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Abstract

We study the problem of reaching Nash equilibria in multi-person games that

are repeatedly played, under the assumption of uncoupledness: every player knows

only his own payo¤ function. We consider strategies that can be implemented by

�nite-state automata, and characterize the minimal number of states needed in order

to guarantee that a pure Nash equilibrium is reached in every game where such an

equilibrium exists.

1 Introduction

We study the problem of reaching Nash equilibria in multi-person games, where the players

play the same game repeatedly. The main assumption, called uncoupledness (see [1]), is

that every player knows only his own utility function. The resulting play of the game

yields an uncoupled dynamic.

Hart and Mas-Colell show in [1] that if the game is played in continuous time, and

the moves of every player are deterministic, then uncoupled dynamics cannot always lead

�This is part of author�s M.Sc. thesis. I wish to thank Sergiu Hart for his support and guidance, and

Noam Nisan for helpful discussions.
yCenter for Study of Rationality and The Institute of Mathematics, The Hebrew University of

Jerusalem, 91904 Jerusalem, Israel.
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to Nash equilibria. In [2] they show that the situation is di¤erent when stochastic moves

are allowed and the game is played in discrete time: if the players know the history of

play,1 then there are uncoupled strategies that lead to a Nash equilibrium. The question

is whether it is necessary to know the whole history in order to reach a Nash equilibrium.

The answer is no. It was proved in [2], Theorems 4 and 5, that under the assumption

of uncoupledness, convergence of the long-run empirical distribution of play to a (pure

or mixed) Nash equilibrium can be guaranteed by using only the history of the last R

periods of play, for some �nite R. This is called a �nite-recall strategy. Although �nite-

recall uncoupled strategies can guarantee convergence of the distribution of play to a Nash

equilibrium, it is shown in [2], Theorem 6, that this cannot hold for the period-by-period

behavior probabilities. If however, instead of �nite recall one uses �nite memory (e.g.,

�nitely many periods of history but not necessarily the last ones), then the convergence of

the behavior can be guaranteed as well ( [2], Theorem 7).

This leads us to the study of uncoupled strategies with �nite memory, i.e., �nite-state

automata. In this paper we deal with convergence to pure Nash equilibria in games which

have such equilibria. In [2], Theorem 3, it is shown that in order to guarantee convergence

to pure Nash equilibria one needs recall of size R = 2. Since �nite recall is a special case

of �nite automata, the question we address here concerns the minimum number of states

required for uncoupled �nite automata to reach a pure Nash equilibrium. There are four

classes of �nite-state automata: the actions in every state can be deterministic (pure) or

stochastic (mixed), and the transitions between states can be deterministic or stochastic.

We will analyze each of the four classes in turn.

Section 2 presents the model, de�nes the relevant concepts and present the total results

of the paper. Since the results are di¤erent for two-player games than for games with more

than two players, we consider two-player games in Section 3 and n-player games for n � 3

in Section 4. In Sections 3 and 4 we discuss each of the four automata classes separately.

Appendix A and Appendix B containing the proofs of Theorems 6 and 7.

1I.e., the past actions of all the players.

2



2 The Model

2.1 The Game

A basic static (one-shot) game � is given in strategic (or normal) form as follows. There

are n � 2 players, denoted i = 1; 2; :::; n. Each player i has a �nite set of pure actions

Ai = fai1; :::; aimig; let A := A1 � A2 � ::: � An be the set of action combinations. The

payo¤ function (or utility function) of player i is a real-valued function ui : A ! R. The

set of mixed (or randomized) actions of player i is the probability simplex over Ai, i.e.,

�(Ai) = fxi = (xi(aij))j=1;:::;mi : �m
i

j=1x
i(aij) = 1 and x

i(aij) � 0 for j = 1; :::;mig; payo¤

functions ui are multilinearly extended, and so ui : �(A1)��(A2)� :::��(An)! R.

We �x the set of players n and the action sets Ai, and identify a game by its n-tuple of

payo¤ functions U = (u1; u2; :::; un). Let U i be the set of payo¤ functions of player i, and

U := U1 � :::� Un.

Denote the actions of all the players except player i by a�i, i.e., a�i = (a1j1 ; :::; a
i�1
ji�1
; ai+1ji+1

; :::; anjn),

and denote the set of actions of all the players except player i by A�i = A1 � :::�Ai�1 �

Ai+1�:::�An. An action aij 2 Ai will be called a best reply to a�i if ui(aij; a�i) � ui(aik; a�i)

for every aik 2 Ai. A pure Nash equilibrium is an action combination a = (a1j1 ; a2j2 ; :::; anjn) 2

A, such that aiji is a best reply to a
�i for all i.

For every game U , let eU = (eu1; eu2; :::; eun) denote the resulting best-reply game, which
is de�ned by

eui(a) =
8<: 1 , if ai is a best reply to a�i

0 , otherwise

Note that a is a pure Nash equilibrium of U if and only if it is a pure Nash equilibrium

of eU .
2.2 The Dynamic Setup

The dynamic setup consists of the repeated play, at discrete-time periods t = 1; 2; :::,

of the static game U . Let ai(t) 2 Ai denote the action of player i at time t, and put

3



a(t) = (a1(t); a2(t); :::; an(t)) 2 A for the combination of actions at t. We assume that there

is standard monitoring: at the end of period t each player i observes everyone�s action,

i.e., a(t); when the choices are random, the players observe only the realized actions a(t).

2.3 Automata

An automaton2 for player i is a 4-tuple �i :=< 	i; si0; f
i; gi >. 	i is the set of states;

si0 2 	i is the starting state; f i : 	i ! �(Ai) is the action function; and gi : A � 	i !

�(	i) is the transition function. Let Ai denote the set of all automata of player i. An

automaton �i 2 Ai will be called a pure-action automaton if the actions in all states

are pure, i.e.,3 Im(f i) � Ai. Otherwise it will be called a mixed-action automaton. An

automaton �i 2 Ai will be called a deterministic-transition automaton if all the transitions

are deterministic, i.e., Im(gi) � 	i. Otherwise it will be called a stochastic-transition

automaton. An automaton �i 2 Ai will be called a ki-automaton if it has ki states, i.e.,

j	ij = ki.

Let (�1;�2; :::;�n) be n automata, where �i is a ki-automaton for player i. The play

proceeds as follows. At time t = 1 every player i is at his starting state si0, and plays

an action ai(1) according to the probability distribution f i(si0). Let the realized actions

of all the players be a(1) := (a1(1); :::; an(1)). Then every player i moves to a new state

according to the transition probabilities gi(a(1); si0). Now assume that at time t player i

is in state si 2 	i, and hence at time t+ 1 player i plays an action ai(t) according to the

probability distribution f i(si). The actions of all the players are a(t+1), and every player

i then moves to a new state according to the transition probabilities gi(a(t+ 1); si).

2.4 Strategy Mappings

Let ' : U ! A1� :::�An be a mapping that associates to every game U = (u1; :::; un) 2 U

an n-tuple of automaton strategies '(U) = ('1(U); :::; 'n(U)) (with 'i(U) the automaton

of player i). We will call the mapping ' uncoupled if, for each player i; the ith coordinate

2This is short for �a strategy implemented by an automaton.�
3We identify Ai with the unit vectors in �(Ai).
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'i of ' depends only on ui; i.e., 'i : U i ! Ai (rather than 'i : U ! Ai). That is, 'i

associates to each payo¤ function ui 2 U i of player i an automaton 'i(ui) 2 Ai; and

'(U) = '(u1; u2; :::; un) = ('1(u1); '2(u2); :::; 'n(un)):

We will refer to 'i : U i ! Ai as an uncoupled strategy mapping to automata for player i;

thus 'i �constructs�an automaton for player i by considering ui only.4 If 'i(ui) 2 Ai is

an automaton of size (at most) ki for every payo¤ function ui 2 U i; we will say that 'i is

an uncoupled strategy mapping to ki-automata.

Finally, we will say that the mapping ' is a Pure Nash mapping, or PN-mapping

for short, if the strategies '(U) yield almost sure convergence of play to a pure Nash

equilibrium in every game U 2 U where such an equilibrium exists.

2.5 The Results

Clearly, every �nite-recall strategy is in particular a �nite-automaton strategy. Indeed,

a strategy with recall of size R can be implemented by an automaton of size jAjR =

(
Qn
i=1m

i)
R (i.e. one state for each possible recall). Therefore, by Theorem 3 in [2], there

is uncoupled PN-mapping to automata of size (
Qn
i=1m

i)
2
: The question we address here

is whether there is uncoupled PN-mapping to automata with fewer states.

Our purpose is thus to characterize minimal numbers k1; :::; kn such that there exists

uncoupled PN-mapping where, for each i; the range is ki-automata. We will analyze each of

the four cases (pure or mixed-action automata, and deterministic or stochastic-transition

automata) separately.

The results are the following:

For two-player games (n = 2):

4We assume that every player i knows his index i.
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� There exists uncoupled PN-mapping to automata of sizes:

mixed actions pure actions

stochastic

transitions

8<: m1

m2 + 1
or

8<: m1 + 1

m2

8<: m1

m2 + 1
or

8<: m1 + 1

m2

deterministic

transitions

8<: m1 + 2

m2 + 2

8<: 4m1 +O(1)

4m2 +O(1)

� There is no uncoupled PN-mapping to automata of sizes m1;m2.

For n-player games (n � 3):

� There exists uncoupled PN-mapping to automata of sizes:

mixed actions pure actions

stochastic

transitions
2mi 2mi

deterministic

transitions
2mi + 3 O(mi + n log n)

� Let k1; k2; :::; kn such that 8i = 1; :::; n : ki < 2mi. Then there is no uncoupled

PN-mapping to automata of sizes k1; k2; :::; kn.

3 Two-Player Games

3.1 Stochastic transitions and mixed actions

We will show that there exists an uncoupled PN-mapping where the range for player 1

is (m1 + 1)-automata and the range for player 2 is m2-automata or, symmetrically, the

range for player 1 is m1-automata and the range for player 2 is (m2 + 1)-automata. On

the other hand, we will show that there is no PN-mapping where the ranges of the players

are smaller.
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Theorem 1 Let k1 � m1 and k2 � m2+1. Then, for each player i = 1; 2, there exists an

uncoupled strategy mapping to ki-automata with stochastic transitions and mixed actions

that guarantees almost sure convergence of play to a pure Nash equilibrium of the stage

game in every game where such an equilibrium exists.

Proof. We de�ne the mapping ' as follows:

Given a game U = (u1; u2), the automaton '1(u1) = �1 2 A1 is constructed as follows:

Denote '1(u1) = �1 =< 	1; s10; f
1; g1 > when �1 is a m1-automaton. We denote the

states of �1 by 	1 = fs11; :::; s1m1g.

s10 := s
1
1.

f 1(s1i ) := a
1
i � (0; :::; 0;

i

1; 0; :::; 0).

g1(a; s1i ) = g
1((a1i ; a

2); s1i ) :=

8<: s1i � (0; :::; 0;
i

1; 0; :::; 0)

( 1
m1 ; :::;

1
m1 )

if a1i is a best reply to a
2

otherwise

In state s1i player 1 plays action a
1
i . He stays in this state if a

1
i is a best reply to the

action of player 2; otherwise he moves randomly to any one of the m1 states with equal

probability 1
m1 . Note that whether an action of player 1 is a best reply or not depends

only on his payo¤ function; therefore, �1 depends on u1 only.

Now we construct the automaton '2(u2) = �2 2 A2 as follows:

Denote �2 =< 	2; s20; f
2; g2 > when �2 is a (m2+1)-automaton. We denote the states

of �2 by 	2 = fs20; s21; :::; s2m1g.

s20 := s
2
0.

f 2(s2j) :=

8<: ( 1
m2 ; :::;

1
m2 )

a2j

j = 0

j � 1

g2(a; s2j) = g
2((a1; a2j); s

2
j) :=

8>>><>>>:
( 1
m2+1

; :::; 1
m2+1

)

s2j

( 1
m2+1

; :::; 1
m2+1

)

j = 0

j � 1 and a2j is a best reply to a1

j � 1 and a2j is not a best reply to a1

In the state s20, player 2 plays the mixed action (
1
m2 ; :::;

1
m2 ), and moves to any of the

m2 + 1 states with probability 1
m2+1

.

In the states s2i , i � 1, player 2 plays action a2i . He stays in this state if a
2
i is a best

reply to the action of player 1; otherwise he moves to the state s20.
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Now we will prove that ('1; '2) is a PN-mapping.

We partition the space 	1 �	2 of the automata states into four regions:

P1 := f(s1i ; s2j); 1 � i � m1; 1 � j � m2 : eu1(a1i ; a2j) = 1; eu2(a1i ; a2j) = 1g; i.e., in this

case (a1i ; a
2
j) is a pure Nash equilibrium.

P2 := f(s1i ; s20); 1 � i � m1g.

P3 := f(s1i ; s2j); 1 � i � m1; 1 � j � m2 : eu2(a1i ; a2j) = 0g.
P4 := f(s1i ; s2j); 1 � i � m1; 1 � j � m2 : eu1(a1i ; a2j) = 0; eu2(a1i ; a2j) = 1g.
These four regions clearly cover the space 	1�	2. In fact, player 2 can be in the state

s20 (P2) or in any other state (P1 [ P3 [ P4). If player 2 is not in the state s20, then the

action of player 2 can be a best reply (P1 [ P4) or not (P3). If it is a best reply, then the

action of player 1 can be a best reply (P1) or not (P4)).

Players 1 and 2 stay at the same state if their action is a best reply; i.e., each state in

P1 is absorbing. We will prove that there is a positive probability of reaching a state from

P1, in �nitely many periods, from any other state s 2 	1 �	2.

De�nition 2 An action aij 2 Ai of player i will be called dominant if for every a�i 2 A�i

aij is a best reply to a
�i.

s = (s1i ; s
2
0) 2 P2 : The actions are (a1i ; (

1
m2 ; :::;

1
m2 )) = (f 1(s1i ); f

2(s20)). If a
1
i is a

dominant action, then denote by a2l an action that is a best reply to a
1
i . Player 2 moves to

s2l with probability
1

m2+1
. Then (s1i ; s

2
l ) 2 P1. If a1i is not a dominant action, then denote

by a2k an action such that a
1
i is not a best reply to it, and then with probability

1
m2 player

2 plays action a2k. Now both players move randomly over all their states and with positive

probability they will get to P1.

s = (s1i ; s
2
j) 2 P3 : The actions are (a1i ; a2j); a2j is not a best reply. Therefore, player 2

moves to s20. Denote the state to which player 1 moves by s
1
k. Then (s

1
k; s

2
0) 2 P2.

s = (s1i ; s
2
j) 2 P4 : The actions are (a1i ; a2j); a2j is a best reply, and a1i is not. Therefore,

player 2 stays in s2j , whereas player 1 move to s
1
k with probability

1
m1 , where a1k is a best

reply of player 1 to a2j . Now either (s
1
k; s

2
j) 2 P1 or (s1k; s2j) 2 P3, depending on whether a2j

is a best reply to a1k.
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In each of the above cases there is positive probability of reaching an absorbing state

in P1 in at most 3 steps.

De�nition 3 A game U will be called a full game if, for every action aij 2 Ai of every

player i, there exists a�i 2 A�i such that aij is a best reply to a�i.

We prove a general result about n-player full games which will be useful in the sequel.

Lemma 4 Let ' = ('1; :::; 'n) be an uncoupled strategy mapping that guarantees almost

sure convergence of play to a pure Nash equilibrium of the stage game in every game where

such an equilibrium exists. Then for every full game U = (u1; :::; un) and for every player i,

there exist mi nonempty sets of states Bi1; :::; B
i
mi in 	i (the set of states of the automaton

'i(ui) = �i) such that in every state sik 2 Bij player i plays aij (with probability 1), and

stays in Bij (with probability 1) if his action is a best reply to the actions of the other

players.

Proof. (By contradiction.) Assume that there exists a full game U s.t. for player 1 the

set B1j does not exist (or is empty). U is a full game, and so there exists a�1 2 A�1

such that a1j is a best reply to it. Consider the game U = (u1; u2; :::; un) when u1 := u
1,

and ui(a) :=

8<: 1 if a = (a1j ; a
�1)

0 otherwise
. The only Nash equilibrium of U is (a1j ; a

�1). By

uncoupledness we get �1 = '1(u1) = '1(u1) = �1. If (a1j ; a
�1) has been played, the next

period player 1 will not play a1k with probability 1 (otherwise the set B
1
j could not be

empty), and the equilibrium in the game U will never be reached with probability 1 (in

contradiction to the assumption).

Theorem 5 Let k1 = m1 and k2 = m2. Then there are no uncoupled strategy mappings

to ki-automata with stochastic transitions and mixed actions, that guarantee almost sure

convergence of play to a pure Nash equilibrium of the stage game in every game where such

an equilibrium exists.

Proof. (By contradiction). Let U be a full game. Consider the sets Bi1; :::; B
i
mi in �i (see

Lemma 3). By assumption j�ij � mi. On the one hand,
��Bij�� � 1, and, on the other hand,

9



P
j

jBijj � j�ij = mi, and so
��Bij�� = 1 and [

j
Bij = 	i. In other words, every Bij includes

exactly one state in which player i plays aij and stay there if a
i
j is a best reply, and there

are no other states. Therefore, the strategy of player i is such that if his action is a best

reply to the action of the other player, then in the next step he plays the same action.

In [2], Proof of Theorem 1, Hart and Mas-Colell show that such a strategy cannot always

lead to a pure Nash equilibrium, contradicting our assumption.

3.2 Stochastic transitions and pure actions

We will show the result of Theorem 1 continues to hold when the automata are restricted to

be pure-actions automata. As was shown in Theorem 5, however, there is no PN-mapping

where the ranges of the players are smaller.

Theorem 6 Let k1 � m1 and k2 � m2+1. Then, for each player i = 1; 2, there exists an

uncoupled strategy mapping to ki-automata with stochastic transitions and pure actions,

that guarantees almost sure convergence of play to a pure Nash equilibrium of the stage

game in every game where such an equilibrium exists.

The proof is relegated to Appendix A.

3.3 Deterministic transitions and mixed actions

We will show that there exists an uncoupled PN-mapping where the range for player i is

(mi + 2)-automata. Clearly, every deterministic-transition automaton is a particular case

of stochastic-transition automaton, and so Theorem 5 holds here as well.

Theorem 7 Let ki � mi + 2. Then for each player i there exists an uncoupled strategy

mapping to ki-automata with deterministic transitions and mixed actions, that guarantee

almost sure convergence of play to a pure Nash equilibrium of the stage game in every game

where such an equilibrium exists.

The proof is relegated to Appendix B.
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3.4 Deterministic transitions and pure actions

In Theorem 13, we will show for general n-player games that there exists an uncoupled

PN-mapping where the range for player i is (O(mi + n log n))-automata, where mi is the

number of actions of player i and n is the number of players. In the case of 2 players, the

construction of the automata in the proof of Theorem 13 proves the existence of uncoupled

PN-mapping where the range for player i is (4mi +O(1))-automata.

Other uncoupled PN-mapping, speci�cally for 2 players, has a range of (5m1+m2�5)-

automata for player 1, and (5m2 + 2m1 � 9)-automata for player 2. We will not show this

construction here but the idea is to go through all the possible actions (a1i ; a
2
j) in some

"economical" way.

4 n-Player Games (n � 3)

4.1 Stochastic transitions, and pure or mixed actions

We will show that there exists an uncoupled PN-mapping where the range for player i is

2mi-automata. On the other hand, we will show that there is no uncoupled PN-mapping

whose range is smaller for all players.

Theorem 8 Let ki � 2mi. Then for each player i there exists an uncoupled strategy

mapping to ki-automata with stochastic transitions and pure actions that guarantee almost

sure convergence of play to a pure Nash equilibrium of the stage game in every game where

such an equilibrium exists.

Proof. Let us introduce the mappings 'i(ui) = �i given a payo¤ function U = (u1; :::; un).

Denote the states of �i by 	i = fsi1;0; si1;1; si2;0; si2;1:::; simi;0; s
i
mi;1g. The states sij;0 will

be called 0-states; the states sij;1, 1-states.

De�nition 9 Given a state s = (s1; :::; sn) 2 	1 � :::�	n we will say that player i is �t

at s if

- player i is at a 0-state and player i+1(modn) is at a state sij;k for k 2 f0; 1g and j 6= 1,

11



or

- player i is at a 1-state and player i+ 1(modn) is at a state si1;k for k 2 f0; 1g.

In every state sij;l player i plays action a
i
j. If a

i
j is a best reply to what the other players

played, and player i �ts player i+ 1(modn), player i stays in sij;l. Otherwise he moves to

any one of the 2mi states with equal probability 1
2mi .

Let the starting states be si0 := s
i
1;0.

To prove that these automata reach a pure Nash equilibrium we partition the space

	1 � :::�	n of the automata states into n+ 2 regions:

P1 := f(s1k1;l1 ; :::; s
n
kn;ln

); 1 � ki � mi; li = 0; 1 : (a
1
k1
; :::; ankn) is a pure Nash equilibrium

and all the players are �tg.

Note that for every pure Nash equilibrium (a1k1 ; :::; a
n
kn
) there is a state s 2 P1 where

the players play (a1k1 ; :::; a
n
kn
). Take siki;li with li = 1 when ki+1 = 1 and li = 0 otherwise.

For 0 � r � n� 1 P2;r := f(s1k1;l1 ; :::; s
n
kn;ln

) : there exist exactly r players that are �tg.

P3 := f((s1k1;l1 ; :::; s
n
kn;ln

) : all the players are �t, but (a1k1 ; :::; a
n
kn
) is not a pure Nash

equilibriumg.

Clearly each state in P1 is absorbing. Next we claim that a state in P1 is reached with

positive probability, in �nitely many periods, from any other state s 2 	1 � :::�	n.

s 2 P2;0 : all the players are not �t, and so all the players move randomly over all their

states, and there is a positive probability of reaching P1.

For 1 � r � n�1 : s = (s1k1;l1 ; :::; s
n
kn;ln

) 2 P2;r. Assume player i is �t, but player5 i+1

is not. Such i exist, because we have a circle of players of which some are �t, and some are

not. There is a positive probability that all the players except i+1 will stay at their states,

and player i + 1 (who moves randomly because he is not �t) will move in the following

way: if ki+1 = 1 then he moves to si+12;li+1
, and if ki+1 � 2, then he moves to si+11;li+1

. Now all

the players except i and i+ 1 remain �t/not �t, as they were before, because neither they

nor the next player change their state. Player i + 1 does not change his li+1, player i + 2

does not change his state, and so player i+ 1 stays not �t, as he was before. Player i was

�t but after the move of player i+1, he is not �t. The only player that changes his �tness

5From here till the end of the proof, we will write i+ 1 instead of i+ 1(modn).
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is player i, and they get to P2;r�1. By induction, with positive probability they get to P2;0

in r steps.

s = (s1k1;l1 ; :::; s
n
kn;ln

) 2 P3 : The action is a = (a1k1 ; :::; a
n
kn
) and it is not a pure Nash

equilibrium; therefore, there exists player i s.t. aiki is not a best reply to a
�i, and player i

moves randomly over all the states. Hence, there is a positive probability that all the players

except i will stay at their states and player i will move to siki;1�li. Now all the players except

player i stay �tted, but player i do not �t. And so (s1k1;l1 ; :::s
i
ki;1�li ; :::; s

n
kn;ln

) 2 P2;n�1.

From any state s there is a positive probability of reaching an absorbing state in P1 in

at most n+ 2 steps.

Theorem 10 Let n � 4, and let k1; :::; kn satisfy ki < 2mi for all i = 1; :::; n, (except,

perhaps, for one of them). Then there is no uncoupled strategy mapping to ki-automata

with stochastic transitions and mixed actions, that guarantees almost sure convergence of

play to a pure Nash equilibrium of the stage game in every game where such an equilibrium

exists.

Proof. Assume on the contrary that such a strategy mapping exists, and that ki < 2mi

for all i = 2; :::; n. By Lemma (2) in �i there exist mi nonempty sets of states Bi1; :::; B
i
m1

s.t. in every state sij 2 Bik player i plays aik. j�ij < 2mi, and by the pigeon hole principle

there exists k(i) s.t.
���Bik(i)��� = 1. Therefore, every player i has a state sik(i) where he plays

aik(i), and he stays there if it is a best reply. Consider a four-players game where every

player has 2 actions.

Consider the following utility function of players 2, 3, 4:

13



u2 :

a41

a31

z }| {8>>><>>>:
a21 a22

a11 1 0

a12 1 0

a42z }| {
a21 a22

a11 1 1

a12 1 1

a32

8>>><>>>:
a21 a22

a11 1 1

a12 1 1

a21 a22

a21 0 1

a22 0 1

u3 :

a41

a31

z }| {8>>><>>>:
a21 a22

a11 1 1

a12 1 1

a42z }| {
a21 a22

a11 1 0

a12 1 0

a32

8>>><>>>:
a21 a22

a11 0 1

a12 0 1

a21 a22

a21 1 1

a22 1 1

u4 :

a41

a31

z }| {8>>><>>>:
a21 a22

a11 1 1

a12 1 1

a42z }| {
a21 a22

a11 0 1

a12 0 1

a32

8>>><>>>:
a21 a22

a11 1 0

a12 1 0

a21 a22

a21 1 1

a22 1 1

Player i = 2; 3; 4 gets 1 if he plays the same action as one of the players 2, 3, 4 (except

himself). Otherwise he gets 0.

The strategy mapping 'i : ui ! Ai constructs an automaton. As mentioned, there

exists a state sik(i) where player i plays a
i
k(i), and he stays there if it is a best reply. There

14



are 2 actions for every player, and 3 actions aik(i) i = 2; 3; 4. So there exist 2 players i; j

who have the same action aik(i); a
j
k(j), where k(i) = k(j). Because of the symmetry of the

functions u2; u3 ; u4, assume k(i) = k(j) = 1, and assume that the two players are players

3 and 4.

Let us now consider the following game:

�1 :

a41

a31

z }| {8>>><>>>:
a21 a22

a11 1; 0; 1; 1 0; 1; 1; 1

a12 0; 1; 1; 1 1; 0; 1; 1

a42z }| {
a21 a22

a11 0; 0; 1; 0 0; 0; 0; 1

a12 0; 0; 1; 0 0; 0; 0; 1

a32

8>>><>>>:
a21 a22

a11 0; 0; 0; 1 0; 0; 1; 0

a12 0; 0; 0; 1 0; 0; 1; 0

a21 a22

a21 1; 1; 1; 1 1; 1; 1; 1

a22 1; 1; 1; 1 1; 1; 1; 1

Players 3 and player 4 have the utility functions u3 and u4 respectively. Therefore, the

automaton that their strategy mapping constructs include states s31; s
4
1, where they play

action a31; a
4
1 (respectively) and stay there if it is a best reply. If players 3 and 4 get to the

states s3k(3) and s
4
k(4), then the pure Nash equilibrium will never be reached.

For a larger number of actions the same proof works, if we take all the actions ai2; :::; a
i
mi

to be identical to the action ai2 in this proof.

For a larger number of players we take the utility functions of players 2; 3; and 4 to

be the same as in the case of 4 players and independent of the actions of the other player

(1; 5; :::; n). And in the game �1 the utility functions of players 5; :::; n will be 1 if players

3 and 4 played the same action, and 0 otherwise.

4.2 Deterministic transitions and mixed actions

We will show that there exists an uncoupled PN-mapping such that the range for player

i is (2mi + 3)-automata. Clearly, every deterministic-transition automaton is a particular

case of stochastic-transition automaton, and so Theorem 10 holds here as well.
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Theorem 11 Let ki � 2mi + 3. Then for each player i there exists an uncoupled strategy

mapping to ki-automata with deterministic transitions and mixed actions, that guarantees

almost sure convergence of play to a pure Nash equilibrium of the stage game in every game

where such an equilibrium exists.

Proof. We introduce the mappings 'i(ui) = �i given a payo¤ function U = (u1; :::; un):

As in Theorem 8, we will use the states fsi1;0; si1;1; si2:0; si2;1:::; simi;0; s
i
mi;1g. These are

the same states, exapt that their transitions are deterministic. Denote the states of �i by

	i = fsi1; si2; si3g [ fsi1;0; si1;1; si2:0; si2;1:::; simi;0; s
i
mi;1g.

The states sij;l are similar to the states s
i
j;l in Theorem 8. In every state sij;l player i

plays action aij. If a
i
j is a best reply to what the other players played, and player i �ts,

then player i stays on it (exactly as before). Otherwise he moves to si1.

In the state si1 player i plays
�
1
mi ; :::;

1
mi

�
. If he played ai1 he stays in s

i
1. If he played

ai2 he moves to s
i
2. If he played a

i
j j 6= 1; 2 he moves to sij;0.

In the state si2 player i plays
�
1
mi ; :::;

1
mi

�
. If he played ai3 he stays in s

i
1. If he played

ai4 he moves to s
i
3. If he played a

i
j j 6= 3; 4 he moves to sij;1.

In the state si3 player i plays
�
1
mi ; :::;

1
mi

�
. If he played ai1 he moves to s

i
1;0. If he played

ai2 he moves to s
i
2;0. If he played a

i
3 he moves to s

i
3;1. If he played a

i
4 he moves to s

i
4;1. If

he played ai5 he stays in s
i
3. If he played a

i
j j � 6, he moves to si1.

Let the starting states be si0 := s
i
1.

The proof of the claim that this mapping is a PN-mapping is proven similarly to

Theorem 7 with 2 players.

4.3 Deterministic transitions and pure actions

We will show that there exists an uncoupled PN-mapping such that the range for player i is

O(mi+n log n)-automata. Clearly, every deterministic-transition automaton is a particular

case of a stochastic-transition automaton, and so Theorem 10 holds here as well.

Lemma 12 For every m;n 2 N there exist n di¤erent prime numbers p1; :::; pn, pi � m

for every i, such that pi = O(m+ n log n) for every i.
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Proof. We know that in f1; 2; :::;mg there exist a maximum of � m
logm

prime numbers (�

is a constant).

We also know that in f1; 2; :::; �(n+ � m
logm

) log(n+ � m
logm

)g there exist a minimum of

n+ � m
logm

prime numbers (� is a constant).

Therefore, in fm + 1;m + 2; :::; �(n + � m
logm

) log(n + � m
logm

)g there exist a minimum

of n prime numbers, and we can take di¤erent prime numbers p1; :::; pn s.t. 8i : m < pi <

�(n+ � m
logm

) log(n+ � m
logm

).

To complete the proof we will show that �(n+� m
logm

) log(n+� m
logm

) = O(m+n log n).

�If m � n then

�(n+�
m

logm
) log(n+�

m

logm
) = O((1+�)n log((1+�)n)) = O(n log n) = O(m+n log n):

�If n < m � n log n, then

m

logm
� 2n log n

2 logm
= 2n

log n

logm2
� 2n =) �(n+ �

m

logm
) log(n+ �

m

logm
) =

= O((1 + 2�)n log((1 + 2�)n)) = O(n log n) = O(m+ n log n):

�If n log n < m � n2, then

n � m

logm

logm

log n
� m

logm

log n2

log n
� 2 m

logm
=)

�(n+ �
m

logm
) log(n+ �

m

logm
) = O((2 + �)

m

logm
log((2 + �)

m

logm
)) =

= O(
m

logm
(logm� log logm) = O(m) = O(m+ n log n):

�If n2 < m, then

�(n+ �
m

logm
) log(n+ �

m

logm
) = O((1 + �)

m

logm
log((1 + �)

m

logm
)) =

= O(
m

logm
(logm� log logm) = O(m) = O(m+ n log n):

In any case �(n+ � m
logm

) log(n+ � m
logm

) = O(m+ n log n).

Theorem 13 Let ki � O(m+n log n), where m = maxfmig. Then for each player i there

exists an uncoupled strategy mapping to ki-automata with deterministic transitions and

pure actions, that guarantees almost sure convergence of play to a pure Nash equilibrium

of the stage game in every game where such an equilibrium exists.
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Proof. Let p1; :::; pn be di¤erent prime numbers s.t. 8i pi > mi.6 By Lemma 12 we can

take p1; :::; pn s.t. pi = O(m+ n log n).

We will show that there exists a PN-mapping ('1; :::; 'n) such that the range of 'i is

(4pi + 3)-automata, and in doing so we will have concluded our proof.

We introduce the mappings 'i(ui) = �i, given a payo¤ function U = (u1; :::; un):

The automaton �i consists of, starting state, a state after that and pi regions. The �rst

region has �ve states. The other regions have the same structure of four states. Denote

the pi regions of �i by Qi1 = fsij;1; sij;2; :::; sij;5g, and Qij = fsij;1; :::; sij;4g for j = 2; :::; pi.

Denote the starting state by si0 := s
i
1 and the state after it by s

i
2.

si1 : player i plays a
i
1. If (a

1
1; :::; a

n
1 ) was played he moves to s

i
1;1 (the starting state of

Qi1). Otherwise, if a
i
1 is a best reply, then he stays at s

i
1; if a

i
1 is not a best reply, then he

moves to si2.

si2 : player i plays a
i
2 and in any case moves to s

i
1;1 (the starting state of Q

i
1).

These two starting states guarantee us two things: First, if the equilibrium is (a11; :::; a
n
1 )

then the players will stay there. Second: if it is not, then all the players get to si1;1

simultaneously. We check the actions (a11; :::; a
n
1 ) separately, because in the continuation of

the construction of the automata we will use the fact that (a11; :::; a
n
1 ) is not an equilibrium.

The regions Qi1; Q
i
2; :::; Q

i
pi
are arranged in a circle when the players move to the region

Qij+1(mod pi) from the previous region Qij.

For j 6= 1 the construction of Qij is the following:
6Every player i has to choose his number pi to construct his automaton. But he doesn�t know the

numbers of the other players: p1; :::; pi�1; pi+1; :::; pn. Yet we have to ensure that every player will choose

a di¤erent number. Therefore, we have to de�ne a choice function: � : Nn ! (PRIME)n, known to the

players. The choice function chooses for every (m1; :::;mn) n prime numbers: �(m1; :::;mn), and then

every player i will choose the number pi := (�(m1; :::;mn))i.

As an example of choice function, let fwkg1k=1 be the sequence of all the prime numbers in increasing

order. For every i let k(i) be the minimal number such that

8<: wk(i) � mi

k(i) = i(modn)
, and de�ne pi := wk(i).
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The starting state sij;1 : player i plays a
i
j. If player i + 1(modn) played

7 ai+11 , player i

moves to sij;2; otherwise he moves to s
i
j;3. If (a

1
1; :::; a

n
1 ) was played, he moves to

8 sij+1;1.

sij;2 : player i plays a
i
j. If it is a best reply, and also player i+ 1 played a

i+1
1 (the same

action as before) then player i stays there. Otherwise he moves to sij;4. If (a
1
1; :::; a

n
1 ) was

played, he moves to sij+1;1.

sij;3 : player i plays a
i
j. If it is a best reply, and also player i+ 1 played a

i+1
k k � 2 (the

same action as before), player i stays there. Otherwise he moves to sij;4. If (a
1
1; :::; a

n
1 ) was

played, he moves to sij+1;1.

sij;4 : player i plays a
i
1. If (a

1
1; :::; a

n
1 ) was played, he moves to s

i
j+1;1; otherwise he stays

at sij;4.

For j = 1 the construction of Qi1 is quite similar. The only di¤erence is that the state

sij;4, changed by two s
i
1;4; s

i
1;5:

si1;4 : player i plays a
i
2. In any case, he moves to s

i
1;5.

si1;5 : player i plays a
i
1. If (a

1
1; :::; a

n
1 ) was played, he moves to s

i
j+1;1. Otherwise he stays

in si1;5.

Formi < j � pi letQij := Qimi denoted that the act in every sij;k m
i < j � pi; k = 1; ::; 4,

is identical to the act in simi;k.

In the state sij;1 player i informs player i� 1 what he played.

If the players located at Q1k1 ; :::; Q
n
kn
, and (a1k1 ; :::; a

n
kn
) is an equilibrium, then all the

players will stay at sij;2; s
i
j;3.

In the state sij;4 player i plays the "opposite" action than he played before and informs

player i� 1 that it is not an equilibrium.

In the state sij;4 for j 6= 1, and si1;5 for j = 1 player i waits until all the are informed

that it is not an equilibrium. Then all the players can move to their the next region

simultaneously.

To summarize, if the players are located at Q1k1 ; :::; Q
n
kn
; and (a1k1 ; :::; a

n
kn
) is an equi-

librium, then all the players stay at the equilibrium all the time. Otherwise they all will

move to Q1k1+1; :::; Q
n
kn+1

simultaneously.

7From here till the end of the proof, we will write i� 1 instead of i� 1(modn).
8From here till the end of the proof, we will write j + 1 instead of j + 1(mod pi).
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Since the players move from Qij to Q
i
j+1 simultaneously, by the Chinese Remainder

theorem it follows that they will visit every (Q1k1 ; :::; Q
n
kn
) : 1 � ki � mi, until they become

stuck in some (Q1k1 ; :::; Q
n
kn
) for which (a1k1 ; :::; a

n
kn
) is an equilibrium. Therefore, if a pure

equilibrium exists, the automata will eventually reach it.

5 Appendix A. Proof of Theorem 6.

Proof. We de�ne the mapping ' as follows:

Given a game U = (u1; u2), the automaton '1(u1) = �1 2 A1 is constructed as follows:

Denote '1(u1) = �1 =< 	1; s10; f
1; g1 > when �1 is a m1-automaton. We denote the

states of �1 by 	1 = fs11; :::; s1m1g.

s10 := s
1
1.

In state s1i player 1 plays action a
1
i . He stays in this state if a

1
i is a best reply to the

action of player 2; otherwise he moves randomly to any one of the m1 states with equal

probability 1
m1 .

In order to de�ne the mapping '2, we start by considering the following action b2 of

player 2: for every action a2j of player 2, let #BR(a
2
j) be the number of 1s in the column

a2j in the table eu2; i.e., #BR(a2j) := jfa1i jeu2(a1i ; a2j) = 1gj = jfa1i ja2j is a best reply to

a1i gj. Consider an action a2k with a maximal number of 1s in its column: #BR(a2k) =

maxf#BR(a2j)ja2j 2 A2g. Without loss of generality assume k = 1; i.e., the �rst column ofeu2 has no fewer 1s than any other column. Denote this action by b2 := a21.
Now we construct the automaton '2(u2) = �2 2 A2 as follows:

Denote �2 =< 	2; s20; f
2; g2 > when �2 is a (m2+1)-automaton. We denote the states

of �2 by 	2 = fs20; s21; :::; s2m1g.

s20 := s
2
0.

In the state s20, player 2 plays the action b
2, and moves to any of the m2+1 states with

probability 1
m2+1

.

In the states s2i , i � 1, player 2 plays action a2i . He stays in this state if a
2
i is a best

reply to the action of player 1; otherwise he moves randomly to any one of the m2 + 1

states with equal probability 1
m2+1

.
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Now we will prove that ('1; '2) is PN-mapping. Let us consider two cases:

Case 1: For every i = 1; :::;m1 : eu2(a1i ; b2) = 1; i.e., b2 is a dominant action.
We partition the space 	1 �	2 of the automata states into four regions:

P1 := f(s1i ; s2j); 1 � i � m1; 1 � j � m2 : eu1(a1i ; a2j) = 1; eu2(a1i ; a2j) = 1g; i.e., in this

case (a1i ; a
2
j) is a pure Nash equilibrium.

P2 := f(s1i ; s20); 1 � i � m1g

P3 := f(s1i ; s2j); 1 � i � m1; 1 � j � m2 : eu2(a1i ; a2j) = 0g
P4 := f(s1i ; s2j); 1 � i � m1; 1 � j � m2 : eu1(a1i ; a2j) = 0; eu2(a1i ; a2j) = 1g
These four regions clearly cover the space 	1�	2 (because player 2 can be in the state

s20 (P2) or in any other state (P1 [ P3 [ P4). The action of player 2 can be a best reply

(P1 [ P4) or not (P3). If it is a best reply, then the action of player 1 can be a best reply

(P1) or not (P4).)

Players 1 and 2 stay at the same state if their action is a best reply; i.e., each state in

P1 is absorbing. We will prove that there is a positive probability of reaching a state from

P1, in �nitely many periods, from any other state s 2 	1 �	2.

s = (s1i ; s
2
0) 2 P2 : The actions are (a1i ; b2) = (f 1(s1i ); f2(s20)). Wether a1i is a best reply

or not, player 1 has a positive probability (1 or 1
m1 correspondingly) to move to s1k, where

a1k is a best reply of player 1 to b
2. Player 2 will move to the state s21 with probability

1
m2+1

,

where b2 is a best reply to every action of player 1, in particular to a1k. Now (s
1
k; s

2
1) 2 P1.

s = (s1i ; s
2
j) 2 P3 : The actions are (a1i ; a2j); a2j is not a best reply. Therefore, player 2

moves to s20 with probability
1

m2+1
. Denote the state to which player 1 moves by s1k. Then

(s1k; s
2
0) 2 P2.

s = (s1i ; s
2
j) 2 P4 : The actions are (a1i ; a2j); a2j is a best reply, a1i is not. Therefore,

player 2 stays in s2j , and player 1 move to s
1
k with probability

1
m1 , where a1k is a best reply

of player 1 to a2j . Now either (s
1
k; s

2
j) 2 P1 or (s1k; s2j) 2 P3, depending on whether a2j is a

best reply to a1k.

In all the cases there is a positive probability of reaching an absorbing state in P1 in at

most 3 steps.

Case 2: There exists an action of player 1, say a1l , such that b
2 is not a best reply to
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it; i.e., there exists l = 1; :::;m1 such that eu2(a1l ; b2) = 0.
Before proving the Theorem, we will prove the following simple claim about the con-

�guration of 0s and 1s in eu2. This claim will be useful later.

Claim 1: If there exists l = 1; :::;m1, such that eu2(a1l ; b2) = 0, then:
(a) Let a2j 2 A2. Then there exists a1i 2 A1 such that eu2(a1i ; a2j) = 0.
(b) Let a1i 2 A1. Then there exists a2j 2 A2 such that eu2(a1i ; a2j) = 1.
(c) Let a1i 2 A1; a2j 2 A2, such that

8<: eu2(a1i ; a2j) = 1eu2(a1i ; b2) = 0 . Then there exists a1k 2 A1 such
that

8<: eu2(a1k; a2j) = 0eu2(a1k; b2) = 1 .
Proof: (a) Otherwise there would be a column in eu2 that includes 1s only. By the

assumption in this case there exist i = 1; :::;m1, such that eu2(a1i ; b2) = 0, which contradicts
the fact that b2 is the column with the maximal number of 1s.

(b) There is some action a2j 2 A2 that is a best reply to the action a1i 2 A1.

This action satis�es eu2(a1i ; a2j) = 1.
(c) Otherwise the number of 1s in the j-th column would be bigger than in the

�rst column.�
We partition the space 	1 �	2 of the automata states into regions:

For every x; y; z 2 f0; 1g put:

Pxyz := f(s1i ; s2j); 1 � i � m1; 1 � j � m2 : eu1(a1i ; a2j) = x; eu2(a1i ; a2j) = y; eu2(a1i ; b2) = zg
and

Qxy := f(s1i ; s20); 1 � i � m1 : eu1(a1i ; b2) = x; eu2(a1i ; b2) = yg.
In words Q for a region we mean that player 2 is in the state s20, and by P we mean

that he is not. There are three indices for region P , and two Boolean indices for region Q.

The �rst index in P;Q corresponds to player 1 and indicates whether his action is a best

reply (1) or not (0). The second index in P;Q corresponds similarly to player 2. The third

index in P indicates whether action b2 is a best reply to the action that player 1 played

(1) or not (0).

Clearly ( [
x;y;z2f0;1g

Pxyz) = 	
1 � (	2nfs20g) and ( [

x;y2f0;1g
Qxy) = 	

1 � fs20g, since we are
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considering all the possibilities. Therefore, ( [
x;y;z2f0;1g

Pxyz) [ ( [
x;y2f0;1g

Qxy) = 	
1 �	2.

Consider the region P11�. By the de�nition of Pxyz we can see that P11� = f(s1i ; s2j); 1 �

i � m1; 1 � j � m2 : eu1(a1i ; a2j) = eu2(a1i ; a2j) = 1g = f(s1i ; s2j); 1 � i � m1; 1 � j � m2 :

(a1i ; a
2
j) is a pure Nash equilibriumg.

Players 1 and 2 stay at the same state if their action is a best reply; i.e., each state in

P11� is absorbing. If we can show that a state from P11� is reached with positive probability,

in �nitely many periods, from all the other regions that we have already de�ned, then we

will have concluded our proof.

P00� : This is the region of all the states where the actions of both players are not a

best reply, and so both players move randomly over all their states, therefore, they reach

a pure Nash equilibrium with probability 1
m1 � 1

m2+1
; i.e., they reach P11�.

Q0� : Player 1�s action is not a best reply, and player 2 is in state s20. Therefore,

as before both players move randomly over all their states, and they reach P11� with

probability 1
m1 � 1

m2+1
, as before.

Q11 : Player 1�s action is a best reply and so he stays in the same state. Player 2 is

in state s20 and so he moves randomly over all his states. Player 2 will move to s
2
1 with

probability 1
m2+1

, and they get to P11�.

P101 : Player 1 stays, and player 2 randomizes. Since eu2(a1i ; b2) = 1 player 2 will move
to s20 with probability

1
m2+1

, and they get to Q01 or Q11.

P010 : Player 1 randomizes and player 2 stays. By claim 1(c) there exists a1k 2 A1 such

that

8<: eu2(a1k; a2j) = 0eu2(a1k; b2) = 1 . Player 1 will move to s1k with probability 1
m1 , and they get to P001

or P101.

P100 : Player 1 stays and player 2 randomizes. By claim 1(b) there exists a2j 2 A2 such

that eu2(a1i ; a2j) = 1. Player 2 will move to s2j with probability 1
m2+1

. Note that a1i does not

change and so still eu2(a1i ; b2) = 0 and they get to P0;1;0 or P110 (i.e., P�10).
P011 : Player 1 randomizes and player 2 stays. By claim 1(a) there exists a1k 2 A1

such that eu2(a1k; a2j) = 0. Player 1 will move to s1k with probability
1
m1 , and they get to

P00� [ P100 [ P101 = P�0�.

Q10 : Player 1 stays and player 2 randomizes. Player 2 moves to s21 with probability
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1
m2+1

, and they get to P100.

Thus we have covered all the regions and shown that in at most 5 periods there is a

positive probability of reaching the absorbing state P11�. The regions cover all the space

	1�	2, and so the automata will reach a pure Nash equilibrium when such an equilibrium

exists with probability 1.

6 Appendix B. Proof of Theorem 7.

Proof. We de�ne the mapping ' as follows:

Given a game U = (u1; u2), the automaton '1(u1) = �1 2 A1 is constructed as follows:

Denote the states of �i by 	i = fsi00; si01; si1; :::; sim1g.

In the state sij player i plays action a
i
j. He stays in this state if a

i
j is the best reply to

the action of player 2; otherwise he moves to si00.

In the state si00 player i plays
�
1
mi ; :::;

1
mi

�
. If he played ai1, he stays in s

i
00. If he played

ai2, he moves to s
i
01. If he played a

i
j; j � 3, he moves to sij.

In the state si01 player i plays
�
1
mi ; :::;

1
mi

�
. If he played ai1, he moves to s

i
1. If he played

ai2, he moves to s
i
2. If he played a

i
3, he stays in s

i
01. If he played a

i
j j � 4, he moves to si00.

Let the starting state be si0 := s
i
00.

The proof that these mapping is PN-mapping requires consideration of four cases sep-

arate: if a pure Nash equilibrium is (a1k; a
2
l ) then we will consider the cases fk � 2; l � 2g;

fk � 2; l > 2g; fk > 2; l � 2g; and fk > 2; l > 2g. We will prove only ona case, says

fk � 2; l > 2g, since the proofs for the other cases is similar.

We partition the space 	1 �	2 of the automata states into regions:

P1 := f(s1i ; s2j); 1 � i � m1; 1 � j � m2 : (a1i ; a
2
j) is a pure Nash equilibriumg

P2 := f(s101; s200)g

P3 := f(s100; s200) [ (s100; s201) [ (s101; s201)g

For every x 2 f00; 01g; y 2 f�; >g put:

Qx;y := f(s1x; s2j); 1 � j � m2 : there exist

8<: i � 2 if y is �

i > 2 if y is >
such that a2j is not a best

reply to a1i g
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For every x 2 f�; >g; y 2 f00; 01g put:

Qx;y := f(s1i ; s2y); 1 � i � m1 : there exist

8<: j � 2 if x is �

j > 2 if x is >
such that a1i is not a best

reply to a2jg

P4 := f(s1i ; s2j); 1 � i � m1; 1 � j � m2 : (a1i ; a
2
j) is not a pure Nash equilibriumg

Clearly, P2[P3 = fs100; s101g�fs200; s201g, P1[P4 = fs11; :::; s1m1g�fs21; :::; s2m2g, [
x2f00;01g;y2f�;>g

Qx;y =

fs100; s101g � fs21; :::; s2m2g, [
x2f�;>g;y2f00;01g

Qx;y = fs11; :::; s1m1g � fs200; s201g. Therefore, the

union of all the regions is 	1 �	2.

Players 1 and 2 stay at the same state if their action is a best reply; i.e., each state in

P1 is absorbing. If we can show that a state from P1 is reached with positive probability,

in �nitely many periods, from all the other regions that we have already de�ned, then we

will have concluded our proof.

P2 : Both players randomize. They play (a1k; a
2
l ) with positive probability, and then

they get to P1.

P3 : Both players randomize. From every one of the states there is a positive probability

to get to P2. For example, if they are in the states (s100; s
2
00), then if they play (a

1
2; a

2
1) they

move to (s101; s
2
00) 2 P2.

Q00;� : Player 1 randomizes. With positive probability the actions are (a1i ; a
2
j) such

that a2j is not a best reply to a
1
i , so player 1 stays at fs100; s101g and the action of player 2

is not a best reply. Therefore, player 2 moves to s200, and so (s
1
00; s

2
00); (s

1
01; s

2
00) 2 P2 [ P3.

Q01;� : Player 1 randomizes. With positive probability the actions are (a14; a
2
j). If a

2
j is

a best reply to a14, they move to (s
1
00; s

2
j) 2 Q00;�. Otherwise they move to (s100; s200).

Q01;>; Q00;> : Similar to Q00;�; Q01;�

Q�;00;Q�;01;Q>;01;Q>;00 : Symmetric to Q00;�;Q01;�;Q01;>;Q00;>

P4 : The action of one of the players is not a best reply to the action of the other, and

so one of them will move to the state s00 (i.e., s100 or s
2
00). Hence, they get to one of the

previous regions.

We have covered all the regions and shown that in at most 5 periods there is positive

probability of reaching the absorbing state P11�. The regions cover all the space 	1 �	2;

therefore, the mapping is PN-mapping.
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In the other cases where the pure Nash equilibrium (a1k; a
2
l ) satis�es fk � 2; l � 2g;

fk > 2; l � 2g; or fk > 2; l > 2g the only di¤erence is in how the regions P2 and P3

are de�ned. For example, for the case fk � 2; l � 2g, P2 and P3 will be de�ned by

P2 := f(s101; s201)g and P3 := f(s100; s200) [ (s100; s201) [ (s101; s200)g.
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