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Abstract

The voting rules proposed by Dodgson and Young are both designed to find the candidate closest to
being a Condorcet winner, according to two different notions of proximity; the score of a given candidate
is known to be hard to compute under both rules. In this paper, we put forward an LP-based randomized
rounding algorithm which yields an O(log m) approximation ratio for the Dodgson score, where m is
the number of candidates. Surprisingly, we show that the seemingly simpler Young score is NP-hard to
approximate by any factor.

1 Introduction

The discipline of voting theory deals with the following setting: a set of voters each rank a set of candidates;
one candidate is to be elected. The big question is: which candidate best reflects the social good? The French
philosopher and mathematician Marie Jean Antoine Nicolas de Caritat, marquis de Condorcet, suggested
the following intuitive criterion: the winner should be a candidate which beats every other candidate in a
pairwise election, that is: a candidate which is preferred to any other candidate by a majority of the voters.
Sadly, it is fairly easy to see that the preferences of the majority may be cyclic, hence a Condorcet winner
does not necessarily exist. This unfortunate phenomenon is known as the Condorcet paradox (see Black [4]).

In order to circumvent this result, several researchers have proposed to choose a candidate which is “as
close as possible” to a Condorcet winner. Different notions of proximity can be chosen, and yield different
voting rules. One such suggestion was advocated by Charles Dodgson, better known as Lewis Caroll, author
of “Alice’s Adventures in Wonderland” [4]. The Dodgson score of a candidate, with respect to given voters’
preferences, is the minimal number of exchanges between adjacent candidates in the voters’ rankings one has
to introduce in order to make the given candidate a Condorcet winner. A Dodgson winner is any candidate
with minimal Dodgson score.

Young [20] raised a second option: measuring the distance by voters. Specifically, the Young score of a
candidate is the size of the largest subset of voters such that, if only these ballots are taken into account,
the given candidate becomes a Condorcet winner. A Young winner is any candidate with maximal Young
score. Alternatively, one can perceive a Young winner as the candidate that becomes a Condorcet winner
by removing the least number of voters.

Though these two voting rules sound appealing and straightforward, they are notoriously complicated
to resolve. As early as 1989, Bartholdi, Tovey and Trick [2] have shown that computing the Dodgson score
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is NP-complete, and that pinpointing a Dodgson winner is NP-hard. This important paper was one of the
first to introduce complexity-theoretic considerations to social choice theory. Hemaspaandra et al. [9] refined
the abovementioned result by showing that the Dodgson winner problem is complete for Θp

2, the class of
problems which can be solved by O(log n) queries to an NP set. Consequently, Rothe et al. [18] proved that
the Young winner problem is also complete for Θp

2.
The abovementioned complexity results give rise to the agenda of approximately calculating a candidate’s

score, under the Dodgson and Young schemes. This is clearly an interesting computational problem, as an
application area of algorithmic techniques.

However, from the point of view of social choice theory, it is not immediately apparent that an approxi-
mation of a voting rule is satisfactory, since an “incorrect” candidate—in our case one which is not closest
to a Condorcet winner—can be elected. Nevertheless, we argue that the employment of such an approx-
imation is strongly motivated. Indeed, at least in the case of the Dodgson and Young rules, the winner
is an “approximation” in the first place, in instances where no Condorcet winner exists. Moreover, the
approximation algorithm is equivalent to a new voting rule, which is guaranteed to elect a candidate which
is not far from being a Condorcet winner. In other words, a perfectly sensible definition of a “socially good”
winner, given the circumstances, is simply the candidate which is chosen by the approximation algorithm.
Note that the approximation algorithm can be designed to satisfy the Condorcet criterion, i.e. always elect
a Condorcet winner if one exists (this is always true for an approximation of the Dodgson score, as the score
of a Condorcet winner is 0, and is indeed the case here).

Related work. The agenda of approximating voting rules was recently pursued by Ailon et al. [1], Cop-
persmith et al. [7], and Kenyon-Mathieu and Schudy [12]. These works deal, directly or indirectly, with
the Kemeny rank aggregation rule, which chooses a ranking of the candidates instead of a single winning
candidate. The Kemeny rule picks the ranking which has the maximum number of agreements with the
voters’ individual rankings regarding the correct order of pairs of candidates. Ailon et al. improve the
trivial 2-approximation algorithm to an involved randomized algorithm which gives an 11/7-approximation;
Kenyon-Mathieu and Schudy further improve the approximation, and obtain a PTAS. Coppersmith et al.
show that the Borda ranking is a 5-approximation of the Kemeny ranking. Interestingly, Klamler [13] dis-
cusses the relation between the Kemeny rule and an extension of Dodgson’s rule. However, Klamler shows
that the candidate ranked first by Kemeny can appear anywhere in the Dodgson ranking. This implies that
approximation algorithms for Kemeny cannot be leveraged to approximate Dodgson.

Two recent works have directly put forward algorithms for the Dodgson winner problem [10, 15]. Both
papers independently build upon the same basic idea: if the number of voters is significantly larger than
the number of candidates, and one looks at a uniform distribution over the preferences of the voters, with
high probability one obtains an instance on which it is trivial to compute the Dodgson score of a given
candidate. This directly gives rise to an algorithm with the property which Homan and Hemaspaandra [10]
call frequently self-knowingly correct : the algorithm knows when it is definitely correct, and the algorithm
is able to give a definite answer with high probability (under the assumption on the number of voters and
candidates). However, this is not an approximation algorithm in the usual sense, since the algorithm a priori
gives up on certain instances, whereas an approximation algorithm is judged by its worst-case guarantees. In
addition, this algorithm would be useless if the number of candidates is not small compared to the number
of voters.1

Betzler et al. [3] have investigated the parameterized computational complexity of the Dodgson and
Young rules. The authors have devised a fixed parameter algorithm for exact computation of the Dodgson
score, where the fixed parameter is the “edit distance”, i.e. the number of exchanges. Specifically, if k is an

1This would normally not happen in political elections, but can certainly be the case in many other settings. For instance,
consider a group of agents trying to reach an agreement on a joint plan, when multiple alternative plans are available.
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upper bound on the Dodgson score of a given candidate, n is the number of voters, and m the number of
candidates, the algorithm runs in time O(2k ·nk +nm). Notice that in general it may hold that k = Ω(nm).
In contrast, computing the Young score is W [2]-complete; this implies that there is no algorithm which
computes the Young score exactly, and whose running time polynomial in n,m and only exponential in k,
where the parameter k is the number of remaining votes. These results complement ours nicely, as we shall
also demonstrate that computing Dodgson score is in a sense easier than computing Young score, albeit in
the context of approximation.

More distantly related to our work is research which is concerned with exactly resolving hard-to-compute
voting rules by heuristic methods. Typical examples include works regarding the Kemeny rule [6] and the
Slater rule [5]. Another more remotely related field of research is concerned with finding approximate,
efficient representations of voting rules, by eliciting as little information as possible; this line of research
employs techniques from learning theory [17, 16].

Our results. Our results are two-fold. In the context of approximating the Dodgson score, we devise an
O(log m) randomized approximation algorithm, where m is the number of candidates. Our algorithm is
based on solving the linear program proposed by Bartholdi et al. [2] and using randomized rounding. We
also show that the integrality gap of this LP formulation, that is the worst-case ratio between the costs of
the optimal integral solution and optimal fractional solution, is at least 2 − ε for every ε > 0. Finally, we
show that the analysis of our randomized rounding algorithm is asymptotically tight.

The problem of calculating the Young score seems simpler at first glance. Therefore, our result with
respect to this problem is quite surprising: it is NP-hard to approximate the Young score by any factor.
Specifically, we show that it is NP-hard to distinguish between the case where the Young score of a given
candidate is 0, and the case where the score is greater than 0.

Open questions: An obvious open question is whether a better approximation ratio for the Dodgson score
can be achieved. In particular, we were unable to bridge the chasm between our O(log m) upper bound and
the integrality gap of only 2. Is there a better LP-based algorithm? Furthermore, it would be interesting to
know whether our randomized algorithm can be derandomized.

Structure of the paper. In Section 2, we introduce some notations and definitions. In Section 3, we
present our randomized rounding approximation algorithm for Dodgson score and analyze it. In Section 4,
we prove that the Young score is inapproximable.

2 Preliminaries

Let N = {1, . . . , n} be a set of players (which we shall refer to as voters), and let A be the set of alternatives
(which we shall refer to as candidates). We denote |A| = m, and denote the candidates themselves by letters,
such as a ∈ A. Each player i ∈ N holds a binary relation Ri over A which satisfies reflexivity, antisymmetry,
transitivity and totality. Informally, Ri is a ranking of the candidates. Let L = L(A) be the set of all
rankings over A; we have that each Ri ∈ L. We denote RN = 〈R1, . . . , Rn〉 ∈ LN , and refer to this vector
as a preference profile. For sets of alternatives B1, B2 ⊆ A, we write B1R

iB2 if for all a ∈ B1, b ∈ B2, aRib.
Let a, b ∈ A. Denote P (a, b) = {i ∈ N : aRib}. We say that a beats b in a pairwise election if

P (a, b) > n/2. A Condorcet winner is a candidate which beats every other candidate in a pairwise election.
The Dodgson score of a given candidate c∗, with respect to a given preference profile RN , is the least

number of exchanges between adjacent candidates in RN needed to make c∗ a Condorcet winner. For
instance, let N = {1, 2, 3}, A = {a, b, c}, and let RN be given by:
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R1 R2 R3

a b a
b a c
c c b

In this example, the Dodgson score of a is 0 (a is a Condorcet winner), b’s score is 1, and c’s is 3.
Bartholdi et al. [2] have shown that computing the Dodgson score is an NP-complete problem.

The Young score of c∗ with respect to RN is the size of the largest subset of voters such that c∗ is a
Condorcet winner for these voters. This is the definition given by Young himself [20], and used in subsequent
works [18]. If for every nonempty subset of voters c∗ is not a Condorcet winner, its Young score is 0. In the
above example, a’s Young score is 3, b’s is 1, and c’s is 0.

Notice that, equivalently, a Young winner is a candidate such that one has to remove the least number of
voters in order to make it a Condorcet winner. However, in the context of approximation the two definitions
are not equivalent; we employ the former (original, prevalent) definition.

As the Young winner problem is known to be intractable [18], the Young score problem must also be
hard; otherwise, we would be able to calculate the scores of all the candidates efficiently, and identify the
candidates with minimal score.

3 Approximating Dodgson score

In this section, we present the main result of the paper: an LP-based randomized rounding algorithm which
gives an O(log m) approximation for the Dodgson score of a candidate.

As a warm-up, we start by considering some trivial combinatorial algorithms. Recall that in order
to compute the Dodgson score of a given candidate under some preference profile, we must perform the
minimal number of exchanges between adjacent candidates. In fact, clearly the only type of exchanges to
be considered are the ones which move the given candidate upward in some ranking, at the expense of some
other candidate. In other words, we can simply talk about the number of positions each voter pushes the
given candidate.

An approximation algorithm which immediately comes to mind is the following greedy algorithm.

Algorithm 1:
Input: A candidate c∗ whose Dodgson score we wish to estimate, and a preference profile RN ∈ LN .
Output: An approximation of the Dodgson score of c∗.
The algorithm:

1. Let A′ be the candidates which are not beaten by c∗ in a pairwise election under RN .

2. While A′ 6= ∅:
• Choose some a ∈ A′ arbitrarily.

• Perform the minimal number of exchanges needed to make c∗ beat a in a pairwise election.

• Recalculate A′.

3. Return the number of exchanges performed.

Notice that step 2 in the while loop can be efficiently carried out. Indeed, let d(a) be the deficit of c∗

with respect to a, i.e. the number of voters c∗ has to win over in order to beat a in a pairwise election. Then
it is sufficient to simply choose the d(a) voters which require the smallest number of exchanges in order to
place c∗ above a, and perform these exchanges.
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Claim 3.1. Algorithm 1 is an m-approximation algorithm for Dodgson score.

Proof. Consider the given preference profile RN ; let a ∈ A be the candidate which requires the maximum
number t of exchanges in order to have c∗ beat a in a pairwise election. The Dodgson score of c∗ is at least
t. On the other hand, each iteration of the algorithm’s while loop clearly performs at most t exchanges, and
there are at most m iterations.

Unfortunately, it is also easily seen that there are examples on which Algorithm 1 gives an Ω(m) approx-
imation. We now turn our attention to a second simple combinatorial algorithm. The input and output of
the algorithm are the same as before.

Algorithm 2:

1. Let A′ be the candidates which are not beaten by c∗ in a pairwise election under RN .

2. While A′ 6= ∅:
• Move c∗ upward by one position in the preferences of all the voters (unless c∗ is already ranked

highest).

• Recalculate A′.

3. Return the number of exchanges performed.

Claim 3.2. Algorithm 2 is an n-approximation algorithm for Dodgson score.

Proof. Consider the minimal sequence of exchanges which makes c∗ a Condorcet winner, and denote the
length of this sequence (which is, in fact, c∗’s Dodgson score) by t. For every i ∈ N , denote by s∗i the position
of c∗ as a result of this sequence in the preferences of voter i (where m is the top ranking position and 1 is
the lowest ranking). Let si be the position of c∗ in voter i’s ranking after t iterations of the algorithm’s while
loop. It is self evident that for all i ∈ N , si ≥ s∗i . Therefore, after at most t iterations c∗ certainly becomes
a Condorcet winner, and the algorithm halts. We conclude that the number of exchanges the algorithm
makes is at most t · n.

Algorithm 2’s worst-case approximation ratio is also Ω(n). Indeed, it is easy to find an example where
c∗ needs only one exchange to become a Condorcet winner, but a single iteration of the algorithm leads to
Ω(n) exchanges.

3.1 The Randomized Rounding algorithm

Bartholdi et al. [2] give a surprising integer linear programming (ILP) formulation for the Dodgson score.
The number of constraints and variables in their program depends purely on the number of candidates.
Therefore, if the number of candidates is constant, the program is solvable in polynomial time using the
algorithm of Lenstra [14]. However, if the number of candidates is not constant, the LP is of gargantuan
size.2

Fortunately, it is straightforward to modify the abovementioned ILP to obtain a program of polynomial
size. As before, let c∗ ∈ A be the candidate whose score we wish to compute. Let the variables of the
program be xij ∈ {0, 1} for all i ∈ N and j = 1, . . . ,m − 1; xij = 1 if and only if c∗ is moved upward by j
positions in the ranking of voter i. Define constants ea

ij ∈ {0, 1}, for all i ∈ N , j = 1, . . . , m, and a ∈ A\{c∗},
which depend on the given preference profile; ea

ij = 1 iff moving c∗ upward by j positions in the ranking of

2Note that there is also an efficient solution if the number of voters n is constant; indeed, brute force search requires checking
O(mn) possibilities.
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voter i makes c∗ gain an additional vote against a (note that ea
ij = 0 for all j if c∗Ria). Once again, let

d(a) be the deficit of c∗ with respect to a, i.e. the number of voters c∗ must gain in order to defeat a in a
pairwise election (if a is beaten from the outset, d(a) = 0). The ILP which computes the Dodgson score of
c∗ is given by:

min
∑

i,j

j · xij such that

∀i ∈ N,
∑

j

xij = 1

∀a ∈ A \ {c∗},
∑

i,j

xije
a
ij ≥ d(a)

∀i, j, xij ∈ {0, 1}

(1)

This ILP can be relaxed by asking merely that 0 ≤ xij ≤ 1 for all i and j. The resulting linear program
(LP) can be solved efficiently [19].

We are now ready to present our randomized rounding algorithm. Its input and output are as before.

Randomized Rounding Algorithm:

1. Solve the relaxed LP given by (1) to obtain a solution ~x.

2. For k = 1, . . . , c · log m (where c > 0 is a constant to be chosen later)

• For all i ∈ N , randomly and independently (from other players and other iterations) choose a
value Xk

i , such that Xk
i = j with probability xij .

3. For all i ∈ N , set Xmax
i = maxkX

k
i .

4. Let X ′ be the solution which moves c∗ upward in the ranking of i by Xmax
i positions; return cost(X ′) =∑

i∈N Xmax
i .

Before commencing our formal analysis of the algorithm, we remark that if c∗ is a Condorcet winner from
the outset, clearly the algorithm will calculate a score of 0 (with probability 1). Therefore, if we defined a
new (randomized) voting rule, which elects the candidate with minimal score according to the algorithm,
this voting rule would satisfy the Condorcet criterion.

3.2 Analysis of the Algorithm

In this subsection we shall prove:

Theorem 3.3. For any input c∗ and RN , the randomized rounding algorithm returns a 4c · log m approxi-
mation of the Dodgson score with probability at least 1/2.

Proof. Fix some iteration k of the algorithm’s for loop. Let Xi = Xk
i , i ∈ N , be independent discrete

random variables such that Xi = j with probability xij . Consider the sequence of exchanges induced by the
variables Xi, i.e. each voter i ∈ N moves c∗ upward by j places with probability xij . As a result of the
constraint ∀i ∈ N,

∑
j xij = 1, these are legal random variables. Moreover, let X be the chosen sequence of

exchanges, and denote the LP’s optimal fractional solution by OPTf =
∑

i,j j · xij ; it holds that

E[cost(X )] = E

[∑

i

Xi

]
= OPTf . (2)
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Now, fix some candidate a 6= c∗. We wish to bound the probability that c∗ does not beat a after the
exchanges given by X are made in RN .

Let Yi, i ∈ N , be independent Bernoulli trials, such that Yi = 1 iff aRic∗, and c∗ is moved above a in
voter i’s ranking. In other words, Yi = 1 if voter i becomes an additional voter which ranks c∗ above a as a
result of the exchanges. We want to provide a lower bound on Pr[

∑
i Yi < d(a)]. Denote

pi =
∑

j: ea
ij=1

xij .

Notice that Yi = 1 with probability pi, so E[
∑

i Yi] =
∑

i pi. Moreover, by the constraint ∀a ∈ A \
{c∗}, ∑

i,j xije
a
ij ≥ d(a), we have that

∑
i pi ≥ d(a). We now employ a deceivingly intuitive but highly

nontrivial result:

Lemma 3.4 (Jogdeo and Samuels [11]). Let Y1, . . . , Yn be independent heterogeneous Bernoulli trials. Sup-
pose that E[

∑
i Yi] is an integer. Then

Pr

[∑

i

Yi < E

[∑

i

Yi

]]
< 1/2.

Since d(a) is an integer, and E[
∑

i Yi] =
∑

i pi ≥ d(a), it follows from the lemma that:

Pr[a not beaten in X ] = Pr

[∑

i

Yi < d(a)

]
< 1/2.

At this point, we choose the value of the constant c to be such that 2c log m ≥ 4m. Note that if m ≥ 4,
we can choose c ≤ 2. As in the algorithm, set Xmax

i = maxkX
k
i . Denote by X ′ the induced sequence of

exchanges. It holds that a is not beaten in a pairwise election under X ′ only if a is not beaten under the
exchanges obtained in each one of the c · log m individual iterations. Therefore,

Pr[a not beaten in X ′] <

(
1
2

)c·log m

≤ 1
4m

.

By the union bound we get:3

Pr[c∗ is not a Condorcet winner in X ′] ≤ m · 1
4m

= 1/4. (3)

X1
i , · · · , Xc log m

i are i.i.d random variables; it holds that Xmax
i = maxk Xk

i ≤
∑

k Xk
i , and thus

E[Xmax
i ] ≤ E[

∑

k

Xk
i ] = c · log m · E[X1

i ].

Therefore, by the linearity of expectation,

E[cost(X ′)] = E

[∑

i

Xmax
i

]

≤ c · log m · E[
∑

i

X1
i ]

= c · log m · E[cost(X )]
= c · log m ·OPTf

≤ c · log m ·OPT,

3Strictly speaking, we can use m− 1 instead of m.
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where OPT is the Dodgson score of c∗, i.e. the optimal integral solution to the ILP (1).
By Markov’s inequality we have that

Pr[cost(X ′) > OPT · 4 · c · log m] ≤ 1/4. (4)

We now apply the union bound once again on (3) and (4), and obtain that with probability at least 1/2,
c∗ is a Condorcet winner under X ′ and, at the same time, cost(X ′) ≤ OPT · 4 · c · log m. This complete the
proof of Theorem 3.3.

It is possible to verify in polynomial time whether the algorithm’s output is, at the same time, a valid
solution (i.e. c∗ is a Condorcet winner) and a 4c · log m-approximation. Therefore, it is possible to repeat
the algorithm from scratch to improve the probability of success. The expected number of repetitions is at
most 2.

3.3 An Integrality Gap of 2− ε

In this subsection we shall demonstrate that using an algorithm which solves the relaxed LP (1) and rounds
it, one cannot hope to obtain an approximation ratio better than 2. More formally, we shall show that
the integrality gap of the LP (1), i.e. the worst-case ratio between the optimal integral solution OPT and
the optimal fractional solution OPTf , is at least 2 − ε, for any given ε. Interestingly, the example used
to establish the integrality gap will be directly used to show that the analysis of our randomized rounding
algorithm is tight.

Let m be the number of candidates, and let A′ ⊂ A be a subset of candidates of size s: A′ = {a1, . . . , as}.
Let A′′ = A \ (A′ ∪ {c∗}); we shall assume that |A′′| is divisible by s. Let A′′1, . . . , A

′′
s be a partition of A′′

such that for all t = 1, . . . , s,

|A′′t | =
|A′′|
s

=
m− s− 1

s
.

We shall consider a set of voters N , |N | = 2s − 2, partitioned into two subsets, N ′ = {1, . . . , s}, and
N ′′ = {s + 1, . . . , 2s− 2}. Let us define the preference profile RN . The voters in N ′ vote as follows:

R1 . . . Rs

A′ \ {a1} . . . A′ \ {as}
A′′ \A′′1 . . . A′′ \A′′s

c∗ . . . c∗

a1 . . . as

A′′1 . . . A′′s

Meanwhile, the voters in N ′′ all rank c∗ on top, and the other candidates in some arbitrary order. We
have that for all a ∈ A \ {c∗}, d(a) = 1, since s − 1 voters prefer c∗ to a and s − 1 voters prefer a to c∗.
Now, in any optimal integral solution, c∗ must be moved above A′′ \ A′′t by at least two voters (i.e at least
two values of t), in order for c∗ to beat all the candidates in A′. Thus,

OPT ≥ 2 · |A′′ \A′′t | = 2 · s− 1
s

· (m− s− 1).

On the other hand, consider the fractional solution where for each i ∈ N ′, c∗ is moved to the top of voter
i’s ranking with probability 1

s−1 , and stays in place with probability 1− 1
s−1 . Formally, for i = 1, . . . , s,

xi,m−2−m−s−1
s

=
1

s− 1
,
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and xi0 = 1− 1
s−1 . Since for all a ∈ A \ {c∗}, s− 1 voters in N ′ rank a above c∗, this gives a valid solution;

it is also straightforward that this solution is optimal. By summing on all voters in N ′, we conclude that

OPTf =
s

s− 1
·
(

m− 2− m− s− 1
s

)
.

Hence,
OPT
OPTf

≥ 2 ·
(

s− 1
s

)2

· m− s− 1(
m− 2− m−s−1

s

) .

If we take, for instance, s ≈ log m, this expression is arbitrarily close to 2 as m grows larger.
Let us now leverage this example to demonstrate the asymptotic tightness of the analysis given in

Subsection 3.2. Let r = m− 2− m−s−1
s . The optimal integral solution satisfies OPT ≤ 2r, as it is possible

to make c∗ a Condorcet winner by moving it to the top of the rankings of two of the voters in N ′.
On the other hand, the optimal fractional solution described above induces Bernoulli random variables

Xk
i , for i = 1, . . . , s, which assume the value r with probability 1

s−1 , and 0 with probability 1− 1
s−1 .

Now, let s = c · log m + 1; we have that for i = 1, . . . , s, Xmax
i = r if and only if there exists k ∈

{1, . . . , c · log m} such that Xk
i = r; this happens with probability

1−
(

1− 1
s− 1

)s−1

≥ 1− 1
e
,

where the constant e is the base of the natural logarithm. Therefore, E[Xmax
i ] ≥ (

1− 1
e

)·r, and consequently
E(X ′) ≥ s · (1− 1

e

) · r. We conclude that

E[cost(X ′)]
OPT

≥
(

1− 1
e

)
· 1
2
· s = Ω(log m).

4 Inapproximability of the Young Score

Recall that the Young score of a given candidate c∗ ∈ A is the size of the maximal subset of voters for which
c∗ is a Condorcet winner.

It is straightforward to obtain a simple ILP for the Young score problem. As before, let c∗ ∈ A be the
candidate whose Young score we wish to compute. Let the variables of the program be xi ∈ {0, 1} for all
i ∈ N ; xi = 1 iff voter i is included in the subset of voters for c∗. Define constants ea

i ∈ {−1, 1} for all i ∈ N
and a ∈ A \ {c∗}, which depend on the given preference profile; ea

i = 1 iff voter i ranks c∗ higher than a.
The ILP which computes the Young score of c∗ is given by:

max
∑

i

xi such that

∀a ∈ A \ c∗,
∑

i

xie
a
i ≥ 1

∀i, xi ∈ {0, 1}

(5)

The ILP (5) for the Young score is seemingly simpler than the one for the Dodgson score, given as (1).
This might seem to indicate the the problem can be easily approximated by similar techniques. Therefore,
the following result is quite surprising.

Theorem 4.1. It is NP-hard to approximate the Young score by any factor.
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This result becomes more self-evident when we notice that the Young score is nonmonotonic as an
optimization problem. Indeed, given a subset of voters which make c∗ a Condorcet winner, it is not necessarily
the case that a smaller subset of the voters would satisfy the same property. This stands in contrast to many
approximable optimization problems, in which a solution which is worse than a valid solution is also a valid
solution. Consider the famous Set Cover problem, for instance: if one adds more subsets to a valid cover,
one obtains a valid cover. The same goes for the Dodgson score problem: if a sequence of exchanges makes
c∗ a Condorcet winner, introducing more exchanges on top of the existing ones would not undo this fact.

In order to prove the inapproximability of the Young score, we define the following problem.

NonEmptySubset
Instance: A candidate c∗, and a preference profile RN ∈ LN .
Question: Is there a nonempty subset of voters S ⊆ N , S 6= ∅, for which c∗ is a Condorcet winner?

In order to prove Theorem 4.1, it is sufficient to prove that NonEmptySubset is NP-hard. Indeed, this
implies that it is NP-hard to distinguish whether the Young score of a given candidate is 0 or greater than
0, which directly entails that the score cannot be approximated.

Lemma 4.2. NonEmptySubset is NP-complete.

Proof. The problem is clearly in NP; a witness is given by a nonempty set of voters for which c∗ is a
Condorcet winner.

In order to show NP-hardness, we present a polynomial-time reduction from the NP-hard Exact Cover
by 3-Sets (X3C) problem [8] to our problem. An instance of the X3C problem includes a finite set of elements
U , |U | = n (where n is divisible by 3), and a collection C of 3-element subsets of U , C = {C1, . . . , Ck}, such
that for every 1 ≤ i ≤ k, Ci ⊆ U and |Ci| = 3. The question is whether the collection C contains an exact
cover for U , i.e., a subcollection C∗ ⊆ C of size n/3 such that every element of U occurs in exactly one subset
in C′.

We next give the details of the reduction from X3C to NonEmptySubset. Given an instance of X3C, de-
fined by the set U and a collection of 3-element sets C, we construct the following instance of NonEmptySubset.

Define the set of candidates as A = U ∪ {a} ∪ {c∗}. Let the set of voters be N = N ′ ∪ N ′′, where N ′

and N ′′ are defined as follows. The set N ′ is composed of k voters, corresponding to the k subsets in C,
such that for all i ∈ N ′, voter i prefers the candidates in U \ Ci to c∗, and prefers c∗ to all the candidates
in Ci ∪ {a} (i.e., U \ Ci Ri c∗, and Ri Ci ∪ {a}).

Subset N ′′ is composed of n
3 − 1 voters who prefer a to c∗ and c∗ to U (i.e., for all i ∈ N ′′, a Ri c∗ Ri U).

We next show that there is an exact cover in the given instance iff there is nonempty subset of voters
for which c∗ is a Condorcet winner in the constructed instance.
Sufficiency: Let C∗ be an exact cover by 3-sets of U , and let N∗ ⊆ N ′ be the subset of voters corresponding
to the n

3 subsets Ci ∈ C∗. We show that c∗ is a Condorcet winner for S = N∗ ∪ N ′′. Since C′ is an exact
cover, for all b ∈ U there exists exactly one voter in N∗ that prefers c∗ to b and n

3 − 1 voters in N∗ that
prefer b to c∗. In addition, all n

3 − 1 voters in N ′′ prefer c∗ to b. Therefore, c∗ beats b in a pairwise election.
It remains to show that c∗ beats a in a pairwise election. This is true since all n

3 voters in N∗ prefer c∗

to a, and there are only n
3 − 1 voters in N ′′ who prefer a over c∗. It follows that c∗ is a Condorcet winner

for N∗ ∪N ′′.
Necessity: Assume the given instance of X3C has no exact cover. We have to show that there is no subset
of voters for which c∗ is a Condorcet winner. Let S ⊆ N , S 6= ∅, and let N∗ = S ∩ N ′. We distinguish
between three cases.

Case 1 : |N∗| = 0. It must hold that S ∩N ′′ 6= ∅. In this case, c∗ loses to a in a pairwise election, since
all the voters in N ′′ prefer a to c∗.
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Case 2 : 0 < |N∗| ≤ n
3 . Since there is no exact cover, the corresponding sets Ci cannot cover U . Thus

there exists b ∈ U that is ranked lower than c∗ by all voters in N∗. In order for c∗ to beat b in a pairwise
election, S must include at least |N∗|+1 voters from N ′′. However, this means that a beats c∗ in a pairwise
election (since a is ranked lower than c∗ by |N∗| voters, and higher than c∗ by at least |N∗|+ 1 voters). It
follows that c∗ is not a Condorcet winner for S.

Case 3: |N∗| > n
3 . Let us award each candidate b ∈ A \ {c∗} a point for each voter which ranks it above

c∗, and subtract a point for each voter which ranks it below c∗. c∗ is a Condorcet winner iff the score of
every other candidate, counted this way, is negative. This implies that c∗ is a Condorcet winner only if for
every subset K ⊆ A of candidates, the total score of the candidates in K is at most −|K|.

We shall calculate the total score of the candidates in U from the voters in N∗. Every voter in N∗

prefers c∗ to 3 candidates in U and prefers n− 3 candidates in U to c∗. Thus, every voter in N∗ contributes
(n− 3)− 3 = n− 6 points to the total score of U . Summing over all the voters in N∗, we have that the total
score of U from N∗ is |N∗|(n− 6). By |N∗| > n

3 , we have that

|N∗|(n− 6) ≥
(
(
n

3
− 1) + 2

)
(n− 6) = (

n

3
− 1)n− 6.

Recall that every voter in N ′′ prefers c∗ to all candidates in U . However, since |N ′′| = n
3 − 1, voters from

N ′′ can only subtract (n
3 − 1)n from the total score of U . We conclude that the total score of U is at least

−6. Since we can assume that |U | = n > 6,4 c∗ cannot beat all the candidates in U in pairwise elections.
This concludes the proof.
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