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We consider a sequential rule, where an item is chosen into the group,
such as a university faculty member, only if his score is better than the
average score of those already belonging to the group. We study four vari-
ables: The average score of the members of the group after k items have
been selected, the time it takes (in terms of number of observed items) to
assemble a group of k items, the average score of the group after n items
have been observed, and the number of items kept after the first n items
have been observed. We develop the relationships between these variables,
and obtain their asymptotic behavior as k (respectively, n) tends to infin-
ity. The assumption throughout is that the items are independent, identi-
cally distributed, with a continuous distribution. Though knowledge of this
distribution is not needed to implement the selection rule, the asymptotic
behavior does depend on the distribution. We study in some detail the
Exponential, Pareto and Beta distributions. Generalizations of the ”better
than average” rule to the β better than average rules are also considered.
These are rules where an item is admitted to the group only if its score is
better than β times the present average of the group, where β > 0.
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1 Introduction

In many practical situations, when it is desired to assemble sequentially a
group of good quality, the ”better than average” rule is used. This rule
selects an individual into the group if and only if she is better than the
average quality of the previously selected members of the group. Individuals
are considered sequentially and a decision of retention or rejection must be
made without recourse. Such a policy may be used when recruiting new
faculty to a university department, selecting students to a university for
graduate study, or selecting a sports team.

In this paper we consider the asymptotic behavior, both in number and
average quality, of the selected group under the better than average rule
under the assumption that the observations are i.i.d. We also extend these
results to a class of related selection rules, which we term β better than
average rules. Under these rules an item is selected if and only if it is better
than β times the average quality of the items that already belong to the
group. For β = 1, this is the usual better than average rule. When ”better”
is ”larger than”, for β > 1 (the more typical case), the β better than average
rule is more stringent and for β < 1 it is less stringent than the better than
average rule.

The better than average selection rule was first considered by Preater
(2000). He dealt with exponentially generated values and related cases. The
focus of his paper is on the average quality of the retained items.

Sequential rules that retain an observation based on how its relative rank
relates to the ranks of those already retained are considered by Krieger,
Pollak and Samuel-Cahn (2007). The behavior of the number of items kept
and their average quality are determined in that paper.

The next section is devoted to general results. In essence we consider
the asymptotic behavior of four quantities: the average quality and the
number of items observed until k are retained; the average quality and the
number of items retained after n items have been observed. In Section 3,
the relationships in asymptotic behavior of the other three quantities to that
of the average quality when k items are retained are obtained under certain
conditions. The exponential distribution is used as an example to illustrate
these results and relate them to the findings of Preater (2000). Many results
depend heavily on the underlying distribution of the i.i.d. random variables.
The Pareto family is explored in Section 4 and the Beta family in Section 5.
These three families of distributions are representatives of the three domains
of attraction of extreme values. Finally, related results and observations are
presented in the form of remarks in the concluding section.
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2 Notation and Preliminary Results

This article is about a sequence of observations that are independent and
identically distributed. The decision of whether to retain an item needs to
be made when it is observed, based only on its score and the average score
of those items already seen. The observations are denoted by X1, X2, . . .
and are i.i.d. random variables from a common distribution F . Knowledge
of F is not necessary to implement the rule under investigation. However,
the asymptotic behavior of the rule does depend on the specification of F .

The behavior of rules will be characterized by considering four quantities:

• Tk = Tk(F ) = Tk(X) = The number of observations inspected (in-
cluding that item) until the kth item is retained.

• Y k = Y k(F ) = Y k(X) = The average of the first k observations that
are kept.

• Mn = Mn(F ) = Mn(X) = The number of items that are kept by time
n.

• An = An(F ) = An(X) = the average of the items that are kept by
time n.

We use either of the three forms of notation (e.g., Tk, Tk(F ) or Tk(X)) as
convenient.

The β better than average rule is defined as follows: For fixed β (which
is suppressed in the notation) and Tk as defined above as the number of
items observed until the kth item is selected, let Y1 = X1. Thus T1 = 1.
Now Tk and Yk are defined inductively by

Tk+1 = inf{i > Tk : Xi > βY k} , k = 1, 2, . . .

(Tk+1 = ∞ if Xi ≤ βY k for all i > Tk), and if Tk+1 < ∞,

Yk+1 = XTk+1
, k = 1, 2, . . . .

It is clear that Y k increases in k for β = 1. If β > 1 we assume non-negative
Xi to avoid the situation that if Y k is negative then the cutoff to retain an
observation becomes less stringent. Below is an intuitive result, which is
true generally. The proof is adapted from Preater (2000).

Let xF = sup{x : F (x) < 1}. When xF = ∞ then clearly Tk < ∞ a.s.
for all k and all β. When β > 1 we assume that xF = ∞.
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Lemma 2.1. Let Xi be i.i.d. from any distribution. Unless F has an atom
at xF and X1 = xF ( in which case Y 1 = xF ), the sequence T1, T2, . . . is
well-defined for all k ≥ 1, and the better than average rule satisfies

Y k → xF a.s., as k →∞. (2.1)

Furthermore, when Xi ≥ 0 and xF = ∞, the sequence T1, T2, . . . is well-
defined, and (2.1) holds for all β > 1.

Proof. Consider first the better than average rule. Let Y 0 = 0. It is easily
seen by induction that

Y k =
k∑

j=1

(Yj − Y j−1)/j.

Since Y k is monotone increasing, it follows that Y = limk→∞ Y k exists. We
want to show that for any x < xF one has P (Y ≤ x) = 0. Let x < xF be
given, and when xF < ∞ let 0 < ε < xF − x while if xF = ∞ let ε = 1.
Then on the event Ax = {Y ≤ x}, we have

Y =
∞∑

k=1

(Yk − Y k−1)/k ≥
∞∑

k=1

(Yk − x)+/k ≥
∞∑

k=1

εI(Yk > x + ε)/k.

But the sum on the right hand side diverges, implying that P (Ax) = 0.
Thus (2.1) follows for the better than average rule. Now, the average Y k[β]
satisfies P (Y k[β] ≥ Y k) = 1 for the β better than average rule for all k,
hence (2.1) follows.

We exclude the case X1 = xF in our further considerations. We now
turn to a general result that relates the number of items kept after n have
been observed, when X ∼ F to the number of items kept when Z ∼ G,
where here the sequence of random variables considered are i.i.d. Z1, Z2, . . ..
Assume that the random variables are continuous. We can couple the items
generated according to F and G in the following way: Let Zi = g(Xi) where
g = G−1F , and thus is an increasing function. Note that if and only if g is
convex g−1 (which relates Z to X) is concave.

Denote by Mn(X) the number of items kept by a β better than average
rule for the X- sequence X1, X2, . . . after n items are observed. Similarly
Mn(Z) denotes the number of items kept using the Z- sequence. We then
have
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Theorem 2.1. Let X ∼ F and g(x) be an increasing concave function. Let
G be the c.d.f. of a random variable distributed as g(X). When β = 1,
Mn(G) ≥st Mn(F ) for all n. Thus Tk(F ) ≥st Tk(G).

Proof. Clearly g(x) = G−1(F (x)). Let Z ∼ G and let An(X) be the average
of the X values of the kept items after n items are observed, using for a
selection rule the better than average rule based on the X- sequence, and
let Bn(X) be the average of the X values kept using the better than average
rule based on the Z- sequence. Without loss of generality couple the Xi

values and Zi values by setting Zi = g(Xi). Let An(Z) be the average of
the Z- values kept by its rule after n items are observed.

We shall prove by induction that with this coupling
i) Mn(X) ≤ Mn(Z)
and
ii) An(X) ≥ Bn(X).
Clearly the stochastic ordering in the statement follows from this. For n = 1,
clearly M1(X) = M1(Z) = 1 and A1(X) = B1(X) = X1. Now suppose i)
and ii) hold for n− 1. We consider two cases:

a) Xn > An−1(X). Item n is kept using the X- sequence. Then

Zn = g(Xn) > g(An−1(X)) ≥ g(Bn−1(X)) > An−1(g(X)) = An−1(Z).

The last inequality follows because g is concave. This implies that the
nth item is also kept by its rule using the Z- sequence. Hence i) holds.
Furthermore,

An(X) =
Mn−1(X)An−1(X)

Mn−1(X) + 1
+

Xn

Mn−1(X) + 1

and

Bn(X) =
Mn−1(Z)Bn−1(X)

Mn−1(Z) + 1
+

Xn

Mn−1(Z) + 1

≤ Mn−1(X)Bn−1(X)
Mn−1(X) + 1

+
Xn

Mn−1(X) + 1

≤ Mn−1(X)An−1(X)
Mn−1(X) + 1

+
Xn

Mn−1(X) + 1
= An(X).

The first inequality holds because Mn−1(X) ≤ Mn−1(Z) and the last in-
equality holds because An−1(X) ≥ Bn−1(X). Hence ii) follows.

b) Xn ≤ An−1(X). Hence the nth item is not kept by the rule that uses
the X- sequence. i) is immediate. If the nth element is not kept by the Z-
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sequence ii) is also immediate. Now assume that the nth item is retained
using the Z sequence. Then

Bn(X) =
Mn−1(Z)Bn−1(X)

Mn−1(Z) + 1
+

Xn

Mn−1(Z) + 1
≤ An−1(X) = An(X)

as both Bn−1(X) and Xn do not exceed An−1(X).

Remark 2.1 It is interesting to note that Theorem 2.1 requires β = 1, i.e.,
the better than average rule. Here is an example where the conclusion fails
for β > 1. For β > 1 consider Z = X1/2. The second item is kept for
the X− sequence if X2 > βX1. The second item is not kept for the Z−
sequence if X

1/2
2 < βX

1/2
1 . Hence when X1 is such that βX1 < X2 < β2X1

the conclusion fails. This is easily fulfilled, since β > 1.
The next result considers a sequence of distribution functions {Fj} and

sequences of i.i.d. random variables from each.

Theorem 2.2. Let {Fj} be a sequence of continuous cumulative distribution
functions that converges weakly to a continuous distribution F. Then:
i) For fixed n, Mn(Fj) → Mn(F ) as j →∞, in distribution.
ii) For fixed n, An(Fj) → An(F ) as j →∞, in distribution.
iii) For fixed k, Tk(Fj) → Tk(F ) as j →∞, in distribution.
iv) For fixed k, Y k(Fj) → Y k(F ) as j →∞, in distribution.

Proof. For fixed n, let U1, U2, ..., Un be independent Uniform[0,1]-distributed
random variables and define X

(j)
i = F−1

j (Ui), Xi = F−1(Ui) for i = 1, ..., n.

Since(X(j)
1 , ..., X

(j)
n ) → (X1, ..., Xn) as j → ∞ almost surely, it follows that

the convergence in i) and ii) (with Mn(Fj) and An(Fj) defined on the se-
quence (X(j)

1 , ..., X
(j)
n )) holds a.s. on this sample space, so that in general i)

and ii) hold.
To prove iii) and iv), fix k. Let ε > 0. There exists nk(ε) such that

P (Tk(F ) ≤ nk(ε)) > 1 − ε. Let n = nk(ε) and let {X(j)
i } and {Xi} be

as above. On {Tk(F ) ≤ nk(ε)}, (X(j)
1 , ..., X

(j)
n ) → (X1, ..., Xn) as j → ∞

almost surely, so that there exists mk(ε) such that P (Tk(Fj) = Tk(F ) for
all j ≥ mk(ε)) > 1 − ε (on the constructed sample space as above). Hence
P (Tk(Fj) = Tk(F ) for all j ≥ mk(ε)) > 1 − 2ε. Letting ε → 0 proves iii).
An analogous argument accounts for iv).

Remark 2.2 This Theorem ensures that the four quantities of interest be-
have similarly for similar distributions for finite n and k. For example (as
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appears in Remark 5.3) the exponential distribution and Beta(1, j) distri-
bution suitably scaled for large j are similar to each other. Hence as is
practical for finite n, the number kept by these two distributions behave
similarly. This does not imply that the rates of convergence (as n → ∞,
k →∞, respectively) of the four quantities of interest are approximately the
same for the two distributions. We know this is true for Mn and Tk for the
examples considered in this paper. We conjecture that it is true in general,
but we have not been able to prove it.

3 Almost Sure Convergence

We assume observations X1, X2, . . . are non-negative, i.i.d. random variables
from c.d.f. F . We previously defined four quantities. When interest is in
the status at the instant at which the kth item is kept then Tk denotes the
number of items that have been considered and Y k the average of the k
items that are kept. Correspondingly, if focus is on the status after n items
are observed then Mn and An refer to the number of items that are kept
and the average of those items, respectively.

In this section, we find conditions on the behavior of Y k from which
it follows that Tk, Mn and An converge a.s. Sections 4 and 5 are devoted
to finding particulars and establishing that these conditions on Y k hold for
various families of distributions.

Of the four quantities considered, Y k is the easiest to handle directly,
often through use of the Martingale Convergence Theorem. It is not unusual
for Y k to satisfy the conditions in Theorem 3.2. The asymptotic behavior
of Tk can then also be determined, as in Theorem 3.2, by use of a theorem
in Feller reproduced below as Theorem 3.1 (in the generality needed here).

The quantities {An} and {Mn} are more difficult to handle directly, as
they develop as intertwined sequences. Let Fn be the sigma-field generated
by {X1, . . . , Xn}. Then clearly

E(An|Fn−1) = An−1P (Xn ≤ βAn−1|An−1)

+
Mn−1An−1 + Xn

Mn−1 + 1
P (Xn > βAn−1|An−1)

and
E(Mn|Fn−1) = Mn−1 + P (Xn > βAn−1|An−1).

It is therefore difficult to separate these two quantities. Their asymptotic
behavior can nevertheless, in many instances, be derived, through an ”in-
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version” of the asymptotic behavior of Y k and Tk respectively, as given in
Theorems 3.3 and 3.4.

Theorem 3.2, which considers the a.s. convergence of Tk relies on a
Theorem in Feller (1971, Vol 2. page 239):

Theorem 3.1. Let Q1, Q2, . . . be independent r.v.s with E(Qn) = 0, and let
Sn =

∑n
i=1 Qi. If

1) b1 < b2 < · · · → ∞ are constants
and
2)

∑∞
n=1 E(Q2

n/b2
n) < ∞

then
b−1
n Sn → 0 a.s. as n →∞ .

We use this theorem in the following way:

Theorem 3.2. Let Pj = 1− F (βY j−1) with P1 ≡ 1. Suppose that

jωPj → W a.s. as j →∞, (3.1)

for some 0 < ω < ∞, where P (0 < W < ∞) = 1. Then

Tk

kω+1
→ 1

(ω + 1)W
a.s. as k →∞.

Proof. We shall use Feller’s Theorem conditionally on the sequence {Y k}.
Let bj =

∑j
i=1 P−1

i and Qi = Ti − Ti−1 − P−1
i with T0 ≡ 0. Obviously, the

sequence {bj}∞j=1 satisfies the first condition of Feller’s Theorem.
Note that conditional on {Pj} the distribution of Ti−Ti−1 is Geometric

(Pi) and these differences are conditionally independent of each other. Hence
{Qn}∞n=1 is a sequence of conditionally independent random variables with
zero expectation and variance (1− Pn)/P 2

n . We shall show that the second
condition of Feller’s Theorem holds.

Let ε > 0. Define Jε to be such that

W (1− ε) ≤ jωPj ≤ W (1 + ε) for all j ≥ Jε,

where W is given in (3.1). Therefore, conditonal on {Pj}
∞∑

n=1

E(Q2
n/b2

n) =
∞∑

n=1

1− Pn

P 2
n

/(
n∑

j=1

P−1
j )2

<

Jε−1∑

n=1

1
P 2

n

/(
n∑

j=1

P−1
j )2 +

∞∑

n=Jε

n2ω

W 2(1− ε)2
/(

n∑

j=1

jω

W (1 + ε)
)2

≤
Jε−1∑

n=1

1
P 2

n

/(
n∑

j=1

P−1
j )2 +

(1 + ε)2

(1− ε)2

∞∑

n=Jε

n2ω/(
nω+1

ω + 1
)2 < ∞.
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Since both conditions of Feller’s Theorem are satisfied,

b−1
n Sn → 0 a.s., as n →∞.

Now

b−1
n Sn = (

n∑

j=1

P−1
j )−1(Tn −

n∑

j=1

P−1
j )

= (
n∑

j=1

P−1
j )−1Tn − 1 → 0 a.s. as n →∞. (3.2)

Also for n ≥ Jε

Jε−1∑

j=1

P−1
j +

n∑

j=Jε

jω

W (1 + ε)
≤

n∑

j=1

P−1
j ≤

Jε−1∑

j=1

P−1
j +

n∑

j=Jε

jω

W (1− ε)
. (3.3)

Therefore for n large enough

1
1 + ε

≤
∑n

j=1 P−1
j

nω+1/(ω + 1)W
≤ ε +

1
1− ε

.

Letting ε → 0, it follows from (3) and (3.3) that

Tk

kω+1
→ 1

(ω + 1)W
a.s. as k →∞.

Now that we established almost sure convergence for Tk suitably nor-
malized, we relate this result to the almost sure convergence for Mn. For
example, if Tk/k2 converges almost surely to a well-defined random variable
(as we will show in Theorem 3.5 when F is exponential and β = 1) this says
that it takes on the order of k2 observations until k items are retained. It
is intuitive that if n items are observed then the order

√
n of these items

should be retained. The theorem below implies that for the exponential
distribution with β = 1, Mn√

n
converges a.s.

More precisely, let ck be an increasing sequence of positive constants
(that later will denote the rate at which Tk goes to infinity) with lim ck = ∞.
We define a sequence of increasing positive constants (for the rate of Mn)
by

dn = sup{j|cj ≤ n} for n = 1, 2, . . ..

Since ck →∞, dn is defined for all n. Also assume that

lim
n→∞

dbn/xc
dn

= h(x) (3.4)
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exists for every 0 < x < ∞, and h is continuous.
The result for the almost sure convergence of Mn is explored in

Theorem 3.3. Let
Tk

ck
→ Q a.s. for k →∞, where 0 < Q < ∞.

Assume ck is such that (3.4) holds, with continuous h. Let Mn = sup{j|Tj ≤
n}, n = 1, 2, . . . Then

Mn

dn
→ h(Q) a.s. as n →∞ .

Proof. It clearly suffices to show that for any fixed sequence tk such that
tk
ck
→ x as k →∞, the sequence mn = sup{j|tj ≤ n} satisfies mn

dn
→ h(x) as

n →∞.
For a given 0 < ε < x, let j0 be so large that x − ε <

tj
cj

< x + ε for all
j ≥ j0. Let n0 be such that mn0 ≥ j0. Then mn ≥ j0 for all n ≥ n0, and

mn = sup{j|tj ≤ n} = sup{j| tj
cj
≤ n

cj
}

≤ sup{j|(x− ε) ≤ n

cj
} = sup{j|cj ≤ n

x− ε
} = db n

x−ε
c.

Similarly, mn ≥ db n
x+εc. Thus for all n ≥ n0

db n
x+εc
dn

≤ mn

dn
≤ db n

x−εc
dn

.

Now letting n →∞ and ε → 0 yields

lim
mn

dn
= h(x).

Suppose that 1 − F (βY k) properly normalized converges almost surely
to a possibly non-degenerate random variable. This implies from Theorem
3.2 that Tk, and ultimately from Theorem 3.3 that Mn, when properly nor-
malized, also converge almost surely to a possibly non-degenerate random
variable. We now establish conditions such that An, suitably normalized,
converges almost surely to a non-degenerate random variable.

Theorem 3.4. Let Y k
kγ → Y and Mn

nψ → M a.s. as k → ∞ and n → ∞
where P (0 < Y < ∞) = P (0 < M < ∞) = 1. Then

An

nγψ
→ Y Mγ a.s. as n →∞.
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Proof. For any ε > 0, there exists random kε, nε such that for all k ≥ kε

and n ≥ nε

Y kγ(1− ε) ≤ Y k ≤ Y kγ(1 + ε)

and
Mnψ(1− ε) ≤ Mn ≤ Mnψ(1 + ε).

Note that An = Y Mn . Also, eventually Mn ≥ kε a.s. Then

Y Mn
γ(1− ε) ≤ An ≤ Y Mn

γ(1 + ε)

and for n ≥ nε

Y Mγnγψ(1− ε)γ+1 ≤ An ≤ Y Mγnγψ(1 + ε)γ+1.

This implies

Y Mγ(1− ε)γ+1 ≤ An

nγψ
≤ Y Mγ(1 + ε)γ+1,

so that
An

nγψ
→ Y Mγ a.s. for n →∞ .

We now apply the previous results to the exponential distribution.

Theorem 3.5. Assume that the observations are i.i.d. from an exponential
distribution mean 1. Let β = 1 and let G denote a random variable that has
the Gumbel distribution, exp{−e−x}.
Then

i) Yk − log k converges a.s. to G as k →∞,

ii) Tk
k2 converges a.s. to eG/2 as k →∞,

iii) Mn√
n

converges a.s. to
√

2e−G/2 as n →∞ and

iv) An − (log n)/2 converges a.s. to (G + log 2)/2 as n →∞.

Proof. i) This result is given in Preater (2000).
ii) The value of Pj = 1 − F (Y j−1) = e−Y j−1 . But from i), Y j − log j

converges a.s. to G . Then jPj = je−Y j−1 ≈ je−(G+log j) = e−G = W .
Hence jPj converges a.s., so ω = 1 in Theorem 3.2, i.e., Tk/k2 converges a.s.
to 1

(ω+1)W = eG

2 .

iii) Since (by ii)) Tk
k2 converges a.s. to Q = eG/2, it follows that ck is k2 in

Theorem 3.3. Hence dn = b√nc. This implies that h(x) = limn→∞
b
√

n/xc
b√nc =

11



1√
x
. Therefore, from Theorem 3.3, Mn

dn
converges a.s. to 1√

Q
=
√

2e−G/2.

Finally since limn→∞ dn√
n

= 1 , the result follows.

iv) An = Y Mn . Thus from i) An − log Mn → G a.s. as n → ∞. From iii)
log(Mn√

n
) converges a.s to

√
2e−G/2. But

An − log Mn = An − log(
√

n
Mn√

n
) = An − (log n)/2− log(

Mn√
n

).

Hence, An − (log n)/2 converges a.s. to G + log(
√

2e−G/2) from which iv)
follows.

4 Pareto Distribution

In this section and the ensuing section different families of distributions are
considered. The Pareto distribution in Section 4, and the Beta distribution
with parameters (α, 1) in Section 5, along with the exponential distribution
that was previously discussed are representative of families that belong to the
three domains of attraction of extreme values (see Leadbetter, Lindgren and
Rootzén, 1983). The paradigm of extreme values is suitable in this context
because ultimately the average of kept observations will be governed by the
behavior in the tail of the distribution generating the observations.

From the theorems in the previous section, once a condition on Pj =
1−F (βY j) is established, it follows that Tk, Mn and An suitably normalized
converge a.s. The result in this section and the next section that follows
is to show that Y k suitably normalized converges and jωPj → W where
P (0 < W < ∞) = 1.

Specifically, let X1, X2, . . . be i.i.d. from a Pareto distribution. The
Pareto distribution is given by

Fα(x) = (1− x−α)I(x ≥ 1) (4.1)

and hence
fα(x) = αx−(α+1)I(x ≥ 1). (4.2)

Note that for X ∼ Fα we have for x ≥ c ≥ 1

P (X > x|X > c) = (x/c)−α = P (cX > x). (4.3)

Let U1, U2, . . . be i.i.d. with distribution Fα. From (4.3) it follows (taking
c = βY k−1) that Yk can be represented as
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Yk = UkβY k−1 for k = 1, 2, . . . (4.4)

with Y 0 ≡ β−1. This representation is justified since conditional on Yk ≥
βY k−1 the distribution of Y k depends on Y k−1 in the above multiplicative
way.

Since Pj = (βY j−1)−α, it is sufficient to show that Yj suitably normalized
converges almost surely to a random variable W where P (0 < W < ∞) = 1.
From (4.4)

Y k =
(k − 1)Y k−1 + UkβY k−1

k
=

βUk + k − 1
k

Y k−1. (4.5)

For X ∼ Fα(x) to have finite expectation, one must have α > 1, and we
therefore at first assume this to hold. Since E (Uk) = α/(α − 1) it follows
that

ak ≡ E(
βUk + k − 1

k
) = 1 +

βα/(α− 1)− 1
k

for k ≥ 1.

Thus, E(Y k|Y k−1) = akY k−1. Now let

bk = (
k∏

j=1

aj)−1 and Vk = bkY k. (4.6)

It follows that {Vk} is a nonnegative martingale sequence with expectation
β−1, and thus, by the Martingale Convergence Theorem, converges a.s. to
a finite limit, i.e.

bkY k → Y ∗ a.s. as k →∞. (4.7)

We shall write (4.5) in a form that shows the rate of convergence more
clearly.

b−1
k =

k∏

j=1

aj = e
∑k

j=1 log aj = e
∑k

j=1 log(1+
(β−1)α+1

(α−1)j
)

= exp(
k∑

j=1

(
(β − 1)α + 1

(α− 1)j
+ O(j−2))) = exp(

(β − 1)α + 1
α− 1

log k + δk)

= k
(β−1)α+1

α−1 Dk

where Dk converges to a positive constant. It follows that (4.7) can be
written as

k−
(β−1)α+1

α−1 Y k → Y a.s. as k →∞ (4.8)

13



where Y has finite expectation.
We have shown that P (Y < ∞) = 1. We need to show that P (Y > 0) =

1. It suffices to show that E[log(k−cY k)] > A for some constant A > −∞
for all k, where c = (β−1)α+1

α−1 . We use Y k = Y k−1(
k−1+βUk

k ) where Uk are
i.i.d. Pareto(α) of (4.1).

Let ∆k = E[log(k−cY k)]−E[log(k− 1)−cY k−1)]. It is sufficient to show
that

∑∞
k=1 |∆k| < ∞.

Note that ∆k = c log k−1
k + E(Zk) where Zk = log(k−1+βUk

k ) and:

Lemma 4.1.

E(Zk) =





c
k + O( 1

kα ) if 1 < α < 2
c
k + O( log k

k2 ) if α = 2
c
k + O( 1

k2 ) if α > 2.

If the lemma is true then
∑∞

k=1 |∆k| < ∞ because ∆k = − c
k + c

k +
O( 1

kmin(α,2) ) and all O() terms are summable.

Proof.

E(Zk) = E[log(
k − 1 + βUk

k
)] = log(

k − 1
k

) + E[log(1 +
βUk

k − 1
)].

Consider

E[log(1 +
βUk

k − 1
)] =

∫ ∞

x=1
log(1 +

βx

k − 1
)αx−(α+1)dx

=
( β

k − 1
)α

∫ ∞

y=β/(k−1)
log(1 + y)αy−(α+1)dy

=
( β

k − 1
)α

∫ 1

y=β/(k−1)
log(1 + y)αy−(α+1)dy

+
( β

k − 1
)α

∫ ∞

y=1
log(1 + y)αy−(α+1)dy

provided that k ≥ β + 1. The last term in the above expression is of order
O( 1

kα ). Note that
y − y2/2 ≤ log(1 + y) ≤ y. (4.9)

But

(
β

k − 1
)α

∫ 1

y=β/(k−1)
ytαy−(α+1)dy =

{
α

t−α [( β
k−1)α − ( β

k−1)t] if α 6= t

α( β
k−1)α(log(k − 1)− log β) if α = t.

(4.10)
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The leading term is when t = 1 (α 6= t, always in this case) and that
gives the leading term in the approximation of the first integral, of αβ

α−1 ·
1

k−1 + O( 1
kα ) = αβ

(α−1)k + O( 1
k2 ) + O( 1

kα ).

• If t = 2 and α 6= 2 (4.10) becomes O( 1
k2 ) + O( 1

kα ).

• If t = 2 and α = 2 (4.10) becomes O( log k
kα ).

Taking αβ
(α−1)k + log({k−1

k ) yields c
k + O( 1

k2 ). This proves the lemma as the

remainder terms are either O( 1
kα ) if 1 < α < 2, O( log k

k2 ) if α = 2 and O( 1
k2 )

if α > 2.

Theorem 4.1. If F is Pareto(α) with α > 1 and β > α−1
α then

i)
Y k

k
(β−1)α+1

α−1

converges a.s. as k →∞ to a positive finite r.v.

ii)
Tk

k
(β−1)α2+2α−1

α−1

converges a.s as k →∞ to a positive finite r.v.

iii)
Mn

n
α−1

(β−1)α2+2α−1

converges a.s. as n →∞ to a positive finite r.v.

iv)
An

n
(β−1)α+1

(β−1)α2+2α−1

converges a.s. as n →∞ to a positive finite r.v.

Proof. First assume that β ≥ 1.
i) This follows from (4.8).
ii) Since Pj = (βY j−1)−α, ω in (3.1) is (β−1)α+1

α−1 α and the result follows from
Theorem 3.2.
iii) This follows from Theorem 3.3 with dn = n

α−1
(β−1)α2+2α−1 .

iv) Since γ = (β−1)α+1
α−1 and ψ = α−1

(β−1)α2+2α−1
(hence γψ = (β−1)α+1

(β−1)α2+2α−1
)

the result follows from Theorem 3.4.
If α−1

α < β < 1 then eventually Y k will exceed 1/β almost surely, and
henceforth the representation (4.4) is valid and the proof follows as above.
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In particular, when β = 1, Y k

k
1

α−1
, Tk

k
2α−1
α−1

, Mn

n
α−1
2α−1

and An

n
1

2α−1
converge a.s.

Remark 4.1 Consider Theorem 2.1 which relates Mn for two distributions
that are connected to each other in a particular way. For the Pareto dis-
tribution F (x) = (1 − x−α)I(x ≥ 1) with α > 0. This implies that if X ∼
Pareto(α) then Z = Xα/α∗ ∼ Pareto(α∗). It follows that the number of
items retained after n are observed will be stochastically at least as large for
α∗ as it is for α when α∗ > α. This is consistent with the previous theorem
which says that Mn is of order n

α−1
2α−1 .

Remark 4.2 Let Xij , i = 1, 2, . . ., be i.i.d. from a Pareto distribution with
parameter j for j = 1, 2, . . . and consider Vij = j(Xij−1). It is easy to verify
that the c.d.f of Vij is Fj(v) = 1− (1 + v

j )−j . In accordance with Theorem
2.2, {Fj} is a sequence of cumulative distribution functions that converges
to F (v) = 1 − e−v which is the c.d.f of an exponential random variable.
Hence when observations are generated according to a Pareto distribution,
as the parameter becomes large, the number of items retained after n items
are observed or the number of items required until k are kept behave in the
limit (as j →∞) as if the observations were generated from an exponential
distribution.

Even though the Pareto distribution with α ≤ 1 does not have finite
mean, nevertheless, Y k suitably normalized still converges almost surely. It
is apparent from equation (4.5) that

log Y k = log Y k−1 + Zk

where Z1 = U1 and Zk = log k−1
k + log(1 + βUk

k−1) when k > 1, where Ui are
i.i.d. Pareto(α). Hence,

log Y k =
k∑

j=1

Zj .

The following lemma provides a handle on the rate at which E(Zk) and
E(Z2

k) grow, which is needed along with Theorem 3.1 to obtain the desired
results.

Lemma 4.2. i) If 0 < α < 1 then for all β > 0

kαE(Zk) → cα,β as k →∞

and
kαE(Zk

2) → dα,β as k →∞,
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where cα,β and dα,β are positive constants.
ii) If α = 1 then for all β > 0

E(Zk)
(log k)/k

→ c1,β as k →∞

and
kE(Zk

2) → d1,β as k →∞.

Proof. The results follow by substituting in the bounds and the bounds
squared on log(1 + y) in (4.9) into the results in (4.10) and realizing that
log k−1

k is of lower order.

Theorem 4.2. i) If 0 < α < 1 then for all β > 0

log Y k

k1−α
converges a.s. as k →∞.

ii) If α = 1 then for all β > 0

log Y k

(log k)2
converges a.s. as k →∞.

Proof. i) The proof applies Theorem 3.1. Specifically, let Qi = Zi − E(Zi)
and bn =

∑n
i=1 E(Zi). Then bn is increasing for large enough n, since by

Lemma 4.2 E(Zi) > 0 for large enough n. Also, from Lemma 4.2, the sum
is of order n1−α which goes to infinity. But E(Q2

n) is of order 1/nα and b2
n is

of order n2−2α. Hence E(Q2
n)/b2

n is O( 1
n2−α ) which is summable. Theorem

3.1 then implies that
∑n

i=1 Zi

bn
converges almost surely to 1. But bn is of order

n1−α and
∑n

i=1 Zi = log Y n.
ii) The proof is the same in form as i). The only difference is that since
E(Zn) is O( log n

n ) that implies that bn is O(log2 n). It follows that E(Q2
n)/b2

n

is O( 1
n log2 n

) which is summable.

Since log Y k

k1−α converges almost surely for α < 1 it follows that Yk

1
k1−α

converges almost surely. Similarly, when α = 1, Yk

1
log2 k converges almost

surely. The behavior of the other quantities of interest, Tk,Mn, and An, for
the Pareto distribution with α ≤ 1, is more complicated and hence omitted
from this discussion.
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5 Beta Distribution

We assume observations Xi are i.i.d. from a Beta distribtion with parameters
(α, 1), i.e.,

Fα(x) = xαI(0 ≤ x ≤ 1) + I(x ≥ 1), α > 0. (5.1)

Here we consider the case where ”better” means ”smaller”. In this example,
we retain Xn if it is smaller than βAn−1 where An−1 is the average of the
items retained after n− 1 items are observed.

The reason we frame ”better” to be ”smaller” for Beta distributions is
that we are confronted with anomalous situations for any random variable
with support [0, L) with L < ∞, if better is larger, if β > 1. For example,
if β = 2, then here once An−1 > 1/2, since no observation is greater than 1,
all ensuing observations will not be kept. Note that if better than average
is chosen as the criterion and β = 1 then the problems of ”smaller than
average” and ”larger than average” are related by letting X∗

i = 1−Xi and
considering the distribution of Beta(1, α) for X∗

i .
Clearly here smaller β values result in more stringent rules. For this

reason we assume that β is small throughout the present section. Let Wk

be the value of the kth item that is retained and W k the average of the first
k items that are retained. Since for Fα(x) in (5.1) for 0 ≤ x ≤ c ≤ 1

P (X ≤ x|X ≤ c) = (
x

c
)α = P (cX ≤ x)

we can write
Wk = βW k−1Uk (5.2)

where Uk are i.i.d. with c.d.f. Fα(x) as in (5.1).
It follows that

W k =
(k − 1)W k−1 + UkW k−1β

k
= (1 +

Ukβ − 1
k

)W k−1

with W0 = 1/β.
Hence, E(W k|Fk−1) = akW k−1, where ak = 1 − 1−βα/(α+1)

k , since
E(Uk) = α/(α + 1).

Let

bk = [
k∏

j=1

aj ]−1, (5.3)

and consider Rk = W kbk for k ≥ 1. It follows that Rk is a non-negative
martingale, with expectation 1/β, and hence

Rk → R a.s., as k →∞.
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We shall write (5.3) in a slightly different form which will show the rate of
convergence more explicitly. For each α and β let

γ =
αβ − (α + 1)

α + 1
< 0.

Then

b−1
k =

k∏

j=1

aj =
k∏

j=1

(1 +
γ

j
) = Dkk

γ

where Dk tends to a finite positive limit as k → ∞. Thus for β ≤ α+1
α it

follows that
k1− αβ

α+1 W k → W a.s., for k →∞,

where W has finite expectation.
We know P (W < ∞) = 1. We need to show that P (W > 0) = 1 to

apply the results of Section 3 obtained as ”smaller than”.
It suffices to show that E[log(k1− αβ

α+1 W k)] ≥ −A for some positive con-
stant A for all k ≥ 2. Since W k = W1

∏k
j=2(1 − 1−Ujβ

j ) where Ui are i.i.d.
Fα(x), then

E[log(k1− αβ
α+1 W k)] = (1− αβ

α + 1
) log k + E[log W k]

= (1− αβ

α + 1
) log k + E[log U1] +

k∑

j=2

E[log(1− 1− Ujβ

j
)],

i)E[log U1] =
∫ 1

0
(log x)αxα−1 = (log x)xα|10 −

∫ 1

0
xα−1dx = − 1

α

and

ii)E[log(1−1− Ujβ

j
)] ≥ −E[

1− Ujβ

j
]−E[(

1− Ujβ

j
)2] ≥ −1− αβ/(α + 1)

j
− 1

j2

for all j ≥ 2. The first inequality follows because log(1− u) ≥ −u − u2 for
0 ≤ u ≤ 1/2. Hence,

k∑

j=2

E[log(1− Ujβ

j
)] ≥ −(1− αβ

α + 1
)

k∑

j=2

1
j
− π2

6
. (5.4)
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Substituting (5.4) and the result in i) into the main expression yields

E[log(k1− αβ
α+1 W k] ≥ (1− αβ

α + 1
)(log k −

k∑

j=2

1
j
)− 1

α
− π2

6
≥ −(

1
α

+
π2

6
).

The last inequality follows from
∑k

j=2
1
j ≤ log k.

Theorem 5.1. If F is Beta(α,1) then for β < α+1
α

i) k1− αβ
α+1 W k converges a.s. as k →∞.

ii) Tk

k
(α+1)2−α2β

α+1

converges a.s. as k →∞.

iii) Mn

n
α+1

(α+1)2−α2β

converges a.s. as n →∞.

iv) Ann
α+1−αβ

(α+1)2−α2β converges a.s. as n →∞
In particular, when β = 1, k

1
α+1 W k, Tk

k
2α+1
α+1

, Mn

n
α+1
2α+1

, and Ann
1

2α+1 con-
verge a.s.

Proof. First assume that β ≤ 1. Since here Pj = F (βW j−1) = (βW j−1)α,
this implies that ω in (3.1) is α+1−αβ

α+1 α. Since Tk

k
α+1−αβ

α+1 α+1
= Tk

k
(α+1)2−α2β

α+1

,

thus (ii) follows from Theorem 3.2.
iii) This follows from Theorem 3.3.
iv) This follows from Theorem 3.4 with γ and ψ as given.

If 1 < β < α+1
α then eventually W k will exceed 1/β almost surely, and

henceforth representation (5.2) is valid and the proof follows as above.

Remark 5.1 For β = 1 the smaller than average rule corresponds to the
larger than average rule for Beta(1,α).
Let X ∼ [1 − (1 − x)α]I(0 ≤ x ≤ 1) and Z ∼ [1 − (1 − z)α∗ ]I(0 ≤ z ≤ 1)
then Z is distributed like g(X) where g(x) = 1 − (1 − x)α/α∗ . Clearly g is
increasing and concave if α∗ < α. It follows from Theorem 2.1 that Mn(α)
is stochastically decreasing in α for every n and hence also E(Mn(α)) is
decreasing in α.

Remark 5.2 Let X have the Pareto distribution with parameter ν and
consider g(x) = 1−x−ν/α. Clearly g is increasing. It is concave for all ν > 0
and α > 0. Let Z = g(X). It is easily seen that Z is Beta(1, α). For β = 1,
Theorem 2.1 implies that E(M∗

n(ν)) ≤ E(Mn(α)) for all α, ν and n, where
M∗

n(ν) is the number retained by time n by a Pareto (ν) random variable.
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Remark 5.3 Let Xij , i = 1, 2, . . ., be i.i.d. from a Beta distribution with
parameters (1, j) for j = 1, 2, . . . and consider Vij = jXij . It is easy to verify
that the c.d.f of Vij is Fj(v) = 1 − (1 − v

j )j , 0 < v < j. In accordance with
Theorem 2.2, {Fj} is a sequence of cumulative distribution functions that
converges to F , with F (v) = 1 − e−v, which is the c.d.f of an exponential
random variable. Hence when observations are generated from a Beta(1, α)
distribution, as the α becomes large, the number of items retained after n
items are observed or the number of items required until k items are kept
behave in the limit (as j → ∞) as if the observations were generated from
an exponential distribution.

6 Remarks

Items are observed sequentially. At the time an item is observed it is either
retained into the selected set or discarded. The class of rules that is consid-
ered in this paper retains an item if it is β times better than the average of
those items that have already been selected.

Remark 6.1 This is in contrast to the rule considered in Krieger, Pollak,
Samuel-Cahn (2007) in which an item is retained if its rank is sufficiently
high (low) among the items already retained. In this paper and the previous
one, it is assumed that items are generated in an i.i.d. fashion from a
common distribution. The rules in these two papers can be implemented
without knowledge of this distribution. The behavior of the rules, in terms
of the number items retained and quality of the retained items, depends on
the distribution when average is used as the baseline for admittance into
the set in contrast to rules based on ranks where the distribution does not
play a role when performance is judged in terms of ranks. For example, the
number of retained items after n items are observed grows at a rate of

√
n,

regardless of the distribution, when an item needs to be better than the
median of the items already retained, in order to be selected. The rule that
retains an item when it is larger than the average of those already retained
has a size that grows at the rate of

√
n for the exponential distribution,

but, for example, at the rate of n2/3 if items are generated from a uniform
distribution.

Remark 6.2 Preater (2000) considered the behavior of the average of the
first k items that are kept, Y k, when the distribution generating the obser-
vations is exponential and β = 1 in the β better than average rule. The
behavior of this quantity for β > 1 is markedly different. The results in
the present paper (see Theorem 3.5) provide the behavior of the number of
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items required until k items are kept for the better than average rule as well
as behavior up to time n. If the rule is extended to β better than average,
the asymptotic behavior of the number of items required depends on the
choice of β. These results, which are more complicated, will appear in an
ensuing paper.

Remark 6.3 The performance of the rule when the underlying distribution
is normal is also more complicated. Analogous to the result for the expo-
nential distribution that Y k − log k converges almost surely to a Gumbel
distribution, it can be shown for the normal that Y k less a suitably chosen
function of k converges almost surely, but not to a Gumbel distribution.
The results for the normal case are also left to another article.

Remark 6.4 It is not surprising that there should be some relationship
between the domain of attraction to which the extremal distribution of F
belongs and the limiting distribution of Y k, since the Yk process will, on the
average, select larger and larger items. Preater(2000) shows that Y k with
change of location and max{X1, . . . , Xk} with change of location and scale
have the exact same limiting Gumbel distribution when the observations
are i.i.d. from an exponential distribution (though Y k converges a.s. and
in L2 while the maximum only converges in distribution). Will the limiting
distribution of Y k, and max{X1, . . . , Xk} always agree, or at least have the
same rate of convergence? As we have seen both for the Pareto and Beta
distributions this is not necessarily the case for other distributions.

Remark 6.5 In this paper we essentially restricted β to be sufficiently
large (small) when better is ”larger” (”smaller”), often β ≥ 1 (β ≤ 1).
What happens to these rules if β is small (large)? It can be shown that
in certain cases when β is sufficiently small (large), particularly when the
domain of X is restricted either by 0 < a < X (e.g., the Pareto distribution)
or X < b < ∞ (e.g., for the Beta distribution), Y k converges a.s. to the
expected value of the underlying distribution.

Remark 6.6 Since the tail of the the distribution is all that matters in
terms of the asymptotic behavior families can be extended without altering
the behavior of the rules. For example, for the Pareto distributions, we can
extend to the class when 1−F (x) = x−αL(x) where L(x) is slowly varying,
i.e., limx→∞ L(tx)/L(x) = 1 for all t > 0.

Remark 6.7 In certain cases the random variables of interest converge in L2

as well, thereby implying that the limiting distribution has finite variance.
This can be shown for Y k suitably normalized for the Pareto distribution
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when better is ”larger” if α > 2 and β ≥ 1. It can also be shown for W k for
the Beta distribution where better is ”smaller” for all α and β ≤ 1.
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