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ABSORBING GAMES WITH COMPACT ACTION SPACES

JEAN-FRANÇOIS MERTENS†, ABRAHAM NEYMAN‡, AND DINAH ROSENBERG§

Abstract. We prove that games with absorbing states with compact action
sets have a value.

Introduction

Stochastic games are Markov decision processes in which the transitions of the
state are controlled by the actions of the decision makers. In a stochastic game
the players interact repeatedly. At each stage the players observe the current state,
next choose an action independently, and are then informed of the chosen actions.
According to these actions and the current state the chain moves to a new state
that is observed by all players. The stage payoff is a function of the current state
and the actions chosen. We focus on two-player zero-sum stochastic games.

Stochastic games were introduced by Shapley [10]. He proved the existence of
the value of λ-discounted two-player zero-sum stochastic games with finitely many
states and actions.

In the case where the sets of actions and of states are finite, the existence of the
limit, say v, of the values of the λ-discounted games as λ goes to 0 (i.e., as players
become more and more patient) was proved in [1], using an algebraic argument. It
is proved in [5] that v is a value: for each ε > 0, there exists N(ε) and λ(ε) and each
of the players has a strategy that 1) guarantees him a payoff of v up to an error of
ε in any n-stage or λ-discounted game provided n ≥ N(ε) or λ ≤ λ(ε), and 2) the
strategy of player one (respectively, player two) guarantees that the expectation of
the liminf (respectively, limsup) of the average payoff in the first n-stages as n goes
to infinity is at least v − ε (respectively, at most v + ε).

In the case of stochastic games with finite state space but with compact action
sets, there is no general result ensuring the convergence of the values of the n-stage
or λ-discounted games (and a fortiori none ensuring the existence of the value).

An absorbing state of a stochastic game is a state such that for any profile of ac-
tions chosen by the players the state remains the same almost surely. An absorbing
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§LAGA, Institut Galilée, Université Paris Nord, Avenue Jean Baptiste Clément, 93430 Vil-

letaneuse, France and Laboratoire d’Econométrie de l’École Polytechnique, Paris, France. E-mail:
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game is a stochastic game in which all states but one are absorbing. [3] proved the
existence of the value for (two-person zero-sum) absorbing games with finite action
sets (this is now a particular case of [5]).

For absorbing games with compact action sets the algebraic approach of [1] does
not apply and convergence of the values of the λ-discounted games was proved using
an operator approach by [9].

In this paper we prove that the value of absorbing games with compact action
sets exists. The proof relies on the characterization of the limit of the values of the
λ-discounted games provided in [9], and on [5].

1. The Model

Here a stochastic game is a two-player zero-sum game determined by:

• Three sets: S (the set of states), I (the set of actions of player 1), and J
(the set of actions of player 2). We will assume throughout that I and J
are compact metric; we will see that when focusing on absorbing games we
can assume without loss of generality that S is finite.

• A bounded payoff function g : S× I ×J → R that is separately continuous.
Note that this implies measurability (see [6] [I.1.Ex.7a]).

• A transition probability q from S× I × J to S, where q( z′ | z, i, j ) denotes
the probability of reaching state z′ from state z given the pair of actions
(i, j), where q is separately continuous on I × J . Note that this implies
measurability (see [6] [I.1.Ex.7a]).

• An initial state z1 ∈ S.

The game is played in stages. At each stage n ∈ N, player 1 and player 2
choose an action, in ∈ I and jn ∈ J , knowing the whole past history, including
current state zn. Then the current payoff is gn = g(zn, in, jn), and q(s | zn, in, jn)
is the conditional probability, given z1, i1, j1, . . . , zn−1, in−1, jn−1, that the next
state zn+1 = z. We denote by hn the history up to stage n, more precisely
hn = (z1, i1, j1, ..., zn−1, in−1, jn−1, zn). Let Hn denote the set of histories up to
stage n, and H the set of infinite length histories. Let Hn be the σ-algebra on H
induced by histories hn (of length n) and H∞ be the σ-algebra spanned by ∪nHn.

Thus, a player’s behavioral strategy (σ of player 1, τ of player 2) specifies a
probability distribution over his actions at each stage conditional on the current
state and the past history. A pair (σ, τ) induces a probability Pσ,τ on histories
(H,H∞). The corresponding expectation is denoted by Eσ,τ.

Notation 1. We use ‖·‖ for the sup-norm, and let A = ‖g‖ := supz,i,j |g(z, i, j)|.

We are interested in the existence of infinite-game strategies that guarantee a
given payoff in all sufficiently long games, as well as in the infinite undiscounted
game.

Definition 1. Player I can guarantee v ∈ RS if for every δ > 0 and s1 ∈ S there is
a strategy σ of player 1 and N > 0 such that for any strategy τ of player II,

Eσ,τ

[
lim inf
n→∞

1
n

∑
i<n

gi

]
≥ v(z1)− δ

∀n ≥ N, Eσ,τ

[
1
n

∑
i<n

gi

]
≥ v(z1)− δ

Player II can guarantee v ∈ RS if for every δ > 0 and s1 ∈ S there is a strategy
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τ of player 2 and N > 0 such that for any strategy σ of player I,

Eσ,τ

[
lim sup
n→∞

1
n

∑n

i=1
gi

]
≤ v(z1) + δ

∀n ≥ N, Eσ,τ

[
1
n

∑n

i=1
gi

]
≤ v(z1) + δ

A stochastic game has a value v ∈ RS if both players can guarantee v.

All stochastic games with finite state space S and finite action sets I and J have
a value. It is unknown whether all stochastic games with a finite state space have
a value. This paper proves that all absorbing games have a value.

Absorbing games with finite action sets I and J were studied in [3]. An absorb-
ing state is a state z ∈ S such that for all i ∈ I and all j ∈ J , q(z | z, i,j) = 1. An
absorbing game is a stochastic game in which all states but one are absorbing. We
are going to study absorbing games with compact action sets.

Remark 1. As soon as an absorbing state z is hit, both players know it; the rest of
the game is therefore a repeated zero-sum game, with value v(z). We add to the
game two absorbing states s+ and s− with constant payoff A and −A. Then one
can replace the transitions to any absorbing state z by transitions with probabilities
(1 ± A−1v(s))/2 to s+ and s−. Thus, in an absorbing game we need without loss
of generality at most 3 states: s0 (the nonabsorbing state), s+, and s−.

This note proves the following result:

Theorem 1. Absorbing games have a value.

2. The proof

2.1. Reminder of λ-discounted games.

Notation 2. For a compact set X, ∆(X) denotes the set of probability distribu-
tions over X.

The λ-discounted payoff function is, for λ ∈ (0, 1):

Eσ,τ

∑∞

i=1
λ(1− λ)i−1gi

The value vλ(s1) and stationary optimal strategies (xλ, yλ) (of the λ-discounted
game) exist ([6, Chapter VI proposition 1.4]), and vλ is characterized by:

(1) vλ = T (λ, vλ)

where for u ∈ RS,

(2) T (λ, u)(s) = max
x∈∆(I)

min
y∈∆(J)

Ex,y,q [λg(s, i, j) + (1− λ)u(s̃)]

where Ex,y,q is the expectation operator where, independently, i and j are dis-
tributed according to x and y, and then s̃ is distributed according to q(s̃|s, i, j).

2.2. Reminder of the Mertens-Neyman theorem. The proof in Section 2 of
[5] proves the following1 theorem:

Theorem 2. If λ 7→ wλ ∈ RS is a function defined on ]0, 1[ with

(3) ‖wλ− wλ̄‖ ≤
∫ λ̄

λ

ψ(x)dx for all 0 < λ, λ̄ < 1

1In [5, Section 2] the function vλ indeed stands for the value of the λ-discounted game, and
thus condition (4) of Theorem 2 (equivalently, [5, Inequality 2.1]) and [5, Inequality 2.2] follow.

These two conditions are the only use in [5, Section 2] of the fact that vλ is the value of the

λ-discounted game. Other examples where the proof in [5] is applied to functions vλ that are not
necessarily the values of the discounted games appear in [7] and [8].
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where ψ :]0, 1] → R+ is integrable and for every λ ∈]0, 1] sufficiently small we have

(4) T (λ,wλ) ≥ wλ

then player 1 can guarantee limλ→0+wλ.

2.3. The auxiliary function wλ. Recall that we can assume w.l.o.g. that the
absorbing game has 3 states, s0, s+, and s−. Fixing in (2) w(s+) and w(s−) at
the values A and −A, one gets a map T (λ, ·) : R → R; this map is the restriction
of T (λ, .) to vectors that take values A and −A at their s+ and s− coordinates;
unless otherwise specified T (λ, .) will now denote this restriction. Then, by [9], vλ

converges to v, characterized by v(s+) = A, v(s−) = −A and:

T (0, v) = v and

limλ→0

(
T (λ,w)− w

)/
λ < 0 for w > v

limλ→0

(
T (λ,w)− w

)/
λ > 0 for w < v

(5)

Take ε > 0. Our goal is to apply the previous theorem with wλ = vε (for any λ)
defined by vε(z) = v(z)− εIz=s0.

2.4. Proof of Theorem 1. First, we prove that wλ (= vε(s)) satisfies the con-
ditions of Theorem 2. As wλ is independent of λ the function λ 7→ wλ satisfies
condition (3) with the function ψ(λ) = 0. Condition (4) holds trivially for s1 = s+

and for s1 = s−. It remains to prove that the condition holds for s1 = s0. However,
equation (5) implies that, for λ small enough,

(6) T (λ, vε) ≥ vε

Therefore, for every ε > 0, player 1 can guarantee vε, and therefore player 1 can
guarantee v. This completes the proof that continuous absorbing games have a
value.

3. An explicit strategy

In this section we construct an explicit strategy, based on the construction in [5,
Section 2] and using the auxiliary function wλ = vε that obeys inequality (6).

Fix ε > 0. We define a sequence (λi)∞i=1 so that 0 < λi < 1 is a function of
past history, i.e., measurable w.r.t. the σ-algebra Fi of all events preceding time i
(including the choice of a new state zi after the play at time i− 1), and so that all
λi are sufficiently small so that T (λi, vε) ≥ vε. The (λi)∞i=1-strategy of player 1 is
to play on time i a strategy such that inequality (2.1) of [5],

(7) E(wλi(zi+1)− wλi(zi) + λi(xi− wλi(zi+1)) | Fi) ≥ 0

holds with wλi
(z) := v(z)− εIz=z1, where z1 is the initial nonabsorbing state.

Let M > 1/ε be a sufficiently large constant so that (6) holds for λ < 1/M2 and
(6A)2/M < ε and thus for all si, si+1 ≥M with |si+1− si| ≤ 6A we have

(8) |(si+1− si)(
si

si+1
− 1)| < 2ε

Defining inductively (as in [5, Section 2]), si+1 = max[M, si + xi − vλi
(zi+1) + 4ε]

and λi = 1
s2

i
, starting with s1 ≥M arbitrary. Set Yi = wλi

(zi)− 1/si (= vε− 1/si).
We have

Yi+1− Yi = wλi
(zi+1)− wλi

(zi) + λi(xi− vλi
(zi+1))

−1/si+1 + 1/si − λi(xi− vλi
(zi+1))
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and therefore, using (7), we have

E(Yi+1− Yi | Fi) ≥ E(1/si− 1/si+1− λi(xi− vλi
(zi+1)) | Fi)

≥ E(
si+1− si

sisi+1
− λi(si+1− si− 4ε) | Fi)

= E(4ελi− λi(si+1− si)(
si

si+1
− 1) | Fi)

≥ 2ελi

where the second inequality follows from si+1 − si ≥ xi − vλi
(zi+1) + 4ε, and the

last inequality follows from (8).
Since λi ≥ 0, the inequality E(Yi+1 − Yi | Fi) ≥ 2ελi implies that Yi is a sub-

martingale. Obviously, Yi is bounded and thus it converges a.s., say to Y∞, with
E(Y∞ | F1) > Y1. It follows that 4A ≥ 2A+ 2/M ≥ E(Yk − Y1) ≥ 2εE(

∑
1≤i<k λi)

so that by the monotone convergence theorem

(9) E(
∑

i<∞
λi) < 2A/ε, and

(10) E(#{i | λi ≥ η}) ≤ 2A
εη
.

Thus, a.s., λi → 0, si →∞ (and hence also Isi=M → 0), as i→∞, and therefore

(11) wλi
(zi+1) → Y∞ with E(Y∞ | F1) > Y1 ≥ v(z1)− ε− 1/M

Also

(12) E(wλi
(zi+1)) ≥ v(z1)− ε− 1/M

From the definition of si+1 it follows that

xi ≥ vλi(zi+1) + si+1− si− 4ε− 2AIsi+1=M

Summing these inequalities over 1 ≤ i < n, we have

(13)
∑

i<n
xi ≥

∑
i<n

vλi
(zi+1) + sn− s1− 4εn−

∑
i<n

2AIsi+1=M

implying that

lim inf
n→∞

1
n

∑
i<n

xi ≥ Y∞− 4ε

and thus

E(lim inf
n→∞

1
n

∑
i<n

xi) ≥ E(Y∞ | F1)− 4ε ≥ v(z1)− 5ε− 1/M

and
E(

1
n

∑
i<n

xi) ≥ v(z1)− 2ε− 4ε− s1/n

Altogether, we deduce that the (λi)∞i=1-strategy of player 1 guarantees v(z1) − 7ε.
Thus, player 1 can guarantee v(z1). Similarly, player 2 can guarantee v(z1) and
therefore v(z1) is the value of the absorbing game.

The (λi)∞i=1-strategy of player 1 (is a constant mixed action on the absorb-
ing states, and) has a simplified form on the nonabsorbing state. Indeed, as
wλ(z) = v(z)− εIz=s0 we can define si+1 = max[M, si + xi− v(s0) + 5ε].
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