 20, the
intervals CIC(0) = (0, 0.1391), and CIC(1) = (0.0013, 0.2487) based on the
exact method of Clopper and Pearson (1934), are considerably different from
the intervals presented at the end of Section 2.1.

Thus, the scientist knows that in the long run she will miss the parameter in
α100% of her intervals, but she is neutral as to who constructed those “bad”
intervals, be it the statistician who advised her for the cases of X = 0 and 1
or herself.

2.3 The Statistician’s Dilemma

Consider Model II and a scientist who comes to the statistician for advice
only when X = 0 or 1, and otherwise computes the confidence intervals by
herself. The statistician now faces a dilemma. If he wants to serve the client
well, he should base his inference on X so that the scientist’s interpretation of
the result (8) will be correct. However, his inference (1), will be very poor if p
is not small. For example, let α = 0.05, n = 20, and pi > 0.25 for all i. Then
the statistician using the interval CIC(X) based on X described above will
be wrong 100% of the time he is consulted (see calculations of CIC for this
case in Section 2.2). He should instead base his inference on X∗ if he wants
to guarantee intervals that cover the true parameter for an average of at least
(1−α)100% of the time he is consulted. The scientist’s using intervals based on
X rather than X∗ will of course also be wrong if X = 0 or X = 1 and pi > 0.25,
but the proportion of these cases, PP (Xi ≤ 1), is relatively small, less than
2.5% (when pi > 0.25 for all i), and hence her total coverage probability is
correct. The scientist and the statisticians have different goals, and conflicting
interests: the scientists wants to ensure correct inference in (1−α)100% of all
experiments, and the statistician cares only about experiments in which he is
consulted.

This conflict cannot be resolved in the frequentist framework. The statistician
must decide whether to use the interpretation (8) that involves parameters
he has not been asked about, or to use the interpretation (1) that may be
less interesting for the scientist and provides counterintuitive intervals. The
statistician sees data after selection, and using X∗ he computes confidence
intervals for parameters selected by use of the data. The fact that his resulting
confidence intervals based on X∗ are so different from those of the scientist who
computes them using X, shows how critical selection can be. The Bayesian
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statistician, as shown next, has far less conflict with the scientist.

3 A Bayesian Perspective

3.1 Model I

For the Bayesian there is a prior distribution π for the proportions p in the
population. Under Model I, there is exactly one draw from the prior distri-
bution π and all the binomial experiments are conditional on that draw. If
all experiments are ignored until 0 or 1 is obtained, then the data is X∗

whose conditional distribution X∗|p is given in (5). The confidence (or cred-
ible) interval for p is an interval I whose posterior probability is 1 − α, i.e.,
P (p ∈ I|X∗ = x) =

∫
I dπ(p|X∗ = x) = 1− α.

Proposition 3.1 Let X|p ∼ Bin(n, p) and p ∼ π, any prior, and for x = 0, 1
let πn(·|x) be the posterior distribution of p|X∗ = x. Then {πn(·|x)} is a
stochastically decreasing sequence of distributions for both x = 0 and x = 1.

Also, for any n, πn(·|x) is stochastically larger than π for x = 1 and smaller
for x = 0.

Proposition 3.2 limn→∞ πn(·|1) = π(·).

Proposition 3.1 says that as n increases, one predicts smaller values of p when
observing either one or zero successes. Proposition 3.2 now implies that for one
success, the posterior approaches the prior from above. Naturally, after one
observes X∗ = 1 the prior is updated “upwards” and vice versa for X∗ = 0.

To prove the propositions we need the following known lemma whose proof is
given for the sake of completeness.

Lemma 3.1 Consider a random variable R ∼ F , and let w(·) ≥ 0 be a
decreasing function such that EF w(R) =

∫∞
−∞ w(r)dF (r) < ∞ and EF w(R) >

0. Let Fw(t) =
∫ t
−∞ w(r)dF (r)/EF w(R). Then Fw ≤st F .

Proof of Lemma. For t such that w(t) ≥ EF w(R) we have

∫ t

−∞

[
w(r)

EF w(R)
− 1

]
dF (r) ≥ 0

so that Fw(t) ≥ F (t). For t such that w(t) ≤ EF w(R) we have

∫ ∞

t

[
w(r)

EF w(R)
− 1

]
dF (r) ≤ 0
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so again Fw(t) ≥ F (t). ¤

Proof of Proposition 3.1. Using Bayes formula,

dπn(p|x) = dπ(p)g(p, n, x)/Eπg(p, n, x) for x = 0, 1, (9)

where g(p, n, x) := P (X∗ = x|p)/P (X∗ = x) = npx+(1−p)(1−x)
1+(n−1)p

(the expec-

tation exists for all n since |g(p, n, x)| is bounded by 1). It is easy to check
that dπn+1(p|x) ∝ wn(p)dπn(p|x), where wn(p) = 1 − 1/(1

p
+ n). Stochastic

monotonicity follows by noticing that wn(p) is decreasing in p and applying
Lemma 3.1 with R being the random variable p, and F = π.

For the second part of the proposition note that g(p, n, x) is increasing in p
for x = 1, and decreasing for x = 0 and any n. Using Lemma 3.1 and (9) we
conclude that for any n the posterior πn(·|x) is stochastically larger than π
for x = 1 and smaller for x = 0. ¤

Proof of Proposition 3.2. This follows from g(p, n, 1) → 1 when n →∞. ¤

Let a be the left limit of the support of π. One might expect that limn→∞ πn(·|0) =
δa, the measure concentrated at a. However, since both g(p, n, 0) → 0 and
Eπg(p, n, 0) → 0, this is not true in general. In fact, if π is discrete with atoms
0 < a1 < a2 < . . . and respective masses π1, π2, . . ., then

dπn(ai|0)

dπn(aj|0)
=

(1− ai)/[1 + (n− 1)ai]

(1− aj)/[1 + (n− 1)aj]

πi

πj

−−−→
n→∞

1− ai

ai

πi

/
1− aj

aj

πj,

showing that the limit distribution is a weighted version of π with weight
(1− ai)/ai at ai. This result can be generalized as follows:

Proposition 3.3 If Eπp−1 = ∞, then limn→∞ πn(·|0) = δ0; otherwise
limn→∞ πn((−∞, t] | 0) ∝ ∫ t

0
1−v

v
dπ(v).

Proof of Proposition 3.3. For t > 0

1− πn(t|0) =
∫ 1

t

1−p
1+(n−1)p

dπ(p)
∫ 1
0

1−v
1+(n−1)v

dπ(v)
=

∫ 1

t

1−p
1/(n−1)+p

dπ(p)
∫ 1
0

1−v
1/(n−1)+v

dπ(v)
→

∫ 1

t

1−p
p

dπ(p)

Eπ(p−1 − 1)
.

¤

For π = U(0, 1), α = 0.05, and n = 20, the equal tail credible intervals are
(0.0029, 0.6982) for X∗ = 0 and (0.0620, 0.9778) for X∗ = 1. These should be
compared to the prior credible interval (0.025,0.975).
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3.2 Model II

Bayesian inference under Model II is totally different. While under Model I
all experiments use the same p, under Model II the probabilities of success
differ for different experiments. In principle, the prior distribution should be
specified for the parameter vector P . However, since the index T is unobserved,
inference is problematic unless further assumptions are made. We consider the
case where p1, p2, . . . are independent identically distributed with prior law π.

Under the above model, the distribution of values of p in experiments that end
with exactly x successes, is just the posterior of p given X = x. This rather
obvious observation is shown as follows: for x = 0, 1 we have

P (pT ∈ B |XT = x)

=
∑

t

P (pt ∈ B |Xt = x,X1 > 1, . . . , Xt−1 > 1)P (T = t|XT = x)

=
∑

t

P (pt ∈ B |Xt = x)P (T = t|XT = x) = P (p1 ∈ B |X1 = x),

where the equalities hold because (p1, X1), (p2, X2), . . . are independent and
identically distributed. Thus, under Model II, the Bayesian statistician is un-
affected by the selection and has no conflict with the scientist; i.e., he should
consider the data as coming from the law of X|p and not from X∗|p. For
π = U(0, 1), α = 0.05, and n = 20, for example, the credible intervals are
(0.0012,0.1611) for X = 0 and (0.0117,0.2382) for X = 1, considerably differ-
ent from those calculated under Model I.

Bayesian inference is known to be post data, and should not be affected by
selection bias. However, it has just been shown, that this claim is true under
Model II, but not under Model I. The crucial difference between the models is
in the space the selection acts on. Under Model I, the probability of selection
is P (X ≤ 1|p), whereas under Model II the probability of selection is P (X ≤
1) = EπP (X ≤ 1|p), which is independent of p. The next section discusses
this point in a more formal and general setting.

3.3 Selection Bias and Bayesian Analysis

Let Θ be the (marginal) sample space of θ and let X be the (marginal) sample
space of X. Suppose that on a probability space (Θ×X ,A,P), the marginal
density of θ is π and the conditional density of X given θ is f . Consider a
sample of size k. Then, the sample space of (a generalized) Model I is Θ×X k

and that of (a generalized) Model II is (Θ × X )k. Let w : X 7→ R+ be a
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non-negative function; then the samples under Models I and II have densities

g1(θ, x1, . . . , xk) = π(θ)
k∏

i=1

w(xi)f(xi|θ)∫
w(u)f(u|θ)du

, (10)

and

g2(θ1, . . . , θk, x1, . . . , xk) =
k∏

i=1

w(xi)f(xi|θi)π(θi)∫ ∫
w(u)f(u|ν)du dπ(ν)

, (11)

respectively, where in the binomial example w(x) = 1 for x = 0, 1, and 0
otherwise. Under Model I, the posterior is proportional to

π(θ)
k∏

i=1

f(xi|θ)∫
w(u)f(u|θ)du

,

which in general differs from

π(θ)
∏k

i=1 f(xi|θ)∫ ∏k
i=1 f(xi|ν)dπ(ν)

,

the posterior with w ≡ 1, i.e., without selection bias.

Under Model II, the posterior is proportional to
∏k

i=1 f(xi|θi)π(θi) and it is
equivalent to the posterior with w ≡ 1. Thus, for the Bayesian, selection bias
under Model II makes no difference, but under Model I it cannot be ignored.
Note the distinction between the two models where the posterior under the
first is one dimensional while that of the second has k dimensions.

Models I and II look very similar in the one-dimensional case k = 1, where
the sample spaces are equal. However, they differ because the selection is done
on different spaces. Specifically,

g1(θ, x) = π(θ)
w(x)f(x|θ)
E{w(X)|θ} , g2(θ, x) = π(θ)

w(x)f(x|θ)
E{w(X)} .

It follows that π1(θ) = π(θ), and f1(x|θ) = w(x)f(x|θ)/E{w(X)|θ} are the
marginal density of θ and the conditional density of X|θ under Model I, and
π2(θ) = E{w(X)|θ}π(θ)/E{w(X)}, f2(x|θ) = w(x)f(x|θ)/E{w(X)|θ} are
the corresponding densities under Model II. Note that in both models the
distribution of X|θ is the same, but in Model II the prior is biased. Roughly
speaking, Model I generates θ from π and then generates X conditionally on
the value of θ but with bias, while Model II generate pairs (θ,X) with bias
according to X.

The different treatments of the two models stem from a very basic principle
of the Bayesian paradigm, the Likelihood Principle. This principle states that
the conclusions drawn from two random systems that produce proportional
likelihoods must be the same (Cox and Hinkley 1974. pp. 39). Because the
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denominator in (11) does not involve any unknown parameter, the likelihood
of the generalized Model II is proportional to the likelihood of unbiased data,
hence should be treated the same way. The likelihood (10) is not proportional
to that of unbiased data, hence it leads to different conclusions.

Thus, unlike the frequentist who always treats the scientist as coming from
Model I, and hence has a conflict with the scientist of Model II, the Bayesian
has the ability to adjust his analysis to the specific population model to which
the scientist belongs, (I or II), and to provide proper inference for each. Of
course, he must know the scientist’s model and whether selection tilted the
distribution of (X, θ) or that of X|θ, while the frequentist’s inference is inde-
pendent of that knowledge.

4 Concluding Remarks

In our binomial model, the frequentist scientist does not determine the interval
before observing the data. Specifying the confidence region after observing
the data seems illegitimate because in calculating the level of a procedure,
a frequentist must take into account all possible outcomes; see (8). However,
noticing that for a parameter θ and a random set R(X),

Pθ(θ ∈ R(X)) = Pθ(θ ∈ R(X)|X ∈ A)Pθ(X ∈ A)+Pθ(θ ∈ R(X)|X ∈ Ā)Pθ(X ∈ Ā),

where Pθ is the probability under θ, we see that a confidence region R that
satisfies both infθ Pθ(θ ∈ R(X)|X ∈ A) = 1 − α and infθ Pθ(θ ∈ R(X)|X ∈
Ā) = 1 − α is valid. One can calculate R(X) over A only when the event
X ∈ A occurs. This is exactly the statistician’s approach, where A = {0, 1}.

Another justification for constructing the confidence intervals after observing
the data is due to Brown, Cai, and Dasgupta (2001), who advocate modifica-
tions of simple intervals around the boundaries (i.e., for values near 0 and n).
A reasonable approach is to go to the statistician only if such modifications
are needed. In this case, the statistician serves as an instrument (calculator) to
calculate the needed intervals, and his own interpretation should be ignored.

Nowadays, most scientists have access to user-friendly and automated statisti-
cal softwares; hence most statistical analyses are conducted by non-statisticians.
Commonly, statisticians are consulted when the data do not clearly prove any-
thing, and when a scientist does not succeed in proving her point. In this sense,
the life of a statistician is “tragic”, since he often gets to see the data only
when the results are inconclusive, and therefore his percentage of correct deci-
sions falls drastically, and he must take drastic measures to prevent this from
happening. The binomial case reveals how large the problem can be and how
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important it is to define clearly the criterion behind the decision rule. We do
not offer a solution to the statistician’s “tragedy”, but hope that the current
example helps researchers appreciate the possible magnitude of the problem
and encourage them to define clearly their decision criteria before interpreting
their results.
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