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Abstract:

Consider an exchange economy with asymmetric information. What is the set of
outcomes that are consistent with common knowledge of rationality and market clearing?
We propose the concept of CKRMC as an answer to this question. The set of

price functions that are CKRMC is the maximal set F with the property that every
f 2 F de�nes prices that clear the markets for demands that can be rationalized by some
pro�le of subjective beliefs on F: Thus, the di¤erence between CKRMC and Rational
Expectations Equilibrium (REE) is that CKRMC allows for a situation where the
agents do not know the true price function and furthermore may have di¤erent beliefs
about it. We characterize CKRMC; study its properties, and apply it to a general class
of economies with two commodities. CKRMC manifests intuitive properties that stand
in contrast to the full revelation property of REE: In particular, we obtain that for a
broad class of economies: (1) There is a whole range of prices that are CKRMC in every
state. (2) The set of CKRMC outcomes is monotonic with the amount of information
in the economy.
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1 Introduction

We study the implications of the assuming common knowledge of rationality and
market clearing in economies with asymmetric information.
The starting point is the concept of rational expectations equilibrium (REE). REE

extends the classical concept of a competitive equilibrium to economies with asymmetric
information (i.e., economies in which di¤erent agents might have di¤erent information).
When each agent has only partial information on the value of a commodity or an asset he
can deduce additional information from the prices because prices re�ect the information
that other agents have. REE is a solution concept that is based on the assumption that
agents make these inferences. However, the concept of REE is based on an additional
strong assumption that agents know (and therefore agree on) the function that speci�es
the prices in each state. (A state speci�es the real variables of the economy, i.e., prefer-
ences and endowments.) This strong assumption leads to a strong result that in a generic
economy with a �nite number of states the only REE is a fully revealing equilibrium,
i.e., an equilibrium in which each agent can infer from the prices all the information that
any other agent has (Radner (1979).)
In the current research the assumption that players know the price function is relaxed,

that is, we consider a situation where each agent may have a di¤erent theory on how the
vector of prices which is observed has materialized and on what would have happened in
other states. However, the assumption is maintained that each agent makes inferences
from the observed prices and furthermore assumes that other agents are doing likewise.
More precisely we are interested in characterizing and analyzing properties of the set
of outcomes that are consistent with common knowledge of rationality and market
clearing (henceforth, outcomes that are CKRMC).
The outline of the paper is as follows:

1. De�nition and characterization of CKRMC:
The basic idea that underlies the solution concept that we propose is simple: Say

that a set of price functions F is CKRMC if every f 2 F de�nes prices which clear the
market for demands that can be rationalized by some pro�le of subjective beliefs on F .
CKRMC assumes a situation where all the agents have a common prior on the set of

states of the economy. Consider now a di¤erent model where each agent, given a price p;
may have any subjective belief on the states of the economy that is consistent with his
private signal. Say that an outcome (s; p); where s is a state and p is a price, is EXPR
(Ex-Post Rationalizable) if a situation where the price p clears the market in the state
s is consistent with common knowledge of rationality and market clearing in this model.
The main result in this paper, theorem 1 , establishes that under a mild quali�cation ,
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the set of CKRMC outcomes4 equals the set of EXPR outcomes.
Theorem 1 is useful in two ways: First, it establishes that two di¤erent types of

assumptions on the uncertainty that players face lead to similar predictions. Second, it
simpli�es the computation of the set of outcomes that are CKRMC:

2. Applications.
We use the characterization of theorem 1 to compute the set of prices that are

CKRMC in a general class of economies with two commodities. In this class of economies
CKRMC manifests several properties which stand in contrast to the full revelation prop-
erty of REE: In particular, we obtain that :
(a) For a robust subset of these economies there is a whole range of prices that

are consistent with all the possible states and therefore these prices do not reveal any
information.
(b) Re�ning the knowledge of a positive measure of agents strictly shrinks the set of

CKRMC prices.
(c) Trade is consistent with CKRMC even when there is common knowledge that

there are no mutual gains from it.

3. Properties of CKRMC:

Two di¤erent issues are examined.
Theorem 2 establishes that the set of price functions that are CKRMC can be ob-

tained by a procedure in which functions that cannot be supported by any pro�le of
beliefs are iteratively deleted. Theorem 3 addresses the following concern: the de�nition
of CKRMC does not refer explicitly to the beliefs of agents about other agents so one
can ask in what sense is a function that is CKRMC indeed consistent with common
knowledge of rationality and market clearing. Theorem 3 establishes that it is possible
to construct a model where each state contains a complete description of what each agent
believes that any other agent believes (that any other agent believes...), in which common
knowledge of rationality and market clearing is indeed equivalent to CKRMC:5

There is some previous work which examines the implications of the assumptions of
rationality and market clearing in a situation where players may have di¤erent beliefs
about the relationship between states of the economy and prices. However the solution
concepts that are proposed in these papers are di¤erent from CKRMC: MacAllister
(1990) and Dutta and Morris (1997) propose a solution concept, Belief Equilibrium,
which is stronger than CKRMC as it assumes that in addition to common knowledge
of rationality and market clearing there is also common knowledge of the belief of each
player on the set of price functions. As we show in section 3 this additional assumption

4An outcome (s; p) is CKRMC if there exits a CKRMC function f such that f(s) = p:(A function
f is CKRMC if there exists a set of functions F that is CKRMC such that f 2 F:)

5See Morris (1995) for such a complete model that justi�es REE:
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restricts in a signi�cant way the set of possible outcomes. Desgranges and Guesnerie
(2000)6 examine iterative deletion of weakly dominated demand strategies in a simple
example which is similar to example 1 in the current paper. The solution set that they
obtain is equal to the set of CKRMC and EXPR outcomes that is obtained in the
current paper. The closest to the current paper is Desgranges (2004). Desgranges also
studies the implications of EXPR (Desgranges calls it common knowledge equilibrium)7:
The focus in his work is on determining conditions under which EXPR implies the
REE outcome. The main di¤erence between Desgranges and the current paper is that
our starting point is the concept of CKRMC and the main interest is in determining
properties of this concept.
The current paper is organized as follows: In section 2 the de�nition of an exchange

economy with asymmetric information is reviewed and a simple example which motivates
and demonstrates the concept of CKRMC is presented. We then present the de�nition
of CKRMC: In section 3 we de�ne the concept of EXPR and present theorem 1 which
establishes that CKRMC and EXPR are �almost�equivalent. In section 4 we charac-
terize the set of EXPR outcomes in a general class of economies with two commodities
and then use theorem 1 to derive implications on CKRMC outcomes. The solution that
is obtained manifests the properties that were mentioned in item 2 above. Section 5
contains theorem 2 and theorem 3. Section 6 discusses two assumptions on the beliefs of
the agents and section 7 concludes.

2 The Model.

In this section we review the de�nition of an exchange economy with asymmetric infor-
mation and present a simple example which motivates the solution notion of CKRMC.
We then de�ne CKRMC:
An economy with asymmetric information is de�ned by:
1. I = [0; 1]� The set of players (consumers).
2. X1; ::::::; XK� K commodities.
3. S = fs1; :::::; sng� The set of states of nature.
4. � 2 4 (S)� � is a common prior on S .
5. �i� A partition on S that describes the information of player i:

�i (s) � S is the information that player i gets at the state s:
6. ui : RK � S ! R � A V.N.M utility function for player i:

ui (x; s) is the utility of player i from a bundle
x 2 RK in the state s:

7. ei : S ! RK � ei(s) is the initial bundle of player i at state s:
We assume that ei is measurable w.r.t �i and that

6See also Guesnerie (2002)
7A �rst draft of Desgranges paper was written before ours. We have developed the concept of EXPR

independently, before we learned of his work.
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8s 2 S;
R
i
ei(s)� the aggregate supply in state s�exists.

A price p is a vector p = (p1; ::::pK�1) where pk is the price of Xk. The price of XK

is normalized to be 1.
A price function f; f : S ! RK�1; assigns to every state s a price f(s): We will

sometimes think of a price function as a vector in RS�(K�1):
We let Li denote the set of signals of agent i: So, Li � f�i(s) : s 2 Sg :
A demand strategy for player i is a function zi, zi : Li � RK�1 ! RK ; such that

zi(li; p) is in the budget set de�ned by the price p and the initial endowment ei(li): (
ei(li) is well de�ned because ei is measurable w.r.t �i:)

The standard solution notion for economies with asymmetric information is Rational
Expectations Equilibrium, REE: A REE is a price function f such that for each state
s the price f(s) clears the market when every agent i makes a demand which is optimal
w.r.t the price f(s) and the information that is revealed by his private signal �i(s) and
the fact that the price is f(s): Formally,

De�nition: A price function f is a REE if there exists a pro�le of demand strategies,
fzigi2I ; that satis�es :
1. Rationality, 8s 2 S; zi(�i(s); f(s)) is optimal w.r.t the price f(s) and the posterior

�(� j�i(s) \ f�1(f(s))) :
2. Market clearing, 8s 2 S;

R
i
zi(�i(s); f(s)) =

R
i
ei(s):

A price function f is a fully revealing REE (FREE) if f(s) 6= f(s0) when s 6= s0:

We turn now to a simple example which demonstrates the di¤erence between REE
and consistency with common knowledge of rationality and market clearing.

Example 1:
There are two commodities in the economy, X and M (money).
The set of states is S = f1; 3g :
The probability of each state is 0:5:
The set of agents is the interval [0; 1] : There are two types of agents, I1 and I2. Agents

in I1 know the true state; agents in I2 do not know it. I1 = [0; �] and I2 = (�; 1] : All the
agents have the same utility and the same initial bundle. The utility is:
(2.1) u(x;m; s) = s� log(x) +m
where x and m are the quantities of X and M respectively and s is the state.
The initial bundle consists of one unit of X and m units of M where m � 3:
Let p be the price of a unit of X in units of M . It follows from the de�nition of the

utility function in (2:1) that the demand for X of an agent who knows the true state is:

x = s
p

More generally, the demand of an agent i who assigns to the state s probability (s)
is

5



(2.2) x = (1)�1+(3)�3
p

In this example for every � > 0 there is only one REE; f � ,where f �(s) = s: To
see that we, �rst, note that if f is a REE then f(1) 6= f(3). This follows because if
f(1) = f(3) = p then agents in I2 do not obtain any information about the true state
and therefore their demand in both states is the same:
x = 0:5�1+0:5�3

p
= 2

p

However, the demand of agents from I1 in state 1 is di¤erent than their demand in
state 3 and therefore the aggregate demands are di¤erent as well. Since the aggregate
amount of X is �xed this means that the market doesn�t clear in at least one of the
states and therefore f is not a REE: Thus, if f is a REE then f(1) 6= f(3): In this case
agents in I2 infer the state from the price and it follows from (2:2) that f(1) = 1 and
f(3) = 3: Thus, the only REE is a fully revealing equilibrium (henceforth, FREE) in
which the price reveals the state. Indeed, Radner (1979) has shown that in a generic
class of economies with a �nite number of states the only REE is a FREE in which the
information that all the agents have together is revealed.

We now show that if we relax the assumption that players know the price function
(and therefore agree on it) then there are other price functions which are consistent
with common knowledge of rationality and market clearing. We call such price functions
�functions that are CKRMC�.
Assume that � = 1

6
: We will show that the following price functions are CKRMC:

f(1) = 2 g(1) = 1
f(3) = 3 g(3) = 2

Suppose that a fraction � of the agents in I2 assign probability 3
4
to the event that

f is the price function and a probability 1
4
to the event that g is the price function, call

this belief �theory A�: Assume that the other agents in I2 think that g is more likely, they
assign probability 1

4
to the event that f is the price function and probability 3

4
to the

event that the price function is g; call this belief �theory B�:
What are the beliefs of di¤erent agents in I2 about the true state when they observe

the price 2 ?
Since the prior assigns probability 0:5 to each state it is easy to see that agents in

I2 who believe in theory A assign probability 3
4
to the state 1 and probability 1

4
to the

state 38. Similarly, agents who believe in theory B assign probability 1
4
to the state 1

and probability 3
4
to the state 3.

It follows from (2:2) that the demand for X at price 2 of agents who believe in theory
A is ( 3

4
� 1 + 1

4
� 3 )/2 = 3

4
while the demand of agents who believe in theory B is

(3
4
� 3 + 1

4
� 1)/2 = 5

4
.

8Let PA(s jp = 2) denote the posterior that an agent who believes in theory A assigns to the state s
upon observing the price 2: Then PA(1 jp = 2) = 0:75��(1)

0:75��(1)+0:25��(3) = 0:75
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Let x (�; s; p) denote the aggregate demand for X in state s at price p when a pro-
portion � of the agents in I2 believe in theory A and the rest of I2 believe in theory B:
We have
x (�; 1; 2) = (1� �)� � � 3

4
+ (1� �)� (1� �)� 5

4
+ � � 1

2

x (�; 3; 2) = (1� �)� � � 3
4
+ (1� �)� (1� �)� 5

4
+ � � 3

2

Let �f and �g be the numbers which equate demand and supply at price 2 in the
states 1 and 3 respectively, that is,
x
�
�f ; 1; 2

�
= 1 and x

�
�g; 3; 2

�
= 1:For � = 1

6
we obtain �f = 0:3 and �g = 0:7:

Now we observe that when �f of the agents in I2 believe in theory A and 1� �f of
them believe in B then the function f speci�es prices which clear the market. We have
just seen that the price 2 clears the market in s = 1 and when the price is 3 everyone
assigns probability 1 to the state 3 and therefore the price 3 clears the market. Similarly,
when �g of the agents in I2 believe in theory A (and the rest in B) the function g speci�es
prices which clear the market.

We have thus shown that when the assumption that players know the price function is
relaxed then there is more than one price function that can be rationalized. Speci�cally,
there exists a pro�le of beliefs (i.e., a belief for each player), �f ; such that when each
player makes a demand which is optimal w.r.t his beliefs the prices speci�ed by f clear
the market. Similarly, there is a pro�le of beliefs �g which rationalizes g: Furthermore,
since the beliefs of each player in the pro�les �f and �g assign a positive probability only
to f and g; which are functions that can be rationalized, f and g are consistent not only
with rationality and market clearing but also with common knowledge of rationality and
market clearing. Speci�cally, one can think of the theory A (B) not only as a theory
which assigns probabilities to price functions, probability 3

4
(1
4
) to f and probability 1

4
(3
4
)

to g; but as a richer theory which refers to the beliefs of agents as well. This extended
theory A (B) assigns probability 3

4
(1
4
) to the event that the pro�le of beliefs in the

population is �f and probability 1
4
(3
4
) to the event that the pro�le of beliefs is �g. The

proof of theorem 3 in section 5 provides a precise description of such a structure of beliefs.

We can now turn to the general de�nition of CKRMC:
We say that a set of functions F; F � Rn�(K�1); is CKRMC if every f 2 F de�nes

prices which clear the market for demands that can be rationalized by beliefs on F:
To provide a completely formal description we need some preliminary de�nitions:

De�nition: A belief �i for player i on a set of Borel price functions F is a �nite
lexicographic sequence of probability measures, �i = ( �

1
i ; ::::::; �

m
i ); on F:

We assume that the selection of the state of nature is independent of the selection of
the price function and therefore the beliefs of player i on the set S�F is a product of his
prior probability distribution on S; �;and his beliefs on F; �i: Speci�cally, the belief of
an agent i on S�F is the lexicographic sequence of probabilities ���i = ( ���1i ; ::::::;
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���mi ) where for S 0 � S and F 0 � F; ���ki (S 0�F 0) = �(S 0) ��ki (F 0): The information
that player i has when he makes a demand is his private signal li 2 Li and the fact that
a given price p has materialized. Given a set of price functions F we let (li; p) denote the
event in S � F which is consistent with li and p: That is,
(li; p) = f(s; f) : s 2 S; f 2 F �i(s) = li and f(s) = pg
We say that a belief �i; �i = ( �

1
i ; ::::::; �

m
i ); of player i is consistent with the event

(li; p) if there exists k;1� k � m; such that � � �ki (li; p) > 0: Given a belief �i and an
event (li; p) which is consistent with it we allow for some abuse of notation and let �i(
j(li; p)) denote the marginal distribution of � � �ki (� j(li; p)) on S; where k is the lowest
index with the property that � � �ki (li; p) > 0: �i(� j(li; p)) is the posterior on S of a
player i with a belief �i given the event (li; p):
We are now ready to give a formal de�nition of CKRMC:

De�nition: A set of price functions F is CKRMC if for every f in F there is a

pro�le of demand strategies
n
zfi

o
i2I
and a pro�le of beliefs

n
�fi

o
i2I
on some Borel subset

of F that satisfy:
1. Rationality: for every i 2 I and every (li; p) that is consistent with �fi zfi (li; p) is

an optimal bundle at the price p w.r.t �fi (� j(li; p)) : For every s 2 S and i 2 I (�i(s); f(s))
is consistent with �fi :
2. Market Clearing at the prices speci�ed by f : for every s 2 S

R
i
zfi (�i(s); f(s)) =R

i
ei(s):

We will say that pro�les of beliefs and demand strategies �f �
n
�fi

o
i2I

and zf �n
zfi

o
i2I
support f w.r.t F if �f and zf satisfy conditions 1. and 2. in the de�nition of

CKRMC: A pro�le of beliefs �f supports f w.r.t F if there exists a pro�le of demand
strategies zf such that �f and zf support f w.r.t F:
De�nition: A price function f is CKRMC if there exists a set of price functions F

such that f 2 F and F is CKRMC:

We let FCKRMC denote the set of functions that are CKRMC:

De�nition: An outcome (p; s); p 2 RK�1; s 2 S; is a pair consisting of a price and a
state.
An outcome (p; s) is CKRMC if there exists a price function f 2 FCKRMC such

that f(s) = p:

To demonstrate and clarify the de�nitions we note that:
1. A price function f is an REE i¤ the set F = ffg is CKRMC: In particular, a

price function f that is an REE is also a function that is CKRMC:
2. In example 1 the set F = ff; gg is CKRMC: In particular, any pro�le of beliefs

f�igi2I ; �i = (�1i ) (i.e. the beliefs of each player consist of just one probability distrib-
ution), where 0.3 of the agents in I2 assign probability 0.75 to f and 0.25 to g and the
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rest assign 0.25 to f and 0.75 to g supports demands which clear the market in the prices
speci�ed by f: Similarly, as we have seen in the discussion of the example, there are
pro�les of beliefs that support g: It follows that (1,1), (2,1), (2,3) and (3,3) are outcomes
that are CKRMC:
3. The de�nitions of CKRMC and FCKRMC readily imply that FCKRMC is

the maximal set of functions that is CKRMC: Theorem 2 (section 5) establishes that
FCKRMC can be obtained by a procedure in which price functions that cannot be
supported by any beliefs are iteratively deleted. Furthermore, the procedure terminates
after a �nite number of steps.
4. The belief �fi is de�ned to be a lexicographic sequence of probabilities on F: There

are two reasons for using this de�nition rather than just de�ning �fi to be one probability
measure on F: First, if �fi was de�ned to be a single probability measure we would have to
require that it assigns a positive probability to every event (�i(s); f(s)); s 2 S. A model
with lexicographic beliefs allows for a situation where an agent initially assigns probability
zero to an event but if that event occurs the agent updates his assessment and optimizes
w.r.t a new probability measure. Second, there is an equivalence between optimizing w.r.t
lexicographic beliefs and choosing a demand strategy that is admissible (i.e. not weakly
dominated.) The proof of this equivalence is long and therefore beyond the scope of this
paper. We view this result as important because it means that two di¤erent criteria for
rational behavior i.e. optimization w.r.t beliefs and not playing a dominated strategy
are equivalent. Finally, we note that theorem 1 is valid in a model where there is just
one probability distribution (the proof given in the next section applies). However, the
proof of theorem 2 relies on the beliefs being a lexicographic sequence of probabilities.
We do not know whether theorem 2 applies in the single probability model9. In section
7 we discuss the assumption that the belief of an agent consists of just a �nite number of
probability distributions and that the belief on S is independent of the belief on F: We
show that the �rst assumption is w.l.o.g. and that with the obvious modi�cations all our
results are valid in a model where the belief on S maybe correlated with the belief on F:
The reason for assuming independence is that it seems to us a plausible assumption in
this context and thus our point is that our results can be obtained when independence
is assumed.
In the next section we will provide a characterization of outcomes that are CKRMC

and use this characterization to compute the whole set of outcomes that are CKRMC
in example 1.

9More precisely, we do not know whether the iterative deletion of functions that cannot be supported
terminates after a countable number of steps.
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3 A Characterization.

In this section we de�ne the concept of EXPR10 and present theorem 1 which establishes
that under a mild quali�cation the set of CKRMC outcomes equals the set of EXPR
outcomes. This result is useful in two ways: First, it establishes that two di¤erent types of
assumptions about the uncertainty that players face determine similar sets of outcomes.
Second, EXPR is simpler to compute and hence the result facilitates the computation
of the set of outcomes that are CKRMC:

De�nition: A price p is EXPR w.r.t to a set of states bS � S if for every s 2 bS
there exists a pro�le of probabilities on bS fsigi2I , si 2 4(bS \ �i(s)); and a pro�le of
demands fxsigi2I , xsi 2 RK ; such that:
1. For every i 2 I xsi is an optimal bundle at the price p w.r.t si :
2. Markets clear, that is,

R
i
xsi =

R
i
esi :

We will say that the price p can be supported in the state s by the beliefs s = fsigi2I
on bS if there exists a pro�le of demands xs = fxsigi2I such that the conditions 1. and 2.
above are satis�ed.

The idea is that if p is EXPR w.r.t bS then bS is a set of states in which p could be
a clearing price because for every s 2 bS there is a pro�le of beliefs on bS; fsigi2I ; which
is consistent with the private information of the players and which rationalizes demands
that clear the markets at p. (The belief si ;in turn, is possible for player i because p can
be a clearing price in every s 2 bS:)
De�nition: An outcome (p; s) is EXPR (alternatively, p is EXPR in s) if there

exists a set of states bS such that s 2 bS and p is EXPR w.r.t bS:
Let S(p) be the set of all states such that (p; s) is EXPR: It is easy to see that p is
EXPR w.r.t S(p) and that S(p) is the maximal set w.r.t which p is EXPR:
It is useful to think of EXPR in the following way: Consider a model where there is

no common prior on the states and the belief of each agent is a subjective probability on
S: Speci�cally, in a state s each agent may have any subjective probability on S that is
consistent with his private information, �i(s): It is easy to show that an outcome (p; s) is
EXPR i¤ (p; s) is consistent with common knowledge of rationality and market clearing
in this model.11

We can now state our main result.
10As we have pointed out in the introduction the concept of EXPR is also studied in Degranges

(2004).
11A formal statement and proof of this proposition is done by de�ning a richer model in which a state

of the world de�nes not only the preferences of the players but also their beliefs on S, their beliefs on
the beliefs of other players and so forth. We de�ne such a model in the proof of theorem 3 in section 5
so we do not repeat this here.
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Theorem 1:
a. If (p; s) is CKRMC then (p; s) is EXPR:
b. Let E be an economy in which there is a fully revealing REE, bf . Let p be a price

such that p =2 [s2S bf(s): Then (p; s) is CKRMC i¤ (p; s) is EXPR:
Remarks:
1. The set of economies in which there exists a fully revealing REE is generic. For

this set theorem 1 provides a characterization of CKRMC outcomes modulo outcomes
which involve prices that are in the range of every fully revealing REE:12

2. There can be CKRMC outcomes which do not satisfy the condition formulated
in part b. of the theorem. We do not have a general necessary and su¢ cient condition
for an EXPR outcome to be a CKRMC outcome. It is clear that such a condition
would be cumbersome. However, Proposition 3.1 in the appendix establishes that in an
economy where in each state there are at least 2n EXPR13 prices every EXPR outcome
is a CKRMC outcome. The proposition also provides a complete characterization of the
set of CKRMC functions for this case.

Before demonstrating theorem 1 and proving it we make a few further comments on
the relationship between CKRMC and EXPR: There are two main di¤erences between
the two concepts. First, CKRMC assumes that each player has a complete theory about
what price might materialize in each state. This theory is represented by a belief on price
functions. Second CKRMC assumes a situation where all the agents have a common
prior on S: Then, given a price p and a private signal, each player updates his probability
distribution on S. By contrast, EXPR assumes that given a price p each player i may
have any probability distribution on S(p) that is consistent with his private signal. There
is no common prior, in fact, there are no priors and no updating at all. Player i does
not assess the likelihood of a state s given the price p by asking himself what is the prior
probability distribution on S and how likely is p in di¤erent states, rather, given p; he
forms some probability on the states in which p can be a clearing price. In this sense he
does not have a complete theory and his reasoning is Ex-Post.

We now use the result to solve the set of outcomes (p; s) that are CKRMC in example
1. Let Ps , s = 1; 3; denote the set of prices that are EXPR in s: We will compute Ps
and conclude, using theorem 1, that Ps is also the set of prices that are CKRMC in
the state s: Let P (bS) denote the set of prices that are EXPR w.r.t the set of states bS,bS � S: It follows from the de�nitions that: Ps = [bS;s2bSP (bS): In our example:
(3.1) P1 = P (f1g) [ P (f1; 3g)
(3.2) P3 = P (f3g) [ P (f1; 3g)

P (f1g) = 1 and P (f3g) = 3 because 1 and 3 are the prices which clear the markets
in the states 1 and 3 respectively when everyone knows the state. We now compute

12There are economies in which the set of fully revealing REE is not a singleton.
13We remind that n is the number of states.
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P (f1; 3g): Let Ps(f1; 3g) denote the set of prices that can clear the markets in state
s; s = 1; 3; when players in I2 may have any pro�le of beliefs on f1; 3g : It follows from
the de�nition of P (f1; 3g) that
(3.3) P (f1; 3g) = P1(f1; 3g) \ P3(f1; 3g):

We claim that P1(f1; 3g) = [1; 3� 2 � �] : This follows because the price 1 clears the
market when every agent in I2 assigns probability 1 to the state 1(every agent in I1
knows that the state is 1.) Clearly, the aggregate demand for X and therefore its price
are minimal when everyone assigns the state 1 probability 1. Similarly, the price 3-
2�� clears the market when every agent in I2 assigns probability 1 to the state 3 and
therefore the maximal point in P1(f1; 3g) is 3 � 2 � �: It is easy to see that for every
1� p � 3 � 2 � � there is a probability (p) such that if every agent in I2 assigns
probability (p) to the state 3 then p clears the market. The set P3(f1; 3g) is computed
in a similar way. When each agent in I2 assigns the state 1 probability 1 the clearing
price is 1 + 2 � �: When agents in I2 assign the state 3 probability 1 the clearing price
is 3. It follows that P3(f1; 3g) = [1 + 2 � �; 3] : From (3.3) we obtain that for � � 0:5
P (f1; 3g) = [1 + 2 � �; 3� 2 � �] : For � > 0:5 P (f1; 3g) = ;: From (3.1) and (3.2) we have
that for � � 0:5 P1 = f1g[ [1 + 2 � �; 3� 2 � �] and P3 = f3g[ [1 + 2 � �; 3� 2 � �] and for
� > 0:5 P1 = f1g and P3 = f3g : It follows from theorem 1 that the di¤erence between
the set Ps and the set of prices that are CKRMC in s; s = 1; 3; is at most the price s.
Now, s is the REE price in the state s and therefore s is a price that is CKRMC in the
state s: It follows that the sets Ps; s = 1; 3; that we have computed are the sets of prices
that are CKRMC in the respective states.
The solution of the example is interesting in several ways: First, when � is smaller

than 0:5 there is a whole range of prices that are CKRMC in both states. Second, the
set of CKRMC outcomes (i.e., P1 and P3) depends on � (the fraction of agents who know
the true state) in an intuitive way. As � increases the set Ps shrinks and when more than
0.5 of the population is informed (� > 0:5) the only price function that is CKRMC is
the REE: Thus, when � > 0:5 the assumption of rationality and knowledge of rationality
is su¢ cient to select the REE14: (Without assuming that the price function is known
a-priori.)
Consider now the case where all the agents have the same initial endowment and

� < 0:5: In this case CKRMC allows for trade despite the fact that it is common
knowledge that there are no gains from trade (all the agents have the same utility and
the same initial endowment) and furthermore it is common knowledge that trade bene�ts
agents in I1 at the expense of some of the agents in I2: The point is that when agents
may have di¤erent beliefs about the price function and when the fraction of agents who
are uninformed is high enough common knowledge of rationality does not preclude the

14Since there are just two states in our example the set of outcomes that is consistent with (just)
rationality and knowledge of rationality equals the set of outcomes that are consistent with common
knowledge of rationality. In particular, Ps(f1; 3g) is the set of prices that are consistent with rational
behavior in state s: When � > 0:5 P1(f1; 3g) and P3(f1; 3g) are disjoint and therefore an agent who
knows that all the other agents are behaving rationally can infer the state from the price.
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possibility that each uninformed agent is optimistic and believes that he is making a
pro�t at the expense of other uniformed agents. The result that speculative trade is
consistent with common knowledge of rationality hinges on the following two properties
of CKRMC : (1) Di¤erent agents may have di¤erent beliefs on the set of price functions.
(2) Each agent does not know the probability distributions of the other agents. Property
(2) distinguishes CKRMC from the solution concept that is studied byMacAllister(1990)
and Dutta and Morris(1997) and which is based on the assumption that the beliefs of
the players are common knowledge. To appreciate the importance of property (2) we
note that when � > 0 it is impossible to obtain trade, even with di¤erent beliefs, if these
beliefs are common knowledge. The reason for this impossibility is that the beliefs of the
uninformed agents determines their demands. So if an agent i in I2 knows these beliefs
he knows the aggregate demand of the uninformed agents. Since the aggregate amount of
X is known the agent i can infer the aggregate demand of the informed agents. However,
the aggregate demand of the informed agents reveals the state. Thus, if an uninformed
agent i knows the beliefs of the other agents and observes the price p he can infer the
true state and if everyone infers the true state there is no trade. Indeed for every � > 0
the REE is the only solution in the models of M and DM.

We now turn to the proof of theorem 1.

Proof: Start with part 1. If (p; bs) is CKRMC then there exists a set of price functions
F that is CKRMC and a function bf 2 F such that bf(bs) = p: De�nebS � fs : 9f 2 F s.t. f(s) = pg. Clearly, bs 2 bS: We now show that p is EXPR w.r.t
to bS: So let s 2 bS we have to show that there exists a pro�le of probabilities fsigi2I ,
si 2 4(bS \ �i(s)); and a pro�le of demands fxsigi2I s.t xsi is optimal for player i w.r.t
si at the price p and

R
i
xsi =

R
i
ei(s): Let f 2 F be a function such that f(s) = p: Since

F is CKRMC there exists a pro�le of beliefs on F;
n
�fi

o
i2I
; and a pro�le demandsn

zfi (�i(s); f(s)) : s 2 S
o
i2I
such that in every state s the aggregate demand equals the

aggregate supply and zfi (�i(s); f(s)) is optimal w.r.t �
f
i (� j�i(s); f(s)) : In particular,

these properties are satis�ed in the state s: Now, �fi (� j�i(s); f(s)) = �fi (� j�i(s); p) 2
4(bS \ �i(s)) and therefore by de�ning si = �fi (� j�i(s); p) and xsi = zfi (�i(s); p) we
have de�ned probabilities and demands which satisfy the requirements in the de�nition
of EXPR:
We turn now to the proof of the second part of the theorem. Let f be a fully revealing

REE and let ps � f(s): Let (p; bs) be an outcome which is EXPR where p 6= ps for every
s 2 S: We want to show that there exists a price function fbsthat is CKRMC such that
fbs(bs) = p: To prove this we now de�ne a price function fs for every s 2 S(p) as follows:
(3.4) fs(s0) �

�
p s0 = s
ps0 s0 6= s

We will show that the set F � ffs : s 2 S(p)g is CKRMC: Since fbs 2 F this will
complete the proof. So let s 2 S(p) we need to show that there exists a pro�le of beliefs

13



n
�fsi

o
i2I
on F and demands

n
zfsi (�i(s

0); f(s0)) : s0 2 S
o
i2I
such that the demands clear

the market and are optimal w.r.t the beliefs. First, we observe that for any probability
distribution �i on F and for any state s0 2 S �i( � j�i(s0); ps0) assigns probability 1 to
the state s0 (because for every f 2 F f(es) = ps0 implies es = s0:) Therefore, if for every
s0 6= s we de�ne the demand zfsi (�i(s0); f(s0)) = z

fs
i (�i(s

0); ps0) to be the optimal bundle
for player i at the price ps0 in the state s

0 then we have satis�ed the requirements for
rationality and market clearing in state s0 for any belief �i on F:(Market clearing follows
because ps0 is the clearing price in state s

0 in the fully revealing REE f:) So the only
question is how to de�ne the demands zfsi (�i(s); f(s)) (which is z

fs
i (�i(s); p)) and the

beliefs �fsi so that the requirements of market clearing and rational choice are satis�ed
in the state s: Since (p; s) is EXPR there exists a pro�le of probabilities, fsigi2I ;
fsig 2 4(S(p) \ �i(s)); and a pro�le of demands fxsigi2I such that xsi is an optimal
choice for player i w.r.t si at the price p and such that the aggregate demand equals
the aggregate supply. We now de�ne zfsi (�i(s); f(s)) = xsi and establish the result by

showing that we can de�ne probabilities
n
�fsi

o
i2I
on F so that

(3.5)
�fsi ( � j�i(s); p) = si

To show this we rely on the following lemma which is proved in the appendix.

Lemma 1.1: Let �1; :::; �m be m positive numbers and let  = (1; :::; m) be a
probability vector. There exists a probability vector � = (�1; :::; �m) which solves the
following system of equations:

k =
�k � �kPm
j=1 �j � �j

k = 1; :::;m

We map the lemma to our proof as follows: Suppose that S(p) \ �i(s) is the set
f1; ::;mg : De�ne �j � �(j); the prior probability of the state j and k � si (k); the
probability of the state k according to si : The lemma says that if we de�ne �

fs
i (fk);

the probability of the price function fk to be �k (and the probability of a price function
di¤erent from f1; :::; fm to be zero) then the equation (3.5) is satis�ed. This follows
because Bayesian updating implies that for k = 1; :::;m

�fsi (k j�i(s); p) =
�(k) � �fsi (fk)Pm
j=1 �(j) � �

fs
i (fj)

15

and therefore �fsi (k j�i(s); p) = si (k):
This completes the proof of the theorem.

15The fact that Bayesian updating is given by the equation above relies on the assumption that p 6= ps
for every s 2 S: This is the only point where this assumption is used.
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We now present an example which shows two things: First, the possibility of non-
existence of a price function that is CKRMC (and therefore non-existence of an outcome
(p; s) which is CKRMC:) Second, the possibility of a di¤erence between the set of out-
comes that are CKRMC and the set of outcomes that are EXPR: The example is similar
to examples of non-existence of REE that were given by Kreps(1977) and Allen(1986).
However, the argument which establishes non-existence of CKRMC is a bit more in-
volved. In particular, we will demonstrate later on that non-existence of REE does not
imply non-existence of price functions that are CKRMC:

Example 2: The example is a simple variation on example 1.
There are two states, S = f1; 2g : The probability of each state is 0.5. The set of

agents is I = [0; 1] where agents in I1 = [0; �] know the true state and agent in I2 = (�; 1]
don�t know it. The utility of an agent in I1 is u1(x;m; s) = as � log(x) +m: The utility
of an agent in I2 is u2(x;m; s) = bs � log(x) +m: The aggregate amount of X is 1 and
the number of units of M that each agent has exceeds Maxfas; bs : s = 1; 2g : All this
implies that if p is the price of X in units of M then the demand for X of an agent in
I1 in state s is as

p
and the demand of an agent in I2 who assigns probability (s) to the

state s is (1)�b1+(2)�b2
p

:
We make the following assumption:

(3.6) a1 > a2 and b1<b2

(3.7) There exists a number bp such that
a1 � � + b1(1� �) = a2 � � + b2(1� �) = bp

We claim that under these assumptions FCKRMC = ;:
To prove this we compute, �rst, the set of outcomes that are EXPR: Let  = figi2I2

be a pro�le of probabilities on S; (agents in I1 assign probability 1 to the true state),
and let xps() denote the aggregate demand for X in the state s at the price p when the
pro�le is : Since b1<b2 the demand of each agent in I2 is increasing in the probability
which he assigns to the state 2. It follows that for every pro�le 
(3.8) xp1() �

a1��+b1(1��)
p

and

(3.9) xp2() �
a2��+b2(1��)

p
:

Now we claim that (3.7)-(3.9) and the fact that the aggregate supply of X is 1 imply
that the only outcomes that are EXPR are (bp; 1) and (bp; 2): To see that we, �rst, observe
that bp is the clearing price in state s when every agent in I2 assigns the state s probability
1 and therefore (bp; 1) and (bp; 2) are EXPR: Now, assume by contradiction that there
exists p 6= bp such that (p; 1) is EXPR: It follows from (3.8) that if p < bp then for
every pro�le of probabilities  xp1() > 1;but this is impossible because the aggregate
amount of X is 1. If p > bp then (3.9) implies that for every pro�le  xp2() < 1 which
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means that p cannot be a clearing price in state 2. It follows that p cannot be EXPR
w.r.t the set S: Clearly, p cannot be EXPR w.r.t f1g and therefore we have obtained
a contradiction. A similar argument establishes that bp is the only price that is EXPR
in the state 2. It follows from this and from part 1 of theorem 1 that the only price
function that could possibly be CKRMC is the function bf where bf(1) = bf(2) = bp; but it
is impossible to support bf; because when each agent in I2 assigns bf probability 1(which
he must because there is no other function that is CKRMC) his posterior on the states
(upon observing the price bp) is the prior, probability 0.5 for each state, but with such a
posterior the aggregate demand does not equal the aggregate supply. It follows that bf is
not CKRMC and therefore FCKRMC = ;:
Example 2 is an example where a REE does not exist and where the set of outcomes

that are EXPR is di¤erent from the set of outcomes that is CKRMC: Neither one of
these properties implies the other. In the appendix we present two examples, examples 3
and 4, which demonstrate this point. In example 3 there is a fully revealing REE with a
price bp1 in state 1. The price bp1 is EXPR in the two other states- states 2 and 3-but it
is not CKRMC in these states. Example 4 is an example of an economy with two states
in which there is no REE and yet there is a segment of prices that are CKRMC in both
states. Furthermore, the set of outcomes that are CKRMC equals the set of outcomes
that are EXPR:

4 CKRMC in economies with two commodities.

In this section we characterize the set of EXPR outcomes in a class of economies with
two commodities, X and M; in which the utility function of each agent is quasi-linear
w.r.t M: We then apply theorem 1 and proposition 3.1 to obtain implications regarding
the set of CKRMC outcomes. The class of economies that are studied includes the
examples in sections 2 and 3. Here, however, we allow for any �nite number of types of
agents where a type is characterized by a utility function and an information partition.
We provide a characterization of the set of prices, Ps;that are EXPR in each state
s 2 S: This characterization is useful in several ways. First, it extends the qualitative
results which were obtained for example 1 to this more general class of economies. In
particular, the characterization implies that for a robust16 class of economies there is a
whole segment of prices that are EXPR in every state and therefore the observation of
a price in this segment does not exclude any state. Second, we derive a corollary on the
e¤ect of re�ning the knowledge of agents on the set of EXPR prices in a given state.
Finally, the characterization result makes it possible to solve the system, i.e., compute Ps
for every s 2 S; by a simple procedure which involves (only) n2 calculations of Walrasian
equilibrium prices in complete information economies, where n is the number of states.

16A set of economies is robust if it contains an open set. In the appendix we de�ne a metric on the
space of economies.
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We turn now to the formal description.
The commodities are denoted by X and M:
The set of states is S = f1; :::; ng :
The set of agents is I = [0; 1] : There are L types of agents, so I = [Ll=1Il and Ij\Ik = ;

for j 6= k:We let �l denote the measure of the set Il: All the agents in Il; 1 � l � L; have
the same utility function ul(x;m; s) = ul(x; s) +m; the same initial bundle el = (xl;ml);
and the same information partition �l: We make the following assumptions:
(1) The function ul; as a function of x; is strictly monotonic, strictly concave, and twice

continuously di¤erentiable. For every s 2 S limx!0u
0
l(x; s) =1 and limx!1u

0
l(x; s) = 0:

Also, ml > 0 for every l = 1; :::L:
(2) For every x 2 R; s; s0 2 S; such that s > s0 u0(x; s) > u0(x; s0): That is, the

marginal utility from X increases in s:
(3) The elements of �l are segments of states. That is if � 2 �l then there exist s

and s, s > s; such that � = fs : s � s � sg :
Let p 2 R denote the price of a unit of X in terms of units of M:
For every bs 2 S and bS � S such that bs 2 bS de�ne P (bs; bS) to be the set of all the

prices p with the following property: there exists a pro�le of probabilities  = (i)i2I ;

i 2 4(�i(bs) \ bS); such that p is an equilibrium price w.r.t : Thus, P (bs; bS) is the set
of equilibrium prices that can be generated in bs when the support of the probability
distribution of an agent i is contained in bS and in his information set in the state bs:
De�ne:
P (bS) � \bs2bSP (bs; bS) and
Pbs � [bs2bSP (bS)
Thus, P (bS) is the set of prices that are EXPR w.r.t the set bS and Pbs is the set of

prices that are EXPR w.r.t the state bs:
We now characterize the set P (bs; bS):
De�ne p(bs; bS) to be the equilibrium price implied by the pro�le  = figi2I where

i assigns probability 1 to the maximal state in the set �i(bs) \ bS17: Similarly, we de�ne
p(bs; bS) to be the equilibrium price implied by the pro�le =

n

i

o
i2I

where 
i
assigns

probability 1 to the minimal state in the set �i(bs) \ bS:
Proposition 4.1: Let bs 2 S and bS � S such that bs 2 bS then P (bs; bS) = hp(bs; bS); p(bs; bS)i.
The intuition behind this result is very simple. Since the marginal utility from X

increases with s (assumption 2) then for any price p the demand of each agent i for X
increases when i assigns a higher probability to a higher state. It follows that for any
price p the maximal aggregate demand for X; in the state bs when beliefs are restricted
to the set bS; is obtained when each agent i assigns probability 1 to the maximal state
in �i(bs) \ bS: It follows that p(bs; bS) is the maximal price in P (bs; bS): Similarly p(bs; bS) is
the minimal price in P (bs; bS): The result that every price p; p(bs; bS) � p � p(bs; bS); can
be obtained as an equilibrium price for some pro�le of probabilities p follows from the

17The existence and uniquness of p(bs; bS) is proved in the sequel.
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continuity of the equilibrium price in the beliefs. The formal proof of the proposition is
given in the appendix.
Let s,s 2 S; s<s: De�ne [s; s] � fs : s � s � sg :
The following proposition is a simple consequence of proposition 4.1.
Proposition 4.2:
(a) Let s,s 2 S; s<s: P ([s; s]) =

�
p(s; [s; s]); p(s; [s; s])

�
18

In words, P ([s; s]) is the segment of prices where the lowest (highest) price is the lowest
(highest) equilibrium price in the maximal (minimal) state in [s; s] when the support of
the probability of agent i is contained in �i(s)\ [s; s] ( �i(s)\ [s; s]):
(b) Ps = [s2[s;s]P [s; s] :

The proof of the proposition is in the appendix.

The characterization of EXPR outcomes in proposition 4.2 has several implica-
tions for CKRMC outcomes: First, it follows from theorem 1 that for a generic set
of economies proposition 4.2 provides a characterization of CKRMC outcomes modulo
outcomes which involve the REE equilibrium prices. Second, it follows from proposition
4.2 that Ps contains a segment of prices whenever there exist states s and s, s� s � s;
such that p(s; [s; s]) > p(s; [s; s]): In the appendix we use this result to prove that the
set of economies in which there is a segment of prices that are EXPR in every state is
robust. Proposition 3.1 implies that for an economy in this subclass the set of EXPR
outcomes equals the set of CKRMC outcomes without any quali�cation.
The characterization that is obtained in proposition 4.2 extends the qualitative prop-

erties of the solution of example 1. First, as we have pointed out, there exists a robust
subclass of economies in which there is a whole segment of prices that are EXPR in
every state, the observation of a price in this segment does not exclude any state. An-
other implication of proposition 4.2 has to do with the e¤ect of re�ning the knowledge
of agents on the set of EXPR prices. To describe this implication we need to introduce
some additional notation. Given a subset of agents I 0 we want to consider the economy
EI

0
which is obtained from the original economy E by re�ning the knowledge of agents

in I 0 so that each agent in I 0 has complete information on S: We will denote di¤erent
terms which refer to EI

0
by adding a superscript I 0: In particular, the set of prices that

are EXPR in a state s in the economy EI
0
will be denoted by P I

0
s :

Claim 4.3: Let s 2 S be a state such that Ps strictly contains the (singleton) set
P (fsg): For any number � > 0 there exists a set of agents I 0 of a measure that is smaller
than � such that P I

0
s is strictly contained in Ps: 19

The proof of the claim is in the appendix.
Finally, the characterization in proposition 4.2 implies that it is possible to solve

the economy, i.e., compute Ps for every s 2 S; by a procedure which involves only n2
calculations of Walrasian equilibrium prices. To see this we note that it follows from

18If p(s; [s; s]) < p(s; [s; s]) then the RHS is the empty set.
19It is easy to see that weak containement is implied by any re�nement of the knowledge of agents.
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the �rst part of proposition 4.2 that for every s; s 2 S; s<s; the computation of the
set P ([s; s]) involves two calculations of Walrasian equilibrium prices (i.e., p(s; [s; s]) and
p(s; [s; s])): In addition for every s 2 S we calculate P (fsg) = P ([s; s]); that is, the WE
price in the complete information economy that is de�ned by the state s: All this involves
2 � n(n�1)

2
+ n = n2 calculations of WE prices. Now, by the second part of proposition

4.2 every set Ps is just a union of the sets P ([s; s]) for s; s 2 S such that s 2 [s; s] :

5 Properties of CKRMC

In this section we present two properties of CKRMC. Theorem 2 establishes that the
set of CKRMC functions, FCKRMC; is obtained by a procedure in which functions
that cannot be supported by any pro�le of beliefs are iteratively deleted. Furthermore,
the procedure terminates after a �nite number of steps.
The second result, theorem 3, addresses the following concern: Our solution notion

does not include a description of what one player knows, or believes, about another player
so the reader might ask in what sense is a function that is CKRMC indeed consistent
with common knowledge of rationality and market clearing. On an intuitive level if a
function f can be supported by beliefs on functions that are consistent with rational
behavior and if each one of these functions, in turn, can be supported by such beliefs and
so forth then f is consistent with common knowledge of rationality and market clearing.
Theorem 3 establishes that this argument can be made precise by embedding our model
in a richer model which includes beliefs of players about the beliefs of other players.

1. FCKRMC as the result of iterative deletion of functions that cannot be supported.

Let F be a set of price functions. We let J(F ) denote the set of price functions that
can be supported w.r.t F: De�ne F k; k = 0; 1; 2; ::: inductively as follows: F 0 = Rn�(K�1)

and F k+1 = J(F k): De�ne F1 = \1k=0F k:

Theorem 2:
(a:) F1 = FCKRMC:
(b:) There exists a number M such that F1 = FM :
(c:) Let f 2 FCKRMC: There exists a �nite set of functions F (f) such that

f 2 F (f) and F (f) is CKRMC:

The proof of the theorem is given in the appendix.

2. Common Knowledge of Rationality and Market clearing.
We construct a model where each state contains a complete description of the system

including the price function, the demand functions, the beliefs of each player, his beliefs
about the beliefs of other players and so forth. Theorem 3 establishes that a price function
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is CKRMC i¤ it is materialized in a state of some model that is consistent with common
knowledge of rationality and market clearing.
Say that an abstract measurable space (
; �)20 is a model for a given economy E if

each state ! 2 
 speci�es :
1. A price function f!:
2. A pro�le of demand strategies fz!i gi2I :
3. A pro�le of beliefs f�!i gi2I where �i = (�!;1i ; ::::::; �

!;m
i ) is a �nite lexicographic

sequence of probabilities on 
 such that for every i 2 I and for every index k; 1 � k � m;
�!;ki assigns probability 1 to states in which the demand strategy and the belief of player
i are z!i and �

!
i respectively. (This requirement re�ects the assumption that player i

knows his demand and belief.) In addition the transformation Tf which associates with
each state ! 2 
 the price function that is speci�ed in ! is measurable and z(
) �
fTf (!) : ! 2 
g is a Borel set.
We assume that the belief of each player i on 
 is independent of his belief � on

S:(� is the common prior on S): Thus, the (ex-ante) belief of a player i at a state ! on
the space S � 
 is � � �!i � (� � �

!;1
i ; :::; � � �

!;m
i )21: We now follow a notation which

is similar to the one we have used in de�nition of CKRMC in section 2. We let [li; p]
denote the event in S � 
 which is consistent with li and p: That is,
[li; p] = f(s; !) : s 2 S; ! 2 
 �i(s) = li and f!(s) = pg
We say that a belief �i; �i = ( �

1
i ; ::::::; �

m
i ); of player i is consistent with the event

[li; p] if there exists k;1� k � m; such that � � �ki (li; p) > 0: Given a belief �i and an
event [li; p] which is consistent with it we allow for some abuse of notation and let �i(�
j[li; p]) denote the marginal distribution of � � �ki (� j[li; p]) on S; where k is the lowest
index with the property that ���ki [li; p] > 0: �i(� j[li; p]) is the posterior on S of a player
i with a belief �i given the event [li; p] :
Say that a model (
; �) is consistent with common knowledge of rationality and

market clearing; henceforth CKRMC if for each state ! 2 
 the following two condi-
tions are satis�ed:
1.Rationality: for every i 2 I and (li; p) that is consistent with �!i z

!
i (li; p) is an

optimal bundle at the price p w.r.t �!i (� j[li; p]) : For every i 2 I and for every s 2 S
[�i(s); f

!(s)] is consistent with �!i . (just like in the de�nition of CKRMC:)
2. Market Clearing, for every s 2 S

R
i
z!i (�i(s); f

!(s)) =
R
i
ei(s):

Conditions 1. and 2. are similar to the conditions in the de�nition of CKRMC:
Here these conditions say that in every state ! 2 
 every player is making a rational
choice and markets clear .Now the point is that here the belief of a player i; �i; is on the
space 
; (that is, �ki 2 4(
); k = 1; :::;m:) So each state ! describes the beliefs of each
player i on the set of states in the model, which in turn describe the beliefs of each other

20� is the ��algebra of measurable subsets of 
:
21The complete set of states is 
 � S � 
 and the (ex-ante) belief of a player i in a state (s; !) 2 


is � � �!i � (� � �
!;1
i ; :::; � � �!;mi ): Since this belief (being an ex-ante belief) does not depend on the

state s it is more convenient to suppress the set of states S and work with the space 
 keeping in mind
that the beliefs on 
 determine beliefs on 
:
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player on the set of states and so forth. In particular, each state ! describes what each
player i believes about the beliefs of any other player j about the beliefs of any other
player k and so forth. Since rationality and market clearing are satis�ed in every state !
every proposition of the type, player i knows that player j knows that .... player k knows
that everyone is rational and markets clear, is true in every state ! and therefore there
is common knowledge of rationality and market clearing in every state b! 2 
:
In the appendix we prove the following theorem.
Theorem 3: A price function f is CKRMC i¤ there exists a model (
; �) that is

consistent with common knowledge of rationality and market clearing and a state ! 2 

such that f is the price function that is speci�ed in !:
Theorem 3 makes precise the sense in which FCKRMC is the set of price functions

that are consistent with common knowledge of rationality and market clearing.

6 Beliefs

In this section we discuss two assumptions concerning the beliefs of the agents: (1) A
belief of an agent consists of just a �nite number of probability distributions.(Henceforth,
�nite beliefs.) (2) The belief on S is independent of the belief on F:
We explain why assumption 1 is in fact w.l.o.g. and point out how all our results

(with obvious modi�cations) are valid in a model where the beliefs on S and F maybe
correlated. We have assumed independence because it seems to us a plausible assumption
in this context and thus our point is that our results can be obtained when it is assumed.

1. Finite Beliefs.
We are interested in a concept of rationality which requires an optimal choice given

any realization of a signal and a price. That is, for any event (li; p) agent i should choose
optimally w.r.t. some probability measure on price functions that are consistent with
(li; p): Since there is a continuum number of such events a lexicographic belief of an
agent i should in principle consist of a continuum number of probability measures. More
precisely, it seems that a lexicographic belief �i for agent i should be a well ordered set of
a continuum number of probability measures such that for every event (li; p) there exists
some measure in the set �i which assigns it a positive probability. Rationality w.r.t. �i
requires that the demand of agent i in (li; p) is optimal w.r.t. the minimal probability
measure (according to the well-order on �i) which assigns (li; p) a positive probability.
However, since S is �nite then given a function f the number of events (�i(s); f(s))
is �nite and therefore the number of probability measures in a given belief �i that are
relevant (�activated�) when f is supported is �nite. It follows that the assumption that
beliefs are �nite is w.l.o.g.

2. Independence.
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Let FCCKRMC denote the set of price functions that are consistent with common
knowledge of rationality and market clearing in a model where the belief of an agent
on F maybe correlated with his belief on S: Speci�cally, a belief of an agent i in this
�correlated model�can be any lexicographic sequence of probability measures on S �F;
�i = (�

1
i ; :::; �

m
i ); such that the marginal of each �

k
i ; 1 � k � m; on S is the common prior

�: Clearly, FCKRMC � FCCKRMC and there are economies in which the inclusion
is strict. However, all our results are valid in the correlated model as well. In particular,
it is easy to see that the argument in the proof of part (a) of theorem 1 establishes that
every CCKRMC outcome (p; s) in the correlated model22 is an EXPR outcome. Since
FCKRMC � FCCKRMC it follows that theorem 1 and proposition 3.1 are true in the
correlated model as well. Similarly, the arguments in the proof of theorem 2 apply in the
correlated model as well. Regarding theorem 3, it is easy to see that when the belief of
an agent on 
 can be correlated with his belief on S the same type of construction that
was used in the proof of the theorem applies in the correlated model.

7 Conclusion

This research was motivated by the following question: What is the set of outcomes that
are consistent with common knowledge of rationality and market clearing in an exchange
economy with asymmetric information ? We have proposed the concept of CKRMC
as an answer to this question. The main di¤erence between CKRMC and REE is
that CKRMC allows for a situation where di¤erent agents have di¤erent beliefs on the
price function. The main result, theorem 1, establishes that under a mild quali�cation
the set of CKRMC outcomes equals the set of EXPR outcomes. Speci�cally, theorem
1 establishes that the set of outcomes that are consistent with common knowledge of
rationality and market clearing in a model where each agent has a subjective probability
on price functions that is independent of a common prior on S; is equal (under a mild
quali�cation) to the set of outcomes that are consistent with common knowledge of
rationality and market clearing in a model where each agent may have any subjective
belief on S and furthermore his belief may be correlated with the state. Theorem 1 was
used to characterize the set of CKRMC outcomes in a general class of economies with
two commodities. We have pointed out several properties of CKRMC that stand in
contrast to the full revelation property of REE: In particular, propositions 4.1 and 4.2
imply that in a robust class of economies, (1) There is a whole range of prices that are
CKRMC in every state (and therefore do not reveal the true state). (2) The set of
CKRMC outcomes is sensitive to the amount of information in the economy. (3) Trade
is consistent with CKRMC even when there is common knowledge that there are no
mutual gains from it. Finally, we have shown that FCKRMC can be obtained by a
procedure in which price functions that cannot be supported by any pro�le of beliefs are

22An outcome (p; s) is CCKRMC if there exists f 2 FCCKRMC such that f(s) = p:
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iteratively deleted (theorem 2) and that CKRMC can be supported in a model where
there is a complete description of the beliefs of each agent on the beliefs of other agents
(theorem 3).
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Appendix

Section 3

Proof of Lemma 1.1:

First, we assume w.l.o.g that k > 0 for every k because if this is not the case we
de�ne �j = 0 if j = 0 and proceed to prove the lemma for the set fk : k > 0g :
Second, multiplying the equations by the denominator and subtracting the RHS from

the LHS gives a system of m homogeneous linear equations in �1; ::; �m and therefore
there exists a solution to this system, � = (�1; ::::; �m):
Third, if � is a solution and c is a constant then c � � is also a solution.
Finally, since k > 0 for all k = 1; :::;m then if � is a solution then �1; ::::; �m all have

the same sign which is the sign of the denominator.
It follows from all this that there is a solution b� to the system that is a probability

vector because if � is some solution there is a constant c such that c � � is a probability
vector.

Proposition 3.1: Let E be an economy such that in each state s 2 S there are at least
2n EXPR prices. A price function f is CKRMC i¤ for every s 2 S there exist pro�les
of probabilities  = fsigi2I ; si 2 �(�i(s)\S(f(s))) and demands x = fxsigi2I such that
(A.3.1) For every i 2 I xsi is an optimal bundle for player i w.r.t. the price f(s) and

the probability si :
(A.3.2) For every s 2 S markets clear, that is,

R
i
xsi =

R
i
ei(s):

(A.3.3) If s0 2 �i(s) and f(s) = f(s0) then xsi = xs
0
i and 

s
i = 

s0
i :

Furthermore, if f is CKRMC there exists a �nite set of functions F (f) such that
f 2 F (f) and F (f) is CKRMC:

Proof of proposition 3.1 : Part (a) of theorem 1 establishes that if f is CKRMC then
for every s 2 S (s; f(s)) is an EXPR outcome. This means that f satis�es conditions
(A.3.1)-(A.3.2). Since the demand and posterior of each agent at a state s depends only
on his private signal and the price at s f must satisfy condition (A.3.3) as well.
We will establish the second direction by proving proposition 3.2.
Proposition 3.2: Let P �

�
P s
	
s2S be n set of prices such that each set P s contains at

least 2n prices that are EXPR in s: Assume, also, that if p 2 P s then p 2 P s0 for every
s0 2 S(p): De�ne F (P) �

�
f : f(s) 2 P s and f satis�es conditions (A.3.1)-(A.3.30

	
:

The set F (P) is CKRMC:
The proof of proposition 3.1 from proposition 3.2 is immediate. Given a function f

that satis�es conditions (A.3.1)-(A.3.3) and given the assumption that in each state s
there are at least 2n EXPR prices it is straightforward to de�ne �nite sets of prices
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P =
�
P s
	
s2S which satisfy the provisions of proposition 3.2 and such that f 2 F (P):
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It follows that f is CKRMC and furthermore it belongs to a �nite set of functions that
is CKRMC: We now turn to the proof of proposition 3.2.
Proof of proposition 3.2: To make things as simple as possible it would be useful to

consider, �rst, price functions which assign to each state a di¤erent price. De�ne,eF (P) � ff : f 2 F (P) f(s) 6= f(s0) for s 6= s0g : We will show now that eF (P) is
CKRMC: The idea behind the proof of the lemma is similar to the idea behind the proof
of the second part of theorem 1. However, the construction here is a bit more involved.
Let f 2 eF (P) we need to construct a pro�le of beliefs n�fi o

i2I
and demand strategiesn

zfi

o
i2I

which support f w.r.t eF (P): Assume S = f1; :::; ng and de�ne ps � f(s):We

have that for every s 2 S ps is EXPR in s and therefore there exist pro�les of probabil-
ities fsigi2I ; si 2 �(S(ps) \ �i(s)); and demands xsi ; xsi 2 RK ; that support p in s: For
every s 2 S we will de�ne a probability measure �fs;i on eF (P) with the property that
�fs;i(j�i(s); ps) = si . These measures will be de�ned in such a way so that their average
measure, �fi � 1

n

P
s2S �

f
s;i ,will satisfy

(A.3.4) �fi (� j�i(s); ps) = si for every s 2 S:
Once we have such a measure �fi we are basically done because we can then de�ne

a demand strategy for agent i; zfi (li; p); as follows: If (li; p) = (�i(s); ps) for some s
then zfi (li; p) � xsi ; otherwise we de�ne z

f
i (li; p) to be some bundle x which is optimal

w.r.t �fi (� jli; p) :24 It is straightforward to check that the beliefs
n
�fi

o
i2I
and the demand

strategies
n
zfi

o
i2I
support f w.r.t. eF (P): We will now de�ne the measures �fs;i; s 2 S;

so that the average measure �fi satis�es (A.3.4). To do that we select n prices p1; :::; pn
so that for every s 2 S ps 2 P s; for s 6= s0 ps 6= ps0 ; and for every s0; s 2 S ps 6= ps0 :The
assumption that for each state s 2 S P s contains at least 2n prices ensures that such a
selection is possible. Now, let bs be a particular state. To de�ne �fbs;i we de�ne a price
function fs for every s 2 S(pbs) as follows:
fs(s

0) �
�
pbs s0 = s
ps0 s0 6= s

The role of the prices p1; :::; pn and the functions fs s 2 S(pbs) in the current proof
is exactly similar to the role of the REE prices ps s 2 S and the functions fs s 2 S(p)
in the proof of the second part of theorem 1. An argument which is identical to the one
given in the proof of theorem 1 establishes that there exists a probability measure �fbs;i
on the set ffs : s 2 �i(bs) \ S(pbs)g such that �fbs;i(� j�i(bs); pbs) = bsi : Furthermore, because
23Let bPs; s 2 S; be n sets of prices such that each set bPs contains 2n prices that are EXPR in s: For

each s 2 S de�ne P s =
n
p : p 2 [s2S bPs and p is EXPR in so. It is easy to see that ��P s�� � 2n and

that p 2 P s implies p 2 P s0 for every s0 2 S(p):
24If �fi (� jli; p) is not de�ned then the demand can be die�ned in an arbitrary way. (What is important

is that �fi (� jli; p) is de�ned for every (li; p) = (�i(s); ps); s 2 S:)
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for every bs 2 S we have: (a) pbs 6= pes for every es 6= bs and (b) pbs 6= ps for every s 2 S , we
obtain that the average measure, �fi ; satis�es �

f
i (� j�i(bs); pbs) = bsi for every bs 2 S:

We have, thus, shown that every price function f in eF (P) can be supported w.r.t eF (P)
and therefore also w.r.t F (P): Now let f be a price function such that f 2 F (P)n eF (P):
It is easy to see that the same de�nition of the probabilities �fbs;i; bs 2 S; i 2 I; with the
additional condition that if f(bs) = f(s0) and s0 2 �i(bs) then �fbs;i = �fs0;i; works.
The proof of proposition 3.2 and with it the proof of proposition 3.1 are now complete.

Example 3 :
This is an example where a REE exists and yet the set of CKRMC outcomes is

di¤erent from the set of EXPR outcomes. Speci�cally we construct an economy in
which there is a fully revealing REE with a price bp1 in state 1. The price bp1 is EXPR
in the two other states- states 2 and 3-but it is not CKRMC in these states.
There are three states in the economy, S = f1; 2; 3g and two commodities X and

M: There are three sets of agents I1 = [0; �], I2 =
�
�; 1+�

2

�
, I3 =

�
1+�
2
; 1
�
: Agents in

I1 know the true state. The others don�t know anything. The prior on S; �;could
be any probability distribution with full support. The utility of agent i; ui(x;m; s); is
as log(x) + m if i 2 I1 it is bs log(x) + m if i 2 I2 and it is cs log(x) + m if i 2 I3: We
assume that the aggregate amount of X;X; is 1 and that each agent i has enough money,
that is, mi � max fas; bs; cs : s 2 Sg (where mi is the initial amount of money of agent
i:)
We assume:

A.3.5 a1 > a2 = a3; b1 < b2 < b3; c1 < c3 < c2

A.3.6 bp1 � a1��+(b1+c1)� (1��)2
> bp2 � a2��+(b2+c2)� (1��)2

> bp3 � a3��+(b3+c3)� (1��)2

A.3.7 bp1 = a2 � � + (b3 + c2) � (1��)2
= a3 � � + (b3 + c2) � (1��)2

The inequalities in A.3.6 imply that the price function bf(s) = bps is a fully revealing
REE. (This follows because the equations in A.3.6 imply that the aggregate demand for
X in the state s at the price bps when everyone assigns probability 1 to s is equal to the
aggregate supply, bX = 1:) The equalities in A.3.7 imply that the price bp1 is EXPR w.r.t
S: In both states 2 and 3 bp1 is supported by the pro�le of probabilities b = fbigi2[0;1] in
which each agent in I2 assigns probability 1 to the state 3 while each agent in I3 assigns
probability 1to the state 2: (Obviously, each agent in I1 assigns probability 1 to the true
state.)
We now show that (bp1; 2) and (bp1; 3) are not CKRMC outcomes. First, we observe

that the pro�le b which supports bp1 in states 2 and 3 generates the maximal aggregate
demand for X in these states. Any other pro�le of probabilities will lead to a smaller
demand and therefore to a lower price. It follows that any price that is EXPR in state
2 or state 3 is smaller or equal to bp1: We now check which prices are EXPR in state 1:
Because b1 is smaller than b2 and b3 and because c1 is smaller than c2 and c3 the demand
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of an agent in I2[ I3 is minimal when he assigns the state 1 probability 1. It follows that
if p1 is a price that is EXPR in state 1 then p1 � bp1: Now since a price p1 that is higher
than bp1 is not EXPR in states 2 or 3 we obtain that the only price that is EXPR in state
1 is bp1:25 It follows (Theorem 1, part 1) that bp1 is also the only price that is CKRMC
in state 1: This means that every price function that is CKRMC receives the value bp1
in state 1. Therefore, an agent who has a probability distribution on functions that are
CKRMC and who observes the price bp1 will assign state 1 a (conditional) probability
which is at least the prior probability of this state. However, as we have seen, a pro�le
of probabilities that assign the state 1 a positive probability cannot support bp1 in the
states 2 and 3 and therefore (bp1; 2) and (bp1; 3) are not CKRMC outcomes.
Example 4:

This is an example of an economy with two states in which there is no REE and yet
there is a segment of prices that are CKRMC in both states.

There are two states, S = f1; 2g ; and each one of them has a probability 0:5: There
are three sets of agents : I1 = [0; �], I2 =

�
�; 1+�

2

�
, I3 =

�
1+�
2
; 1
�
: Agents in I1 know

the true state. The others don�t know it. The utilities of the agents are similar to those
de�ned in the previous example so ui(x;m; s) is as log(x) +m if i 2 I1 it is bs log(x) +m
if i 2 I2 and it is cs log(x) +m if i 2 I3: Also, the aggregate amount of X is 1 and each
agent has enough money.
We assume:

A.3.8 a1 > a2; b1 < b2; c1 > c2:

A.3.9 bp � a1 � � + (b1 + c1) � (1��)2
= a2 � � + (b2 + c2) � (1��)2

The equality in A.3.9 implies non-existence of a REE: The argument is familiar:
Full revelation would imply that the price which clears the market is bp in both states.
However, if that is the case then bp does not reveal the true state. On the other hand
there cannot be a non-revealing REE f; f(1) = f(2) because the demands of agents in
I1 for X in states 1and 2 are di¤erent so the same price cannot clear the market in both
states.
We now compute the set of prices that are EXPR w.r.t S and then use proposition

3.1 to conclude that this is also the set of prices that are CKRMC in both states. The
computation is similar to the one in example 1 in the main text. Let Ps; s = 1; 2; be the
set of prices that clear the market in state s when agents in I2 [ I3 may have any pro�le
of probabilities b = fbigi2I2[I3 on S (agents in I1 assign , of course, probability 1 to the
true state.) We claim that :

25Let p1 > bp1: Assume by contradiction that p1 is EXPR in state 1. Since p1 is not EXPR in states
2 and 3 p1 must be EXPR w.r.t the set f1g However, when all agents assign probability 1 to the state1
the clearing price is bp1:
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P1 =
h
a1 � � + (b1 + c2) � (1��)2

; a1 � � + (b2 + c1) � (1��)2

i
P2 =

h
a2 � � + (b1 + c2) � (1��)2

; a2 � � + (b2 + c1) � (1��)2

i
To see this we note that the extreme points in each set are clearly the lowest and

highest prices in the respective states ( for example, the demand of agents in I2 [ I3
is minimal when agents in I2 assign probability 1 to the state 1and agents in I3 assign
probability 1to the state 2:When these are the beliefs the clearing prices in states 1 and
2 are the respective minimal points in P1 and P2: ) Any price p between these points can
be obtained as a clearing price by having a fraction � = �(p) of the agents in I2 and
I3 assign probability 1 to the states 1 and 2 respectively and a fraction 1 � �(p) assign
probability 1 to the states 2 and 1 respectively. The set of prices that are EXPR w.r.t
S is:
P � P1 \ P2 =

h
a1 � � + (b1 + c2) � (1��)2

; a2 � � + (b2 + c1) � (1��)2

i
It follows from A.3.8 and A.3.9 that this is a non-empty segment. Proposition 3.1

implies that P is also the set of prices that are CKRMC in S:

Section 4

Proof of proposition 4.1:

The proof of proposition 4.1 relies on lemma 4.1.1 below. To state the lemma we need
the following notation. Let � be a number 0� � � 1: Denote by (�); (�) = f(�)igi2I ;
the pro�le of probabilities where (�)i assigns probabilities � and 1 � � respectively to
the maximal and minimal states in the set �i(bs) \ bS:
Lemma 4.1.1:
(a) For every 0� � � 1 there exists a single equilibrium price w.r.t (�): Denote this

price by p(�):
(b) p(�) is continuous in � :
(c) Let  = (i)i2I ; i 2 4(�i(bs) \ bS); be a pro�le of probabilities such that there

exists a price p which is an equilibrium price w.r.t  then p(bs; bS) � p � p(bs; bS):
Proof of lemma 4.1.1
Let i 2 Il for some l 2 f1; ::Lg ;  2 4(S); and p 2 R+: We let xl(; p) denote the

demand of i for X at the price p when the probability distribution of player i on S is :
(We note that for a given  and p all the agents in Il have the same demand hence the
notation xl(; p):) Our assumptions on the utility function ul imply that xl(; p) is an
internal solution and therefore satis�es the �rst order condition i.e.,
(4.1)

P
s2S (s) � u0l(xl(; p); s) = p

Let 0 � � � 1: Recall that (�) is a pro�le of probabilities (�) = fi(�)gi2I where
for i 2 Il i(�) is the probability distribution that assigns probabilities � and 1-� ; re-
spectively, to the maximal and minimal states in �l(bs) \ bS: Thus, in the pro�le (�) all

28



the agents of the same type have the same probability distribution on S. Therefore, for
every price p there exists an aggregate demand x((�); p); which equals:
(4.2) x((�); p) =

PL
l=1 �l � xl(l(�); p)

where xl(l(�); p) is the demand of an agent in Il: The FOC ,4.1, plus the assumption
that u0l has a negative derivative imply that for every agent i 2 Il and every probability
 2 4(�l(bs) \ bS) the demand of i for X; xl(; p);is: 1. Continuous in p: 2. Strictly
decreasing in p: 3. limp!1xl(; p) = 0 and limp!0xl(; p) =1: It follows that for every
� the aggregate demand x((�); p) has properties 1., 2. and 3. as well. These properties
imply that for every � there exits a unique price p; p = p(�); such that x((�); p) = p:
Thus, part (a) of the lemma is established.
Consider now part (b). We will show that p(�) is di¤erentiable. It follows from (4.2)

and part (a) that for every 0� � � 1 we can write:
(4.3)

PL
l=1 �l � xl(l(�); p(�))� x = 0

where x is the aggregate amount of X in the economy. If each function xl has
continuous partial derivatives w.r.t � and p and if

PL
l=1 �l �

@xl
@p
6= 0 then we can apply

the implicit function theorem and obtain that p is di¤erentiable w.r.t � : Speci�cally,
dp
d�
= �

PL
l=1 �l�

@xl
@�PL

l=1 �l�
@xl
@p

We will now show that @xl
@p
and @xl

@�
indeed exist, are continuous, and @xl

@p
<0:

Equation (4.4) below is the FOC (4.1) of the optimization problem of an agent in Il
w.r.t the probability distribution l(�) and the price p;
(4.4) � � u0l(xl(l(�); p); sl) + (1� �) � u0l(xl(l(�); p); sl)� p = 0
where sl and sl are the maximal and minimal states in the set �l(bs)\ bS, respectively.

Since u0l has a continuous derivative and since u
00
l <0 we can apply the implicit function

theorem w.r.t the variables xl and � (holding p �xed) and obtain that:
(4.5) @xl((�);p)

@�
=

u0l(xl(l(�);p);sl)�u0l(xl(l(�);p);sl)
� �u00l (xl(l(�);p);sl)+(1��)�u

00
l (xl(l(�);p);sl)

So @xl
@�
exists and since u0l and u

00
l are continuous it is continuous as well.

Using again the equation (4.4) and applying the implicit function theorem, this time,
w.r.t the variables xl and p (holding � �xed) we obtain that:
(4.6) @xl((�);p)

@p
= 1

� �u00l (xl(l(�);p);sl)+(1��)�u
00
l (xl(l(�);p);sl)

So @xl
@p
exists, it is continuous, and since u

00
l <0 it is di¤erent from zero.

This completes the proof that p(�) is di¤erentiable.
We turn now to part (c). Since u0l(x; s) is increasing in s and decreasing in x it is easy

to see that (4.1) implies that xl(l(1); p) > xl(; p) for any  2 4(�l(bs) \ bS);  6= l(1)
and any p: It follows that for any pro�le of probabilities  = figi2I ; i 2 4(�i(bs)\ bS);
and any price p; if the aggregate demand x(; p) exists it is smaller or equal to x((1); p):
Since for every agent i 2 Il the demand xl(; p) is strictly decreasing in p an equilibrium
price w.r.t the pro�le ; p(); cannot be higher than p(1): A similar argument establishes
that p() cannot be smaller than p(0): Thus, the proof of part (c) is complete.
The proof of proposition 4.1 from lemma 4.1.1 is simple. We have p(1) = p(bs; bS) and
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p(0) = p(bs; bS): The continuity of p(�) implies that for every p; p(0) � p � p(1); there

exists a � such that p = p(�): Therefore, P (bs; bS) � hp(bs; bS); p(bs; bS)i : On the other hand
part (c) of lemma 4.1.1 implies that P (bs; bS) � hp(bs; bS); p(bs; bS)i :
Proof of proposition 4.2:
(a) By de�nition P ([s; s]) = \

s2[s;s]P (s; [s; s]): Therefore, p 2 P ([s; s])) p 2 P (s; [s; s])
for every s 2 [s; s] : Since by lemma 4.1.1 p(s; [s; s]) is the minimal element in P (s; [s; s])
we obtain that p � p(s; [s; s]): In a similar way we obtain that p � p(s; [s; s]) and there-
fore P ([s; s]) �

�
p(s; [s; s]); p(s; [s; s])

�
: For the other direction we observe that since the

information sets of each agent are segments (assumption 3) then for every s 2 [s; s] and
i 2 I the maximal state in the set �i(s)\ [s; s] is greater or equal to the maximal state
in the set �i(s)\ [s; s] : It follows that for every s 2 S p(s; [s; s]) � p(s; [s; s]): Similarly,
we obtain that for every s 2 S p(s; [s; s]) � p(s; [s; s]): It follows that for every s 2 S
P (s; [s; s]) �

�
p(s; [s; s]); p(s; [s; s])

�
and therefore the result follows.

(b) By de�nition Ps � [s2bSP (bS): Clearly, [s2[s;s]P ([s; s]) � [s2bSP (bS) because the
union in the RHS is taken over a larger set of sets. We will establish the claim by showing
that for every set bS P (bS) � P ([s; s]) where s and s are the minimal and maximal states
respectively in bS: To see this recall that P (bS) � \s2bSP (s; bS) and therefore, in particular,
P (bS) � P (s; bS) and P (bS) � P (s; bS): It follows that P (bS) � hp(s; bS); p(s; bS)i : Now sincebS � [s; s] we have p(s; bS) � p(s; [s; s]) and p(s; bS) � p(s; [s; s]): It follows that P (bS) ��
p(s; [s; s]); p(s; [s; s])

�
= P ([s; s]) where the last equality is established by part (a) of the

proposition.

Proof of claim 4.3:

Since Ps strictly contains P (fsg) then either there exists p<P (fsg) such that p 2 Ps
or there exists p > P (fsg) such that p 2 Ps: Assume w.l.o.g the former case. Let p be
the minimal element in Ps: Assume, �rst, that there is a single set [s; s] ; s 2 [s; s] ; such
that p 2 P ([s; s]): Since p is the minimal element in P ([s; s]); it follows from proposition
(2.a) that p = p(s; [s; s]): Consider the state s: Clearly, there exists a set of agents
Il; l 2 f1; ::; Lg ; such that �l(s)\ [s; s] strictly contains s; because if that were not
the case then p(s; [s; s]) > p(s; [s; s]) implying that P ([s; s]) = ; in contradiction to
the assumption that p 2 P ([s; s]): Let I 0 be a set of agents of a positive measure in
Il (the measure of I 0 can be as small as we wish:) Since the minimal state in the set
�l(s)\ [s; s] ; es; is strictly smaller than s the demand of agents in I 0 at es is smaller
than their demand at the state s: Since the set I 0 has a positive measure it follows that
p(s; [s; s]) is strictly smaller than pI

0
(s; [s; s]): (Recall that the superscript I 0 refers to

the economy EI
0
that is obtained form the original economy E by re�ning the knowledge

of agents in I 0:) So the point is that p(s; [s; s]) is an equilibrium price for a pro�le of
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probabilities e in which agents in I 0 assign probability 1 to the state es while pI0(s; [s; s] is
an equilibrium price for a pro�le of probabilities  where agents in I 0 assign probability
1to s: (Agents that do not belong to I 0 have the same beliefs in  and e:) In particular,
p = p(s; [s; s]) =2 P I0([s; s]): Since by assumption there was no segment of states [s�; s�] ;
s 2 [s�; s�] ; [s�; s�] 6= [s; s] ; such that p 2 P ( [s�; s�]) and since for any set [s�; s�] ; P I0(
[s�; s�]) � P ([s�; s�])26; it follows that p =2 P I0s and therefore P I

0
s is strictly contained in

Ps: We have thus proved the claim for the case where p belongs to a single set P [s; s] :
It is easy to see that if p belongs to a collection of sets we can �nd for each such set, P (
[s�; s�]);a set of agents I 0, I 0 = I 0( [s�; s�]); such that p =2 P I0([s�; s�]): In the economy
which is obtained by all these re�nements p is not a price that is EXPR w.r.t s:

Robustness of economies in which there is a segment of prices
that are EXPR in every state.

We start with a de�nition of a metric on the space of economies.
Let E(n;L;�) denote the set of economies where S = f1; ::; ng is the set of states,

L = fI1; ::; ILg is the set of types of agents, and� = (�1; ::�L) is the pro�le of information
partitions of the di¤erent types. An economy E in E(n;L;�) is characterized by a vector
(�l;ml; xl; ul)l2L: The distance between two vectors E and E 0 is de�ned as the maximal
distance among the (4 � L) coordinates of the two vectors where the distance between
the di¤erent coordinates is de�ned as follows: The distance between two numbers is the
absolute value of their di¤erence. Since the demand function of an agent depends on
the derivative of his utility we de�ne the distance between utility functions u and v as
follows:
d(u; v) � max fku� vk ; ku0 � v0k ; ku00 � v00kg
where k�k is the supremum norm, i.e.,
kuk � sup

�
u(x; s) : x 2 RK+ ; s 2 S

	
:

We now show that the set of economies in which there is a segment of prices that are
EXPR in every state is open. Let E be an economy such that p(n; [1; n]) < p(1; [1; n]):
To economize in notation we let p and p denote the prices p(n; [1; n]) and p(1; [1; n])
respectively. Proposition 4.2 implies that (in the economyE) the segment

�
p; p
�
is EXPR

in every state. We will show that a �small�change in the utilities of the agents induces
a �small�change in the prices p and p; so that if the change in the utilities is su¢ ciently
small the inequality p < p is maintained. It will then be easy to see that a small change
in the other parameters of the economy (f�l;ml; xl; gl2L) also leads to a small change in
p and p: This will establish the existence of a neighborhood of E, N(E); such that for
every E 0 2 N(E) there exists a segment of prices that are EXPR in every state.
Consider the price p (the argument for the price p is similar.) The price p is generated

by a pro�le of beliefs  � figi2I where all players of the same type assign probability 1
26Any refeinment of the knowledge of any set of agents can only shrink the set of prices that are

EXPR w.r.t a given set of states bS: Therefore, P I0( [s�; s�]) which is the set of prices that are EXPR
w.r.t [s�; s�] in the economy EI

0
is contained, in the weak sense, in P ( [s�; s�] :
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to the same state. We �x the pro�le  and examine the change in the clearing price when
there is a small change in the utilities of the agents. Let ul; l 2 L; denote the utility of
an agent of type l in E: First, we note that for every l 2 L and closed positive segment in
which the parameter x may vary

��u00l (x; s)�� is bounded from above and below by positive
numbers Ml and ml;respectively. Let v =(v1; :::; vL) be a vector of utilities such that
d(ul; vl) < � for every l 2 L:We have ml� � � jv00l j �Ml+ �: De�ne C � maxl2L Ml

ml�"and
let pv denote the clearing price for the utilities v at the beliefs :
Claim: jpv � pj � 2C":
Proof: Let u be a utility, l a type, and p a price. We let xl(p; u) denote the demand

of an agent who has the belief l; l � i for i 2 l; and the utility u at the price p: We
have
(4.7) jxl(p; ul)� xl(pv; vl)j � jxl(pv; ul)� xl(p; ul)j � jxl(pv; ul)� xl(pv; vl)j :
(4.8) jxl(pv; ul)� xl(p; ul)j � jp�pv j

Ml
:

(4.9) jxl(pv; ul)� xl(pv; vl)j � "
ml�� :

The inequality (4.7) is the triangle inequality. Let sl denote the state to which the
belief l assigns probability 1. To see (4.8) we note that the �rst-order condition implies
that ju0l(xl(pv; ul); sl)� u0l(xl(p; ul); sl)j = jpv � pj : Since

��u00l (x; s)�� � Ml (4.8) follows.
The inequality (4.9) is established in a similar way; the �rst-order condition implies that
u0l(xl(pv; ul); sl) = v0l(xl(pv; v); sl) = p� : Since v00l is bounded from below by ml � � the
fact that ku0l � v0lk � " as well implies (4.9). The inequalities (4.7)-(4.9) imply that if
pv�p > 2C" then xl(p; ul) > xl(pv; vl) for every l 2 L which means that when the vector
of utilities is v there is excess supply of X at the price pv and hence it cannot be a clearing
price : Similarly, pv cannot be a clearing price if p� pv > 2C": The claim follows.
We have, thus, shown that a small change in the utilities of the agents induces a small

change in the prices p and p: The argument that a small change in the other parameters
of the economy also induces a small change in p and p is simpler. We omit the details.

Section 5:

Proof of theorem 2:
We start the proof of the theorem with two lemmas.

Lemma 2.1:
Part (b) of theorem 2 implies part (a).
Proof:
The de�nition of the operator J readily implies that if F and F 0 are two sets of

price functions such that F 0 � F then J(F 0) � J(F ): A simple induction implies that
for each natural number k; F k � FCKRMC. On the other hand if F k = F k+1 then
F k is CKRMC and therefore F k � FCKRMC which implies F k = FCKRMC: This
establishes the lemma.
The proof of the theorem relies on the relationship between CKRMC and EXPR

which was de�ned in section 3. For the proof it would be useful to think of S(p)-the

32



maximal set of states w.r.t which p is EXPR� as the result of an iterative process; de�ne
by induction a sequence of states Sk(p) as follows:
S0(p) = S

Sk(p) =

�
s :

p can be supported in s by a pro�le of beliefs fsigi2I such that
si 2 �( Sk�1(p) \ �i(s))

�
27

A simple induction establishes that for every k Sk+1(p) � Sk(p): It follows that
Sn(p) = Sn+1(p) = S(p) where n is the number of states of nature.
For a set of states S 0 and a price p we let B(S 0; p) denote the set of states in which

the price p can be supported by a pro�le of probabilities on S 0:In addition, for a set of
price functions F and a price p de�ne S(F; p) � fs : 9f 2 F s.t f(s) = pg :
We can now prove lemma 2 below.
Lemma 2.2: For k � n f 2 F k ) 8s 2 S f(s) is EXPR in S:
Proof: We will show,
Claim 2.2.1: 8k S(F k; p) � Sk(p):
Since Sk(p) = S(p) for k � n the claim implies the lemma.
The proof of the claim relies on inclusion 6.1 below; Let F be a set of functions and

let p be a price then
(6.1) S(J(F ); p) � B(S(F; p); p)
The argument that establishes the inclusion 6.1 is identical to the argument that is

used in the �rst part of theorem 128. Given 6.1 claim 2.2.1 is proved by induction on k:
For k = 0 we have S(F 0; p) = S0(p) = S: Assume by induction that the claim has been
proved for k and consider now the claim for k + 1: We have

(6.2) S(F k+1; p) = S(J((F k); p) � B(S(F k; p); p) � B(Sk(p); p) = Sk+1(p):
The �rst inclusion follows from (6.1) and the second one from the induction hypoth-

esis. (The last equality is, simply, the de�nition of Sk+1(p):) We have proved claim 2.2.1
and the lemma follows.
We can now proceed to the main part in the proof of theorem 2. We remind that for

s 2 S Ps denotes the set of prices that are EXPR in s. Now distinguish between the
following three cases:
(1) For every s 2 S Ps is �nite.
(2) For every s 2 S Ps is in�nite.
(3) There is a set of states S;?  S  S; such that for s 2 S Ps is in�nite and for

s =2 S Ps is �nite.

Case 1:
27The de�nition of a price p supported in a state s by a pro�le of beliefs s is given at the begining

of section 3 right after the de�nition of EXPR:
28Let f 2 J(F ) and let � = f�igi2I and z = fzigi2I be the pro�le of beliefs and demands that support

f:If s is a state such that f(s) = p then the pro�le of conditional probabilities on S;  = figi2I ; i �
�i(� jPi(s); p) ; supports p:(I.e., the po�le  rationalizes the pro�le of demands fzi(Pi(s); p)gi2I which
clear the market.) Clearly, for every i 2 I; the support of the probability distribution i is contained in
S(F; p); therefore, the inclusion in 6.1 follows.
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Case (1) is simple, lemma 2.2 implies that F n is �nite, therefore there exists a number
m � jF nj such that F n+m = F n+m+1: It follows that F n+m = F1 = FCKRMC:
Obviously, F n+m is �nite and therefore the proof of the theorem for this case is complete.

Case 2:
The proof of the theorem for case (2) is an immediate consequence of proposition 3.1

(section 3 in the appendix.)
Part (c) of the theorem is one of the claims in the proposition. Since part (a) of the

theorem follows from part (b) (lemma 2.1 above) we only need to show part (b). Lemma
2.2 implies that if f 2 F k where k � n then f(s) is EXPR for every s; which means
that f satis�es conditions (A.3.1) and (A.3.2) of proposition 3.1. Since the demand of
each agent at a state s depends only on his private signal and the price at s f must
satisfy condition (A.3.3) as well. Now, it follows from proposition 3.1 that for k � n
F k � FCKRMC: Since for every k FCKRMC � F kpart (b) follows.
Case 3:

We will prove the theorem by providing an indirect characterization of the set of price
functions that are CKRMC: Since this characterization is somewhat involved we start
with an informal description. Let bS denote the set of states in which there is a �nite num-
ber of prices that areEXPR: Thus, bS � SnS: Let P � np : p is EXPR in a state s 2 bSo :
To understand the characterization that will follow it is useful to think of every price
function f as composed of two partial functions � and g where � is de�ned on states in
which f receives values in P and g is de�ned on the rest of the states . More precisely,
de�ne S(f; P ) � fs : f(s) 2 Pg : For every s 2 S(f; P ) de�ne �s � f(s) and for every
s 2 SnS(f; P ) g(s) = f(s): A function f that is CKRMC will be supported by a belief
that is a composition of two beliefs, a belief �� that supports � on the states S(f; P )
and a belief �g that supports g on the states SnS(f; P ): It follows from the de�nition
of the set P that S(f; P ) � bS and therefore SnS(f; P ) � S: In the sequel we will use
proposition 3.1 to characterize partial functions that are de�ned on a subset of S and are
part of a CKRMC function (such as g): The characterization of partial functions that
receive values in P and are part of a CKRMC function (such as �) is indirect, these
are partial functions that survive every �nite number of steps in the iterative deletion
procedure. We turn now to the formal description.
De�ne S �

n
S 0 : bS � S 0 � So and � � f� : 9S 0 2 S s.t � = (�s)s2S0 ; �s 2 Pg : Thus,

� is the set of partial functions that receive values in P: However, not all of these functions
are part of some CKRMC function. For � 2 � let S(�) denote the set of states on which
� is de�ned. For each � 2 � de�ne a set of price functions F� as follows,
F� � ff : for s 2 S(�) f(s) = �s; for s =2 S(�) f(s) =2 Pg :
De�ne �1 � f� : � 2 �; F� \ F1 6= ?g : Since � is a �nite set there exists a number

M such that for every m �M and every � 2 �n�1 F� \Fm = ?:We will show (lemma
2.3 below) that �1 is precisely the set of partial price functions that receive values in
P and are part of a CKRMC function. Let ES denote the subeconomy where the set
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of states is S: De�ne G �
�
g : g is a CKRMC function in ES and 8s 2 S g(s) =2 P

	
:

Since P is the set of all prices that are EXPR in some s 2 bS it follows that for every
s 2 S and p 2 PsnP S(p) � S: (We remind that Ps is the set of prices that are EXPR
in the state s and that S(p) is the set of all states in which p isEXPR:) Since P is
�nite and since for s 2 S Ps is in�nite it follows that PsnP is in�nite as well. It is
now easy to see that the proof of proposition 3.1 (section 3 in the appendix) can be
used to establish that g 2 G i¤ for every s 2 S there exist pro�les of probabilities
 = fsigi2I ; si 2 �(�i(s) \ S(f(s))) and demands x = fxsigi2I such that
(6.3) For every i 2 I xsi is an optimal bundle for player i w.r.t. the price f(s) and the

probability si :
(6.4) For every s 2 S markets clear, that is,

R
i
xsi =

R
i
ei(s):

(6.5) If s0 2 �i(s) and f(s) = f(s0) then xsi = xs
0
i and 

s
i = 

s0
i :

(6.6) For every s 2 S g(s) =2 P:

For � 2 � and g 2 G de�ne the function �Og as follows:
(6.7) �Og(s) �

�
�s s 2 S(�)
g(s) otherwise

De�ne now

(6.8) bF � ff : 9� 2 �1 and g 2 G s.t f = �Ogg
Lemma 2.3 below establishes theorem 3 for case 3 and shows that bF is the set of

CKRMC functions.

Lemma 2.3: Let K � max fn;Mg :
(a) For k � K bF = F k = FCKRMC:
(b) For every bf 2 bF there exists a �nite set of CKRMC functions, bF ( bf); such thatbf 2 bF ( bf) and bF ( bf) � bF :
Proof:
First, we claim that part (b) of the lemma implies part (a). Clearly, part (b) implies

that bF is CKRMC and therefore bF � FCKRMC: Now, let k � K and let f 2 F k:
Since k � M there exists � 2 �1 s.t. f 2 F�: Since k � n f(s) 2 PsnP for s 2 SnS(�):
It follows that conditions (6.7)-(6.10) are satis�ed for every s 2 SnS(�) and therefore
f 2 bF 29:We have thus shown that for k � K F k � bF : Since for every k F k � FCKRMC
we havebF � FCKRMC � F k � bF which implies part (a).
29More speci�cally, we can de�ne a function g 2 G s.t. f = �Og in the following way: For s 2 S\S(�);

let ps be prices such that ps 2 Ps=P; ps 6= f(s0) for every s0 2 S=S(�) and ps 6= ps0 for s 6= s0: De�ne

g : S ! RK�1 as follows g(s) �
�
ps s 2 S \ S(�)
f(s) s 2 S=S(�)

It is easy to see that g 2 G and that f = �Og:
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We now turn to the proof of part (b). Before presenting the detailed proof we describe
its outline.
Let bf 2 bF : There exists b� 2 �1 and bg 2 G such that bf = b�rbg: The proof of

proposition 3.2 can be used to establish that there exists a �nite CKRMC set of functions
G(bg) in the economy ES such that bg 2 G(bg) and G(bg) � G: For g 2 G(bg) we let
�g � f�gi gi2I denote the pro�le of beliefs that supports g w.r.t G(bg): De�ne now,
(6.9) bF ( bf) � ff : 9� 2 �1 and g 2 G(bg) s.t f = �Ogg :
First, we note that since bg 2 G(bg) bf 2 bF ( bf): Also, since �1 and G(bg) are �nite so

is bF ( bf): The main step in the proof is to show that bF ( bf) is CKRMC: So let ef 2 bF ( bf)
s.t. ef = e�reg where e� 2 �1 and eg 2 G(bg): We need to construct a pro�le of beliefs
�ef � n� efi o

i2I
that supports ef w.r.t bF ( bf): To do that we �rst need to extend the de�nition

of �support� (page 10) to include subsets of S : Say that a pro�le of beliefs f�igi2I
supports the price function f on a subset of states S 0 (S 0 � S) if the conditions of
rationality and market clearing (conditions 1. and 2. in the de�nition of �support�,
pages 9 and 10) apply for every s 2 S 0:We now construct the pro�le �ef as follows: First,
we will show that there exists a pro�le of beliefs (on bF ( bf)), �e� � n�e�i o

i2I
; that supportsef on the set S(e�): Then, we will use the pro�le �eg to construct a pro�le �0eg that supportsef on SnS(e�) : Finally, we will de�ne the belief � efi by combining the beliefs �e�i and �0egi so

that the pro�le �ef � n� efi o
i2I
supports ef on the whole set of states, S:

We turn now to the details of the proof. Lemma 2.4 below is the main step in the
de�nition of the beliefs �e� � n�e�i o

i2I
which will be given later on.

Lemma 2.4: Let e� 2 �1: There exists a pro�le of beliefs on �1; e� � ne�io
i2I
, such

that for every collection of price functions C = ff�g�2�1 ; f� 2 F�; the pro�le of beliefs
on C �C �

�
�Ci
	
i2I ;de�ned by, �

C
i (f�) � e�i(�)30; supports fe� on S(e�):

Proof: Let e� 2 �1 and let k be some index such that k � K + 1: The de�nition of
�1 implies that there exists a function fe� 2 F k such that fe� 2 Fe�: Let �fe� be the pro�le
of beliefs on F k�1 that supports fe�: Since for every s =2 S(e�) fe�(s) =2 P and since for
every s 2 S(e�) e�s 2 P it follows that for s 2 S(e�) and i 2 I �fe�i (j�i(s); e�s) depends only
on the beliefs �fe�i (F�); � 2 �; i 2 I: Speci�cally, for s 2 S(e�)
�fe�i (s0 j�i(s); e�s) = �(s0)��e�i (fF� :�s0=�esg)Pbs2�i(s) �(bs)��e�i (fF� :�bs=�esg) :
De�ne now beliefs e�i; i 2 I; on � as follows,e�i(�) � �fe�i (F�):
The lemma is established by observing that since k � 1 � K �fe�i (F�) = 0 for every

� =2 �1:
30An equality between two beliefs means of course an equality between the probability distributions

which constitute the beliefs. So if e�i = (e�1i ; ::; e�ki ); �Ci (f�) = e�i(�) means that �Ci = (�C;1i ; ::; �C;ki ) and

that for every 1 � j � k and � 2 �1 �C;ji (f�) = e�ji (�):
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The next step is to use proposition 3.2 to de�ne the set G(bg)31: De�ne m =
��S�� :

De�ne P s; s 2 S; to be m �nite sets of prices such that each set P s contains at least 2m
prices in PsnP and for s 2 S bg(s) 2 P s: In addition, if p 2 P s then p 2 P s0 for every
s0 2 S(p)32: De�ne now,
G(bg) � �g : g(s) 2 P s for s 2 S and g satis�es conditions (6.3)-(6.6).	
The set G(bg) is �nite (because the sets P s; s 2 S are �nite) and bg 2 G(bg). A proof

which is identical to the proof of proposition 3.2 establishes that G(bg) is a CKRMC set
of functions in the economy ES:
To show that bF ( bf) is CKRMC we need one additional (small) intermediate step.

De�ne, �1 �
�
� : 9�1 2 �1 s.t. � = f�1s gs2bS	 :We will later show that �1 � �1 but

since this has not been established yet we de�ne eF ( bf) as follows,eF ( bf) � �f : 9� 2 �1 [ �1 and g 2 G(bg) s.t. f = �rg	 :
We now show that eF ( bf) is CKRMC: Of course, once we establish that �1 � �1

it will follow that eF ( bf) = bF ( bf) and therefore that bF ( bf) is CKRMC. So let ef 2 eF ( bf)
s.t. ef = e�reg where e� 2 �1 [�1 and eg 2 G(bg): We now de�ne the beliefs n�e�i o

i2I
and�

�
0egi	

i2I which support the prices speci�ed by
ef on the sets of states S(e�) and SnS(e�)

respectively. We will then de�ne �fe�i by combining �e�i and �0egi ; and obtain a pro�le of
beliefs �ef � n� efi o

i2I
that supports the prices speci�ed by ef on every s 2 S:

For every s 2 S select a price ps such that (a) ps 2 P s: (b) For s 6= s0 ps 6= ps0 : (c)
ps 6= f(s0) for every s0 2 SnS(e�):We note that a selection that satis�es properties (a)-(c)
is possible because SnS(e�) � S and because for every s 2 S P s contains at least 2m
prices. For every � 2 �1 de�ne a price function f� as follows,

f�(s) �
�
�s s 2 S(�)
ps s 2 SnS(�)

Lemma 2.4 implies that there exists a pro�le of beliefs
ne�io

i2I
on ff�g�2�1 that

supports fe� on S(e�): To see why this is true we note for e� 2 �1 this is a straightforward
application of the lemma while for e� 2 �1 we only need to observe that e� = (�0s)s2S(e�) for
some �0 2 �1 and that the pro�le of beliefs f�0igi2I that supports f�0 on S(�0) (obviously)
supports fe� on S(e�): We now de�ne �e�i � e�i:
The next step is to de�ne the pro�le

n
�
0eg
i

o
i2I
: Pick an arbitrary � in �1 and associate

with each eg 2 G(bg) the price function �(eg) � �reg: Let n�egio
i2I
be the pro�le of beliefs

that supports eg w.r.t G(bg) in the economy ES: De�ne the belief �0egi on eF ( bf) as follows,
�0egi (f) �

�
�egi (g) if f = �(g)
0 otherwise

Since � is one-to-one �0egi is well-de�ned. It is straightforward to show that the pro�le
31We remind that G(bg) is used in the de�nition of bF ( bf) in 6.9.
32We remind that S(p) is the set of states on which p is EXPR and since p =2 P S(p) � S:
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n
�
0eg
i

o
i2I
supports eg on S: In particular, n�0egi o

i2I
supports eg on SnS(e�):

Let �e�i = (�e�;1i ; :::; �e�;ki )33: Similarly, let �0egi = (�0eg;1i ; ::; �
0eg;l
i ): De�ne �

ef
i as follows:

�
ef
i � (�

ef;1
i ; ::::; �

ef;k+l
i ) where for 1 � j � k �

ef;j
i � �e�;ji and for k + 1 � j � k + l

�
ef;j
i � �

0eg;j�k
i : It is now simple to verify that the pro�le

n
�
ef
i

o
i2I

supports ef on the
whole set of states, S: So let s 2 S: The price that each player i observes is ef(s): Now
if s 2 S(e�) then ef(s) = e�s and player i applies the belief �e�i : By de�nition the pro�len
�e�i o

i2I
supports fe� on S(e�): If s 2 SnS(e�) then player i observes the price ef(s) = eg(s):

Since P (ff� : � 2 �1g) is disjoint to P (G(bg))34 �e�i assigns the price eg(s) probability
zero. Thus, when player i observes eg(s) he applies the belief �0egi : By de�nition the pro�le�
�
0eg	

i2I supports eg on SnS(e�):
We have shown that fF ( bf) is CKRMC. To complete the proof all that is left to do

is show that �1 � �1 because (as we have already pointed out) that would imply thateF ( bf) = bF ( bf) and therefore that bF ( bf) is CKRMC. The inclusion �1 � �1 is actually,
now, immediate: Since fF ( bf) is CKRMC fF ( bf) � F k for every k: Since for every � 2 �1
F� \ fF ( bf) 6= ? it follows that for every k F� \ F k 6= ? which by de�nition implies that
� 2 �1:
The proof of lemma 2.3 (b) is now complete and therefore theorem 2 for case 3 has

been established.

Proof of Theorem 3:

One direction is immediate: Let bf be a price function such that there exists a model
(
; �) that is CKRMC and a state b! such that Tf (b!) = bf: We have to show that bf is
CKRMC:We will do that by showing that the set F = z(
) is CKRMC: So let f 2 F
and let ! 2 
 be a state such that Tf (!) = f . Let f�!i gi2I � ( �!;1i ; ::; �

!;m
i )i2I

and fz!i gi2I be the pro�les of beliefs and demands in !: De�ne a pro�le of beliefsn
�fi

o
i2I
; �fi = (�f;1i ; ::::; �

f;m
i ); on F as follows: For a Borel set of functions F � F

de�ne �f;ki (F ) � �!;ki (T�1f (F )) for 1� k � m: Since Tf is a measurable transformation

�f;ki is well de�ned. It is easy to see that the pro�le of beliefs
n
�fi

o
i2I
and the pro�le of

demand strategies fz!i gi2I support the function f w.r.t to the set F:
We turn now to the second direction. Let bf be a function that is CKRMC and letbF be a Borel set of functions such that bf 2 bF and bF is CKRMC: It follows from part

33We remind that for 1 � j � k �e�;ji is the j0th probability distribution in the lexicographic sequence
of probabilities that constitutes �e�i :
34We remind that for a set of price functions F P (F ) is the set of prices in the range of the functions

in F , that is, P (F ) � fp : 9f 2 F and s 2 S s.t. p = f(s)g
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(3) of Theorem 2 that we can assume w.l.o.g that bF is �nite. We will construct a model
(
; �) that is CKRMC such that z(
) = bF : De�ne now (
; �) as follows:
(A.5.1) 
 � bF � bF � I
and � is the product of the Borel sets in bF � bF and I:
To understand the idea behind this de�nition of 
 it would be useful to point out

why a simpler de�nition would not work. So suppose we would have de�ned 
 to be bF
where we associate with the state f the price function f and the pro�les of demands and
beliefs

n
zfi

o
i2I
and

n
�fi

o
i2I
that support f w.r.t bF (the beliefs are now interpreted as

beliefs on states.) Let i be a speci�c player and suppose that �f;1i (f) > 0 for some f 2 F:
This means that player i in the state f assigns a positive probability to the state f which
implies that he is assigning a positive probability to the event where his beliefs are �fi ;
but these beliefs are di¤erent than his beliefs in the state f; (�fi ); so this construction
contradicts the assumption that a player knows his own beliefs.
To avoid this contradiction we need a richer set of states, in particular we need a state

where the function that is materialized is f but player i has the belief �fi and the demand
zfi : The de�nition of 
 in (A.5.1) implements this requirement in the following way: The
state b! = (f; f; i) is a state in which f is materialized and player i has the belief �fi
and the demand zfi : The complete and formal de�nition of b! is as follows: Let zb!j and
�b!j denote respectively the demand and belief on 
 of player j in b!: De�ne zb!j � zfj for
every j 6= i and zb!i � zfi : So all the players di¤erent from i have demand strategies that
support f while player i has a demand strategy that supports the function f: (We note
that since there is a continuum of players the fact that a single player i has a demand
that is di¤erent than zfi does not change the fact that f speci�es prices that clear the
market.) The beliefs are de�ned according to the correspondence between states and
functions that are materialized in them. Start with player i :

�b!i (!) �
�
�fi (g) ! = (g; f; i)
0 otherwise

35

and for a player j 6= i de�ne:

�b!j (!) �
(
�fj (g) ! = (g; f ; j)
0 otherwise

It is straightforward to check that these de�nitions satisfy requirements 1. and 2. in
the de�nition of a CKRMC model.

35The belief �b!i is a �nite sequence of probabilities-�b!i = (�b!;1i ; :::�b!;mi ): So the de�nition �b!i (!) � �fi (g)
should be read as follows: Let �fi = (�

f;1
i ; ::; �f;mi ) for any 1� k � m �b!;ki (!) = �f;ki (g):

The de�nition of the belief of a player j di¤erent from i should be read in a similar way.
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